
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 42 (1967)

Artikel: Über die Struktur nilpotenter und auflösbarer Liescher Algebren.

Autor: Drollinger, Fritz

DOI: https://doi.org/10.5169/seals-32141

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-32141
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Uber die Struktur nilpotenter und auflôsbarer Liescher Algebren

von Fritz Drollinger

Einleitung

In der vorliegenden Arbeit wird eine Liesche Algebra g (n) mit abzâhlbarer Basis

konstruiert, so daB sich jede Liesche Algebra endlicher Dimension als Restklassen-

algebra von g (n) darstellen lâBt. Ausgehend von dieser Algebra g (n) werden dann die

nilpotenten bzw. vollstàndig zerlegbaren auflôsbaren Lieschen Algebren endlicher
Dimension in folgendem Sinne klassiflziert. Die Menge aller endlichdimensionalen

nilpotenten bzw. vollstàndig zerlegbaren auflôsbaren Lieschen Algebren zerfâllt in
Klassen, so daB es in jeder Klasse einen einziger Vertreter maximaler Dimension gibt
und aile andern Lieschen Algebren einer Klasse sich als Restklassenalgebren dieser

maximalen darstellen lassen. Auf dem Wege zur Algebra g(n) betrachten wir zu-
nâchst in § 1 Algebren A mit endlicher oder abzâhlbarer Basis und der Eigenschaft

(x>y)-z x-(y z) — y(x-z) fur aile x, y, zeA. (1)

Eine solche Algebra nennen wir verallgemeinerte Liesche Algebra (VLA). Eine

Algebra g heiBt Liesche Algebra, wenn

x-x 0 und x(yz) + y(zx) 4- z(xy) 0 fur aile x,y,zeg.

(1) ist erfûllt fur Liesche Algebren, so daB jede Liesche Algebra eine VLA ist.
Fur eine VLA bilden die Potenzen An und die Ableitungen A{n) Idealketten in A.

Wir nennen eine VLA nilpotent, wenn An 0 ist fur eine natûrliche Zahl n. Die
kleinste solche Zahl heiBt Klasse von A. A heiBt auflôsbar, wenn Aw 0 ist. Die
Zahl n dimAIA(1) nennen wir wir Ordnung von A.

Wir nennen eine Algebra A linkserzeugt von Elementen xu...,xn9 wenn jedes
Elément von A darstellbar ist in der Form

wobei nur endlich viele ah'ip^Q sind. A heiBt frei linkserzeugt von xl5..., xn, wenn
die Elemente xiiL(xi2(...xip)...) eine Basis bilden. Jede Algebra endlicher Dimension
wird trivialerweise von einer Basis linkserzeugt. Die Bedeutung dieser Définition liegt
also nicht so sehr in der obigen Darstellung, als in der Wahl der Elemente xl9..., xn.
Dies zeigt sich in den folgenden Aussagen liber nilpotente bzw. auflôsbare VLA: Jede

nilpotente VLA ist linkserzeugt von n àimAjAil) modulo A(1) linear unabhângigen
Elementen xu...9 xn und jede VLA mit ^4(1) nilpotent ist linkserzeugt von n dimA/Aa)
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modulo A{1) linear unabhângigen Elementen yl9..., yn und von gewissen modulo A{2)

linear unabhângigen Elementen xl9...9 xm von A(i\
Dièse beiden Aussagen legen es nahe, die von Elementen xu...9 xn frei

linkserzeugte VLA A (ri) zu konstruieren. Dièse Algebra A (ri) liefert nun die

Grundlage fur aile weiteren Untersuchungen, denn sie hat die folgenden nùtzlichen
Eigenschaften:

1) Jede von Elementenyi,...,yn linkserzeugte VLA lâBt sich darstellen als Rest-

klassenalgebra von A (ri).
2) In A (n) gibt es ein eindeutig bestimmtes, unter Automorphismen invariantes

Idéal J(ri), so daB g(n) A(n)/J(ri) Liesche Algebra ist und jede Liesche Algebra g
endlicher Dimension als Restklassenalgebra von g (ri), fur genugend groBes n, dar-

gestellt werden kann.
3) Die Algebra A (m, ri) A(ri)/(A(ri))m ist nilpotente VLA. Ihre Automorphismen

lassen sich besonders einfach durch Matrizen darstellen.
In § 2 wenden wir dièse Ergebnisse speziell auf nilpotente Liesche Algebren

endlicher Dimension an und erhalten: Die Algebra g(m,ri)==A(n)lJ(n) + (A(n))m ist
nilpotente Liesche Algebra der Ordnung n und der Klasse m. AuBerdem lâBt sich jede
nilpotente Liesche Algebra g der Ordnung n und der Klasse m darstellen als

Restklassenalgebra von g (m, ri) nach einem Idéal. Zu gegebenen Invarianten m und n gibt
es also genau eine nilpotente Liesche Algebra maximaler Dimension. Da jede
nilpotente Liesche Algebra g homomorphes Bild einer Algebra g (m, ri) ist, genûgt es,

aile homomorphieinvarianten Eigenschaften von g fur die in ihrer Struktur ein-

facheren g (m, ri) herzuleiten.
Wir nennen zwei Idéale It und I2 einer Algebra A konjugiert, wenn es einen

Automorphismus \j/ von A gibt, so daB ^(/1) J2 ist. Der Begriff der konjugierten
Idéale erlaubt es uns nun, die nicht isomorphen nilpotenten Lieschen Algebren der

Ordnung ^n und der Klasse <m zu den Idealen von g (m, ri) in eine Relation zu
bringen, und zwar gilt: Die Menge aller Klassen isomorpher nilpotenter Liescher

Algebren g der Ordnung <« und der Klasse <m ist gleich der Menge der Klassen

aller konjugierten Idéale von g (m, ri).

Wir haben oben gesehen, daB sich die Automorphismengruppe 91 (m, ri) von
A (m, ri) besonders einfach darstellen lâBt. Aus ihr erhalten wir die Automorphismengruppe

g (m, ri) von g (m, ri) als Restklassengruppe. Dariiber hinaus erhalten wir die

Automorphismengruppe g einer Restklassenalgebra g von g (m, ri) als Restklassengruppe

einer Untergruppe von g (m, ri).
In § 3 wenden wir die Ergebnisse von § 1 an auf vollstândig zerlegbare Liesche

Algebren an. Wir nennen eine Algebra A zerlegbar, wenn es in A eine endlich-
dimensionale nilpotente Unteralgebra A0 gibt und ein System A von Linearformen
uber A°, so daB jedem eue A ein Unterraum A* von A zugeordnet werden kann mit
den Eigenschaften
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A= ® A*

0 sonst

wobei I Au(0). I heiBt System der Wurzelformen oder Radikalsystem von A.
Fur Liesche Algebren ûber einem algebraisch abgeschlossenen Kôrper K der Charak-
teristik # 0 liefert die Cartansche Zerlegung eine solche Aufspaltung.

In A zeichnen wir das Teilsystem II aus, das aus allen Wurzelformen a besteht,

fur die dimA*/A* nA(2) da^0 ist, d.h. aile a, fur die Aa£A{2\ Wir nennen dièse a

einfache Wurzelformen.
Sei A eine zerlegbare VLA mit A(i) nilpotent. Dann ist II nicht leer und nach § 1

wird A linkserzeugt von Elementen yl9...,yneA° und x*,..., x^eA*, ccell. Wir
nennen eine solche YLA vollstândig zerlegbar, wenn es ein Erzeugendensystem

Ji, •••> ym xu •••> xm gibt mit yteA0 und x(eA*, so daB gilt

fur aile yeR(yl9...,yn) und af(x) 0 fur xeft^,...,^). Aus Grùnden der ein-

facheren Darstellbarkeit wollen wir uns im folgenden auf vollstândig zerlegbare VLA
beschrânken. Dièse Einschrânkung bedeutet, daB aile Elemente von A*, a#0, bezûg-
lich der Linkstranslationen y:x-+yx fur yeA° Eigenvektoren sind.

