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The Real Cohomology of Differentiable Fibre Bundles

PAuL BauM!) and LARRY SMITH 2)

Throughout algebraic topology one very often studies fibre bundles
¢=(E, p, B, G/H, G) where G is a compact connected Lie group and H= G is a closed
connected subgroup, E and Bare differentiable manifolds and p: E— Bis a differentiable
map. Typically one tries to compute the cohomology of the total space from a know-
ledge of the cohomology of the base B, the fibre G/H and some invariant of the bundle.
The usual procedure involves calculating with the Serre spectral sequence. However
this does not take full advantage of the fact that ¢ is a fibre bundle, for we have a
classifying diagram

G/H=G|/H

v oo
E— By
p\L \Le
B L B,

where ¢(G, H)=(By, 0, Bg, G/H, G) is a universal bundle. Using techniques of
EILENBERG and MOORE [8] we shall show

THEOREM: If B is a Riemannian symmetric space [S] and R is the field of real
numbers then H*(E; R) and Torg. gz, (H*(B; R), H*(By; R)) are isomorphic as
algebras.

This extends results of BOREL [3] and CARTAN [6]. BOREL [3] further shows how
the map ¢*: H*(Bg; R)»>H*(By; R) can be computed from information on the
Weyl groups of G and H.

It is well known [4], [13], [15] that H*(Bg; R) is a polynomial algebra (over R) on
even dimensional generators. Therefore for the above result to be of use we must have
available a fairly simple technique for computing Tor (B, A) when 4 is a polynomial
algebra. This is the objective of the first section. The second section gives a proof of the
above result. The final section gives an example to show that the technical assumption
that B is a Riemannian symmetric space is essential.

We shall assume that the reader is familiar with the material of [1] or [8] or [13]
or [16]. Our notation will be that of [12].

We wish to thank Prof. J. C. MooRE for many useful discussions.
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1. The Two Sided Koszul Complex

Throughout this section the ground ring will be a fixed field k. ® will always
mean ®;.

Suppose that A=P[x,,...x].

Of course if the characteristic of k is not 2 then of necessity deg(x;) will be even.
Denote by
pARA->A

the multiplication map of A. Note that u is onto.

LemMA 1.1: kerpu=(x,®1-1®x,,..., x,®1 —1®x,).
Proof: Let
I=(x;®1 - 1®x,...,x,®1 - 1®x,).

Then clearly I<ker u. Thus there is a natural map of algebras

AR®A4A A®A
o - =A
I keru

Let [x;®1], [1®x;] denote x;®1 and 1®x; as elements of A® A/I. Then the mono-
mials in [x,;®1],..., [x,®1], [1®x,],..., [1®x,] generate AR A/l as a k-module.
Since [x;®1]=[1®x;] i=1,..., nit follows that the monomials in [x,®1], ..., [x,®1]
generate A®A/I as a k-module.

Next recall that the monomials in x,,..., x, are a k-basis for A. Since a([x;®1])=
x;, i=1,...,n and o is a map of algebras it follows that o maps a k-generating set for
A®A/I1in a one-one-onto fashion to a k-basis for A. Hence o must be an isomorphism.

Since everything in sight is of finite type it follows that in each degree I and ker u
have the same dimension (finite) as vector spaces over k. Since I = ker u it follows that
I=keru. [

Now note that x;®1—-1Qx,,..., x,®1—-1®x, is an ESP-sequence in A®A
generating the ideal ker u. (See [16], also called an E-sequence in [1], or an S-sequence
in [10]). Therefore we have the Koszul complex [1], [10], [12], [16], [18]

6*=AQE[uy,...,u,]®4
da®@u®b)=ax;@1®b—-a@®@1Q®x;b, i=1,..,n
d(a®1®b)=0 d aderivation

&2 is given a bigraded structure by requiring that

degu;=(—1,degx;), i=1,...,n,dega=(0,dega) all aeAd.
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We then have [10; 7], [16; § 2.1]
H°(6*) =A@ Alkerp= A, H*(6*)=0, p#0.

Thus &2 is a A®A resolution of A. We will refer to &% as the two sided Koszul
complex by analogy with the two sided bar construction.

PROPOSITION 1.2: If A is any A-module then §*® 4 A is a free resolution of A as a
A-module.

Proof: Since &2 is a free A-module we have a spectral sequence (see [12; page
400]) E'=H (&’ ® 4 A), E*=Tor 4 (H(&?), A)=Tor, (A4, A)=Ai.e. E},=0p#0which
implies

H°(6*®,4)=A,H°(6*®,4)=0 p#0.
Since £?® 4 A4 is obviously a free 4-module the result follows. []
CoRrROLLARY 1.3: If (B,, 4A) is given then
Tor,(B, A) = H(B® E[uy,..., u,|® A;d) where

db®1®a)=0, dbR®u;®a)=bx;,®1Ra—-bR1Qx;a,
deg(u;) = (— 1, degx;). [

ACKNOWLEDGMENT : The existence of the two sided Koszul complex was sug-
gested to us by Prof. J. P. May.

