Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 42 (1967)

Artikel: Continuous Forms in Infinite Dimensional Spaces (Quadratic Forms and
Linear Topologies V).

Autor: Gross, Herbert / Miller, Vinnie H.

DOl: https://doi.org/10.5169/seals-32135

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-32135
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Continuous Forms in Infinite Dimensional Spaces
(Quadratic Forms and Linear Topologies IV)

By HerBERT GRoss and VINNIE H. MILLER') in Bozeman, Montana

Professor Dr. GoTTFRIED KOTHE dedicated to his 60th birthday
Introduction

Let E be a k-vectorspace supplied with a symmetric, non-degenerate, bilinear
form &:Ex E—k. In [4] the class of topologies making @ continuous was briefly
considered. It was found that there is a “coarsest” such topology associated with each
totally isotropic subspace H of E; this topology we denote by 74 H. As we shall see
in Chapter I1I, these are fairly canonical topologies for the form . It is our intention
to utilize these topologies in framing and answering questions of a strictly algebraic
nature concerning infinite dimensional vectorspaces (E, ®). In particular we shall
be concerned with groups of orthogonal automorphisms of such vectorspaces
(Chapter IV) and with the possibility of orthogonal decompositions (Chapter V).

The defining neighborhoods for the 74, H topologies are given in Chapter II below,
and some of the elementary properties of such topologies are developed. Also in
Chapter II the t4, H-completions of spaces are discussed. The given form @ extends
uniquely to a form &: E'x E—k on the completion £ of E. If ® is non-degenerate then
& is nondegenerate if and only if H is orthogonally closed (H** = H). 14, H-completions
coincide with the locally linearly compact spaces with continuous forms.

In Chapter III the Clifford algebra C(@) associated with a linearly topologized
space (E, @) is discussed. The fruitfulness of Clifford algebras in the study of finite
dimensional spaces and their orthogonal groups is well known. Starting from a linear
topology t on (E, ®) it seems desirable to construct linear topologies 7" on the
associated Clifford algebra C(®) in such a way that 7’ will induce the initial topology t
on E if E is thought of as embedded in C(®). We first extend 7 to suitable topologies

4
on the tensor products ® E and then, by the usual sum and quotient operations, to a
topology ©" on C(®). The construction discussed here will make use of the projective

p
tensor product topology ér (of 7) on ®F introduced in [6]. It is shown that the
resulting topology on C(®), denoted by ®1, induces the initial topology 7 on E if and
only if 7 is finer than some 7, H topology. Surprisingly enough, this condition is also
seen to be equivalent with the condition that ®7 on C(®) be Hausdorff. These natural
requirements for topologies on C(®) thus lead us again to the topologies 74 H. The

1) The second of the authors was partially supported by the National Aeronautics and Space
Administration.
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main result of this chapter is the theorem saying that multiplication in C(®) is ®1-
continuous when (E, @) is of denumerably infinite dimension and t=14,H, H ortho-
gonally closed. Under these conditions C(®) with the ®z topology is in fact a topo-
logical algebra. Topologies can be given which are finer than some 14, H for which
multiplication fails to be continuous, both in the denumerable case and in higher
dimensional cases. Whether multiplication in C(®) can be ® t-continuous for suitable t
is an open question in the nondenumerable case.

In Chapter IV of the paper we investigate in some detail the algebraic structure of
groups of 14 H-continuous (orthogonal) automorphisms of spaces (E, @, 14, H). The
spaces treated in this discussion are those which are either of denumerable dimension
or else 174, H-complete. For a large number of underlying fields it turns out that the
full orthogonal group of a 74 H-complete space coincides with the group of all 7, H-
continuous automorphisms; (H has to be a maximal totally isotropic subspace of E).

In the last part we discuss some examples of nondenumerable spaces (E, ®), some
of which were suggested by topological investigations. For example, it has long been
known that spaces of nondenumerable infinite dimension do not in general have
orthogonal bases. Topological considerations point to classes of spaces (E, ¢) which
do not even contain an orthogonal summand of infinite dimension less than that of the
whole space. Clearly such spaces admit no infinite orthogonal decompositions what-
ever.

Some of our theorems have obvious extensions to the more general case of e-
Hermitean forms over arbitrary fields (of any characteristic.) In many cases examples
illustrating the more general context were not at hand; we have therefore not con-
sidered these possible generalizations here.

I. Notations and Definitions

I.1. In the following E will always be a vectorspace over some commutative field £
and ¢:Ex E—~k will be a symmetric, bilinear form. We assume throughout that
chark #2. If @ is nondegenerate we say that E is semisimple. || x| is @(x, x). Subspaces
H of (E, ®) are usually endowed with the induced form @l .. HNnH 1 is called the
radical of H (rad H). H is totally isotropic if Hc H + and anisotropic when | x| =0
only if x=0. The subspace H is called orthogonally closed (L-closed) if H**= H and
orthogonally dense (L-dense) if H*'*=E. If H is L-closed and F finite dimensional
then H+ Fis 1-closed. A semisimple space (E, ¢) which possesses no proper 1 -dense
subspace is of finite dimension. (This is proved by showing that & induces an epi-
morphism of E onto E*, the algebraic dual of E.) In particular, if every subspace of a
semisimple space is L-closed then the space is finite dimensional. Bases of a vector-

space are algebraic bases throughout; k(e,),.; denotes a k-space with basis vectors e,.
L

If A®B is an orthogonal decomposition (for some @) we write A® B.
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L
I.2. A Witt decomposition of (E, @) is a decomposition E=(R®R')®G, R and R’
totally isotropic subspaces spanned by the two halves of a symplectic basis {r,, r,},c;
of E:R=k(r))ger» R =k (r)ger, @ (1, rs") =0, (Kronecker), and G with an orthogonal
basis. The following theorem is often used ([10], Theorem 7): Let (E, ®) be a semi-
simple space of denumerably infinite dimension, and let R be an orthogonally closed

1
totally isotropic subspace of E. Then E admits a Witt decomposition E=(R®R')DG.
We shall frequently find ourselves in the following situation: Let E=R@® R’ be a space
of denumerably infinite dimension with R and R’ totally isotropic, further let {r;, r{}| <i<n
be a set of vectors withr,e R, r;e R and ®(r;, r})=0; ;. Then we can extend {r;, r;},<, to a
symplectic basis {r;, r};>, of E whose two halves span R and R’ respectively.

I.3. Terminology and conventions concerning linear topologies are consistent
with [4] and [6]. We should like to recall that the “orthogonal” F* for F=(E, &) is a
subspace {xeE; x | F} of E; whereas the “orthogonal” F° is a subspace of some
dual G of E, viz. {xe€G; {F, x)=0} where {, ) defines the duality between E and G.
o(E, G) denotes the weak topology on E induced by G.

