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Uber die Struktur nilpotenter und auflosbarer Liescher Algebren

von FRITZ DROLLINGER

Einleitung

In der vorliegenden Arbeit wird eine Liesche Algebra g(n) mit abzidhlbarer Basis
konstruiert, so daB sich jede Liesche Algebra endlicher Dimension als Restklassen-
algebra von g (n) darstellen 1aBt. Ausgehend von dieser Algebra g(n) werden dann die
nilpotenten bzw. vollstindig zerlegbaren auflosbaren Lieschen Algebren endlicher
Dimension in folgendem Sinne Kklassifiziert. Die Menge aller endlichdimensionalen
nilpotenten bzw. vollstindig zerlegbaren auflosbaren Lieschen Algebren zerfillt in
Klassen, so daB es in jeder Klasse einen einziger Vertreter maximaler Dimension gibt
und alle andern Lieschen Algebren einer Klasse sich als Restklassenalgebren dieser
maximalen darstellen lassen. Auf dem Wege zur Algebra g(n) betrachten wir zu-
ndchst in § 1 Algebren 4 mit endlicher oder abzédhlbarer Basis und der Eigenschaft

(x-y)z=x(y-z)—y(xz) firalle x,y,zeA. 1)

Eine solche Algebra nennen wir verallgemeinerte Liesche Algebra (VLA). Eine
Algebra g heil3t Liesche Algebra, wenn

xx=0 und x(yz)+y(zx)+z(xy)=0 firalle x,y, zeg.

(1) ist erfiillt fiir Liesche Algebren, so daB3 jede Liesche Algebra eine VLA ist.

Fiir eine VLA bilden die Potenzen 4" und die Ableitungen 4™ Idealketten in A.
Wir nennen eine VLA nilpotent, wenn A"=0 ist fiir eine natiirliche Zahl n. Die
kleinste solche Zahl heiBt Klasse von A. 4 heiBt auflosbar, wenn A =0 ist. Die
Zahl n=dim 4/A® nennen wir wir Ordnung von A.

Wir nennen eine Algebra A linkserzeugt von Elementen x,..., x,, wenn jedes
Element von A darstellbar ist in der Form

X = Zail---ip.xil '(xiz'(... xip)...),

wobei nur endlich viele a'*'##0 sind. 4 heiBt frei linkserzeugt von x;,..., x,, wenn
die Elemente x;, (x;,(...x; )...) eine Basis bilden. Jede Algebra endlicher Dimension
wird trivialerweise von einer Basis linkserzeugt. Die Bedeutung dieser Definition liegt
also nicht so sehr in der obigen Darstellung, als in der Wahl der Elemente x4, ..., x,.
Dies zeigt sich in den folgenden Aussagen iiber nilpotente bzw. auflosbare VLA : Jede
nilpotente VLA ist linkserzeugt von n=dim A4/A") modulo A" linear unabhingigen
Elementen x4, ..., x, und jede VLA mit A’ nilpotent ist linkserzeugt von n=dim 4/4")



260 FRITZ DROLLINGER

modulo 4™ linear unabhiingigen Elementen y,, ..., y, und von gewissen modulo 4®
linear unabhiingigen Elementen x,, ..., x,, von 4V,

Diese beiden Aussagen legen es nahe, die von Elementen x,,..., x, frei
linkserzeugte VLA A(n) zu konstruieren. Diese Algebra A4(n) liefert nun die
Grundlage fiir alle weiteren Untersuchungen, denn sie hat die folgenden niitzlichen
Eigenschaften:

1) Jede von Elementen y,,..., y, linkserzeugte VLA 148t sich darstellen als Rest-
klassenalgebra von A4 (n).

2) In A(n) gibt es ein eindeutig bestimmtes, unter Automorphismen invariantes
Ideal J(n), so daB g(n)=A(n)/J(n) Liesche Algebra ist und jede Liesche Algebra g
endlicher Dimension als Restklassenalgebra von g(n), fiir geniligend groBes », dar-
gestellt werden kann.

3) Die Algebra A4 (m, n)= A (n)/(A(n))™ ist nilpotente VLA. Thre Automorphismen
lassen sich besonders einfach durch Matrizen darstellen.

In § 2 wenden wir diese Ergebnisse speziell auf nilpotente Liesche Algebren end-
licher Dimension an und erhalten: Die Algebra g(m, n)=A(n)/J(n)+(A(n))™ ist
nilpotente Liesche Algebra der Ordnung n und der Klasse m. AuBerdem 148t sich jede
nilpotente Liesche Algebra g der Ordnung n und der Klasse m darstellen als Rest-
klassenalgebra von g (m, n) nach einem Ideal. Zu gegebenen Invarianten m und n gibt
es also genau eine nilpotente Liesche Algebra maximaler Dimension. Da jede nil-
potente Liesche Algebra g homomorphes Bild einer Algebra g(m, n) ist, geniigt es,
alle homomorphieinvarianten Eigenschaften von g fiir die in ihrer Struktur ein-
facheren g (m, n) herzuleiten.

Wir nennen zwei Ideale I, und I, einer Algebra A konjugiert, wenn es einen
Automorphismus ¥ von A gibt, so daB Y (I;)=1I, ist. Der Begriff der konjugierten
Ideale erlaubt es uns nun, die nicht isomorphen nilpotenten Lieschen Algebren der
Ordnung <7 und der Klasse <m zu den Idealen von g(m, n) in eine Relation zu
bringen, und zwar gilt: Die Menge aller Klassen isomorpher nilpotenter Liescher
Algebren g der Ordnung <» und der Klasse <m ist gleich der Menge der Klassen
aller konjugierten Ideale von g(m, n).

Wir haben oben gesehen, daB sich die Automorphismengruppe W(m,n) von
A (m, n) besonders einfach darstellen 148t. Aus ihr erhalten wir die Automorphismen-
gruppe g(m, n) von g(m, n) als Restklassengruppe. Dariiber hinaus erhalten wir die
Automorphismengruppe g einer Restklassenalgebra g von g(m, n) als Restklassen-
gruppe einer Untergruppe von g(m, n).

In § 3 wenden wir die Ergebnisse von § 1 an auf vollstindig zerlegbare Liesche
Algebren an. Wir nennen eine Algebra A zerlegbar, wenn es in A eine endlich-
dimensionale nilpotente Unteralgebra 4° gibt und ein System 4 von Linearformen
iiber 4%, so daB jedem ae4 ein Unterraum A* von A zugeordnet werden kann mit
den Eigenschaften
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A= @ A°
aelX
a+B

45 4P A", wenn a+ feX
0 sonst

@ A< AV

acd

wobei Z=4 U (0). Z heiBit System der Wurzelformen oder Radikalsystem von A.
Fiir Liesche Algebren iiber einem algebraisch abgeschlossenen Korper K der Charak-
teristik y =0 liefert die Cartansche Zerlegung eine solche Aufspaltung.

In A zeichnen wir das Teilsystem II aus, das aus allen Wurzelformen o besteht,
fiir die dimA%/A* N AP =d_ #0 ist, d.h. alle a, fiir die 4*d A®. Wir nennen diese a
einfache Wurzelformen.

Sei A4 eine zerlegbare VLA mit A" nilpotent. Dann ist IT nicht leer und nach § 1
wird A linkserzeugt von Elementen y,,..., y,€4® und x!,..., x!eA® acll. Wir
nennen eine solche VLA vollstindig zerlegbar, wenn es ein Erzeugendensystem
Piseees Vmy X15e005 Xy gibt mit y,€ 4° und x;€ A7, so daB gilt

yrx; = “i()’) Xi
X'y = —o;(y) x;

fir alle yeR(yy,..., ¥u) und o;(x)=0 fiir xeK(xy,..., x,). Aus Griinden der ein-
facheren Darstellbarkeit wollen wir uns im folgenden auf vollstindig zerlegbare VLA
beschrianken. Diese Einschriankung bedeutet, daB3 alle Elemente von 4%, «#0, beziig-
lich der Linkstranslationen y:x—y-x fiir ye 4° Eigenvektoren sind.

Fiir solche Algebren gilt dann: A ist Summe der nilpotenten Unteralgebren
K(P1y-er yu)und K (x4, ..., X,), wobei R (¥4, ..., ¥,) bzw. ] (x4, ..., X,,) die von yy,..., y,
bzw. von Xx,,..., X,, linkserzeugten Unteralgebren von A4 sind.