We shall have occasion to consider the case where A4 is a differential A-module.
In this case we shall need:

PROPOSITION 1.4: If A is a differential A-module then &*® 4 A is a proper projective
resolution ([12], [16]) of A as a differential A-module.
Proof: We must show the following
(i) 6*® 4 A is a proper projective A-module.
(i) £>® 4A is a resolution of A.
(ii1) If d4 denotes the differential in A then

Z,(6*®,A) isaresolutionof Z(4).
H,(6*®,4) isaresolutionof H(4).

To see (i) observe that 6*® A=AQE[uy,..., u,]®A as a A-module. Since k is a
field it follows that E2® 4 A4 is a proper projective A-module [13], [16]. (MooRE does
not use the adjective proper.)

(i1) is just Proposition 1.2,

To obtain (iii) we note that there is a decomposition of vector spaces,

with d, given by d": Q"~ R"*! (see [12; page 398]) and so we see
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Z,(6* Q@ A)=Z,(A®E[uy,...,u,] ® A)=Z,(AQE[uy,...,u,] ®(R® P ® Q))
=AQE[uy,....,u,| ®(ROP)=A®E[uy,....,u,]| ®Z(A) = E* ® 4 Z(A).

which is a resolution of Z(A) by Proposition 1.2.
Finally since k is a field the Kunneth theorem gives

H(6*®4A)=H(AQE[uy,...,u,] ® A)= AQE[uy,....,u,] ® H(A) = £* ® , H(A)

which is a resolution of H(A4) by Proposition 1.2. [J
We can now proceed in the obvious fashion to compute Tor (B, A) when B, 4 are
differential A-modules.

2. Differentiable Fibre Bundles

Suppose that £=(E, p, B, G/H, G) is a differentiable fibre bundle with classifying
diagram
G/H=G|H
Vo
E— By

Lol
B— B

Let us assume that G is a compact connected Lie group and H< G is a closed connected
subgroup. In addition assume that B is a compact Riemannian symmetric space. (We
recall that a compact Riemannian symmetric space M is an analytic manifold with a
fixed Riemannian metric such that each point xe M is a fixed point of some involutive
isometry of M.)

Throughout this section the ground field k will be the field of real numbers R. If X
is a topological space we shall write H* (X) for H* (X; R). Our goal is to prove

THEOREM 2.1: Under the above conditions there is an isomorphism of algebras
H*(E) = Torys s, (H* (B), H* (By)).

The proof of Theorem 2.1 will be accomplished with the use of deRham co-
homology for manifolds modeled on separable Hilbert spaces (see [7], [9], [14]). For
the convenience of the reader we will recall some of the important facts that we
shall use.

If M is a Riemannian manifold modeled on a separable Hilbert space then R* (M)
denotes the deRham cochain algebra of M. The differential (exterior derivative) is
denoted by d. We then have [7] that the algebras H*(M) and H* (R, (M), d) are
naturally isomorphic.

If M is a compact Riemannian manifold then the Riemannian metric g on M
induces an inner product in R* (M) by
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(0, B) = Ja A B*, dega=degp

M

The adjoint of d relative to this inner product is called the coderivative and is denoted
by 0.

DEFINITION: A form ae R* (M) is said to be

closediff d(a)=0
coclosediff d(a)=0
harmonic iff d(a)=0=0(a).

THEOREM 2.2 (HODGE): If M is a compact Riemannian manifold then each co-
homology class ae H* (M) contains a unique harmonic form a€ R* (M).

Let M be a Riemannian manifold and denote by I(M) the group of isometries
of M. Then I(M) is a Lie group and acts on the algebra R* (M) of differential forms
on M.

THEOREM 2.3 (E. CARTAN [5]): If M is a compact Riemannian symmetric space
then the harmonic forms on M are precisely the I(M) invariant forms. Therefore the
A product of two harmonic forms is again harmonic.

Proof of Theorem 2.1: Let

G/H=G/H
Vool
E— By
Pl l@
BLs Bg

be the classifying diagram for £. Following EELLS in [7] we may assume that By and
B are differentiable manifolds modeled on separable Hilbert space. By differentiable
approximation we may then assume that all the maps are differentiable.

Following [8] (see also [1], [16]) we then have a natural isomorphism of algebras
H*(E)=Torg#s.) (R* (B), R* (By)).

Now we know [3] H*(B;) = P[xy, ..., x,] n =rankG,

H*(By)=P[yy,...s ym] m=rankH.