Fur solche Algebren gilt dann: A ist Summe der nilpotenten Unteralgebren

ft(7i>--.>>0und#(*i>--->*m)>wobei#(^
bzw. von xi9..., xm linkserzeugten Unteralgebren von A sind.

m

Jedes fie A ist von der Form f}= ^P^i m^ aie^ und p(eN, wenn % 0 und

plerp, wenn x~P- AuBerdem lâBt sich jede Wurzelform von A auffassen als Linear-
form ûber dem von yu..., yn aufgespannten Yektorraum, d.h. jS (z) 0 fur zeA° n A(1\
Seien nun m, n, r, s, vorgegebene natûrliche Zahlen und U ein System von m nicht
identisch verschwindenden Linearformen ûber einem Yektorraum mit der Basis

yu-..,yn. A{m + ri) sei die gemâB § 1 von den Elementen yi9...9yn9 xu...,xm frei
linkserzeugte YLA. Wir konstruieren die Algebra G(m,n,r,s, II) als Restklassen-

algebra von A(m + n). G (m, n, r, s, II) hat die folgenden Eigenschaften :

G(m9n,r,s,II) ist vollstândig zerlegbare Liesche Algebra bezûglich der Er-

zeugenden yl9...,yn, xu...,xm, wenn yi bzw. xt die Restklasse von yj bzw. xt ist.

&{yu-">yt) t>zw- R(xl9..., xm) hat die Klasse s bzw. r. 77 ist System der einfachen

Wurzelformen von G(m,n,r,s9 II). Jede vollstândig zerlegbare Liesche Algebra g
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mit den Invarianten m, n, r, s und mit 17 als System der einfachen Wurzelformen lâBt
sich darstellen als Restklassenalgebra von G (m, n, r, s, 77) derart, daB die Zerlegung
von G (m, n, r, s, II) bei der Restklassenabbildung auf g ùbertragen wird.

Wir wenden uns nun der Frage zu, wann zwei Algebren G (m, n, r, s, II) und
G'(m, n, r, s, II') isomorph sind. Die Antwort auf unsere Frage lautet dann: G {m, n,

r, s, II) und G' (m, n, r, s, II') sind genau dann isomorph, wenn II und 7T équivalent
sind und in jeder vollstândig zerlegbaren Lieschen Algebra g gibt es bis auf Âquivalenz

genau ein System 77 einfacher Wurzelformen.
Wir haben gesehen, daB die nilpotenten bzw. vollstândig zerlegbaren auflôsbaren

Lieschen Algebren als Restklassenalgebren von g (m, n) bzw. G {m, n, r, s, 77) nach
Idealen dargestellt werden kônnen. Von der Vielfalt der Idéale in diesen Algebren
untersuchen wir in § 4 solche, die in gewissem Sinne maximal sind. Wir nennen ein
Idéal 7 von g (m, n) maximal, wenn bei der Restklassenbildung nach 7 die Klasse von
g (m, n) erhalten bleibt und dabei die Dimension von 7 maximal ist. Es zeigt sich, daB

die Erzeugenden eines solchen Idéales hôchstens von (m — 2)/4 Parametern abhângen.
Fur g=g(m,n)II gilt dann: g wird linkserzeugt von zwei Elementen y0, yt und
dimgi/gi+1 lfùri=2,...,m-l.

Zum SchluB suchen wir noch diejenigen vollstândig zerlegbaren auflôsbaren
Lieschen Algebren g auf, fur die g(1) Restklassenalgebra von g(r, 2) nach einem
maximalen Idéal ist. Wir erhalten sechs Typen (A), (B), (C), (D), (E) und (F), die

noch von gewissen Parametern abhângen.

§ 1. Einfiihrung

1. Algebren

Ksei ein Kôrper und A eine direkte Summe von abzâhlbar vielen ^-Vektorrâumen
mit endlicher Basis. A sei auBerdem versehen mit einer bilinearen Abbildung (x, y)->

x-y von A x A in A. Wir nennen A dann eine Algebra ûber K.
Ein 7^-Unterraum B einer Algebra A, der bezûglich der Multiplikation abge-

schlossen ist, heiBt Unteralgebra von A. Wir nennen B Links- bzw. Rechtsideal von A,
wenn fur xeB, yeA gilt yxeB bzw. xyeB. Ist B Links- und Rechtsideal, dann
heiBt B (zweiseitiges) Idéal von A.

Seien A und A' zwei Algebren iiber K und /eine Abbildung von A in A1. /heiBt
Homomorphismus, wenn gilt

/ist ÂT-linear und

f(x-y)=f(x)'f(y) fur aile x,yeA

Sei B ein Idéal von A. Dann lâBt sich auf dem Restklassenraum A\B eine

Multiplikation erklâren durch

x-y^îry,
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wenn Je, y die Restklassen von x, y bedeuten. Die Restklassenabbildung ist also ein

Homomorphismus. Es gilt der Homomorphiesatz : Sei/ein Homomorphismus von
A auf A', dann ist Kern/= B ein Idéal von A und A' ist isomorph zu A/B. AuBerdem

gilt der Isomorphiesatz: Seien Il912 Idéale von A und It c: I2, dann ist

Définition 1 : Wir nennen eine Algebra A verallgemeinerte Liesche Algebra
(VLA), wenn fur aile x,y,zeA gilt

{xy)z x{yz)-y{xz). (1)

Sei A eine VLA, dann ist auch jede Unteralgebra von A eine VLA. Da die

Restklassenabbildung ein Homomorphismus ist, ist auch jede Restklassenalgebra einer

VLA wieder eine VLA.

2. POTENZEN UND ABLEITUNGEN

Définition 2: Wir nennen w-te Potenz einer Algebra A den Unterraum A", der

aufgespannt wird von allen môglichen w-fachen Produkten der Elemente aus A.
Aus dieser Définition folgt sofort

An+1ç:An und (2)

An-AmçzAn+m (3)

Fur n=l bzw. m=l erhalten wir A-An bzw. An'A^An+1^A\ d.h. An ist ein Idéal

von A.

Définition 3 : Wir nennen «-te Ableitung von A den Unterraum Ain\ der definiert
ist durch

A(0) A und (4)

Ain) =Ain-i),Ain-l) (5)
Offensichtlich gilt

A(n) s A2n (6)
Insbesondere ist A{l) A2

Aus A(1)^A A(0) erhalten wir durch vollstàndige Induktion

Ain) ist also Unteralgebra von A.

Behauptung 1 : Ist A eine VLA, dann ist A{n) ein Idéal von A.

Beweis: Ai0) A ist Idéal in A. Sei 4(ll""1) Idéal in A. Fur xeA und .y, zeA{n~l) gilt
dann
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A-A{n) &(x(yz)) &((xy) z + y(xz)) s A(n) und

A{n)-A 2((yz) x) £,(y(zx) - z(yx)) c A(ll).

Sei/ein Homomorphismus von A in >4', dann gilt

(8)

Durch vollstândige Induktion erhalten wir auch

(9)

Ist insbesondere \j/ ein Automorphismus von A, dann gilt \\/{An) An und \l/(A(n))
A™.

Définition 4: Wir nennen eine Algebra A nilpotent, wenn es eine natûrliche
Zahl m gibt, so daB Am 0 ist. Die kleinste solche Zahl heiBt Klasse von A. Wir
nennen A auflôsbar, wenn es ein k gibt, so daB ^4(fc) 0 ist. Die kleinste solche Zahl
heiBt Index von A.

Behauptung 2: Wenn A(1) nilpotent ist, dann ist A auflôsbar.
Beweis: Sei (^4(1))m 0, fur m > 1, dann ist A(m)

Folgerung 1 : Wenn A nilpotent ist, dann ist A auch auflôsbar.