Jedes Bed ist von der Form B= ) p'a; mit «;€Il und p'e N, wenn x=0 und
i=1

piel“p, wenn y=p. AuBerdem 148t sich jede Wurzelform von A4 auffassen als Linear-
form iiber dem von y,, ..., y, aufgespannten Vektorraum, d.h. 8(z)=0 fiir ze 4° " 4D,
Seien nun m, n, r, s, vorgegebene natiirliche Zahlen und II ein System von m nicht
identisch verschwindenden Linearformen iiber einem Vektorraum mit der Basis
Viseers Vo A(m+n) sei die gemdB § 1 von den Elementen yy,..., Yn, Xy,..., X,, fTei
linkserzeugte VLA. Wir konstruieren die Algebra G(m, n,r, s, IT) als Restklassen-
algebra von A(m+n). G(m, n, r, s, II) hat die folgenden Eigenschaften:

G(m, n, r, s, IT) ist vollstindig zerlegbare Liesche Algebra beziiglich der Er-
zeugenden Ji,..., J,, ¥y,..., X, Wenn j; bzw. %; die Restklasse von y; bzw. x; ist.
Ky, ...r Ju) bzw. R (X4, ..., X,,) hat die Klasse s bzw. r. IT ist System der einfachen
Wurzelformen von G(m, n, r, s, II). Jede vollstindig zerlegbare Liesche Algebra g
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mit den Invarianten m, n, r, s und mit IT als System der einfachen Wurzelformen 148t
sich darstellen als Restklassenalgebra von G (m, n, r, s, II) derart, daB die Zerlegung
von G (m, n, r, s, IT) bei der Restklassenabbildung auf g iibertragen wird.

Wir wenden uns nun der Frage zu, wann zwei Algebren G(m,n, r, s, IT) und
G’ (m, n, r, s, I') isomorph sind. Die Antwort auf unsere Frage lautet dann: G (m, n,
r, s, IT) und G’ (m, n, r, s, II') sind genau dann isomorph, wenn IT und I1’ iquivalent
sind und in jeder vollstindig zerlegbaren Lieschen Algebra g gibt es bis auf Aquivalenz
genau ein System IT einfacher Wurzelformen.

Wir haben gesehen, daB3 die nilpotenten bzw. vollstindig zerlegbaren auflésbaren
Lieschen Algebren als Restklassenalgebren von g(m, n) bzw. G(m, n, r, s, I1) nach
Idealen dargestellt werden konnen. Von der Vielfalt der Ideale in diesen Algebren
untersuchen wir in § 4 solche, die in gewissem Sinne maximal sind. Wir nennen ein
Ideal I von g(m, n) maximal, wenn bei der Restklassenbildung nach I die Klasse von
g (m, n) erhalten bleibt und dabei die Dimension von 7 maximal ist. Es zeigt sich, daB
die Erzeugenden eines solchen Ideales hochstens von (7 —2)/4 Parametern abhéngen.
Fiir g=g(m, n)/I gilt dann: g wird linkserzeugt von zwei Elementen y,, y; und
dimg'/g't1=1fiiri=2,...,m—1.

Zum SchluB suchen wir noch diejenigen vollstindig zerlegbaren auflésbaren
Lieschen Algebren g auf, fiir die g/ Restklassenalgebra von g(r,2) nach einem
maximalen Ideal ist. Wir erhalten sechs Typen (A), (B), (C), (D), (E) und (F), die
noch von gewissen Parametern abhédngen.

§ 1. Einfithrung
1. ALGEBREN

K sei ein Korper und A eine direkte Summe von abzdhlbar vielen K-Vektorrdumen
mit endlicher Basis. 4 sei auBerdem versehen mit einer bilinearen Abbildung (x, y)—
x-yvon Ax Ain A. Wir nennen A dann eine Algebra iiber K.

Ein K-Unterraum B einer Algebra A, der beziiglich der Multiplikation abge-
schlossen ist, heiBBt Unteralgebra von 4. Wir nennen B Links- bzw. Rechtsideal von 4,
wenn fiir xeB, yeA gilt y-xeB bzw. x-yeB. Ist B Links- und Rechtsideal, dann
heiBit B (zweiseitiges) Ideal von A.

Seien A und A’ zwei Algebren iiber K und f eine Abbildung von A in A’. f heif}t
Homomorphismus, wenn gilt

' fist K-linear und

. f(xry)=f(x)-f(y) firalle x,yed

Sei B ein Ideal von A. Dann 148t sich auf dem Restklassenraum A/B eine Multi-
plikation erkldren durch

Xy=xy,
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wenn X, y die Restklassen von x, y bedeuten. Die Restklassenabbildung ist also ein
Homomorphismus. Es gilt der Homomorphiesatz: Sei f ein Homomorphismus von
A auf A’, dann ist Kernf= B ein Ideal von 4 und A’ ist isomorph zu A/B. Aulerdem
gilt der Isomorphiesatz: Seien I;, I, Ideale von 4 und I, < I,, dann ist

AlL = AJIL JL]1

DEFINITION 1: Wir nennen eine Algebra A verallgemeinerte Liesche Algebra
(VLA), wenn fiir alle x, y, ze 4 gilt

(xy)z=x(yz)—y(x2z). €))

Sei A eine VLA, dann ist auch jede Unteralgebra von A4 eine VLA. Da die Rest-

klassenabbildung ein Homomorphismus ist, ist auch jede Restklassenalgebra einer
VLA wieder eine VLA.

2. POTENZEN UND ABLEITUNGEN

DEFINITION 2: Wir nennen n-te Potenz einer Algebra 4 den Unterraum A", der
aufgespannt wird von allen moglichen n-fachen Produkten der Elemente aus A.
Aus dieser Definition folgt sofort

A" c A" und 2
An'Am §An+m (3)

Fiir n=1 bzw. m=1 erhalten wir A+ A" bzw. A" A< A" 1= 4", d.h. A" ist ein Ideal
von A.

DEFINITION 3: Wir nennen n-te Ableitung von 4 den Unterraum A®™, der definiert
ist durch

A=4 und 4)
A — gr-D, gD (5)

Offensichtlich gilt
A(") c AZ" (6)

Insbesondere ist A1) = 42
Aus AV <= A=A erhalten wir durch vollstindige Induktion

AGTD — g, g AW, gin=1) A™ )
A™ ist also Unteralgebra von A.

BEHAUPTUNG 1: Ist A eine VLA, dann ist A™ ein Ideal von A.
Beweis: A® = 4 ist Ideal in 4. Sei A”~ D Idealin A. Fiir xe 4 und y, ze A” ™1 gilt
dann
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AA" =8(x(yz))=L((xy)z + y(x2)) = 4™ und
AM-A=8((yz)x)=L(y(zx) — z(yx)) = 4™.

Sei f ein Homomorphismus von 4 in A’, dann gilt

h(4") = (h(4))" (8)
Durch volistdndige Induktion erhalten wir auch
h(A®) = (h(4))™ ©)

Ist insbesondere ¥ ein Automorphismus von A4, dann gilt ¥ (4")= A" und ¥ (4"™)=
A,

DEFINITION 4: Wir nennen eine Algebra A nilpotent, wenn es eine natiirliche
Zahl m gibt, so daB A™=0 ist. Die kleinste solche Zahl heiBt Klasse von A. Wir
nennen A4 aufldsbar, wenn es ein k gibt, so daB A® =0 ist. Die kleinste solche Zahl
heiBt Index von A.

BEHAUPTUNG 2: Wenn A" nilpotent ist, dann ist A auflésbar.
Beweis: Sei (AV)"=0, fiir m>1, dann ist 4™ =(41D)"" D (4P)2m"2=0,

FOLGERUNG 1: Wenn A nilpotent ist, dann ist A auch aufiosbar.

FOLGERUNG 2: Ist A#0 auflosbar, dann ist n=dimAJ/AV>0. n heift Ordnung
von A.

Die Umkehrung der Behauptung 2 gilt i.a. nicht. Z.B. ist fiir einen Ko6rper K mit
der Charakteristik 2 und 4 mit der Basis u, x, y, z und dem Multiplikationsschema

u X y z
u 0 x |y+z| z
AT A(l)—_—-L X, ¥V, Z), A(2)=L Y, 2), A(3)= 0
b 0 0 |y+z
y |y+z, 0 | 0 | 0 aber  (AW)? = (4V)* = L(y, 2).
z gz | p+z “bw_a—

3. LINKSERZEUGTE ALGEBREN

Sei I, das Indexsystem, das besteht aus allen g-tupel der Zahlen 1,..., n, wobei ¢
alle natiirlichen Zahlen durchléuft.

DEFINITION 5: Wir nennen eine Algebra A linkserzeugt von Elementen x,,..., x,,

wenn fiir alle xe 4 gilt
x= Y avrx (x,..x)...),a"""eK (10)

(itseensip)eln

wobei @' £0 fiir hochstens endlich viele Indizes.
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A heiBt frei linkserzeugt, wenn die Darstellung (10) eindeutig ist. Der Einfachkeit
halber schreiben wir im folgenden

Xig oo X, StAtt X (Xi,...%;)....