I.4. We conclude this chapter with a few words about the underlying fields. We
shall usually assume later that the spaces (E, ) admit infinite dimensional totally
isotropic subspaces, a requirement on the form @. However, there is an impressive list
of fields k such that every infinite dimensional k-space (E, @) admits infinite dimen-
sional totally isotropic subspaces. Choosing @ diagonal, it is clear that such fields are
necessarily non-formally real. All fields in the following list have the property that
there is an integer m, depending only on k, such that every form & in m+ 1 variables
over k has a non-trivial zero. Finite algebraic extensions K of fields with this property
are again of this kind, m" in lieu of m will do, m the appropriate number for k£ and
n=[K:k]. (m" is not, in general, the most economic choice; see for example the end of
item 2 in the list below.) Fields for which there is such a number m are called ortho-
normal in [14]. (The name is derived from the fact that every semisimple space (E, ®)
of denumerable dimension over such a field possesses an orthonormal basis [10].)
In particular, the following fields are orthonormal.

(1) A Kneser field k£ is a non-formally real field of characteristic unequal 2 for
which g, =k*/k*?, the multiplicative group of nonzero elements modulo square
factors, has finite order o(g;). All Kneser fields are orthonormal; they have m=o0(g,)
(see [5]). When o(g,) is finite it is necessarily a power of 2 as all of the group elements
are of this order. For every n>0 there are Kneser fields k& with o(g,)=2"; special
examples are the algebraically closed fields, the finite fields, and the local fields.

(2) A further class of orthonormal fields which does not fall into the previous
category is the class of all transcendental extensions of finite transcendence degree r of
finite fields and algébraically closed fields. Here m is 2! *" and 2" respectively (see the
second lemma in [13]). Hence also orthonormal are the function fields in r variables
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over a constant field £ which is finite or algebraically closed; it follows from [13] that
21*" and 2" respectively will do for m in this case.

(3) Finite or infinite non-formally real algebraic extensions of the rationals are
orthonormal; here m=4 by Hasse-Minkowski theory.

II. The t4, H Topologies

Throughout Chapter II, (E, ) will be a semisimple space over an arbitrary
(commutative) field £ with characteristic unequal 2; k invariably carries the discrete
topology.

II.1 Elementary Properties

DErFINITION 1: Let H be a totally isotropic subspace of (E, ®). The linear topology
defined by the neighborhood filter {HN F*} of OcE, F running through the finite
dimensional subspaces of E, will be denoted by 74, H (cf. [4], 2.3).

As the notation suggests the topology depends in a fundamental way on the form
as the following corollary shows, (cf. Theorem 17 below).

COROLLARY: Let t be a linear topology on (E, ®). The form ®:Ex E—k is 1-
continuous if and only if 1 is finer than some 1o H (1>14H for a suitable H).

Indeed if @ is continuous then it is continuous at (0, 0)e E x E, i.e. there is a -
neighborhood H with ¢(H, H)=(0), k being discrete. Furthermore, for arbitrary
fixed x, @(x, y) is continuous in y; thus there is a t-neighborhood V, with &(x, V)=
{0}, i.e. V,ck(x)'. Taking finite intersections we see that all the Hn F* are t-
neighborhoods of OcE, and therefore t>1t4H. The converse follows by the same
argument, noticing that @ is continuous if and only if it is continuous at (0, 0) and
separately continuous.

It is easy to see that the topology 74 H is discrete if and only if H is finite dimen-
sional. The only spaces of interest in this connection are therefore those (E, ®) which
admit infinite dimensional, totally isotropic subspaces H (see 1.4). We finally notice
that the semisimplicity of (E, ¢) implies that 7, H is always Hausdorff.

Since every totally isotropic H is contained in a maximal totally isotropic sub-
space V, the 14 V with maximal V are precisely the coarsest linear topologies making
¢ continuous.

We remark that in contrast to the locally convex case, continuity of @ at (0, 0) does
not imply continuity of @ on E x E. We shall illustrate this by an example. In Chapter
IV we shall describe semisimple spaces (V@ W, @) of the following kind: V will be a
totally isotropic space spanned by an infinite basis {v,},.;, and for we W, if & (w, v,)=0
for infinitely many i€l then w=0. On such a space V®W we now define a linear
topology 7 as follows: For every finite subset G </ let /— G be its complement in / and
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let Fo=k(v,),c1-g- 7 is defined by taking the sets {F;} as a zero-neighborhood basis,
G running through the finite subsets of 1. = is Hausdorff as n F;=(0); further @ is
continuous at (0, 0) as all Fg; are totally isotropic. However, for 0£we W, &(w, y) is
not continuous in y. Otherwise @ (w, F; )=(0) for suitable F;_, i.e. ®(w, v,)=0 for all
1€I—G,, and thus w=0 contrary to our assumption.

We now turn to the comparison of certain 14 H topologies.

LEMMA: Let V and H be totally isotropic, 1-closed subspaces of (E, ®). We have
1o V=14(VNH)>14H if and only if dim V|V n H is finite.

Proof: If 14 V=14V N H then there is a finite dimensional Fsuch that Vo>V Ho
VA F*. And therefore dim V/Vn H<dim V/V A F*<dimF.

Conversely since HoVnH, 14 H<T¢ VN H and 1,V H>14V. It remains to
show that 74 VN H<14 V. By hypothesis V'=(Vn H)®G with G finite dimensional
and Vn H L-closed. So dim(Vn H)*/(V~ H)'nG*<dim E/G*=dimG is finite; i.e.
(Vo H) =((Vn H)*n GY)®K for finite dimensional K. Therefore Vn H=(VnH)**
=(VnH)+G)nK*=VnK*. From which we conclude that 7,(Vn H)<1,V.

THEOREM 1: Let V and H be maximal totally isotropic subspaces of (E, ®). The

following are equivalent:
(1) 1o V=1oH
(ii) t4 V and 14 H are comparable

(iii) V/VnH and H/V N H are of the same finite dimension

(iv) V/VnH and H/V ~ H are finite dimensional.

Proof: (i)—(ii) is trivial. If (ii) is the case we have for instance 14, V' >14 H. Hence
V=(Vn H)®G for finite dimensional G by the preceding lemma. (If ¥ is totally
isotropic then so is ¥+, so ¥=V"** for maximal V.) We set H=(Vn H)®G’' and
claim that GG’ is semisimple. Indeed if xerad GO G’ then x is isotropic and xLV
and x1 H as GAG LV H. Hence xeV and xeH as both V and H are maximal.
Therefore, x=0since (GOG')n ¥V n H=(0). Since G is finite dimensional, G ® G’ semi-
simple, G and G’ both totally isotropic, we have dimG=dimG’. This proves (ii)—(iii).
(iii)—(iv) is trivial. (iv)—(i) is a direct consequence of the previous lemma.

We consider an example which shows that the assumptions on ¥ and H can not be
weakened in the previous theorems. Let E=V@V’ be of denumerable dimension,
V and V' totally isotropic for @, (v;, v})=9;; for {v;};5, and {v}};5 bases of V'and V'
respectively. Let H=k(v, +v,);>,. ¥V is maximal, in particular 1 -closed; further Hc V
and dimV/VnH=dimV/H=1. Nevertheless we do not have 14,V =14H. For if
16 H <14V, we should have Ho V'~ F* for some finite dimensional F. Since V> H>
V A F*-we see that dim H/V n F* is finite; further V' F'is L-closed as both ¥ and F*
are 1-closed. Hence H is L-closed (I.1). This is a contradiction as it is easily verified
that H'* = V# H. We see that 1, H is strictly finer than 7, ¥ in spite of the fact that H
falls short of ¥ by only one dimension.
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Let Te O(E, ), the orthogonal group of (E, ®). T'is 14 V continuous if and only if
1o V<1 T(V).