Folgerung2: Ist A^O auflôsbar, dann ist n dimA/A(i)>0. n heifit Ordnung

von A.
Die Umkehrung der Behauptung 2 gilt i.a. nicht. Z.B. ist fur einen Kôrper K mit

der Charakteristik 2 und A mit der Basis u, x, y, z und dem Multiplikationsschema

L(x, y, z),
aber

u

X

y
z

u

0

X

y + z

z

X

X

0

0

y + z

y
y+z

0

0

0

z

z

y + z

0

0

L(y, z), A^ (0)

L(y,z).

3. LlNKSERZEUGTE ALGEBREN

Sei In das Indexsystem, das besteht aus allen #-tupel der Zahlen 1,..., n9 wobei q
aile natûrlichen Zahlen durchlâuft.

Définition 5: Wir nennen eine Algebra A linkserzeugt von Elementen xu...,xn,
wenn fur aile xeA gilt

x= I ah-i>xil(xh...xip)...),ah-i*eK (10)

wobei a 1"<Ip#0 fur hôchstens endlich viele Indizes.
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A heiBt frei linkserzeugt, wenn die Darstellung (10) eindeutig ist. Der Einfachkeit
halber schreiben wir im folgenden

xtl...xlp statt xH(xl2...xlp)....

Sei A linkserzeugt von xl9...9xn. Da die Restklassenabbildung homomorph ist,
wird jede Restklassenalgebra À von A linkserzeugt von den Restklassen xl9...9xn.

Behauptung 3: Sei A eine VLA und yl9...9yneA. Uq sei die Gruppe der Permu-
tationen von q Zahlen. Dann gibt es feste Koeffizienten C^eK, œeUq9 so dafi gilt

O) 6 Uq

Der Unterraum R(yl9...9 yn) Q(yJ1...yJq q=l,29...)ist also Unteralgebra von A.

Beweis: Fur q=\ ist yn-{y i...ylp)=yJi-y\ ...ylp
Sei (11) richtig fiir q<t. Dann ist

O^i ~-yjt)(yti -y*?) ^i((^2 ••• yJt)(yll -ylP)) - (yJ2 ••• yJt)(yJl yn ••• ^.P)

Z c(?yJlyo>u2)--yo>ut)yn--ylp
10 6 Ut - l

~ Z C2ytOl)...ytUt)yJty,l...y

E c<ayo>o,)---ya>ot)yn---y,P-
<a e Ut

Behauptung 4: Sei A eine nilpotente VLA endlicher Dimension und von der

Ordnung n. yi,.-.9yn seien modulo A2 linear unabhàngige Elemente von A. Dann ist

Beweis: Fur m 2 ist A R(yu...9yH) £(yl9...,yn)>
Sei A ${(y1,...i yn), wenn die Klasse von A^m ist.

A habe die Klasse m+1. yu..., yn seien modulo A2 linear unabhângig. Dann ist

u,..,yn), wobei y} die Restklasse von j, ist. Also ist
A R(yu..., yn) + Am. Es gibt daher einen Unterraum if von A, so dafi A R(yu...,
yn)®H. Sei zeHczAm9 dann ist z Summe von m-fachen Produkten von Elementen der

Form y + h mit yeSï(yu..., yn) und heH. Da m>\ und AH=HA 09 ist

z 0 und somit auch H=0.

Behauptung 5: Sei A eine VLA endlicher Dimension und A{1) nilpotent. A habe

die Ordnung n und A{1) die Ordnung r. yu...,yn seien modulo A(i) linear unabhàngige
Elemente von A. H sei die Unteralgebra (St(yu..., yn)nA(1)) + A{2) und s dim H/A{2\
Seien xu...9 xm, (m r — s), modulo H linear unabhàngige Elemente von A{1\ Dann ist
A R(yl9...9yH9xl9...9xm).

Beweis: Seien xl,...9xm modulo H und ;cm+1,..., xre$t(yl9...9yn)nA(1) modulo
A{2) linear unabhàngige Elemente von A{1\



266 FRITZ DROLLINGER

Nach Behauptung 4 wird Ail} linkserzeugt von xu...9 xr und es ist

Daaber A R(yl9...,yn) + A(1) ist, gilt A R(yu...,yn,xl,...,xm).
Bemerkung: Wie das obige Beispiel zeigt, gilt die Behauptung 5 i.a. nicht fur

auflôsbare VLA.

6. Die Algebra A(n)

Jedem ieln ordnen wir ein Elément xt zu und bilden die direkte Summe A (ri) ûber

K der Vektorrâume Al Q(xl). In A(n) definieren wir eine Multiplikation durch

Xj-Xi,... Xj =xitii : (12)

XJi-.-Jq'Xii...ip XJi'(XJ2..Jq'Xh...ip) ~ xJ2...jq'XJiti.. iP (13)

und ^T-Linearitât. A (ri) ist damit eine Algebra ûber K.

Behauptung 6: A(n) ist von xu..., xnfrei linkserzeugte VLA.
Beweis: Wegen (12) ist {xtl • ••• -xip} {xti ..j }. Basis von A (ri). A (ri) ist also von

*!,..., xn frei linkserseugt. Wegen (12) und (13) gilt (1) fur x Xj und aile y9 zeA(ri).
(1) geltefûr x xjt xjq. Dannist fur x xfxjl---- 'XJq xi-uq

(xy)z ((xtuq) y)z (xt(uqy)) z - (uq(xty)) z

xt((uqy) z) - (uqy)(xtz) - uq((xty) z) + (xty)(uqz)
Xi{uq(yz)) - (uqy)(Xiz) - uq(xt(yz)) + uq(y(xiz)) - y(xi(uqz))
(x{uq)(y z) - y((xtuq) z)

x(yz)- y(xz).
Behauptung 7: Sei A eine von Ji,...,jn linkserzeugte VLA, dann ist A Rest-

klassenalgebra von A (ri).
Beweis: Wir definieren eine Abbildung \j/ von A (ri) in A durch \J/ (xt)=yh \j/(xh...

Xip)=yil...yip und ^-Linearitât. Da A R(yl,...,yn), ist \j/ ,,auf" und nach (11) ist
\j/ homomorph.

Sei A (m, ri) die Restklassenalgebra A(ri)j(A(ri))m (m>\). A (m, ri) wird dann

linkserzeugt von den Restklassen xi9...9 xn. Da (A (m, ri))m (A(ri))m 0, ist A (m, ri)

nilpotent. Nach Behauptung 3 ist

d.h. {xfl...xf ,p<m} ist eine Basis von A (m, n) und somit ist dim^4(w, ri) (nm— 1)/

Satz 1: Jede nilpotente VLA A endlicher Dimension der Ordnung <« und der
Klasse < m ist Restklassenalgebra von A (m, ri).

Beweis: Da A von den Basiselementen trivialerweise linkserzeugt wird, ist A

A(ri)jJ und J"2.(A(ri))m. Nach dem Isomorphiesatz gilt dann
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A A (n)U s A (n)l(A (n))m/JI{A (n))m A (m, n)jl.
Behauptung 8 : Ein Automorphismus xj/ von A (m, n) ist bestimmt durch die Angabe

der Bilder ij/ (xt) der Erzeugenden xv
Umgekehrt ist jede lineare Abbildung \j/, die aufder Basis gegeben ist durch

n m-1
<M*i)= I aiXj+ £ ai1 JqxJx...xJq und

l 2

mit det(a/)^0 ein Automorphismus von A (m, n).
Beweis: 1) Da \j/ ein Automorphismus ist, ist \j/ auf den Basiselementen gegeben

durch il/ (xH... xlp) il/(xll)'...'ilj (xlp).
2) Wegen (11) ist ij/ homomorph. Sei ïp der Endmorphismus, der gegeben ist

durch ${xï)=YjalXj un<^ *P(Xii-'Xip) $(Xn) ^(^p)- $ ^ invertierbar, da
7=1

det(fl/)#O, îj/'1 o\j/ wird also durch eine Dreieckmatrix dargestellt, ist daher ebenfalls
invertierbar. Also ist auch i^ ^o(^~1o^) invertierbar, d.h. \j/ ist ein Automorphismus.