Sei A4 linkserzeugt von x4,..., x,. Da die Restklassenabbildung homomorph ist,
wird jede Restklassenalgebra 4 von A linkserzeugt von den Restklassen %y,..., X,.

BEHAUPTUNG 3: Sei A eine VLA und y,,..., y,€A. U, sei die Gruppe der Permu-
tationen von q Zahlen. Dann gibt es feste Koeffizienten C*€ K, weU , so daf gilt

(yj1 ~--.qu)'(yu', ---yi,,) = Z cwyw(jl) v Yolig) Vig oo Vip + (11)

wely

Der Unterraum R (yy,..., Ya)=L(y;,...¥j, 4=1, 2,...) ist also Unteralgebra von A.

Beweis: Fir g=1ist y;-(y ,...})=y;, Vi Vs
Sei (11) richtig fiir g<t¢. Dann ist

Do Vid Wiy - )’i,,) = y.il((yjz yjt)(yil y,-p)) ~ i Vi) Wi Vi - J’ip)
= ) C?YJlJ’w(jz)---yw(jt)yn-'-Yi,,

welUg-1
T
- Z czyf(.l'z)“'yf(jt)yhyil"'yip
T€E Ut—-l
— Z @
= C Vo - Yotio Yig -+ Vip -
we U

BEHAUPTUNG 4: Sei A eine nilpotente VLA endlicher Dimension und von der
Ordnung n. y,, ..., y, seien modulo A* linear unabhdngige Elemente von A. Dann ist
A=R(y1"'-a yn)'

Beweis: Fir m=2ist A=K (y1,.-, Vo)=L (V15> Vn)-

Sei A=8(yy,..-, ys), wenn die Klasse von A< m ist.

A habe die Klasse m+1. y,, ..., ¥, seien modulo 4% linear unabhingig. Dann ist
A/A" =R (74, ..., }7")=:§§“(y1, ...s Yn)s Wobei y; die Restklasse von y; ist. Also ist
A=R(yq,..., yo)+A™. Es gibt daher einen Unterraum H von 4, so daB A=K (yy, ...,
V.)@®H. Sei ze H= A™, dann ist z Summe von m-fachen Produkten von Elementen der
Form y+h mit yeR(yq,..., y,) und heH. Da m>1 und A-H=H-A=0, ist ze K}
(P15 -+-» V), also z=0 und somit auch H=0.

BEHAUPTUNG 5: Sei A eine VLA endlicher Dimension und A" nilpotent. A habe
die Ordnung n und AV die Ordnung r. yy, ..., y, seien modulo A" linear unabhiingige
Elemente von A. H sei die Unteralgebra (R(y;, ..., y) 0 AD)+ A® und s=dim H/4®.
Seien Xy, ..., X,y, (m=r—s), modulo H linear unabhdngige Elemente von AW, Dann ist
A=R(P1sees Yus X1y eevs Xp)-

Beweis: Seien x,..., x,, modulo H und X, 41,..., %, €8 (¥1,---, ¥u) " AP modulo
A™® linear unabhingige Elemente von 4V,
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Nach Behauptung 4 wird A" linkserzeugt von x4,..., X, und es ist
AP S K(D1y vvs Vi Xisoovs X))

Da aber A=8R(y1,..., ya) + AN ist, gilt A=K (V15 vr Vo X1seve5 Xm)-
Bemerkung: Wie das obige Beispiel zeigt, gilt die Behauptung 5 i.a. nicht fiir
auflosbare VLA.

6. DIE ALGEBRA 4 (n)

Jedem 1€ 1, ordnen wir ein Element x, zu und bilden die direkte Summe 4 (n) iiber
K der Vektorrdume 4,= L(x,). In 4(n) definieren wir eine Multiplikation durch

le.xil"’xip =xj1i1...ip (12)

Xjtoq Xigoip = Xjy '(sz...jq'xil...i,,) = Xjaendg Xjrite.ip (13)
und K-Linearitit. A (n) ist damit eine Algebra iiber K.

BEHAUPTUNG 6: A(n) ist von x,..., X, frei linkserzeugte VLA.

Beweis: Wegen (12) ist {x;,*--- *x; } ={x;, ; }. Basis von 4(n). A(n) ist also von
Xy,..., X, frei linkserseugt. Wegen (12) und (13) gilt (1) fiir x=x; und alle y, ze 4 (n).

(1) gelte fiir x=x;,+--- - x; . Dannist fiir x=0x;"x; ‘- -x; =x;"u,

(xy) z = ((xiup) y) 2 = (x;(ug ) z — (uy(x;¥)) 2
= x;i((ug¥) 2) — (ug¥) (x;2) — uy((x:¥) 2) + (%) (u2)
= xi(uq(y Z)) - (uq y)(x;z) — uq(xi (v Z)) + U, (y (x; Z)) - y(xi(uq Z))
= (xi uq)(y Z) - y((xiuq) Z)
=x(yz)—y(xz).

BEHAUPTUNG 7: Sei A eine von y,,...,y, linkserzeugte VLA, dann ist A Rest-
klassenalgebra von A(n).

Beweis: Wir definieren eine Abbildung y von A4 (n) in A durch ¥ (x;)=y;, ¥ (x;, ...
X;,)=Yi,---¥;, und K-Linearitit. Da A=R(y;,..., y,), ist ¥ ,,auf* und nach (11) ist
¥ homomorph.

Sei A(m, n) die Restklassenalgebra A(n)/(A(n))" (m>1). A(m,n) wird dann
linkserzeugt von den Restklassen %i,..., %,. Da (4(m, n))"=(A4(n))"=0, ist A (m, n)
nilpotent. Nach Behauptung 3 ist

(A" =L(x;, ... x;,, pZm)

d.h. {%,...%,, p<m} ist eine Basis von A (m, n) und somit ist dim A (m, n)=(n"—1)/

SATZ 1: Jede nilpotente VLA A endlicher Dimension der Ordnung <n und der
Klasse <m ist Restklassenalgebra von A(m, n).

Beweis: Da A von den Basiselementen trivialerweise linkserzeugt wird, ist 4=
A(n)/J und J2(A(n))". Nach dem Isomorphiesatz gilt dann
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A=Am)J = Am)(An)" fI/(A(n))" = A(m, n)/I.
BEHAUPTUNG 8: Ein Automorphismus  von A(m, n) ist bestimmt durch die Angabe
der Bilder \y (%;) der Erzeugenden %;.
Umgekehrt ist jede lineare Abbildung y, die auf der Basis gegeben ist durch

m-—1

n
(X)) = Zla{xj+ Zza{““"‘le...qu und
Jj= q=

w(ih ...fip) = w(ill)' s .lp(jip)'
mit det(a!)#0 ein Automorphismus von A (m, n).
Beweis: 1) Da y{ ein Automorphismus ist, ist  auf den Basiselementen gegeben
durCh l/l()?,-l ....f,-p)=\1/()?il)° cuw '!//()?ip).
2) Wegen (11) ist  homomorph. Sei ¥ der Endmorphismus, der gegeben ist

durch ¥ (%)= alx; und ¥ (%;,...% )=W (%) ¥ (X ). ¥ ist invertierbar, da
j=1

det(a!)#0, ¥ oy wird also durch eine Dreieckmatrix dargestellt, ist daher ebenfalls
invertierbar. Also ist auch Y=y (¥ 'oy) invertierbar, d.h. ¥ ist ein Automor-
phismus.

5. KONJUGIERTE IDEALE

Wir nennen zwei Ideale I; und I, einer Algebra A4 konjugiert, wenn es einen
Automorphismus § von 4 gibt, so daB y (I,)=1I, ist. Sind zwei Ideale konjugiert,
dann sind ihre Restklassenalgebren isomorph, denn A/l =y (A)/y (I,)=A/l,. In
A (m, n) gilt auch die Umkehrung:

BEHAUPTUNG 9: Seien I, und I, Ideale von A(m, n) und n ein Isomorphismus von
A(m, n)/1, auf A(m, n)l,, dann sind I, und I, konjugierte Ideale von A(m, n).

Beweis: Sei h, der Restklassenhomomorphismus von A4 (m, n) auf 4 (m, n)/I,. Da
A(m, n) ein Vektorraum endlicher Dimension ist, gibt es eine bijektive lineare
Abbildung ¥’ von A (m, n) auf A(m, n), so daB

ho'=nhy und Y'(I)=1,.

Also ist Y’ (£7) =y’ (%) ¥’ (F)el, fur alle %, e A(m, n). Sei Y der durch y (%)=
Y’ (%;) definierte Automorphismus von 4 (m, n). Da A(m, n) von X, ..., X, linkserzeugt
ist, gilt Y (7)—y'(§)el,, also hy (P)=ho¥' (F)=nh,(p) fiir alle yeAd(m,n) und
somit 4, (I;)=0 oder ¥ (I,)< I,. Da y bijektiv ist, gilt y (I;)=1,.