THEOREM 2: Let H be a totally isotropic 1-closed subspace of (E, ®). Let Te
O(E, ®). T is tq H-continuous if and only if T(H)/H NT(H) is finite dimensional. T ' is
14 H-continuous if and only if H/H~T(H) is finite dimensional.

It seems natural to call a subspace L < E almost invariant for T, Te O(E, ®), if
LNT(L) is of finite codimension in both L and T(L). It is straightforward to verify
that all 7" which leave L almost invariant form a subgroup of O(E, ®). In particular,
if L is totally isotropic and | -closed, then the previous theorem shows that the group
of all T leaving L almost invariant is the largest subgroup of O(E, @) consisting
of 74 L-continuous automorphisms. A 14 H-continuous 7 does not, in general, have a
continuous inverse. Let E=V@®V’ be the space of denumerable dimension of the
previous example, V=k(v;);51, V'=k(v');»,. The index map 2i—4i, 6i+2j—1->
4i+j, j=1,2,3 and i>1 defines an orthogonal automorphism leaving ¥ and V'
invariant. If we set H=k(v,4;);», then T is 14 H-continuous but not open. This cannot
happen in the case of maximal totally isotropic spaces:

THEOREM 3: Let V be a maximal torwlly isotropic subspace of (E, ®), and let

TeO(E, ®). The following are equivalent.
(1) T is 14 V-continuous

(ii) T™! is 14 V-continuous

(i) V/VAT(V)and T(V)/VT(V) are of (the same) finite dimension.

Proof: This is an immediate consequence of the lemma above and Theorems 2
and 3.

We conclude this introductory section with an example which will be of importance
later on.

LEMMA: Let H* be the algebraic dual of the k vectorspace H, and let @ be defined on
E=H®H* by ®(h*, h)=h*(h), H and H* both totally isotropic for ®. Then H* is
almost invariant under any Te O (E, ®). In other words, every Te O(E, ®) is 1o H*-
continuous. (We note that E is semisimple, and both H and H* are maximal totally
isotropic subspaces.)

Proof: For fixed Te O (E, ®) we set D=H*NT(H*), H*=D®K, T(H*)=D®S.
In particular S~ H*=(0) and DLK@®S. Let {s,},.; be a basis of S. We decompose s,
into s,=h,+h*, heH, h*eH*. Since SnH*=(0), the A, 1el, must be linearly
independent. We put S=k(h,),.; and have dimS=dimS. We have D 1S since DLS
and Dc H*< H*'. For arbitrary h*e H*, we decompose h* into d+k, deD, keK.
For every heS, ®(h* —k, h)=®(d, h)=0 so h*(h)=®(h*, h)=P(k, h)=k(h). Thus K
possesses a subspace isomorphic to $* and dim K >dim §*=dim S*.

Applying T~! to the decompositions given above for H* and T(H*) yields
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T ' (H¥=(T"'(H*)nH*)+T 'Kand H*=(T"'(H*)n H*)+ T "' S. By reasoning
exactly as above we obtain dim7~'S>dim(T'K)*, so dimS>dimK*. But this
combined with the inequality of the previous paragraph shows that K and S are of the
same finite dimension.

As we shall see later (IV, Theorem 21), the subspace H is by no means left almost
invariant by O(E, ?).

I1.2 Completions

Let V be a totally isotropic subspace of E and equip E with the topology 1=14 V.
In several of the theorems which follow it will be convenient to consider the following
decomposition: E=V®H ®H, with V'=H,®V, V=k(0)eer» Hi=k(h1p)ecyss
H,=k(h,,),ex» H=H;® H,. Such a decomposition is of course always possible.

The symbol ~ will denote completion. The topology t under consideration is
always 14 V. Thus 7 denotes the completion of the 74,V topology.

In this chapter, V' will denote the topological dual of V.

The first theorem shows that the problem of completing E reduces to that of
completing V.

THEOREM 4: E=V®H. 1|, is the discrete topology.

Indeed, every algebraic complement H of a linear zero-neighborhood is a discrete
topological supplement.

The completion is only of interest if @ induces a continuous bilinear form on £.
The next theorem guarantees that this will be the case.

THEOREM 5: The quadratic form Q:E—k extends to a unique continuous function
0:E-k. Q is quadratic, V is totally isotropic and, with respect to the associated bilinear
form &, H, L V. #=>14W for some totally isotropic subspace W of (E, ®).

Proof: Although Q is not a uniformly continuous function it can still be extended
to E provided that for all -Cauchy systems {x,) of elements of E which converge to
% in E'the directed systems {Q(x;)> have one and the same limit in k (see [12], page 17).

Let (v, +h,> and (v, +h.> be two directed systems in E both converging to X € E.
Since both are Cauchy and ¥ is a % zero neighborhood, 4, equals some fixed 4 for a
sufficiently large and A, =#h for sufficiently large . And since both directed systems
converge to X, {v,+h,—v,—h,> is also Cauchy so h=Fh'; in particular {v,—v,) is
Cauchy.

Now consider {Q(v,+h,)). For a and f sufficiently large, Q(v,+h,)— Q(vs+hp) =
Q(v,+h)—Q(vy+h)=28(v,, h)—2®(vg, H)=2P(v,—vp, h)=0 since we may assume
v,—vgek(h)*n V. Therefore (Q(v,+h,)> is a Cauchy system in the complete Haus-
dorff space k so has unique limit A. Similarly lim Q(v,+A,)=4".

By computations similar to those above, Q(v,+h,)— Q(v,+ h,)=0 for « sufficiently
large. So A=41". Therefore Q extends uniquely to a continuous function §: E—k.
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If two continuous functions mapping the topological space X into the Hausdorff
space Y agree on a dense subset D of X then they are identical. Applying this well
known result gives immediately that  is quadratic, ¥ is totally isotropic and & (7, h,)
=0, eV, hyeH,.

Since § is continuous, ¥ 14 W for some totally isotropic W by II.1.

The results to this point are of an existential nature. In the next three theorems

the form of the completion is made moie precise and a computing formula is given
for &.

THEOREM 6: (V, %|p)=(H, 6(H,, H,)) so E=H,'® H with the a (H, ,H ) topology
on H, and the discrete topology on H.

Proof: Vis 14V linearly bounded, since for arbitrary V' n F*, F finite dimensional,
dimV+(VAFY)/VAF =dimV/VAF'=dimV+F'/F*<dimE/F*=dimF. There-
fore ¥ is % linearly compact, ¥ is topologically isomorphic to ¥’ * and #|,=a(V, V")
(see KOTHE [12], page 101).

To complete the proof we show that ¥ is in fact H,, but first we prove a useful

LEMMA: If E=V*@H, with V< V' and {V,H,) a dual pair for ® then 14 V|, =
o(V, H,). It is not necessary to assume that E is semisimple.

Proof of the lemma: o(V,H,) has a zero neighborhood basis of sets G°={veV;
®(h,, v)=0 for all h,eG}=VnG", G a finite dimensional subspace of H,. The sets
¥V AG* are in the 14 V|, zero neighborhood basis. In fact for an arbitrary set VN F +
in the 14 V|, zero neighborhood basis, F being finite dimensional is contained in some
VLG so VAF'sVAV*aGt=VnG*. So the sets VNG" are even a zero
neighborhood basis for 74 V.