Choose representative cocycles oy, ..., ¢, R* (B;) for xy,..., x,. Since the multi-
plication in R* (Bg) is commutative the map x;,—a; i=1,..., n extends to a unique
map of algebras a: H*(Bg)— R, (Bg). If we think of H* (Bg) as a differential algebra
with zero differential then « is a map of differential algebras inducing an isomorphism
in homology.
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In a similar manner we construct a map f: H* (By)— R* (Bp).
Consider the diagram

R*(By) < Ru(Bo) S R*(B)
*,,T , *T,,, . Figure A

H' (By) & H' (Bg) > H' (B)
We do not claim that the left hand square commutes. However using this diagram we
can make R* (By) into an H*(B;) module in two different ways, i.e. by means of the
maps fo* and ¢*a. We can also make R* (B) into an H*(B;) module by means of

the map f # a.
Hence there are two different torsion products which we shall denote by

8 ¢ TOT 1+ 50y (R*(B), R*(By))
e#,TorH. (BG) (R#(B), R#(BH))

We claim that these two torsion products are isomorphic. To see this set fo* (x;)=n;

o*a(x;)=n; f *a(x;)={(;. Let dy denote the boundary in R* (B) and dy the boundary

in R* (By). Then using the two sided Koszul complex of the previous section we see
B QtTorHt (Bs) (R#(B), R#(BH)) = H(R#(B) ® E [ul, ooy u"] ® R#(BH))

where

de®1IRP)=dpr®@1@P+a®1®dyp
dlu;®1)={(RIR1+1Q1Qn;

and similarly

e*aT0T sy (R*(B), R*(By)) = H(R*(B)® E[vy, ..., v,] ® R*(By))
where

de®1®P)=dga®@R1@F+a@1®dyp
dl®@vy®1)={(R1®1+1Q1Q®H7;

Now since Figure A certainly commutes when we pass to homology it follows that for
each i we can choose 1,6 R* (By) so that n;i=n;+dy4;.
Define a map

T:R*(B)® E[u,, ..., u,] ® R*(By) » R*(B)® E[v,, ..., v,] ® R*(By)
by T(e®1®p)=0R1Rp
TIRu,®1)=101,01-101® 1,

and reqﬁiring that 7 be a map of algebras. A direct computation shows that T is a
map of complexes. As T~! is readily defined we see that T gives an isomorphism of
algebras
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T*:ﬁo‘TorH" (Bg) (R#(B)9 R#(BH)) - e*aTorH‘ (Bg) (R#(B)’ R#(BH)) é

We then have algebra isomorphisms

Torgs#(se) (R*(B), R*(By))
~ 1 Tor, (1, 1)

o « 10T gu (Bg) (R * (lj)f’ R* (fn))

g o TOT s (5, (R*(B), R*(By))
1 Tori (1, B)

Torys 8y (R*(B), H*(By))

Recall now that we assumed B to be a compact Riemannian symmetric space.
Define a map 0: H*(B)— R* (B) by a — the unique harmonic form contained in a.
It follows from the results of Hodge and Cartan stated above that 6 is a map of
algebras inducing an isomorphism in homology. Consider now the diagram

R* (Bg)> R* (B)
al X lO
H*(Bg)— H*(B)
As above this leads to two torsion products
£*a100ge (Bg) (R#(B)’ H* (BH))
o7+ 10T e (Bs) (R# (B), H* (BH))

which are seen to be isomorphic by an argument analogous to the one above. This
gives us a string of algebra isomorphisms

H*(E) = Torgs# (g, (R#(B), R*(By))

1 Tore (1, 1)

e#aTorm (Bg) (R#(B); f#(BH))

p 10T e 8¢y (R*(B), R*(By))
t Tory (1, £)

f#aTOI'H* (Bg) (R#(B)}Ig’* (BH))

0 f*TorH* (Bb) (R #(B)’ H* (BH))
1 Tory (6, 1)

Torys s (H* (B), H* (By))

which completes the proof. []

If in Theorem 2.1 we set B=point then we obtain a result of CARTAN [6] as
restated by BAuM in [2]. If we set H=1 in Theorem 2.1 then we obtain a result of
BoOREL and HIrSCH [4].
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3. An Example

Of all the hypotheses of Theorem 2.1 probably the least satisfying is the as-
sumption that B be a Riemannian symmetric space. However this is an essential
assumption as the following example will show.

Let Y=S%v S?v S2 Let f, g, hell,(Y) represent the homotopy classes of the

inclusions 5

2
LS VxVvVscY

S
Sz—ngSzv*cY
2 h 2

S oxvxvS cY

Let t: S*— Y represent the Whitehead product [ £, [g, £]]eI1,(Y) and let X=Y U, ¢°
where e° is a five cell. MAssEy and UEHARA [11] have shown that there are inde-
composable elements z,, z,, z;€ H*(X; Z) and we H> (X; Z) with the triple product
{z4, z,, 23y defined and

(24,23, 23y =w# 0e H*(X, Z)JH* (X, Z) z; + z; H*(X; Z)
Also from [11] we shall need

LEMMA 3.1: Suppose that f:A—B is a continuous map. Let u, v, we H*(B; Z)
such that
() uv=0=vw, (ii) f*(u)=0=f*(w) then

(u, v, wyeker(f*:H*(B; Z) > H*(4, Z)).