Sei J(A4) die Menge der Ideale in 4. Die Automorphismusgruppe %A(4) von A4
definiert dann eine Aquivalenzrelation auf J(A4). Wir bezeichnen die Menge der
Klassen konjugierter Ideale von 4 mit J(A4)/A(A4).

SATZ 2: Sei §) (m, n) die Menge aller nicht isomorpher nilpotenter VLA der Ordnung
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< n und der Klasse <m, dann ist

H(m, n) = I(A(m, n))/A(m, n)

Beweis: Zwei Restklassenalgebren von 4 (m, n) sind genau dann nicht isomorph,
wenn die zugehorigen Ideale nicht konjugiert sind. Aus Satz 1 folgt dann die Behaup-
tung.

§ 2. Nilpotente Liesche Algebren
1. LIESCHE ALGEBREN

Eine Algebra g iiber K heifit Liesche Algebra, wenn die Multiplikation den
Bedingungen geniigt
xx=0 (14)

x(yz)+ y(zx)+z(xy)=0 (15)

fiir alle x, y, zeg.
Aus (14) folgt x-y+ y-x=0. Damit 148t sich (15) auch in der Form schreiben

(xy)z=x(yz)—y(x2) (15")

Eine Liesche Algebra ist also VLA und somit Restklassenalgebra einer A (n). Sei
J(n) das Ideal von A4 (n), das erzeugt wird von den Elementen der Form x- x, xe A (n).

Dann gilt x(yz)+y(zx)+z(xy)eJ(n)

fiir alle x, y, ze A(n). Die Restklassenalgebra

g(n) = A(n)/J (n)

ist also eine Liesche Algebra. Sei g= 4 (n)/J eine Liesche Algebra, dann ist wegen (14)
J(n)< J. Nach dem Isomorphiesatz ist g dann Restklassenalgebra von g(n).

2. DIE ALGEBRA g(m, n)
Sei J(m, n)=J(n)+ (A (n))", dann ist die Restklassenalgebra

g(m, n) = A(n)lJ (m, n)
eine Liesche Algebra der Ordnung n.

BEHAUPTUNG 10: g(m, n) hat die Klasse m.

Beweis: Sei m’ die Klasse von g(m, n), dann ist m'<m. Sei m' <m, dann ist
(AM)™ =J(n)+(A(n))". Jede Restklassen-Lie-Algebra g von A4(n) mit g"=0 hat
also hochstens die Klasse m’ <m. Das ist aber nicht richtig, denn z.B. die von den
Elementen x,,..., x, erzeugte Liesche Algebra mit dem Multiplikationsschema x, x, =
Vasees X1 Vi=Yi4q1 (i=3,...,m—1), %, ¥,=0, x;x;=0(i<j) sonst x;y;=0 fiir i >2 und
X;X;=—X;X;, X;y;= —y;X; hat genau die Ordnung m.
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SATZ 3: Jede nilpotente Liesche Algebra g der Klasse <m und der Ordnung <n ist
Restklassenalgebra von g(m, n) nach einem Ideal I.
Beweis: Sei g= A(n)/J, dann ist J(m, n)=J. Nach dem Isomorphiesatz gilt dann
fiir I=J/J(m, n)
g= A(m)J = A(n)[J (m, n) [1]J (m, n) = g(m, n)/I

3. AUTOMORPHISMENGRUPPEN

Die Automorphismengruppe U (m, n) der Algebra A (m, n) ist nach Behauptung 8
gegeben durch die nx (n™—1/n—1)-Matrizen der Gestalt

(4:B)
mit det A #0.

BEHAUPTUNG 11: Sei I ein Ideal von A(m, n) und ¢ die Identitit auf A(m, n). Wir
setzen

W, (m,n)={YeWAm,n)|Yy()=1} und

&, (m, n) = (Y €U(m, )| — ¥) (A(m, m)) < 1)
Dann gilt
1) U, (m, n) ist Untergruppe von A(m, n).
2) €, (m, n) ist Normalteiler von W;(m, n).
3) Y eW,(m, n) definiert einen Automorphismus n von g=A(m, n)/I

und es ist ny =n, genau dann, wenn , (x;)—, (x;)€l.

Beweis: 1) Seien Y, ' €U, (m, n), dann ist y ' (I)=1 und Yoy’ (I)=1, also ¢ *,
Yoy €Wy (m, n).

2) Seien 4, Y,€€; (m, n) und YyeW, (m, n). Dann ist Y| ‘o (e—y,) (x)=W1 " —e)
X (X)el und (6= Yy o¥r3) (¥)=(e— ;) o 6+ U13) (¥)+ (3 —8) (¥)+(e—hy) (X)el fiir
alle xeA(m, n), also Y;' und Y,oy,e€;(m, n). Wegen (Y 'oyy,o¥—¢)(x)=
(W oy —e)otp) (x)el ist auch ¥~ Loty oy €€, (m, n).

3) Sei h der Restklassenhomomorphismus von A4 (m, n) auf g, dann ist n gegeben
durch nh(A(m, n))=hy (A(m, n)). Sei Y (x;) =y, (x;)el und ¥y (x;, ... %; ) =W, (xi, ...
x;, )€l fiir p<t<m, dann ist auch ¥, (x;,...x,) =¥, (x;, ... %) =W (%) (Y1 (xiy .. X,
=Y (x5, %))+ (W (%) —W5 (x:,)) Wa (xi, ... x; )€l Fiir alle xeA(m, n) gilt daher
N h(x)=nh(x)=h(Y; ~V,) (x)=0, also n,=n,. Wenn es ein x; €4 (m, n) gibt, so
daB ¥, (x;,) =, (x;,)¢ 1, dannist 9y h (x;) —n2 b (x;,) =h (Y1 —¥2) (x;,) #0, alsony #n,.

SATZ 4: Sei g die Automorphismengruppe von g, dann gilt
g = SZII(rn, n)/@l(m’ n)
Fiir g =g (m, n) ist insbesondere

g(m, n) = A(m, n)/€(m, n)
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Beweis: Nach Behauptung 9 148t sich jeder Automorphismus von g fortsetzen zu
einem Automorphismus von A (m, n), der I invariant 148t. Die Isomorphie folgt dann
aus Behauptung 11. Da J(m, n) invariant ist unter den Automorphismen von A4 (m, n),

ist Wy, ny (M, )=U(m, n).

4. KONJUGIERTE IDEALE IN g(m,n)

BEHAUPTUNG 12: Seien I, und I, Ideale in g (m, n), so daf g (m, n)|I, isomorph ist zu
g(m, n)/1,. Dann sind 1, und I, konjugiert.

Beweis: Seien J; und J, die vollen Urbilder von I; und I, in A (m, n), dann ist
nach dem Isomorphiesatz 4 (m, n)/J, = A (m, n)J,. Es gibt also einen Automorphismus
Y von A(m, n), so daB y (J,)=J,.

Nach Behauptung 11,3) ist dann

L=h()=hy(J)=nh(J)=n(I).

SATZ 5: Sei B (m, n) die Menge der Klassen nicht isomorpher nilpotenter Liescher
Algebren der Ordnung <n und der Klasse <m, dann ist

B (m, n) = I(g(m, n))/g(m, n).

Beweis: Zwei Restklassenalgebren von g(m, n) sind nach Behauptung 12 genau
dann nicht isomorph, wenn die zugehdrigen Ideale nicht konjugiert sind. Aus Satz 3
folgt dann die Behauptung.

§ 3. Volistiindig zerlegbare auflosbare Liesche Algebren

1. ZERLEGBARE ALGEBREN

A sei im folgenden stets eine VLA. Wir definieren in Anlehnung an die Cartansche
Zerlegung Liescher Algebren:

DErFINITION 5: Wir nennen eine VLA zerlegbar, wenn es in 4 eine nilpotente
Unteralgebra A° gibt und ein endliches System 4 von Linearformen iiber 4°(0¢4),
derart, daB jedem ae 4 ein Unterraum A* von A zugeordnet werden kann, so daB gilt

A=@A*, X=4v(0) (16)
A*** wenn a4+ feZX
A* AP ’
{0 sonst U7
@ A*c AWV (18)
ael

Wir nennen X das System der Wurzelformen von A.
Wegen (18) gilt A=A+ 4D,
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BEHAUPTUNG 13: Sei A zerlegbar, von der Ordnung n>0 und A nilpotent.
Vis---s Ya€A® seien modulo AV linear unabhingig. Dann gilt:

1) H=2(A4% A% aeA) ist Ideal von A°.

2) A°=8(y1,..., va)+ H, also A=K (y,,..., y,) +AD

3) (AO)(“E (R(yls R yn))(1)+H'

Beweis: 1) Nach (17) ist

A% (A A7) = (A% A%) A7, A(A° A"")<H und
(A" A7) A% (A% (A7 4%, A *(4*A")cH.