Returning to the proof of the theorem we show the lemma applies. <V, H,)is a
dual pair for @, for if ®(v, h,)=0 for all h,eH, then h,€e V+*so h,=0, and if & (v, h,)
=0 for all ve V then since v is also orthogonal to ¥+, vl E which implies v=0 by the
semisimplicity of E. By the lemma, 1, V|, =0(V,H,) and under these conditions
F=H,

Each element h, of H, corresponds to a function on ¥ namely @,, with @, (v)=
®(hy, v). The &,, are linear, and they are even continuous since @ is separately
continuous. @, extends uniquely to a linear continuous function ¥, Vok. V'={¥,,;
h,eH,}=H, so V'*=H,". We also have v(hz)—v(Y’,,z) ¥,,(0), (see [12], page 101).

Combining with the earlier result, ¥~ 7"*=H," with topology ¥=a(V, V)=
o(H¥, H,). This completes the proof of Theorem 6.

Applying the same proof technique to an arbitrary dual pair gives the

COROLLARY: If (V,, V,) is a dual pair, the completion of (Vi,0(Vy, V) s
(Vz,a(Vs, V)

THEOREM 7: The unique bilinear form ® of Theorem 5 has @ (B, hy)=0(hy) for
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teV=H, andh,eH ,.¥=14V. (E, ®) is semisimple if and only if V is L-closed. If V
is a maximal totally isotropic (resp. L-closed) subspace of E then V is a maximal totaily
isotropic (resp. 1-closed) subspace of E.

Proof: To define the extension @ of our bilinear form @ it suffices to specify
@ (D, h,) since other values are known from Theorem 5. We take as definition
&(, hy)="V,,(0)=5(h,) and define & symmetrically and on sums bilinearly. This
results in the general formula @ (G+h, +h,, &' +hy +hy)=di(hy) + @ (h,)+ D (h, + h,,
H, +hy). The associated § has § (i +hy +h,) =28 (h,)+ Q(h, +h,).

To show § is continuous, let X=d+h, +h, be arbitrary in E. h,ek(h,,)pep for
some finite set B. If feVy=Vnk(h,p)sep then Q(id+hy +hy+0)=2("+70) (h,)+
Q(hy+hy)=2ii(hy)+ Q(hy+hy)=Q(@+ hy +h,). And by Theorem 6, Vj is a space in
the % zero neighborhood basis. So § is continuous.

Finally, § agrees with Q on E, for if ve V then §(v+h, +h,)=2v(h,)+ Q(h, +h,)
=20(v, hy)+Q(hy +hy)=Q(v+hy +h,) since @ (v, hy) =Dy, (V) =¥, ().

Thus 0 is the unique function of Theorem 5, hence in particular quadratic.

We turn our attention now to the completion topology. The conditions of the
lemma apply to (E, ). For (H))'¢=H,'®H, since if &(B+h,+h,, d)=ii(h;,)=0
identically in # then h,=0, while from Theorem 5, &(v+h,, #)=0 for all #ieH . And
(H;,H,) is a dual pair for & since & (&, h,)=ii(h,). Applying the lemma, o(H,", H,)
=14 V| is the completion topology on V. Since the topology on H is discrete and the
sum V@ H is topological, the completion topology is 74 V.

We now determine the conditions under which (£, @) will be semisimple. First we
prove that @ is nondegenerate iff H, is semisimple.

If H, is semisimple we must show that X=#+h, +h, LE implies X=0. If &, were
not zero there would be a v in ¥ with 1=®(v, h,)=S(v, h,)= (v, #+h; +h,), so
h,=0.1If X =14+ h,, with h; #0 then by the semisimplicity of H,, there exists an 4, € H,,
with 1 =& (hy, h})=® (K}, #i+h,) so h; =0. Finally if #5#0 then there is an h,e H, with
& (@, h,)=ii(h,)=1 so #i=0. Conversely if H, is not semisimple then there is an h; e H,
with Ay LH,. Let &, €H;" with &, (h,)=®(h}, h,). For arbitrary &i+h,+h, in E,
(=D, +hy, d+hy+hy)=—&, (h)+P(hy, hy+hy)=0, so & is degenerate, and
dim(rad H,)<dim(rad £)). Hence dim(rad H,)=dim(rad ).

The proof of the following lemma now shows that @ is nondegenerate if and only
if Vis L-closed.

LeMMA: H, is semisimple iff V is L-closed; in fact dim(rad H,)=dim(rad £)=
dimv+/v.

Proof: V*=V@®H soV'*=(V+H,)'=V*nH{=(V+H,)nH{=V+(H nH}).
Since V' =V@®(radH,), V=V""iff rad H,; =(0).

To complete the proof of the theorem, sufficient conditions will be given for ¥ to
be an orthogonally closed or a maximal totally isotropic subspace. As observed above,
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Vie=V'@H,. If Vis L-closed then H, is ®-semisimple, so H, is &-semisimple,
therefore ¥ is L-closed.

For ¥V a maximal totally isotropic subspace of E, H, must be anisotropic. So if
di+heV+ then Q(d+h,)=0(h,)#0 unless h,=0. Therefore ¥ is a maximal totally
isotropic subspace of (E, ).

A normal form for the decomposition of (£, ®) is given by

L

THEOREM 8: E=(G3®G,)®G, with G,, G} totally isotropic, dimG,=dimH, and
D(g3, 82)=83(82) for all g5€G3 and g,€G,.

Proof: From Theorem 6, E=H3@®H,®H, withH,=k(h,,),cx and H; =k (hy )zes-
As usual let @, denote the function H,—k with ®,(h,)=®(h, h,). Put Gy =k(h;,—
®,.,) and G,=k(h,,—3P;, )eex- The dimensions of G, and G, are clearly as
specified. Every element &+ h, 4+ h, of E can be written in the form (Z+ ®,,+1 9, )+
(hy—®y,)+(h,—3®,,) and the spaces H)', G and G, have (0) intersection so E=
H}®G,®G,. The remaining relationships are verified by routine calculation. Ex-
tending each h%eH,* by zero to all of E we obtain h**. h*>h**| is a topological
isomorphism H*—G*.

In the next theorem we show that the completion of the (E, 14 V) spaces coincide
with the locally linearly compact spaces on which the form @ is continuous.

THEOREM 9: If (E, T) is a locally linearly compact space and if the nondegenerate,
bilinear form ® is continuous (i.e., T=14V for some totally isotropic V) then E is 7-
complete and T =14 D for some linearly t-compact D V. Further 14 D =14 V if and only
if dim V' /D is finite. Conversely if (E, @, 1o W) is complete then E is locally linearly tq W-
compact.

Proof: Since E is locally linearly T-compact, there is a linearly 7-compact zero
neighborhood U. V is 7-closed so D=V U is linearly 7-compact. And for finite
dimensional F, DA F*=VAUnNF* is a 7-zero neighborhood. Therefore 7>14D.
But (D, 14 D|p) is a linearly topologized space and D with the finer 7|, topology is a
linearly compact space, so 14 D|p= 1|, (KOTHE [12], page 98). Since D is both a T and
a 14D zero neighborhood, E=D@® D, is a topological sum and D, is discrete for
both topologies (KOTHE [12], page 96). Therefore T=14D.