5. KONJUGIERTE IDEALE

Wir nennen zwei Idéale îx und I2 einer Algebra A konjugiert, wenn es einen

Automorphismus \j/ von A gibt, so dafi i^(/1) /2 ist. Sind zwei Idéale konjugiert,
dann sind ihre Restklassenalgebren isomorph, denn AIIl \l/(A)l\l/(I1) AII2. In
A (m, n) gilt auch die Umkehrung:

Behauptung 9 : Seien Ix und I2 Idéale von A (m, n) und rj ein Isomorphismus von

A (m, n)/^ aufA (m, n)I2, dann sind It und I2 konjugierte Idéale von A (m, n).

Beweis: Sei hv der Restklassenhomomorphismus von A (m, n) auf A (m, «)//v. Da

A(m,n) ein Vektorraum endlicher Dimension ist, gibt es eine bijektive lineare

Abbildung \j/' von A (m, n) auf A (m, w), so dafi

h2\l/f t]h1 und ^'(/1) /2-

Also ist ty'(xy) — ty'(x)-\j/'{y)el2 fur aile x,yeA(m, n). Sei \j/ der durch \l/(xt)
ij/f (X) defînierte Automorphismus von A (m, n). Da A (m, n) von xu..., xn linkserzeugt
ist, gilt \l/(y)-\l/'(y)el2, also h2xlj(y) h2\l/f(y) rjhl(y) fur aile yeA{m,n) und
somit h2il/(I1) 0 oder ^(/^Ç^. Da \j/ bijektiv ist, gilt ^(/1) /2.

Sei 3(A) die Menge der Idéale in A. Die Automorphismusgruppe %(A) von A
definiert dann eine Âquivalenzrelation auf 3(^4). Wir bezeichnen die Menge der
Klassen konjugierter Idéale von A mit

Satz 2 : Sei § (m, n) die Menge aller nicht isomorpher nilpotenter VLA der Ordnung
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<# und der Klasse <m, dann ist

Beweis: Zwei Restklassenalgebren von A (m, n) sind genau dann nicht isomorph,
wenn die zugehôrigen Idéale nicht konjugiert sind. Aus Satz 1 folgt dann die Behaup-

tung.

§ 2. Nilpotente Liesche Algebren

1. Liesche Algebren

Eine Algebra g ûber K heifit Liesche Algebra, wenn die Multiplikation den

Bedingungen geniigt
x-x 0 (14)

O (15)
fur aile x, y,zeg.

Aus (14) folgt x-y +yx=0. Damit lâBt sich (15) auch in der Form schreiben

(xy)z x(yz)-y(xz) (15')

Eine Liesche Algebra ist also VLA und somit Restklassenalgebra einer A (n). Sei

J(n) das Idéal von A (n), das erzeugt wird von den Elementen der Form x-x, xeA (n).
Dann gilt y(zx) + z(xy)eJ(n)

fur aile x,y,zeA (n). Die Restklassenalgebra

g(n) A(n)/J(n)

ist also eine Liesche Algebra. Sei g A(n)/Jeine Liesche Algebra, dann ist wegen (14)

/(«)£/. Nach dem Isomorphiesatz ist g dann Restklassenalgebra von g (ri).

2. Die Algebra g(m, n)

Sei J(m, n)=J(n)-\-(A(n))m, dann ist die Restklassenalgebra

g(m, n) A(n)IJ(m, n)

eine Liesche Algebra der Ordnung n.

Behauptung 10: g (m, n) hat die Klasse m.
Beweis: Sei m' die Klasse von g(m,n), dann ist m'^m. Sei m'<m, dann ist

(A(ri))mf^J(n) + (A(n))m. Jede Restklassen-Lie-Algebra g von A(n) mit gm 0 hat
also hôchstens die Klasse rri<m. Das ist aber nicht richtig, denn z.B. die von den

Elementen xl9...,xn erzeugte Liesche Algebra mit dem Multiplikationsschema xtx2
y*—, ^iJi^Ji+i 0*=3,..., m-l), xtym=0, XiXj=O(i<j) sonst ^«Ofur i>2 und

— —XjXi9 xtyj~ —yjXt hat genau die Ordnung m.
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Satz 3 : Jede nilpotente Liesche Algebra g der Klasse <ra und der Ordnung <« ist
Restklassenalgebra von g {m, n) nach einem Idéal I.

Beweis: Sei g^A(n)/J, dann ist J(m9 n)^J. Nach dem Isomorphiesatz gilt dann

fur/=///(m,«)
g s A(n)jJ ^A(n)IJ(m, n)ljjj(m9 n) g(m9 n)//

3. AUTOMORPHISMENGRUPPEN

Die Automorphismengruppe 91 (m, n) der Algebra A (m, n) ist nach Behauptung 8

gegeben durch die n x (nm— \\n— 1)-Matrizen der Gestalt

(A\B)

Behauptung 11 : Sei I ein Idéal von A (m, n) und s die Identitât aufA(m, n). Wir
setzen

91, (m, n) {il/e%(m, n)\ij/(I) /} und

(g,(m, n) {iM«(ro, n)|(e - t)(A(m9 n)) s /}
Dann gilt
1) 3ïj(m, n) ist Untergruppe von 91 (m, n).
2) Gj(m, h) wf Normalteiler von 9Ij(m, «).
3) ^t£%I{m, n) definiert einen Automorphismus n von g=A(m, ri)jl

und es ist nl=n2 genau dann, wenn \l/l(xi) — \l/2(xi)el.
Beweis: 1) Seien \j/9 ^'G9Ij(m, «), dann ist i^"1(/) / und xj/oij/'(/) /, also

2) Seien \j/1, \j/2e(èI(m, n) und i^e9tj(m, «). Dann ist ^î1o(e — il/1) (x) (il/îi—e)
x(x)el und (e-^oW (x) (8-iAi)o(6 + iA2) (x) + (^,-e) (x) + (c-^2) (x)e/ fur
aile xeA(m, n), also ^i"1 und ^o^eÊ/^, «). Wegen (^"1o^1o^-e)(x)
(\l/~~1o(\l/1 — e)o\j/) (x)e/ist auch ^"^^o^eSjf/w, «).

3) Sei /i der Restklassenhomomorphismus von A (m, n) auf g, dann ist r\ gegeben
durch rjh(A(m,n))=hil/(A(m,n)). Sei \l/1(xi)-\l/2(xi)eluné \l/i(xii...xip)-\l/2(xil...
xip)el{ùrp<t<m9 dann ist auch ^1(^l...^-^2(^1---^it) ^i(^1)*(^i(^2---^
~*l'2(Xi2...xit)) + (\l/l(xil)-il/2(xil))-il/2(xi2...xit)eL Fur aile xeA(m,n) gilt daher

nlh(x)-r}2h(x) h(\l/ï-~ilj2) (x) 0, also rjl rj2. Wenn es ein xfoe^(m, «) gibt, so

da6 il/1(xio)-\l/2 (xiJ$I,dannistnlh(xio)-n2h(xio) h(\l/1--\l/2) (xio)^09tison

Satz 4: *SW g J/V Automorphismengruppe von g, dann gilt

Q^%(m9 n)/(£7(m, n)

Fur g=g{m9 n) ist insbesondere

g (m, n) s 9ï(m, n)l&{m9 n)
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Beweis: Nach Behauptung 9 lâBt sich jeder Automorphismus von gfortsetzen zu
einem Automorphismus von A (m, n), der / invariant lâBt. Die Isomorphie folgt dann
aus Behauptung 11. Da J(m, n) invariant ist unter den Automorphismen von A (m, n),

4. KONJUGIERTE IDEALE IN g{m,n)

Behauptung 12: Seien It undl2 Idéale in g (m, n), so dafîg(m, ri)IIx isomorph ist zu

g {m, ri)jl2. Dann sind It und I2 konjugiert.
Beweis: Seien Jt und J2 die vollen Urbilder von ll und I2 in A (m, n), dann ist

nach dem ïsomorphiesatz A (m, n)/Jx s A (m, n)J2. Es gibt also einen Automorphismus
\j/ von A (m, n), so daB ty(J\) J2.