H ist also Ideal von 4°. &(y,..., y,)+ H ist daher Unteralgebra von A°.

2) Wegen (16) gilt

AD = (4% + H)e @ A (19)
aed

Da A°=R(yy,..., )+ (A4°nA4D), ist A2=R(yy,..., yn) + H+ (42D, Da A° nil-
potent ist, wird es erzeugt von yy, ..., y, und gewissen Elementen von H. Wegen 1) ist
daher A°=R(y4,..., y,)+ H.

3) Folgt aus 1) und 2)

Sei A zerlegbar. Wir nennen ae4 einfach, wenn d,=dim 4*/4*n A® >0.

BEHAUPTUNG 14: Sei A zerlegbar und A" nilpotent. Wenn A selbst nicht nilpotent
ist, dann gibt es in A einfache Wurzelformen.
Beweis: Sei @ A*< A®. Dann ist nach (19) AV=(4°)"+ 4@, Da 4" nilpo-

aed

tent ist, wird es linkserzeugt von Elementen aus (4°)V, also ist A=R(y,..., ¥,)+
AV S K15 Ya)+ (A% = 4° und damit nilpotent.

Sei A zerlegbar und A" nilpotent. Dann wird 4 nach Behauptung 5 linkserzeugt
von yi,..., ¥, und von Elementen x., ..., x**€ 4%, wobei ae 4 einfach ist. Im folgenden
seien x;, ..., X,, die durchlaufend numerierten Erzeugenden x’ und IT= (215-.., &,,) das

System der zu x; gehdrenden einfachen Wurzelformen, in dem o; gerade d, -mal vor-
kommt.

DEFINITION 6: Sei A zerlegbar und A" nilpotent. Wir nennen A vollstindig
zerlegbar, wenn es ein Erzeugendensystem yy,..., Yy, X15..-, X, gibt mit yjeA0 und
x;€ A™, so daB gilt

yox; = o;(y) x; (20)
Xy = — () x; (21)

fir alle ye R (34, ..., ) und o; (x) =0 fiir xe A° " K (xy, ..., X,,)-
Aus (1) und (11) erhalten wir die Rechenregeln:

p

Vit (gexy )= Y o, () Xy xg, (22)

v=1
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(xil""'xi,,)}’j;' Z Cw'“w(i,,)(}’j)'xw(i,)""'xw(i,,)- (23)

weUp

(i X ) g i) = gy (i x, ) =00 fiir =2 (24)

AuBerdem ist
(v y;,) =0 fir q>2. (25)

Die «; sind also Linearformen iiber £(yy,..., ¥,).
Im ibrigen sind die «; frei wéhlbar.
Wegen (22) bis (25) ist
A=K V) + KR(x; ... X,).

AuBerdem sind (R (¥4, ..., y))’ und K(x,..., x,,) Ideale von A.
BEHAUPTUNG 15: Sei A volistindig zerlegbar beziiglich y,,..., Yy, X15...s X, dann

gilt

p

AO = R(yl"'-s yn) + Q(xix'“'.xip‘ Z &, = O) (26)
r=1
P
AP = Q(x; x| Y o, =B)  fiiralle Bed. (27)
v=1

Beweis: Wegen (17) ist

14
R(yh“" yn)+ﬁ(xi["“‘xipl Z OC,‘V—_-'-O)QAO und
v=1

p

B(xi;"“'xi,,l Z a;, =f)c AP

v=1
p
Fiir x; - -+ x; #0ist f= Y o, €ZDaA=R(p1,..., V) + R (X150 X)) =L(pj, -
v=1

“* Vi Xig o X;) gilt jeweils Gleichheit.
Jede Wurzelform feX ist also von der Form

=3 pa, oell (28)
i=1

wobei p'e N, wenn x (K)=0 und p'el’,, wenn x(K)=p.

2. DiE ALGEBRA G(m, n, r, s, IT)

Sei A(m+n) die von den Elementen y,,..., y,, Xy, ..., X,, frei linkserzeugte VLA.
IT sei ein System von m Linearformen «,,..., a,,#0 tiber £(yy,..., y,). Wir betrachten
in A (m+ n) die folgenden Ideale:

1) Das Ideal I(IT), das erzeugt wird von den Elementen

)U'xi—'axy)'xi und (29)
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X'y + o (yy)x; (30)
2) Das Ideal I(r, s), das erzeugt wird von den Elementen
ViV, 4q=s und (31)
Xj "vt Xy, DT (32)
3. Das IDEAL J(m+n)

Wir bezeichnen mit B die Restklassenalgebra 4 (m+n)/I(II) und mit G(m, n, r,
s, IT) oder kurz G die Liesche Algebra A (m+n)/(I(IT)+1(r, s)+J(m+n)).

BEHAUPTUNG 16: Die Restklassen X; - X
von B.

Beweis: Sei Y A e F A4y gt gy e 5 =0, dann st ) AT
Xp ot Xy 3 Wiy ey eI(IT). Wegen (29) und (30) enthilt aber jedes
Element z#0 aus I(IT) mindestens einen Summanden bestehend aus Faktoren x; und
;. Also ist A" =pdtia=0,

Da das System j,, ..., y, linear unabhéngig ist, konnen wir die «; als Linearformen
iiber (74, ..., y,) auffassen, so daB gilt o; (y;)=a;( ;). Analog zu (22) bis (24) erhalten
wir dann die Rechenregeln

und y; +---'y; bilden eine Basis

ip

p
fj‘(fi,""'fi,,) = Zl “iv(J-’j)ffn """ fi,, (33)
(Xiyree 0 Xy,) ¥ = ZU € Aop(ip) (P1) Fooiiny """ Kool - (34)
weUp
(fjl"'"qu)'(fh""'fip)=(X'i,"“'xi,,)'()7jl """ )71',,):0 fir ¢>2 (35)

BEHAUPTUNG 17: Sei A die Menge der verschiedenen Linearformen der Gestalt

B=Y p'-a;, a;ell, wobei p'eN, wenn x(K)=0 und p'el,, wenn y(K)=p. Sei ) =

i=1

40 (0). Wir setzen

14
BO23(_}713"',)7)1)-*—Q(Xil.“-.xipl Z aiv__-o)’ (36)
v=1
p
Bﬂ=2(55,-1'-“')?,~p| Z ai":ﬁ). (37)
v=1
Dann gilt
B= @ B’ (38)
Bel
B*-B < B’ (39)
® Bf < BV (40)
fed
Fir&i=— %y = ()% (41)
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Beweis: (38) und (39) folgen aus Behauptung 16 und (11). Fiir o;(7;)#0 ist x;=
(1/e;(¥;)) y;-x,€ BY, also gilt (40). Aus (29) und (30) schlieBlich folgt (41).

BEHAUPTUNG 18: G ist vollstdndig zerlegbare auflosbare Liesche Algebra.
Beweis: Aus dem Isomorphiesatz erhalten wir

G = B/(I(r, s) + J(m + n))

I(r, s)+J(m+n) wird erzeugt von Elementen der Form J; - -+ -, , ¢=5, %;,* -+ * X;

pzrund (- 7)) (B o P (Bay oo %) (B oo o %,).
Jede solche Erzeugende liegt in einem Bf. Daher ist

’

Ir,s)+J(m+n)= @ J mit J' cB’
peX
Der Homomorphismus # von B auf G erhiilt also die Zerlegung, d.h. fiir G#=
h(Bf) und 45={Bed|G*#0} ist
G= & G’
peZb
Weiter gilt
G*-G"=h(B*-B)ch(B**")=G"*" und

® G = h(® B*) <h (BV) = G

pedG BeAd

Da I(r, s)+J(m+n)=BY, sind die §;=h(y,) linear unabhingig.
Mit a;(p;)=o;(7;) folgt dann aus (41)

j}j')ei = - )ei'j}j = OCi(f’j)'??i-

Da §;,...9;,=%;,...%,=0 fiir g>s, p>r, sind nach Behauptung 16 G° und G'"
nilpotent. G ist also vollstindig zerlegbare Liesche Algebra.