To demonstrate that 1, D =14V we apply the lemma to Theorem 1.

Conversely, if (E, 1, W) is complete then since W is 14 W-closed, W= W. But W is
also linearly t, W-bounded as we have already shown in Theorem 3. Hence W=W is
linearly 74, W-compact, which shows that (E, 4 W) is locally linearly t4, W-compact.

The proof gives the following interesting corollaries (cf. [9]). The first is an
immediate consequence of Theorems 8 and 9.

COROLLARY 1: If (E, %) is locally linearly compact and @ is continuous then E has a
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1
decomposition (D3 @ D,)® D, of the form given in Theorem 8 with D% the locally linearly
compact D of Theorem 9.

COROLLARY 2: If (E, 1o W) is complete and A is a semisimple tq4 W-closed subspace
of E then either A is discrete or dim A > | k| ™.

Proof: By the previous theorem, (E, 14 W) is locally linearly 7, W-compact. Since
A is closed, A is locally linearly compact with respect to the induced topology. Also ¢
is continuous when restricted to A4, so the previous corollary applies and 4 =(D3®
(D,®D,)) with the 14D’ topology on A. If dimD,<¥X, then dimD}<N,, and the
topology on D% would be discrete. Since D3 is a linear zero neighborhood, D, + D, is
a topological complement of D}. And the topology on D, + D, is discrete as well. In
this case 74 D% is the discrete topology.

If on the other hand dim D, >N, then ||D}| > |k|™°, so dimA4>dimD3}> |k|™.

III. Clifford Algebras

II1.1 Canonical Topologies on the Clifford Algebra

With the tensor algebra T(E) defined as usual over the vector space (E, @), let O
be the quadratic form associated with ¢ and let 7 be the two-sided ideal generated by
the elements x®x—Q(x) in T(E). Then the Clifford algebra C(E) is by definition
T(E)/I. The equivalence class of x; ® - ®x, will be denoted by x,°---ox,. If E=k(e,),c ;s
with J asymmetrically ordered by <, then for S={ay,..., a,}, ;< <a, let eg=
€,,°° e, . The eg together with the scalar 1 are a basis for C(E) (for a proof see [1]).
In particular if x,,..., x, are linearly independent elements of E, then x;°:--°x,#0.

If f: E-E is an isometry of (E, @) onto itself then f extends to an algebra homo-
morphism g:T(E)—T(E) which is the identity on k and has g(x;®:-®x,)=
f(x)®---®f (x,). Since f(x)° f(x)=0(f(x))=0(x), f similarly induces an algebra
homomorphism A: C(E)— C(E)with h|,=1|,and A(x,°---° x,)=f(x;)°: -2 f(x,). Further
let E have basis (e,),.; then (f(e,)),c; is also a basis for E. Basis elements e; °---° ¢; of
C(E)are mapped by 4 onto a complete set of basis elements f (e;,)°---°f (e;,) of C(E),
so h is bijective. Thus every isometry f of E induces an algebra isomorphism 4 of C(FE).
Conversely, if A is an algebra isomorphism of C(E) which maps E onto E and is the
identity on k then the restriction of h to E is an isometry, for ®(h(x), h(x))=
h(x)°h(x)=h(x°x)=h(P(x, x))=D(x, x). Because of this canonical relation between
the isometries of E and algebra isomorphisms of C(E), we shift our attention to the
problem of topologizing the Clifford Algebra.

Starting with a linearly topologized space (E, t), there are many ways of con-

14
structing linear topologies on the tensor products ® E. Here we shall consider two
1

tensor product topologies, the 1, topology, corresponding to the e-product of
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ScHWARTZ and the “projective” topological tensor product topology corresponding
to that of GROTHENDIECK. These topologies have been studied in [6].

A linear topology on the tensor products extends canonically by taking the direct
sum topology on the tensor algebra and then the quotient topology to a linear topology
on the Clifford algebra. If this extension is to be useful it must induce the initial
topology when restricted to £. We now investigate whether this is the case for either
the e-product or the projective tensor product extensions.

Since it will quickly become apparent that the e-product topology is not suitable
in the sense just mentioned, we shall describe it only briefly. For further detail the

p
reader is referred to [6]. The 1, topology is the finest linear topology on ® E for which
1

p p
the canonical multilinear map [ | E;— ® E; is uniformly continuous. For each p, 7, has
1 1

a neighborhood basis at zero of sets

U,=U,@ERE®®E+E®U,®EQ®E+ +EQERE®-®U,

each summand containing p factors and the U, running through a zero neighborhood
basis for the topology © on E. A zero neighborhood basis for the tensor algebra

consists of sets U= @ U, and a zero neighborhood basis for the Clifford algebra of
p=1

the sets o U where ¢ is the canonical map T(E)— C(E). These extensions as well as

the e-product topologies on the tensor products will be denoted by «,.

Tueorem 10: If (E, 1) is discrete then (C(E), 1,) is discrete. If (E, t) is not discrete
then (C(E),t,) is trivial.

Proof: If (E, 1) is discrete then (0) is in the zero neighborhood basis for . In the
expression for U, in the preceding paragraph taking U ,=(0) for every p gives U=(0)
and ¢(0)=(0). Smce (0) is thus in the zero neighborhood bases for (C(E), 7.), the
latter is discrete in this case.

On the other hand if (E, 7) is not discrete and o(U)=0(U;+U,QE+EQU,+
UsQE®E+--) is an arbitrary set in the zero neighborhood bases of (C(E), 7.) then
every element of the form x,° x,°---° x, is in ¢ U. For since 7 is not discrete, there is an
element y#0 in U,,,, and since E is semisimple, there is a ze E with &(y, z)=1.
yoz4zop=1,ands0 x;0+--° Xp=y°2° X;%+-° Xy +2°y° X, X,€0 U. o(U)is thus seen
to be a subspace of C(E) containing a set of generators of C(E), hence o(U)=C(E).
In this case t, is the trivial topology on C(E).