Proof: See [11] Lemma 5 on page 369. []
Now X is a 5-dimensional simplicial complex and so we can imbed X in R'. Let
B be the double of a regular neighborhood of X in R'*. Then B is a smooth manifold,

but not a Riemannian symmetric space. X is a retract of B. Thus there are classes
Xy, X5, X3€ H*(B; Z) and ye H® (B; Z) with {x, x,, x3) defined and

(X, X5, X3y =y #0e H* (B, Z)|JH* (B, Z) x; + x3 H* (B, Z).
We now construct an S* x S bundle over B as follows. Choose maps
fiiB>K(Z,2)=CP*=Bsy i=1,3

representing the classes x, x5. Form the diagram

Sl X Sl_:__:::_-:::;:,::‘:—,r':;: - Sl X Sl
! !
E S Est x St
b !
P fix s
B 1 3 Bgi x st
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which is the classifying diagram of a principal S! x S! bundle ¢ over B.

PROPOSITION 3.2: H*(E; k) and Tory. gy, , <,.xy (H*(B; k), k) are not isomorphic
as vector spaces for any field k.

Proof: Consider the Eilenberg-Moore spectral sequence [1], [8], [16] {E,, d,} of
the above diagram with k as coefficients. It has

E,= H*(E; k)
E2 = TOI‘H*(le x si: k) (H* (B: k), k).

Clearly it suffices to show that E,#E_.
By direct computation we have

EY * = H*(B; k)/H*(B; k) x, + x; H*(B; k).
Now the map p*: H*(B; k)—» H*(E; k) is given by the composition
H*(B; k) - H*(B; k)[(x{, x3) = Ey* 5 E%* « H*(E; k).
Now we claim that p*(y)=0. For we know that y=<{x,, x,, x3» and p*(x;)=0=
p*(x;) and so by Lemma 3.1 p*(y)=0.
But y#0e H*(B; k)/(x;, x;) and hence the map e:Ey""—E%" is not a mono-
morphism. Therefore E,#E . []

REFERENCES

[1] P. BauM, Cohomology of Homogeneous Spaces, Topology (to appear).
[2] P. BauM, Cohomology of Homogeneous Spaces, Princeton University Thesis, 1963.
[31 A.BOREL, Sur la cohomologie des espaces fibrés principeaux. .., Ann. of Math. 57(1953), 115-207.
[4] A. BoreL, Cohomologie des groupes de Lie compact, Amer. J. of Math. 76 (1954), 273-342.
[5] E. CARTAN, Sur les invariants integraux des éspaces homogénes, Ann. soc. polon. math. &
(1929), 181-225, = Selecta (Paris 1939), 203-233.
[6] H. CARTAN, a) Notions d’Algébre différentielle, applications aux. .. b) La transgression dans un
group de Lie. . ., Colloque de Topologie Bruxelles (1950).
[71 J. EeLLs, A Setting for Global Analysis, Bulletin Amer. Math. Soc. 72 (1966), 751-807.
[8] S. EiLENBERG and J. C. MoORE, Homology and Fibrations, 1,11, Comment. Math. Helv. 40 (1966),
199-236, and to appear.
[9]1 S. LANG, Introduction to Differentiable Manifolds, Interscience Publ. Cie (1962).
[10] W. S. Massey and F. P. PETERSON, Cohomology of Certain Fibre Spaces I, Topology 4 (1965).
[11] W. S. Massey and H. UEHARA, The Jacobi Identity for Whitehead Products, Algebraic Topology
and Geometry, Princeton University Press (1957).
[12] S. MAcLANE, Homology, Academic Press-Springer Verlag (1963).
[13] J. MoOORE, Algébre Homologique et des Espaces Classifiants, Seminar Cartan et Moore 1959/1960
Exposé 7.
[14] G. de Ruawm, Variétés Différentiables, Herman (1960).
[15] M. RoTHENBERG and N. STEENROD, Cohomology of Classifying Spaces of H-Spaces, (to appear).
[16] L. SMiTH, Homological Algebra and the Eilenberg-Moore Spectral Sequence, Trans. of A.M.S.
(to appear).
[17] N. SteENROD, Topology of Fibre Bundles, Princeton University Press (1951).
[18] J. TAaTE, Homology of Noetherian Rings and Local Rings, Illinois J. 1 (1957).

Princeton University, July 1966
Received July 19, 1967



	The Real Cohomology of Differentiable Fibre Bundles.