SATZ 6: Sei g= @ g° eine vollstindig zerlegbare Liesche Algebra mit gV nil-
Bedg
potent, dem Erzeugendensystem yi,..., Vn, X1,..., X,, Und den einfachen Wurzelformen

Upyeens O S(V1s-ees V) DzW. K(x1,..., X,,) habe die Klasse s bzw. r. Dann ist g Rest-
klassenalgebra von G=G(m, n, r, s, I1) nach einem Ideal. Sei n der Restklassenhomo-
morphismus, dann gilt

4,4

B .o
g" fir ped
n(G’) = ) )
0 fiir péd,

Beweis: A'(m+n) werde von yi,..., Vn, X1,..., X,, frei linkserzeugt. Nach Behaup-
tung 7 gibt es einen Isomorphismus ¢ von g auf eine Restklassenalgebra von 4’ (m+n)
nach einem Ideal J'(g) derart, daB ¢ (y;)=h(y;) und ¢ (x;)=h(x;), wenn h die Rest-
klassenabbildung ist. Setzen wir o;(y;)=a;(»}), dann liegen die Erzeugenden von
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I'(11), I'(r, s) und J' (m+n) in J'(g), also I' (I)+1'(r, s)+J' (m+n)=J’(g). Nach

S
dem Isomorphiesatz gibt es dann einen Isomorphismus y von g auf G'/J’(g), so daB

Y (¥;)=n(7}) und ¥ (x;)=n(X;). Nach Behauptung 15 und 18 gilt fiir alle fe 4,
v (g") =n(G"),
wobei gf =0 fiir B¢ 4,. AuBerdem ist

v = @ v(E)= @ 16" = @ n(G").

fedg Bedg Bedg:
3. BESTIMMUNG DER G(m, n, r, s, IT) BIS AUF ISOMORPHIE

Seien IT=(a;,..., a,,) und II"'=(a}, ..., a,,) zwei Systeme von m Linearformen iiber
den n-dimensionalen Vektorrdumen V, bzw. V,. Sei y,,..., y, eine Basis von V,. Wir
nennen II und II' dquivalent, wenn es in V, eine Basis yi,..., y, gibt, so daB gilt

o (¥5) = ot (V) (42)

wobei weU,, eine Permutation von m Zahlen ist. Diese Aquivalenz ist offensichtlich
unabhingig von der Wahl der Basis in V.

SAtz 7: I und II' seien zwei dquivalente Systeme von m nicht identisch ver-
schwindenden Linearformen iiber V, bzw. V,. Dann ist

G(m,n,r,s,II) = G'(m,n,r,s, IT').
Beweis: In V, bzw. V, gibt es Basen y,, ..., y, bzw. ¥, ..., y,, so daB

o (;) = i (V5) -
Die Algebren A(m+n) bzw. A (m+n) seien frei linkserzeugt von yy,..., ¥y,
X1, Xgyeeey Xy DZW. V)5 .un, Vi, X4, ..., X,,. Die Abbildung ¢, die definiert ist durch

‘P(J’j) = J’}’ ¢(xi) = x:o(i)
0(zy...2,)=0(z1) @(z2...2,)  Flir  z;€{yi,e0, Yoo X500y X}

und K-Linearitit ist ein Isomorphismus von A4 (m+n) auf A’ (m+n).
Da (O(J’jxi—“i(y}) xi)'—‘y}' x;)(i)_a;)(i)(y})'xéo(i) und ¢(yj'xi+“i(yj)'xi)=y}'x(,u(i)
+ 0oy (V) X0y ist @(IUD)=1'(II"). AuBerdem ist ¢@(I(r,s))=1I'(r,s) und @(J
(m+n))=J' (m+n). Also gilt
G(m,n,r,s, )= A(m + n)/(I(IT) + I(r, s) + J(m + n))
A (m+n)(I'(IT)+1'(r,s)+J (m +n))
=G (m,n,r,s,II').

SATZ 8: g sei vollstindig zerlegbare Liesche Algebra und g*) nilpotent. Dann gibt
es in g bis auf Aquivalenz genau ein System II einfacher Wurzelformen.
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Beweis: Da das System IT von g gleich ist dem System IT von g/g®, kénnen wir
g'¥ =0 voraussetzen.

g sei vollstindig zerlegbar beziiglich der Systeme IT bzw. II’ und der Erzeugenden
Viseees Vmy Xiseees Xm DZW. V1yeeey Vs X15-eer Xoe. Durch eine lineare Transformation
iiber 8(y},..., y,) konnen wir erreichen, daB

y}=yj+2a;:l...\’q.yv‘-.._.yv2+ Z b;.xv, q>2.
I, v=1
Dabei ist I, < I, die Indexmenge, fiir die das System {y,,* --- "y, , (v1,..., v,)€ L} linear
unabhingig ist.
Da x,eg'V ist, gilt

m

', A Aedp

Xe= D, Xy + 2y, e Vi,» P=2
A=1 I

Sei & (1, ..., ¥») von der Klasse s, dann ist

m

GOk =y vy xi=veny (L dn) = T dmO)
Da o, #0, ist also d]***» =0 und somit x,=¥"_, ¢t x,. Da die x, linear unabhéngig
sind, ist m’<m. Analog erhalten wir m<m’, so daB also m’=m und det (c}) #0. Wegen

12'1 Ci oty (yj)xs = ,1;1 C:'Yj'x}. =y X = o (¥)) i = /1;1 o (¥5) Ci X,
ist cf (o4 () —2;(¥,))=0. Da det(c})#0 ist, gibt es ein weU,, so daB o, ()=
a,(y;).- IT und II' sind also dquivalent. Aus Satz 7 und 8 folgt nun: Die Klassen
isomorpher Algebren G (m, n, r, s, IT) entsprechen umkehrbar eindeutig den Klassen
dquivalenter Systeme von m nicht identisch verschwindender Linearformen iiber
einem Vektorraum der Dimension ».

4. Spezielle nilpotente und vollstindig zerlegbare auflosbare Liesche Algebren

1. SPEZIELLE NILPOTENTE LIESCHE ALGEBREN

K habe die Charakteristik y =0. Wir nennen ein Ideal  von g (m, n) maximal, wenn
1) (g(m, n))*&1 fir m>k
2) dim/ ist maximal.

BEHAUPTUNG 19: Ein Ideal I von g(m, n) ist genau dann maximal, wenn fiir g=
g(m, n)/I gilt

1) g wird linkserzeugt von zwei Elementen x,, x,

2) dimg'/g'*1=1fiiri=1,...,m—1.

Beweis: Sei I maximal. Da (g(m, n)*<¢1, ist g0 fiir k<m, d, h, g<g"~1. Also
ist dimg/g?>2 und dimg'/g'*1>1. Da dim/ maximal ist, gilt nach Beweis von
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Behauptung 10 jeweils das Gleichheitszeichen. Sei dimg/g*=2 und dimg'/g'* =1 fiir
i=1,..., m—1, dann ist einerseits g #0 fiir k<m, d.h. (g(m, n))* €7 und andererseits
ist 7 maximal. Im folgenden sei g stets Restklassenalgebra von g(m, n) nach einem
maximalen Ideal.

BEHAUPTUNG 20: g hat eine Basis Yo, V1, ..., Ym—1 Mit Yo, y1€8 und y;€g’, so daf
gilt
Yo'Vi=Viz, fur i=1,...,m—-2 und y4y,-1=0 (43)
Beweis: Seien x,;, x, modulo g? linear unabhingig, dann enthilt das System
{x;,* -+ -x;,}, i,=1, 2, eine Basis von g. Fiir m=2 ist x,*x,=0. Die Behauptung sei
richtig fiir m<t¢. Sei m=t¢. Dann gibt es Erzeugende x;, x,, so daB x;, x,, y;=
Xy X25.ees Vi—2=X,¥,—3 modulo g'~! linear unabhingig sind. Ist x,y,_,#0, dann
haben wir bereits eine Basis der gewiinschten Form. Sei also x, y,_, =0, dann ist aber
Vi =X,¥,_,#0, da g die Klasse ¢ hat. Sei x,y;=A 1y, . +--+A"1y/_, Wir
setzen z; =x; +ax, und z,=Xx, und erhalten

23 =21'23= )3
za=2zyz3=(+al})ys +u, mit u,eg*
Zee1=21Z_,=a(l+aA3)(1+a2})..(1+ak_ )y _,.

Da y =0, kénnen wir a so wihlen, daB a#0und 14+a-A " '#0. yo=z,, y1=23,..., Y12
=2z,_, ist dann eine Basis der gewiinschten Form.

BEHAUPTUNG 21: Die Produkte y,*y, konnen aus den Produkten y, 'y, berechnet
werden nach der Formel

Vp' Ve = ,,20 (=1) (p : 1)(ad Yo)’ T (1 Yauy)- (44)

Beweis durch Induktion nach p: Die Behauptung ist richtig fiir p=1. sie sei auch
richtig fiir p—1. Dann gilt
Vo Va= (o (Pp-1"Y4)) = Vp-1"Ya+1

- j;:(_uv (" N 2) (ad yo) ™" " (V17 Yg+)
_ j};;(_ 1)’ (p : 2) (ad yo)’ " "2 (V1" Yauv+1)
- jg(—l)” <p: 1)(adyo)”_”_1(y1'yq+v)o

FOLGERUNG: Fiir p=gq ist (44) =0, d.h.