Nach Behauptung 11,3) ist dann

Satz 5 : Sei S (m, n) die Menge der Klassen nicht isomorpher nilpotenter Liescher

Algebren der Ordnung ^n und der Klasse ^m, dann ist

S (m, n) 3(g(m, n))/g(m, n).

Beweis: Zwei Restklassenalgebren von g (m, n) sind nach Behauptung 12 genau
dann nicht isomorph, wenn die zugehôrigen Idéale nicht konjugiert sind. Aus Satz 3

folgt dann die Behauptung.

§ 3. Vollstândig zerlegbare auflosbare Liesche Algebren

1. Zerlegbare Algebren

A sei im folgenden stets eine VLA. Wir definieren in Anlehnung an die Cartansche

Zerlegung Liescher Algebren :

Définition 5 : Wir nennen eine VLA zerlegbar, wenn es in A eine nilpotente
Unteralgebra A0 gibt und ein endliches System A von Linearformen ûber A°(0$Â),
derart, daB jedem aeA ein Unterraum Aa von A zugeordnet werden kann, so daB gilt

A=®A\ î Ju(0) (16)

i4a^£<{ ^ (17)
(0 sonst

v ;

aeï

Wir nennen I das System der Wurzelformen von A.

Wegen (18) gilt A=A° + A(1\
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Behauptung 13: Sei A zerlegbar, von der Ordnung n>0 und A{1) nilpotent.
)>!,¦¦¦, yneA° seien modulo Aw linear unabhângig. Dann gilt:

1) H=2{AX-A-", aeJ) ist Idéal von A0.

2) A°
3) (A
Beweis: 1) Nach (17) ist

{{0AyA-\ A"-(A°-A'a))^H und

H ist also Idéal von A0. R(jt,..., yn) + H ist daher Unteralgebra von A0.

2) Wegen (16) gilt
Aw (04°)(1) + H)o 0 A" (19)

txe A

Da A° St(yl9...9yH) + (AonA™)9 ist A° R(yl9...9yn) + H+(Ajl\ Da A0

nilpotent ist, wird es erzeugt von yl9..., yn und gewissen Elementen von H. Wegen 1) ist
daher A° R(yl9...,yH) + H.

3) Folgt aus 1) und 2)
Sei A zerlegbar. Wir nennen cceA einfach, wenn da dimAa/AanA^2)>0.

Behauptung 14: Sei A zerlegbar und ^4(1) nilpotent. Wenn A selbst nicht nilpotent
ist, dann gibt es in A einfache Wurzelformen.

Beweis: Sei ® Aa^Ai2\ Dann ist nach (19) A{1) {A°fl) + A{2\ Da A(1) nilpo-
a e A

tent ist, wird es linkserzeugt von Elementen aus (A°){1\ also ist A=${(yl9...9yn) +
Ail)^R(y1,...,yn) + (Aoyi)^A0 und damit nilpotent.

Sei A zerlegbar und A(i) nilpotent. Dann wird A nach Behauptung 5 linkserzeugt

vonyu..., yn und von Elementen x\,..., x^eA*, wobei cceA einfach ist. Im folgenden
seien xl9...9 xm die durchlaufend numerierten Erzeugenden .4 und /I (a1,..., am)das
System der zu xt gehôrenden einfachen Wurzelformen, in dem af gerade dai-mal vor-
kommt.

Définition 6: Sei A zerlegbar und A{1) nilpotent. Wir nennen A vollstândig
zerlegbar, wenn es ein Erzeugendensystem yu...,yn, xu...,xm gibt mit y^A0 und
Xi€Aat9 so daB gilt

yxi^ai(y)xi (20)

(21)

fur aileyeR(yu...,yn) und af(x) 0fûr xeA°nR(xl9..., xm).

Aus (1) und (11) erhalten wir die Rechenregeln:

•*,>)= I«,v()>,•) -*i, *«, (22)
V=l
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(Xh-~"XiP)yj= Z Cm'*rtlP)(yj)mX<oih> Xa>(ip)- (23)
w e U p

(xh ^P)-(^r--^) (^ yjq>(xh ^) 0 fUr i>2 <24>

AuBerdem ist
*i(yJt ^) 0 fur q>2. (25)

Die OLt sind also Linearformen ûber

Im ubrigen sind die oct frei wàhlbar.
Wegen(22)bis(25)ist

AuBerdem sind (ft(ji,..., Jn))(1) und 51 (xî9..., xm) Idéale von A.

Behauptung 15: Sei A vollstândig zerlegbar beziiglich yi9..., yn9 xl9...9 xm9 dann

gilt

A° R(yu...9yn) + Q(xii xip\ f alV 0) (26)
r= 1

P

A0 Q(xh ---Xi | £ a/v )8) fur aile 0e A (27)
v=l

Beweis: Wegen (17) ist

p

""xh\ Z ociv O)^A° und
v=l

v=l
p

Fùrxil-~"Xip^Oistp= J] aiveIDa^
v=l

•j^, xfl xip) gilt jeweils Gleichheit.
Jede Wurzelform fiel ist also von der Form

(28)

^, wenn x(^) 0 und^eT^, wenn x{K)=p.

2. Die Algebra G (m, «, r, s, /I)
Sei ^4(m + «) die von den Elementen yi,.>-,yn, xl9..., xm frei linkserzeugte VLA.

II seiein System vori m Linearformen a1?..., am^0ûber fi(^i,...,^B). Wir betrachten

in A(m + n) die folgenden Idéale:
1) Das Idéal /(/I), das erzeugt wird von den Elementen

yj-Xi-<*i(yj)'Xt und (29)
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^•^ + a,(^)-^, (30)

2) Das Idéal /(r, s), das erzeugt wird von den Elementen

yJt yJq, q>s und (31)

*., xlp, p^r (32)

3. Das Idéal

Wir bezeichnen mit B die Restklassenalgebra A(m + n)jI{TI) und mit G (m, n, r,
s, 17) oder kurz G die Liesche Algebra A(m + n)l(I(II) + I(r, s) + J(m + n)).

Behauptung 16: Die Restklassen xtl* ••• -xlp und yn yJq bilden eine Basis

von B.
Beweis: Sei £A11 lp-xH' ••• 'xlp + "£ nn 3q'yn yJq ^ ^ann ist Y,^ lq'

xn xIp + EMJ1 Jq'yji yJqeIln)' Wegen (29) und (30) enthâlt aber jedes
Elément z#0 aus /(/I) mindestens einen Summanden bestehend aus Faktoren xx und

yy Also ist A11 lp fiJÏ ^ 0.

Da das System yl9..., jn linear unabhângig ist, kônnen wir die at als Linearformen
uber Q(yl9..., >v) auflfassen, so da8 gilt al(yJ) oil(yJ)- Analogzu (22) bis (24) erhalten

wir dann die Rechenregeln
p

jyC*,! *,„)= Z a»v(^)r*n ^p (33)

(,,^ Z mô.*,,, *»(.,)• (34)
ct> e Up

(yn ^)-(^»i ^P) (^1---^.p)-(^i--'^) ° fùr <i>2 (35)

Behauptung 17: Sei A die Menge der verschiedenen Linearformen der Gestalt
m

P= Z Pl'ocl9(xlell, wobei pleN, wenn x(K) 0 und pleFp, wenn %{K)=p. Sei Z

Akj(0). Wir setzen

\ t ocJv 0), (36)

Bfi &(xn x,j£a,v jS). (37)
V= 1

Dann gilt
B= 0 Bp (38)

(39)

0 Bp c B(1) (40)
fie A
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Beweis: (38) und (39) folgen aus Behauptung 16 und (11). Fur ^(y^O ist xt
\ also gilt (40). Aus (29) und (30) schlieBlich folgt (41).