So requiring that the 7, topology on C(E) induce the initial topology 7 on E would
leave for consideration only the uninteresting cases where 7 is discrete or trivial. For
this reason the t, topology will not be discussed further.
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We now turn our attention to the projective tensor product topology ®r on the
tensor product ®E In [6] it is shown that there is a unique linear topology on EQE

with the followmg properties: (1) the canonical bilinear map w,: Ex E-EQE is
continuous and (2) if fis a bilinear continuous map of E x FE into a linearly topologized
k-vector space G then the induced linear map EQ E—G is continuous. The proof

14 p 14
extends to ®E. ®7 is by definition this unique topology. Clearly ®z is the finest
1 1 1

14 P p
linear topology on ® E for which w,: H E— ®E is continuous. If 7 is Hausdorff so is
1 1 1

p
®1 (for details see [6]).
1

2
A neighborhood basis at zero for the ®7t topology is given by the subspaces
1

U0,=U,9U,+ Y [x]I®U,,+ Y U,,®[x]withU,,and U, running through a zero

xeE xeE
neighborhood basis of 7. This is so since w, is continuous if and only if it is

continuous at (0, 0) and is separately continuous at (x, 0) and (0, x) for every xeE. If
w, is to be continuous for a topology T on E® E then every set in the 7 zero neighbor-
hood basis must contain a space of the form U,. Conversely, the spaces U, define a
linear topology on E for which w, is continuous. The same reasoning applies for any p,

p
so a zero neighborhood basis for ®t consists of the sets
1

ﬁp:Up@"'®Up+ Z Z [x]®pr®“’®Ux
x € E perms
+ Z Z [x]®[y]® pXxy ®"'®pry

x,ye E perms

+eet 2 Y [x]®[x]®®[x,-1]® 7, PE] X3uadp—{ ¥

X1, ..., Xp—1€E perms

with the subscripted U’s running through a zero neighborhood basis for = and
Y [x]19U,,®-0U,,=[x]®U,,®-®U
perms
Uyx® [x] ® U,:®@Q@U,, ++U,,®U,, ®® [x]

and with similar meanings for the other ) symbols. Henceforth in this chapter

perms

Y Y will be abbreviated by Y and U, will be written simply

X1, ..., Xq€ E perms
U,QU,+XY[x]®U,,®QU,,+
YIxlevleu, pxy @@ Uy, +
Taking sums and quotients, the projective tensor product topologies induce linear
opologies on T(E) and C(E), both denoted by ®r.
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We should like to remark that it is the requirement of separate continuity for w,
which is responsible for the complexity of the U,’s and the subsequent difficulties in
the proof of Theorem 18 below.

We now determine for which topologies t on E the induced topology ®1|y is
equal to .

THEOREM 11: If E has a zero neighborhood basis of subspaces no one of which is
totally isotropic then ®t|g is trivial.

Proof: Let 6(U)=0(®U,)=0(U;+U,QU,+). [XI®U,,+U;Q@U;@U;+-) be
1

an arbitrary space from the zero neighborhood basis for ®* on C(E). We claim that
an arbitrary element x of E is an element of o(U). For U, is not totally isotropic so
there exists a yeU, with Q(»)#0. x=1/Q(¥) y°y°x=0((1/Q(»)) y®y®x)eU; <
a(U). But this implies 6(U)n E=E for arbitrary ¢(U), hence the assertion of the
theorem.

On the other hand, if the conditions of Theorem 11 are not met then some linear
neighborhood V of zero is totally isotropic. Intersecting ¥ with the spaces of the zero
neighborhood basis gives a zero neighborhood basis for totally isotropic subspaces.
In this case we have

THEOREM 12: Let (E, 1) have a zero neighborhood basis {U,} of totally isotropic
subspaces. Then @1|y=1 if and only if E=\_) U;".

Proof of necessity: Let xe E. We shall show xe|J U;. For x=0 this conclusion is
immediate so suppose x#0. Since 7 is Hausdorff there is a U, with x¢ U,; ®1|g=1 so
there is a U with o(U)nEcU,; U=U+U,QU,+Y [xI®U,,+ U;®@U;@U; +
Y [XI®U; . @Us  + Y [XI®[¥1®U; ., +---. Suppose by way of contradiction that
x¢ Us. .. Then there is a ye Us ., with ¢(x, y)=1; therefore x=&(x, y) x=x°y°x+
ye x° xea(U) which, since xeE, implies xe U, a contradiction. We conclude xe Ui,

Proof of sufficiency: Since each o(U)nE=0(Uj+-)nE>U;, ®1|z<1. Now
suppose U, is an arbitrary space in the 7 zero neighborhood basis. We shall construct
U such that 6(U) n Ec U;. First take U, < U, for all #. By hypothesis for every x there

is a U, such that xLU,. Take U,,, ., =U,nN U, and U=U;+U,®U,+} [x]®
i=1

U,.,+---. We first note that o( ) X 1® ®xul®U, ;. x,. @ QU x, x)=

perms

o([X]®...[x]®U,x,.. %, ® ®U,y,. . x,), because if uel,,, ., then uex;=—x;°u,
1<i<m. So every element of a(U) is of the form t= ) t;°u;, u;€U,. Suppose by

finite
way of contradiction xea(U)n E but x¢ U;. Let (e,), 4 be a basis for the vectorspace
U,. The set (x, e,),c4 being linearly independent can be extended to a basis for E.

Since xea(U), by the remarks above x is of the form | teu= Y fio( ) 4ije,,)=
=1 =1 j=1
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n m
Y ) A t;°e,,. Multiplying through by e, ce,,°:-->e,  gives x°e, °---oe, =0 since
i=1 j=1

U, is totally isotropic. But this is not possible since x°e, °:--°¢, is an element of a
basis of the Clifford algebra. Hence 6(U)nEcU,. .". ®1|=1.

As an immediate consequency of the construction in the proof of Theorem 12
we have for future reference the

CoROLLARY: If (E, 1) has a zero neighborhood basis of totally isotropic subspaces
{U,} then (T(E), ®1) has a zero neighborhood basis of sets U such that t in ¢ (U) implies
t= ) t;oe;with the e;linearly independent elements from a single totally isotropic U,.

finite
Next we shall describe the topologies for which the conditions of Theorem 12 are
realized.

THEOREM 13: If (E, 7) is a linearly topologized space with a zero neighborhood basis
of totally isotropic subspaces U, and E=\_J U;* then 1>14U, for every a. Conversely,

if (E, 7) is a linearly topologized space with 114V for some totally isotropic subspace
V of E then t has a zero neighborhood basis of totally isotropic subspaces U, and
E={J U}

Proof: To show 1>1,U,,, let U, nF* be a set in the 14, U,, zero neighborhood
basis, F=k(x;); <i<n- Since E=|_J U;" there exist zero neighborhoods U,, with x; LU,

n
U,,n N U, U, ,nF* proving the contention.
i=1

Conversely suppose T>14 V. The spaces V'n Fﬁl with Fy a finite dimensional sub-
space of E are by hypothesis part of a zero neighborhood basis {U,} for 7. Since
VA F4 is totally isotropic the U, may be chosen totally isotropic. But the (V' F;')*
already cover E since E=|_) F; and Fy;c F;* =(VnF;)*. Therefore E=J U;".

B a

It is interesting to note that when 1 =14V, V of infinite dimension and codimension,
the 1®7 topology on EQ E is strictly finer than the , topology. This will be proved at
the end of this chapter at which time certain lemmas and theorems will be available to
make the proof easy.

The topology on C(E) can only be considered admissible if continuous orthogonal
automorphisms of E induce continuous algebra isomorphisms of C(E) and con-
versely. The projective tensor product topology has this essential property as the
following theorems shows.

THEOREM 14: Let f be an orthogonal automorphism of (E, ®), g the corresponding
algebra isomorphism of T(E) (with g(x; ®---®x,)=f (x)®---®f (x,)), and let h be the
corresponding algebra isomorphism of C(E) (with h(x°---°x,)=f(x{)°--°f (x,)). If
t=14 V, V totally isotropic, then f is t-continuous if and only if h is @t-continuous.
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Proof: Suppose fis t-continuous. Let U=U, + U,Q U, + Y [xI®U, .+ --- be a set
in the T(E) zero neighborhood basis. For every U, (resp. U, ;) s(ry..) there is a ¥,
(resp. Vuxy.) such that f(V,)cU, (resp. f(V,x,.)c Un £ £9)...)- g(V)=g(Vi+
V,@V,+) [x]@V,c+ - cUp+ U,®@ U, + Y. [ £(X)I®U, y(x)+ -+ = U establishing the
continuity of g.