Yi'Van+1 = an,n(ad}’o)(J’1'J’2n) - an,n—1(adYO)2(J’1'Y2n—2) (45)
+— -+ (=1)a, (adye) (y1:y2)-
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Aus den Produkten y;-y,, lassen sich also alle anderen Produkte berechnen.

BEHAUPTUNG 22: Es gilt fiir die Koeffizienten von (45):

_ n—v (2n )

Ay oy =2""b,—— , wobei (46)

’ 2v+1\2v

2v+2(22 v+2 1)
b,=(—1)"" D ; 47
v ( ) 2V+2 2v+2 ( )
Beweis: Durch Einsetzen von (45) in (44) =0 erhalten wir die Rekursionsformeln
Ay n=n
_(n _(n o -t R
an,n-v - (2> an~1,n-v (4) an—Z,n-—v -+ +( ]) (2 V)
X +(=1) "
n=vn-v 2v+ 1) (48)
Sei by=1 und
a2V + 1), 2v+ 1\ -2 ve1f2v+1
b, =2 (( , )2 bv_1—< 4 )2 by_»+—-+(=1) ( 2y
x 2%by + (— 1”)). (49)
Setzen wir
2\ (3 . [(2I-1\ (2v+1
: 1) \2 21 -2 21
g™ =

T @en=1)@2n=3)-2n=21+1)
dann gilt

(O =(b,— 27" (2"; 1) by_y +— o+ (— 1)”)

+ a‘f)(b =271 (2"2' 1) by_z+— - +(— 1)”“1> + -+ a(by— 1)

L pek(2V 1Y, (@n=2k) (2 -4k +2)

=b =2 (2172 ( K ) @n— 1) @n =2k +1)

v(zn__zv_2)(2n—'4\’)
Qn—1)2n=2v+1)"

(50)

+(=1)-2"

n—v (2n
(50) multipliziert mit 27" 5Tl <2v) ergibt

2=} n—v (2n ATPTE n—v(2n-—2
Y2y 41 \2v 2 oy —1\2v=2

=t (= 1)"-(2‘,'fF 1) =0. (51
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(46) in (48) eingesetzt ergibt ebenfalls (51), d.h. (45) erfiillt (47). Setzen wir 2°b,=C,,
dann folgt aus (49)

2 1 1 /2
cv—<v;‘)cv_1+-—--.+(—1)v1< vz-:l)CO-}—(—l)”, Co=1. (49

(49) ist eine Rekursionsformel fiir die Koeffizienten der Tangensentwicklung, also
22 v+2(22 v+2 l)
‘B .
2 v+ 2 2v+2

Die B, sind dabei die Bernoullischen Zahlen.

Cv =(_ 1)v—1.

BEHAUPTUNG 23: Aus y; (y;3,)+y; (¥, 1)+ ¥, (»1¥;)=0fiir alle j, k folgt y,(y;»,)
+y; () +y.(3iy;)=0 fiir alle i, j, k.
Beweis Sei y;(y;y,)+y;(y.y)+y.(y:y;)=0 fiir i<t und alle j, k. Dann ist

yt+1(yjyk) + yj(ykyt+1) + V(Y1 J’j)
= oy ) (Vi y) + ¥; (o y)) + yi((voy) v))
= YoV y) + ¥y + v (e y3)) = e vies 1) + ¥ G 1 1)
+ J’k+1(J’zJ’j)) - (yt(yj+1 Vi) + Vis 1 (0 ye) + V(¥ yj+1))=0.

SATZ 9: Sei A(2) frei linkserzeugt von y,, y,. Wir setzen y; =y, v, fiiri=1. Sei J
das Ideal von A(2), das erzeugt wird von

yi fur izm, yy;+y;yeound oy (viv) iy F n(vy) o (52)
r! Y p_l —-v—1
pre= 2 (=0 (77 ) @0 e (53
v=0

Yi'Yon = DPn2n+1"YV2n+1 — Pn,2n+2"V2n+2 = " — Pn,m-1"YVm—-1- (54)

Dann ist g= A (2)|J Restklassenalgebra von g(m’, n) nach einem maximalen Ideal von I.

Beweis: Sei y; die Restklasse von y;. Fiir p=gqist wegen (45) 7,7, ,+ € 2((ad y,)*
X(P1Yay) ks v=1,2,..)S 8(F1s++> Im—1)s d.0. Fo, J15 P25 .-, Pm—1 enthilt eine Basis
von g. Wegen (52) ist daher g nilpotente Liesche Algebra der Klasse <m. Da J <
(A4(2))M ist, sind y,, 7, Erzeugende von g, also dimg/g*=2 und dimg'/g'*1<1 fiir
i<m. Sei y,_,¢J, aber y,,.eJ(m’'<m), dann ist dimg'/g'*'=1 fiir i<m’, d.h. g ist
Restklassenalgebra von g(m’, n) nach einem maximalen Ideal.

2. SPEZIELLE VOLLSTANDIG ZERLEGBARE AUFLOSBARE LIESCHE ALGEBREN

K habe die Charakteristik y=0. g sei Restklassenalgebra von G (m, n, r, s, II), so
daBl g Restklassenalgebra von g(m’, n’) nach einem maximalen Ideal ist. Dann ist
dimg®/g® =2 M wird also linkserzeugt von zwei Elementen z,, z, mit z;eg™. g sei
nicht nilpotent. Dann ist mindestens ein «;(i=1, 2) nicht Null.
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BEHAUPTUNG 24: Sei o, a, #0. Dann gibt es in gV eine Basis x,, X, ..., X,, so daf8
x,€8", x,€8" und entweder x;=Xx,*x;_, oder x,;=X,*x;_,. Dann ist auch x;€g*, wobei
entsprechend o;=o; +o;_, oder ;=0 + ;4.

Beweis: Fiir a,, a, #0 wird g’ linkserzeugt von zwei Elementen x,g*, x,€ g*.
Fiir r>2 ist dann x,-x,=x;#0. Sei x,,..., x, eine Teilbasis von g mit x;=x,-x;_,
oder x;=x,x;_4 fiir i=3,..., k, k<r—1, dann ist wegen dim(g"*)/(gV)***=1 ent-
weder x,-x ¢(gP)*1 oder x,-x ¢(g)**!. Nach Behauptung 15 ist dann ent-
sprechend o;=o; +a;_; oder o;=a, +0t;_4.

FOLGERUNG: Fiir ay #a, ist dann entweder x,-x,€(gV)'*! oder x, x;e(gV) *1.

BEHAUPTUNG 25: Sei X,,..., X, eine Basis von g mit x;*x;=X;,,, X, x;€(g®)*!
fiiri=2,...,r—3.

1) Sei xy Xp_3=X,_1, X3 Xp_2€(gV) ™!, x; x,_1=0 und x,"x,_,=x,. Dann gilt

Xg Xp—ge1 =(=1)1"2x, fur q>2. (55)

2) Sei x;x,_,€(8V) 7Y, x3 X, 3=X,_1, X1, X,_1 =X, und x,*x,_, =0, dann gilt
Xg Xpg=(—=1)"%x_ (@)’ (56)

Xy Frmgas = (= II71(g = 2)x,. 57)

Beweis: 1) (55) giltfiir g=2. (55)seirichtigfiirg<t<r—1. Dannist x; *(x, x,_,)+
Xg (Xp—g X1)+ X,y (x1°x,)=0, d.h.

. - . = a-1,
Xg+1 ' Xp—q =~ Xg" Xp—g+1 "‘(_ l) Xrs

da x,x,_,e(g")y L
2) (56) gilt fiir g=2. (56) gelte fiir g<t. Wegen

X1 '(xq'xr-q—l) + xq(xr-q—l ‘xl) + xr—-q——l '(xl 'xq) = 0’

ist X4 Xp_ g1+ X, %, —,€(g") 71, da nach (44) x, x,_,_,€(gV) "2 (57) ist richtig
fiir g=2. (57) sei richtig fiir g<t. Aus (56) und x; (x, x,_)+x, (X, —; x1)+x,_,°
(x;-x,)=0 folgt dann

. — » — q.
xq+1 xr—q - xq xr—q+1 +( 1) Xp

BEHAUPTUNG 26: Sei oy, a,#0. Dann ist das Wurzelformensystem Z(g) von g
entweder

Z; = {ah g, Oy + %3, 2“1 + %, ... 9(r - 2) o, + az} oder
Z; = {al’ 0, 0y + a292a1 + %, ... a(r - 3) oy + az,(r - 3) oy + 2“2},

wenn r gerade ist und r> 3.
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Beweis: Die Behauptung sei richtig ,wenn g’ die Klasse <r+1 hat. g) habe die
Klasse r+2. Dann hat g/(g"’)"** das Radikalsystem X'} oder X5.