Behauptung 18: G ist vollstândig zerlegbare auflôsbare Liesche Algebra.
Beweis: Aus dem Isomorphiesatz erhalten wir

I(r, s) + J{m + n) wird erzeugt von Elementen der Form yh yjq, q^s, xh
und (yh yis)'(yh yh\ (xkl xkr)-(xkl xkr).

Jede solche Erzeugende liegt in einem Bp. Daher ist

I(r, s) + J(m + n)= ® Jp mit Jp c Bp

psi
Der Homomorphismus h von B auf G erhâlt also die Zerlegung, d.h. fur Gp

h(Bp) und AG {peA\Gp^0} ist

G= ® Gp

pelb
Weiter gilt

GpGr h(Bp-Br) ç= h(Bp+r) Gp+r und

e A

Da I(r, s) + J(m + n)ç:Bil\ sind die yj h(yj) linear unabhângig.
Mit oci(yj) (xi(yj) folgt dann aus (41)

Da yjl...yjq xil...xip O fur q^s, p^r, sind nach Behauptung 16 G0 und G(1)

nilpotent. G ist also vollstândig zerlegbare Liesche Algebra.

Satz 6: Sei g= © gp eine vollstândig zerlegbare Liesche Algebra mit g(i) nil-
peAg

potent, dem Erzeugendensystem yi,-..,yn, xl9...9 xm und den einfachen Wurzelformen

ocl9...,ocm. R(yi9...9yn) bzw. ${(xl9...9 xm) habe die Klasse s bzw. r. Dann ist g Rest-

klassenalgebra von G G (m, n9 r, s, H) nach einem Idéal. Sei n der Restklassenhomo-

morphismus, dann gilt

fur peAg
fur

Beweis : A'(m-\-n) werde von y\,..., y'm x\,..., x'm frei linkserzeugt. Nach Behauptung

7 gibt es einen Isomorphismus $ von g auf eine Restklassenalgebra von A' (m + n)
nach einem Idéal J'(g) derart, da8 4>{yj)=h(y!^) und <t>{x^ h(x'ù, wenn h die Rest-

klassenabbildung ist. Setzen wir cc^y^a^y'j), dann liegen die Erzeugenden von
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I'(r9s) und J'(m + n) m J'(g), also V(n) + V(r, s) + J' (m + n)ç:J'(g). Nach

dem Isomorphiesatz gibt es daim einen Isomorphismus \\t von g auf G jJ' (g), so daB

{x) t\{x'). Nach Behauptung 15 und 18 gilt fur aile PeAG

wobei ^ 0 fur P$Ag. AuBerdem ist

e t,(c")= ©

3. Bestimmung der G(m, n, r, s, 77) bis auf Isomorphie

Seien II (ol1 am) und II' (cc\,..., o4) zwei Système von m Linearformen ûber
den /i-dimensionalen Vektorrâumen Vn bzw. V'n. Sei yi9...,yn eine Basis von Vn. Wir
nennen II und H' àquivalent, wenn es in V'n eine Basis ji,...,y'n gibt, so daB gilt

wobei coeUm eine Permutation von m Zahlen ist. Dièse Âquivalenz ist offensichtlich
unabhângig von der Wahl der Basis in Vn.

Satz 7: II und IV seien zwei âquivalente Système von m nicht identisch ver-
schwindenden Linearformen ûber Vn bzw. V'n. Dann ist

G {m, n, r, s, II) G'(m, n, r, s, IV).

Beweis: In Vn bzw. Vn gibt es Basen yu..., yn bzw. y\,...,yn, so daB

Die Algebren A(m + n) bzw. A'(m + n) seien frei linkserzeugt von yi,...,yn,
xux2,...,xm bzw. y'i,...9y'n9 x'u...9 xm. Die Abbildung cp9 die definiert ist durch

cp{zv... zp) ç>(zO <p(z2 zp) fur z.e^i,..., yH9 xl9..., xw}

und ^-Linearitât ist ein Isomorphismus von A(m + n) auf A'(m + n).

yjX^aAy'Jxd^y'j-xUo-vUoiyiï
'ail) ist cp(I(n)) V(nf). AuBerdem ist (p(I(r9s)) V(r,s) und cp(J

n)) Jf (m + ri). Also gilt

G(m, n, r, s, 77) £ A (m + n)/(/(i7) + /(r, s) + J(m + n))

S A' (m + n)/(J' (170 + 7' ('% s) + J' (m + n))

G'(m,n, r, 5, 77').

Satz 8: g sei vollstândig zerlegbare Liesche Algebra und g(1) nilpotent. Dann gibt
es in g bis auf Aquivalenz genau ein System 77 einfacher Wurzelformen.
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Beweis: Da das System 77 von g gleich ist dem System 77 von g/g(2), kônnen wir
g(2)=0 voraussetzen.

g sei vollstândig zerlegbar bezùglich der Système 77 bzw. 77' und der Erzeugenden

Jij-'-jïm Xi>'->xm bzw- y'u'-'y yW> xl9...9 xm>. Durch eine lineare Transformation
ûber £(/l5...,yn) kônnen wir erreichen, daB

Dabei ist ïn^In die Indexmenge, fur die das System {jVl yVq9 (vl9..., vq)eln} linear
unabhângig ist.

Da xkeg(1) ist, gilt

a=i
Xl yXp9 p>2

Sei 51 (ji,..., yn) von der Klasse s, dann ist
/m

\A=1

Da a^O, ist also dkl'kp=0 und somit ^ Xa= i ckxx- ^a die xjt linear unabhângig
sind, ist m'^m. Analog erhalten wir m^m', so daB also m' m und det(c^)#0. Wegen

Ë ^aA0>i)-*A= £ ^-^-xA y;-xi ai(^)xi= £ a;(3>})c£xA
A=l A=l A=l

ist cî(<*k(y'j)-aix(yj)) O. Da det^^O ist, gibt es ein œeUm9 so daB cc(O(k)(yj)

ak(yj)- II und W sind also âquivalent. Aus Satz 7 und 8 folgt nun: Die Klassen

isomorpher Algebren G (m, w, r, 5, 77) entsprechen umkehrbar eindeutig den Klassen

âquivalenter Système von m nicht identisch verschwindender Linearformen ûber
einem Vektorraum der Dimension n.

4. Spezielle nilpotente und vollstândig zerlegbare auflôsbare Liesche Algebren

1. Spezielle nilpotente Liesche Algebren

Khabe die Charakteristik x 0. Wir nennen ein Idéal /von g (m, n) maximal, wenn
1) (g(m,n))k£Ifur m>k
2) dim/ist maximal.

Behauptung 19: Ein Idéal I von g (m, n) ist genau dann maximal, wenn ftir g
g(m,n)IIgilt

1) g wird linkserzeugt von zwei Elémenten xl9 x2
2) dim^i+1 l/w>/=l,...,m-l.
Beweis: Sei / maximal. Da (g(m, n)k£I9 ist g*#0 fur k<m, d, h, gkcgk~1. Also

ist dimg/g2^2 und dimg'/g<+1>l. Da dim/ maximal ist, gilt nach Beweis von
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Behauptung 10 jeweils das Gleichheitszeichen. Sei dimg/g2 2 und dimg7£i+1 l fur
i 1,..., m-1, dann ist einerseits gk^0 fur k<m, d.h. (g(m, «))*$/und andererseits
ist / maximal. Im folgenden sei g stets Restklassenalgebra von g (m, n) nach einem
maximalen Idéal.