Clearly ha=0g so ha(V)=ag(V)<a(U), and h is likewise ®z-continuous.

Conversely if 4 is an algebra isomorphism of C(E) with h|y=f and h|,=1|; then
we already know A|;=/fis an orthogonal automorphism of E. Since t=>14V, 1= ®1|,
so the continuity of 4 implies the continuity of A|p.

Applying the theorem to f ™! and A~ gives the

COROLLARY: With the hypothesis of Theorem 14, f is open if and only if h is.

Although not essential, it would be desirable to have a Hausdorff topology on
C(E). We first consider separate continuity of multiplication in 7(E) since this result
will be used in the proof of Hausdorff. Later in the chapter the subject of continuity of
multiplication will be discussed in more detail.

THEOREM 15: Multiplication is separately continuous in (T(E), ®1). ’
Proof: First consider multiplication on the left by S=x,® - -®x,e®E. For
1

q ptq ptaq
every g the map [[ E- [] E- ® E with (p1,..., ¥)=(X15 000y Xps Viseens V)2 X @+
1 1 1 . .
®x,®y;®-:-®y, is continuous and so induces a continuous map ® E—» ® E with
1 1

ptq

NM® Ry =X @ ®x,Qy;®--®y, (by the definition of ® E). Addition gives a
1

®1 continuous map T(E)-T(E) with t—>s®t. The argument readily extends to
multiplication by a sum of such s’s.
Using Theorem 15 we can prove the

COROLLARY: If A is a two sided ideal in (T(E), ®<) then A, the topological closure
of A is also a two sided ideal.

This follows from the separate continuity of multiplication.

With the corollary above we are in a position to prove (C(E), ®t)is Hausdorff for
214V

THEOREM 16: 1>14V for V some totally isotropic subspace of E if and only if
(C(E), ®v) is Hausdorff.

Proof: Using Theorem 13 it suffices to show that (C(E), ®) is HausdorfT iff <
has a zero neighborhood basis of totally isotropic subspaces U, and E={) U;. The

topology ®t on C(E) was obtained by quotients from the ®z topology on T(E).
Under these circumstances it is well known (see for example [12]) that (C(E), ®7) is
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Hausdorff iff /=17 (I the two sided ideal in T(E) generated by the elements x®x —
Q(x), or equally well by the elements x®y+y®x—2®(x, »).)

Suppose ®t is Hausdorff. =1 is a proper ideal in T(E) so in particular —1¢1.
Therefore there exists U= U, + U,®@U, +Y [x]®U, .+ in the usual zero neighbor-
hood basis for T(E) with —1+ U disjoint from I. We claim U, is totally isotropic.
For if this were not so there would be an xe U, with | x| #0. Put y=x(2||x|)~! then
y is also in U, and &(x, y)=1%. So x®y+y®x—1e(—1+ U)nI, contradiction. We
may therefore assume that all the U, are totally isotropic.

We claim in addition that for each xeE, x LU, ,. If not there would be a yeU, ,
with @(x, y)=1, and then x®y+y®x—1e(—~1+U)NI as before; contradiction.
SLE=\ UL

To prove the converse we assume E=|J U;} for some totally isotropic zero
neighborhood basis {U,}. By the corollary to Theorem 12 proved earlier, T(E) has a
zero neighborhood basis of sets U such that if-tec(U) then t= Y t;°e; with the e,

i=1

linearly independent elements from a single totally isotropic zero neighborhood U,,.
We claim this implies 1¢1. For if 1€l then 1+ U meets 1, and so 1+0(U) meets (0)

say in 1+¢. We have O=1+7=1+ ) t;°e;, Multiplying by e,c---oe, gives
ji=1
0=e,°---0e, which is impossible since the e; are linearly independent.

Thus it is clear that 1¢7; in particular I#T(E). But C(E)=T(E)/I is a simple
algebra and I, so I=1I. Thus ®t is Hausdorff.
Summarizing some of the properties of the 74V topologies we have the following

THEOREM 17: If (E, 1) is a linearly topologized space and 7 is not the trivial topology
then the following are equivalent:
(i) T=14V for some totally isotropic V
(i) ¢:E x E—k is continuous
(iii) 7 has a zero neighborhood basis of sets U, with E=\) U}
(iv) @1lg=1 :
(v) (C(E), ®7) is Hausdorff.

II1.2 Continuity of Multiplication

We turn our attention to the question of continuity of multiplication in (C(E),
®714 V). For denumerable (E, ¢) we shall establish the remarkable fact that (C(E),
®14 V) is a topological algebra for closed V, (Theorem 18). It is not clear whether a
similar result holds in the nondenumerable case. For t strictly finer than 74, V, we
shall give an example of a denumerable (E, @) for which multiplication fails to be
continuous in (C(E), ®1). First we prove
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LemMmA: If E=k(e,),c  then the sets

U=U+U,0U,+Y Y [e]®U,.. + U; QU ® U, +

e, perms

Y Y [el®Us,®Use,+ ¥ Y []®[e]® Uy, +--

e, perms ey eg perms

form a zero neighborhood basis for ®t on T(E) when the subscripted U’s run through a
zero neighborhood basis for t.
We shall again write )’ to mean ) ) .

egepg’* perms

Proof: Clearly each ®1 zero neighborhood contains such a U. Conversely, put
Vn=Un and for X1y X250005 mek(ea)aeAa A ﬁnite, PUt mel...xm= m Un om” Then

a;eAd
Z [eal] D ® [eam] ® Unegl...ea - ® Uneu lw =
aic A m L m
[xl] ®-® [xm] ® anl...xm X ® anl...xm

so U contains a ®1t zero neighborhood.

€. @

THEOREM 18: If dAimE=N, and V is a closed totally isotropic subspace of E then
(T(E), ®1V) and (C(E), ®14 V) are topological algebras.
Proof: Since dim E=¥, and V is closed and totally isotropic there is a decom-

1
position of E into (V®V')®G with V=k(v;);», and V'=k(v});5, both totally iso-
tropic and &(v;, v;)=0;;. The 14V topology has a zero neighborhood basis of sets
k(v;);>, since for F finite dimensional, Fc V+k(v});<,+G so VAF'oVAV'n
k(v)i<,n G' =V k(v))i<,=k(v;);>, We shall need an enumerated basis for E, so let
E=k(e;);», with v;=e,; for i>1. Then the sets UX=k(e;);>, are a 1,V zero

neighborhood basis. (They are not distinct. In fact UX=k(v,);5 0, U¥=U¥=k(v,);>1,
etc.). The advantage of this numbering is that it yields the following simple criterion:
e;eUX iff e;e ¥V and i>n. The UX will be referred to as %-sets in the rest of the proof.