1) Sei Z(g/(g™)"*!)=2". Dann gibt es in g'*) eine Basis x;,..., X,,; mit X, *x;=
Xiv1s X2 x€(gP)*! fiir i=2,...,r—1. Sei x;-x,=0 und x,°x,=x,,,, also 2(g)=
25+ 1, dann ist nach (55) fiir ungerade r und g=(r+1)/2

-2
0= Xer+1)2 X@e+1)2 = (_ l)q *Xpt+1

d.h. 2 hat fiir ungerades r nicht die Fortsetzung 25" .
2) Sei Z(g/(g")*!)=2X", r gerade. Wir haben dann eine Basis {x;} in g* mit
Xy X =Xip1, X x€(gP) M fiir i=2,...,r—2 und x;-x,_;€(gM) 7!, x;0x,_;=x,.
a) Sei x°x,=X,,; und x,*x,=0. Dann ist fiir = (r+2)/2 nach (57)
0=X442)2" X¢+2)2 = (- l)r/z (r/2 =1) x4,

2’ hat also nicht die Fortsetzung o, ., =a, +«,.

b) Sei x,-x,=0 und x,-x,=x,,;. Dann ist x3-x,_,+x,e(g") und wegen
Xy (X3 Xp—2)+ X3 (X,—2°X3)+ X, 5 (x,°x3)=0 ist dann x,,,=0. X% hat also auch
nicht die Fortsetzung a, ., =a, +a,.

SATZ 10: g ist eine der folgenden Lieschen Algebren.
(A) Seien a,, a, linear unabhdngig und X(g)=2",. Dann ist

yiry;=0, i, j=1,2,..,n
virxi=((i—=2)8;;+0;;) %

X X;=X;4q Sr i=23,..,r—1
x;°x, =0 sonst.

(B) Seien ay, a, linear unabhdngig und X (g)=_7X". Dann ist
yirv;i=0 fir i,j=1,...,n
Virxi=((i—=2)0,;+0,)x, i=1..,r—1
yix,=((r—3)0,;+2d,;)x,
X1°X;=X;4q JUUr i=2,..,r—2
X' X-1=0
X2  Xp—q = Xy

Xy Xp_go1 =(—1)T"2x,

Xp'X,=0  sonst.
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(C) Seioy=—cay, c#—1,und 2(g)=2". Dann ist

o Mij*X,, wenn c=r—2
Vi yj——{O sonst
y1x1_511x1
yirxi=({—2—-c¢)oy;°x; fiir i=2
X" X=Xy, i=2,..,r—1

wenn ¢= — n ganz

XX, = A’i'xn+i’
X =
" |0  sonst

p—1
X, Xy = 2 (— l)“-(p* 1)‘(adx P T (kX ay)
P “vq = v 1 2 qg+v

(D) Sei o= —cay, c# —1 und 2(g)=2%. Dann ist

L%, wenn c¢=(r—23)2
Yityj=

0 sonst
yj'x1=51jx1
yj‘xi=(i“‘2"“C)5lj°xi, ZSiST——l

yix,=(r—3-2¢)0,;x,

X1°X;i = Xi+1s i=2,...,r"“2
xl.xr—1=0
Ai*Xiyn, Wenn c=—n ganz
xz'x,-={l * & }fiir i=3,...
0 sonst
Xy ' Xpoq =X,
Xp Xy =X; (Xpo1 %) — X,y (x1%,) fiir p<r—1.
(E) Sei ay=0,=ua, dann ist £(g)={a, 2a,..., (r—1) o} und
yiy;=0
YiX1=01;%
yj'xl=(l—l)51jxl, i=2,...,r
xl'xi=xi+1, i=2,...,r—1
“ AXipy, i=2,..,r—1, wenn r ungerade
X =d A Xy i=2,..,r=2
X2 X =3 A ik 20T wenn r gerade
ux, , i=r-—1
0 fir p>=3, wenn r ungerade
Xp Xy = und fiir q#r—p+1,wenn r gerade
(- '(A—wx, fir pz3,q=r—p+1

und

r gerade
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(F) Sei a, =0, a; #0. Dann hat g die Basis y,,..., y,, z, X und es gilt

YirVi=HWij'2

yjitx=01;"x
y;i'z=0
xz=0

Beweis: Fur ay, a,#0 ist g=2(yy,..., y,)+&" und gV =8 (x,, x,) fiir x,eg™,
x,€8". y;y; ist also nur dann #0, wenn o, =0. Sei x,,..., x, Basis von K(xy, x,),
dann ist y;x;=a;(y;) x;. Wir wihlen y,,..., y, so, daB

ay(y;) =0y, a,(y;) =0, wenn o,,0a,linear unabhingigsind und  (58)
ay(y;) =01 0,(y))=—c6y; wenn «a,=—c-a, cek. (59)

(A) oy, x, seien linear unabhéngig und X (g)=2]. Dann ist o, #0 und daher
y;*y;=0 fiir alle i, j. Nach (58) ist dann y;x;=((i—2) 6, j+ 9, ;)x;. Da «;, «, linear
unabhiingig sind, ist x; - x;=x;,; und x; x;=0 sonst.

(B): Seien ay, o, linear unabhéngig und X (g)=2". Dann ist wieder «, #0, d.h.
»:'¥;=0 und nach (58) ist y; x;=((i—2)6,;49,;) x; fir i=1,...,r—1, y;"x,=
((r=3)0,;+20,;)x,. Da X(g)=2%, ist xy - x;=x;,, fir i=2,...,r—2, x;°x,_;=0
und x,°x,_; =x,. Da «;, a, linear unabhéngig sind, ist sonst x,-x;=0. Nach (55) ist
Xy Xp—g+1=(—1)""2-x, und nach (44) ist sonst x;-x;=0.

(O©): Sei ay=—c-ay, c#—1, und Z(g)=2]. Sei o, =0, dann ist c=k—2 und
yi'yj€g™. Setzen wir y; y;=p; ;' x,, €K, dann ist wegen x,(y,y;))+y:(y;x,)+
y;j(x1y)=0 auch p;;*x, 4, =0, d.h. fiir k<rist g;;=0. Nach (59) ist y; x; =0, ;" xy,
Y x;=(—2—c) 0y ;- x; fir i>2. Da Z(g)=27, ist x; - x;=x;,, fur i=2,...,r—1. Sei

p—1
Xy X;=A4;"X,, also c=j—k=n<0, dann ist x,x;=4;"x;;, und nach (44) ist ;o (=1)

1 .
x(pv )(adxl)” Y(xy Xgey) =X, X,

(D): Sei ay=—c*a; und X(g)=2%. Dann ist x,;-x;=x;4, fir i=2,...,r—2,
X1°X,-1=0 und x,'x,_;=x,. Sei a,=0, dann ist c=k—2 oder c=(r—3)/2. Wir
setzen y;'y;=p;;°x,. Dann gilt x,(y;y;)+»:(y;x1)+y;(x13)=0, also p;;=0 fiir
k<r—1 und wegen x,(y;y;)+y:(y;x2)+y;(x;y;)=0 ist auch y; ;=0 fiir k=r—1.
Damit ist y;*y,;=p;;x, fiir ¢=(r—3)/2 und y; y;=0 sonst. Nach (59) gilt y;-x,=
015Xy, i X;=(i—2=c) 6y ;- x; fir i<r—1 und y; x,=(r—3—2c) ; ;x,. Sei x, x;=
Aj*x,, dannist c= —k+j= —n<0, ganz oder j=r—1, k=r. Sei also c= —n<0, dann
ist X5 X;=4;" X 4 pe

Die restlichen Produkte erhalten wir aus der Rekursionsformel

Xy X=X (Xpo1%,) —Xp—1(x3%x,) fir p<r—1.
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(E): Sei a;=0a,=a, dann ist x, x,€g* und X(g)={a, 2a,..., (r—1)a}. Nach
Behauptung 19 gibt es dann in g*? eine Basis x,,..., x,, so daB x, ' x;=x;,, fiir i=
2, r—1 und x; x;=2;"X;4;. Aus (44) und x, (x;x;)+x;(x;x,)+x;(x, x,)=0 er-
rechnen wir A;=4; fiir r ungerade und 4;=4;, i, j,=1,..., r—2, fiir r gerade. Nach (44)
ist dann x;x;=0 fiir i,/ ) 2 und r ungerade und x;-x,_;,,=(=1)""' (A—p) x, fiir
i23, x;-x;=0 sonst fiir r gerade.

(F): Sei a,=0, a;#0. g wird linkserzeugt von y,,..., y,€g und xeg®. Sei
zeg VN K]R(Y1s.eer Va) 2¢€?, dann ist gP=RK(x, z) und x-z=0, also (](x, z))V'=
g»=0. Da dimg¥’ =2 und x, z linear unabhingig, ist (R (y,..., y,))>=0 und somit
y;+z=0. Da xeg® ist y;* x=a, (y;)" x.
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