Behauptung 20: g hat eine Basis y0,yi9...9ym~\ mit y0,yteg und y^g*, so dafi
gilt

yo'yi yi+i fiir f l,..., rw-2 und yoym_1=0 (43)

Beweis: Seien xux2 modulo g2 linear unabhângig, dann enthâlt das System

{xh xip}9 zv l, 2, eine Basis von g. Fur m 2 ist x1-x2=0. Die Behauptung sei

richtig fur m<t. Sei m t. Dann gibt es Erzeugende xu x2, so daB xl9x29y3
xlx29.-.9yt-2~xiyt-3 modulo g1'1 linear unabhângig sind. Ist x1yt-2^Q, dann
haben wir bereits eine Basis der gewûnschten Form. Sei also x1yt^2 0, dann ist aber

yft-i=x2yt.2^0, da g die Klasse t hat. Sei x2yi ^+iyi+l + "'-hÀti~ly't_l Wir
setzen zx =x1+ax2 und z2 — x2 und erhalten

z3 ==z1-z2 y3

z4 zt-z3 (1 + a Ù32)y4 + m4, mit 4

zt.i z1-zt_2 a{\ +a-k\y(\ + fl-^)...(l +aktt_l)'y't_1.

Da# 0,kônnenwirasowâhlen,
zf_! ist dann eine Basis der gewûnschten Form.

Behauptung 21: Die Produkte yp'yq kônnen aus den Produkten yt-yq berechnet

werden nach der Formel

Pq ï
v=O

Beweis durch Induktion nach p: Die Behauptung ist richtig fur p= 1. sie sei auch

richtig fur /?— 1. Dann gilt

yP-yq (yo'(yP-i'y9)) - yP-imyq+i

iv=0

Folgerung: Fur p=q ist (44) =0, d.h.
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Aus den Produkten yt -y2n lassen sich also aile anderen Produkte berechnen.

Behauptung 22: Es giltfur die Koeffizienten von (45):

n - v
wobei (46)

b, (-iy-1 )-— }-B2v+2. (47)
2v + 2

Beweis: Durch Einsetzen von (45) in (44) =0 erhalten wir die Rekursionsformeln

(48)
Sei bo — \ und

(2v + l\ ovu (2v+ 1\ r_2b + _ + xy-i(2v + !\
/ v~2 \ 2v /

(49)
/

Setzen wir

2, ' (2n-l)-(2n-3)
dann gilt

(50)

("

k J (2n- 1) (2n-2/c+ 1)

?_v (2/i-2v-2)».(2n-4v)
'
(2n~ l)..."(2ii-2v+T) '

n —v /2n\
(50) multipliziert mit 2"v ——f 1 ergibt

2v+ 1 V2v

+ - •+(-1'--(2»"+l) (»-
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(46) in (48) eingesetzt ergibt ebenfalls (51), d.h. (45) erfûllt (47). Setzen wir 2vbv Cv,
dann folgt aus (49)

(49') ist eine Rekursionsformel fur die Koefflzienten der Tangensentwicklung, also

v y 2v

Die Ba sind dabei die Bernoullischen Zahlen.

Behauptung 23 : Aus yx (y^+yj (ykyt)+yk(yxy3) 0fur allej, k folgt yt
yj(ykyi)+yk(yiyj)=°far alle Uj, k.

Beweis SQiyl(yJyk)+yJ(ykyl)-\-yk(ylyJ) O fur i^t und alle y, k. Dann ist

+ ^(^^+0 +

+i)) 0.

Satz 9: Sei A (2)frei linkserzeugt von y0, yt. Wir setzen yl+i=yoylfur i^\. Sei J
das Idéal von A (2), das erzeugt wird von

y% fur ï^m, ^^4-^^ ^ 3 j

Ï (P" 1)rv"1(yi-yf+v) (53)

JV^n- JPn,2n+r>;2«+l ~ Pn, 2 n +2 * ^2 n +2 ~ At, m- 1* Jm- 1 • (54)

Dann ist g A (2)/J Restklassenalgebra von g (m', n) nach einem maximalen Idéal von I.
Beweis: Sei yx die Restklasse von yv Fur p qist wegen(45)^ • y2n +1e2((&dyo)k

x(Pi'yivl k,v=l, 2,...)s £(;Pi,.», Jm-iX d-h- ^o? Ji, ^2,•-., j^m-i enthâlt eine Basis

von g. Wegen (52) ist daher g nilpotente Liesche Algebra der Klasse ^m. Da /c
(^4(2))(1) ist, sind Jo^i Erzeugende von g, also dimg/g2 2 und dimgl/^l+1^l fur
i<m. Sei jm,_1^/, aber ym,eJ(m'^m), dann ist dimgllgl+i l fur /<m', d.h. g ist
Restklassenalgebra von g (m\ n) nach einem maximalen Idéal.

2. Spezielle vollstândig zerlegbare auflôsbare Liesche Algebren

die Charakteristik # g sei Restklassenalgebra von G (m, n, r, s, 77), so
daB g{1) Restklassenalgebra von g(m\ nf) nach einem maximalen Idéal ist. Dann ist
dimg(1)/g(2) 2, ^ wird also linkserzeugt von zwei Elementen zl9 z2 mit z^g"1. g sei

nicht nilpotent. Dann ist mindestens ein a,(ï= 1, 2) nicht Null.
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Behauptung 24: Seiau a2^0. Dann gibt es in g(i) eine Basis xl9 x2, ••-, xr,so dafi
xxega\ x2eg"2 undentweder xt x1-xi-1 oder xt x2 • xt_t. Dann ist auch xtega\ wobei

entsprechend at <xx + oct_t oder ati cc2 + oti-1.
Beweis: Fur al5 ct2^0 wird g(1) linkserzeugt von zwei Elementen x1ega\ x2eg*2.

Fur r>2 ist dann x1-x2 x37^0. Sei xl9...9 xk eine Teilbasis von g(1) mit xi jc1*xi_1
oder A:4 x2Xi-1 fur i 3,..., â:, k<r— 1, dann ist wegen dim(g(1)fc)/(g(1))fc+1 l
entweder xi-xk^(g(1))k+1 oder x2#xk^(g(1))k+1. Nach Behauptung 15 ist dann
entsprechend af a 4- af _ j oder af a2 + af _ x.

Folgerung: Fur OLii^a2 ist dann entweder xt 'Xie(g(1))i+1 oder x2mxie(gil))i+i.

Behauptung 25: Sei xi9...9 xr eine Basis von g mit xl-xi xi+l, x2'xie(g{l))i+l
fur i 2,..., r—3.

1) Sei xl-xr__2 xr-1, x2'Xr-2e(gil))r~î, xï-xr-l=0 und JC2*xr_1=xr. Danngilt

xq-xr.q+l=(-iy-2xr fur q>2. (55)

2) Sei x1-xr.2e(gil)y~1, x2-xr-2 xr_u xu xr_1 xr undx2-xr-1=0, dann gilt

x,-xr_,+ 1=(-l)^1-(^-2)-xr. (57)

1) (55) gilt fur # 2. (55)seirichtigfùr#<f<r— l.Deinnistx1'(xq'Xr-q) +
r-9(^r^) 0, d.h.

'Xr-q ~ ~~ ^#:>Cr-«+l ~~ U '

2) (56) gilt fur q 2. (56) gelte fur q^t. Wegen

ist x€+1-xr_€-1+^-Jcr.,e(g(1))r"1, da nach (44) x€-xr_^_1e(g(1))r~2 (57) ist richtig
fur # 2. (57) sei richtig fur q^t. Aus (56) und Xj (xq-xr-.q) + xq-(xr_q-XJ + xr-q-
(xï'Xq) 0 folgt dann

Behauptung 26: Sei al5a2^0. Dann ist das Wurzelformensystem I(g) von g
entweder

I\ {al5a2, ai +a2, 2at +a2,... ,(r-2)oc1 + a2} oder

rr2 {a^a^,^ +a2,2a! 4-a2,... ,(r-3)a! +a2,(r-3)a! +2a2},

r gerade ist und r > 3.
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Beweis: Die Behauptung sei richtig ,wenn g(1) die Klasse ^r+1 hat. g(l) habe die
Klasse r + 2. Dann hatg/(g(1))r+1 das Radikalsystem I\ oder X2.

1) Sei I(gl(gil))r+1) Ir1. Dann gibt es in g(1) eine Basis xu...9 xr+1 mit xt'Xt
xi+u x2'Xi€(g(i))i'j'1 fur i 2,...,r-l. Sei x^x^O und x2-xr xr+u also I{g)
Zr2+1, dann ist nach (55) fur ungerade r und q= (r+1)/2

^ X(r+l)/2'X(r+l)f2 "~ V #Xr+l>

d.h. I\ hat fur ungerades r nicht die Fortsetzung I^+ *•

2) Sei r(g/(g(1))r+1) ^2, r gerade. Wir haben dann eine Basis {*,} in g(1) mit
x1-xi xi+l9 x2'Xie(g(1))i+1 fur / 2,...,r-2 und xi'Xr.1e(gil))r~19 x2-xr.1=xr.

a) Sei x1-xr xr+1 und x2-xr 0. Dann ist fur q (r 4- 2)/2 nach (57)

0 x(r+2)/2-x(r+2)/2 (- l)r/2(r/2- l)xr+1

£2 hat also nicht die Fortsetzung ar+1
b) Sei xl-xr 0 und x2-xr xr+l. Dann ist x3-xr_2 + xrG(g(1))r und wegen

x2'(x3-xr_2) + x3-(xr-2-x2) + xr-.2-(x2'X3) 0 ist dann xr+1=0. Z2 hat also auch
nicht die Fortsetzung ar+1 o

Satz 10: g ist eine der folgenden Lieschen Algebren.

(A) Seien olu a2 linear unabhângig und Z(g) X\. Dann ist

yryj 0, ij= 1,2,..., h

xl-xi xi+l fiir i 2, 3,..., r- 1

x{ 'Xk 0 sonst.

(B) Seien al9 cc2 linear unabhângig und I{g) Ir2. Dann ist

yj'xi ((i-2)ôij + ô2j)'xh i i,

yj'Xr ((r - 3) Ôl j + 2ô2j)'Xr

xl-xi xi+i fiir t 2, ...,r — 2

x2*xr_1 xr

xf-xr-f_1=(-l)t"2-xr

xp-xg 0 sonst.
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(C) Seioc2— —ca1? c^ — 1, undl{g) l\. Dann ist

(/xl j - xr, wenn c r — 2

sonst

(0 son

)ôlj-xl fur i^2

wenn c — n ganz
sonst

(D) Sei a2= — cal9 c# — 1 und I(g) Ir2. Dann ist

(fit j xr, wenn c (r — 3)/2

yJ-xl (i -2-c)ôlj'Xl9 2< /< r-
Xi'XI xt+1, i 2,...,r —2

Ut'Xl+n9 wenn c - n ganz)
x2-xl < )fur

x2'Xr-l ^r

3,..., r-2

(E) Sei a1 <x2 oc9 dann ist I(g) {a, 2a,..., (r— 1) a}

j-x, xï+1, i 2,..., r - 1

X-xl+u i 2,..., r — 1, we/m r ungerade

#x,j_j, ï z,..., r z

0 /wr p ^ 3, we«« r ungerade
und fur q ^ r — p + l, wenn r gerade

(— 1)'~1 (A — fx) xr fur p^ 3, q r — p + l und r gerade
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(F) Sei ol2 0, at #0. Dann hat g die Basisyl9...9yn9z9x und es gilt

x-z 0

Beweis: Fur ocua2^O ist g=£0>i,...,yn)+g{1) und ga) St(xl9 x2) fur xleg<Xi,
2' y^j lst also nur dann ^0, wenn ak 0. Sei xl9...9 xr Basis von R(xux2),

dann ist yjX^cn^y^) xr Wir wâhlen yu..., yn so, daB

^i p a2 (^j) ^2 j? wenn a1? a2 linear unabhângig sind und (58)

-c-ôlp wenn a2 - cccu ceK. (59)

(A) a1?a2 seien linear unabhângig und I(g) Iri. Dann ist ak^0 und daher

yt'yj=0 fur aile i,j. Nach (58) ist dann yjxl ((i—2)ôlj + ô2j)xv Da al9 a2 linear
unabhângig sind, ist x1-xl xl + 1 und ^-^ 0 sonst.

(B): Seien a1? a2 linear unabhângig und Z(g) 2'2. Dann ist wieder ak^0, d.h.

yryj 0 und nach (58) ist yj-xl ((i-2)ôlj + ô2j)xl fur /=l,...,r-l, j/xr
((r-3)^lj + 2<52j)xr. Da Z(g) F29 ist jc1-xi xi + 1 fur i 2,...,r-2, ^-x^^O
und x2*xr_1=xr. Da a1? a2 linear unabhângig sind, ist sonst x2-Xj 0. Nach (55) ist

xq-xr-.q+i (— \)q~2-xr und nach (44) ist sonst xl-xJ 0.

(C): Sei oc2=— c-a1? c^—1, und I(g) Ir1. Sei ak 0, dann ist c k — 2 und

JV,j>,eg*\ Setzen wir yl'yJ filJ'Xk9 n^eK, dann ist wegen x1(jîjJ)+jt(^yx1) +
JjC-^iJ^O auch juu-xk+1=0, d.h. fur k<r ist fitJ 0. Nach (59) ist jyXi==<5i/.Xi,
jJ-xI (/~2 —c)^!^-^ fur i^2. Da I(g) Zr1, ist Xi-jc^x^! fur /=2,..., r—1. Sei

k, also c=j—k n<0, dann ist x2xJ kJ*xJ+n und nach (44)ist £ (—]
v 0

(D): Sei oc2=— cocl und I"(g) I2. Dann ist x1>xi a:i + 1 fur / 2,...,r —2,

x1-xr_1=0 und x2-xr_1 xr. Sei ak 0, dann ist c — k — 2 oder c (r—3)/2. Wir
setzen yl'yJ ^J'Xk. Dann gilt ^i^^+^^xJ+jj^^^O, also /iu 0 fur
k<r-\ und wegen x2(jI^J)+.yI(jJx2)+jJ(x2<yt) 0 ist auch juu O fur fc r-l.
Damit ist >;r>;7 iUu-xr fur c (r — 3)/2 und ^«^ 0 sonst. Nach (59) gilt jJ*x1
^ij-^ij JJ'^I=(/ —2 —c) (5^-Xj fur i^r— 1 und jy xr (r — 3 — 2c) ^j^x,.. Sei x2-Xj
Àj-xk, dann ist c= —k+j= —n<09 ganz odery=r—1, /c r. Sei also c= —n<0, dann

istx2-xi /lJ-xJ+IJ.
Die restlichen Produkte erhalten wir aus der Rekursionsformel
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(E): Sei a1=a2 <x, dann ist xi,x2sga und I(g)={oc, 2a,..., (r — 1) a}. Nach
Behauptung 19 gibt es dann in g(1) eine Basis xl9..., xr, so daB x^x^x,^ fur /=
2,...,r—1 und x2*xl Al#xI+1. Aus (44) und X2(xlxJ) + xi(xJX2) + xJ(x2xl) 0 er-
rechnen wir A, A, fur r ungerade und A, Xp i, j, 1,..., r — 2, fiir r gerade. Nach (44)
ist dann xlxJ=0 fur i,j > 2 und r ungerade und xt-xr^l+l (—l)1"1 (A —/i) xr fur

3, xt-Xj=0 sonst fur r gerade.

(F): Sei a2=0, a^O. g wird linkserzeugt von yu...,yneg und xeg{i). Sei

^nft^,...,^), z^(2), dann ist g(1) R(x9z) und x-z 0, also (R(x, z))(1)

^(2) 0. Da dim^(1) 2 und x, z linear unabhângig, ist (R(yl9...,yn))3 0 und somit

j/z 0. Da xeg*, ïstyJ-x (xl(yJ)-x.
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