To show multiplication in T(E) is continuous at (0, 0) let U'=U;+U,®@U,+
Y [e]®Uj .+ be a set in the (T(E), ®1) zero neighborhood basis. We must find
V®V<U'. Clearly it suffices to find Y® V= U< U’. With this in mind we shrink U’
somewhat, in order to make it more manageable, as follows. Choose inductively sets
U, which are -sets and such that U,cU;nU¥ and U,cU nU,n--nU,_,nU,
AUX. Denote by U, theset ([ Uy, e, en (i-€.,the intersection of all sets

t<n—1 jl...jtSm

Use,,...e; e fOr Which m is the largest e-subscript). Define the sets U,, by induction

on m to be k-sets contained in U,NnU,, NNV, , N Uz, 0 UX with U,,, a %-set
contained in U,n U/, nUX. Since the U, and U,,, are x-sets there are functions

nej

g, with U,=UX, and U,,,. = UX..,- As a consequence of the construction we have
Ul y=U,= U so
0<n<g,(0)
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and UX,,=U,, <UX so
< ga(m).
Also if 0<i<j then U,, < U,,. < U, so Ug (j)cU

ne; ne;

*
meiy < Uz o) therefore

g:(0) < g, () <g,(j) for 0O<i<j.
Take
U=0, + U, U, +) [6]l®U,,+ U, Q@ U, @ U, +
2[el® U, ®Us,, + ) [e]®[e;]1® Us gye; +

with U,., . =U,. where ji=max(i,..., in).

To define ¥ we shall make use of a function used in enumerating N x N, N the
nonnegative integers. For n, meN put f(n, m)=4(n+m)(n+m+1)+n+1. Then
f(ny, m))< f(ny, m,) iff either n, + m, <n, +m, or n,+m,; =n, +m, and n, <n,. For
our purposes it suffices that f have the property that for any two pairs (n,, m,) and
(n3, my), f(ny, my) and f(n,, m,) are comparable, and for only finitely many (n,, m,)
is f (ny, my) < f(n,, my). We now define the ¥, for our V. For prescribed g, €€
let

— *
I/qe.il’ ceeym’ T m [ng+q(]m ng+q('n) N
all p, i, 2 0 with
S(p.in) S f(q, Jm)

gp+qP(im) gp+qP(in)

m UP_'_q(,)m m Up+q(,)]hU*

i=1

where j, =max(jy,..., j,). Finally take the expression for ¥, to be the same as that for
Vaes ..., With j, replaced by 0 throughout. gb, , is defined iteratively by g .. ,( j,,,)—
gp+¢1(]m) and gp+q(.]m) gp+q(gp+q(./m)) Put V— ® V Vl + V2® VZ +Z [ez]®V2 e

as usual. The reason for the choice of each part of qu 1/ ee,, Will become apparent in
the cases we consider in showing that Y@ V< U.

Let s'=¢€,, @ Q¢ Q¢ , Q Qe €V, with €,.€V,,, . .. n+1<k<p. Let

=e;, ®---Qe; . with e; . €V, . . . m+1<k<q Let 11<12<~-<i,, be the sub-
scripts i4,..., i, in thelr natural order and z,,+1< - < i, the subscripts i, ,..., i}, in
their natural order Smce e, c1€Vpery e < UX, i, > i, giving the combined ordering
Iy < Ky <lyyy <o <ip. Similarly let jy < -+ < i <Jjip+1 < -+ < Jj, be the natural order
of the j;. Note that ¢; 02 @iy €, 15eees €5 are allin V.

We now show s'®t'€ U The general nature of the next steps in the proof is this.
Let i<l <--<I <[y <--<l,4, be the subscripts i,..., i, j,...,j, arranged in
order. Let /;,,>1,, j, Thene,, ,e¢,,,,... are all in V. We show that we can always
choose s so that ¢, , € Ux =Up+ ey, .rer,s 1HED 50 ...y, are also in

gp+alls) ™ pta
Up+q,e11,...,e1, SO S’®t € z [e11]® '®[el,]® ptqgey.. e1® ® ptqey,. SCU

perms

We assume without loss of generality that f (p,i,)<f(q,jn) hence i, and j, will
not play symmetric roles in the sequel. Since j,=max(j;,..., /), by the definition of

in+12°



Continuous Forms in Infinite Dimensional Spaces 151

qun e,- +we have €1 & U8p+q(1m)’ Jm+ 1€ Ux gp +q(in)? €im+ 1 € U gp +q(i) fori< gp+q(.]m) and
e ijeU ) for i<gp, (i, ). In particular from the second of these conditions we
have]m+l>gp+q(l )>l

Case A: i, or j, is the immediate predecessor of j, ., in the ordered list of sub-
scripts. Since as noted above e;, , €UX, . and UX, . = in these casess'®¢’'eU.

Since i, <j,,+; the only other possibility is that Jm+1 18 the immediate successor of
some i;, S>n.

Case B: i K S, S i< 41 <o+ Note that only i-subscripts occur
between i;_ and i If i1 >g,4,(jnm) thene,  eUX ox + atimy (DY the basic definition of the
%-sets), and we’re done. Similarly if i,>g,.,(i,—,) for any ¢ with s—k<¢<s then
e; € Ux en+atic 1) @8 desired. If on the other hand none of these alternatives occurs then
I <gp+q(ls 1) and i;_; <gp4 (is—2) etc. SO i< gy o(is—1) <8paq(is— 2) S+ <&yt o (is—1)
< p+q( Jm) <85 +,(Jjm); these inequalities follow since g, , is nondecreasing. But then

i;<gh . ,(Jm), 50 as noted earlier e; . € ng+q(,s)

Case C: j, < <Ki,<ip41 € <ig< e <o+ The proof is the same as for Case B
but with i, replacing j,, throughout.

In the case where i,,,=1i; (resp. j,+;=J;) take i,=0 (resp. j,,=0), and the proof
goes through as above. This would be the case when ¢; . @---®e;, €V,®-®V, (resp.

1 ® Qe eV, Q).

In every instance s’®¢'e U. Now a product of two arbitrary elements of V is a
sum of terms of the form s'®:?’ hence also in U, completing the proof that multi-
plication in (T(E), ®1) is continuous at (0, 0).

In Theorem 15 it was shown that multiplication in (T(E), ®t) is separately
continuous. Thus (7T(E), ®t) is a topological vector space with continuous multi-
plication, hence a topological algebra.

We now prove that continuity of multiplication in (T(E), ®t) implies continuity
of multiplication in (C(E), ®7). Let m:(s, t)—»>s®¢ be the multiplication in T(E) and
o the canonical map: T(E)-C(E)=T(E)/I. Then ¢° m:T(E)xT(E)-C(E) is
continuous and constant on equivalence classes modulo 7, so it induces a well defined
map i:(a(s), a(t))—0a(s)°a(t) which is in fact multiplication in C(E). Given a(s)°
a(t)e 0, O open in C(E), there exist ¢(s) and O(t) containing s and ¢ respectively with
aom(0(s)x O(t))= 0. Since #i° (o x 6)=0°m, m(a(0(s))x 6(0(t)))= 0 and so i is
continuous.

Multiplication need not be continuous in (T(E), ®t) for t>1,¥ even when
dimE=N, and ¥ is a maximal (hence L-closed) totally isotropic subspace as the
example below will show. The next lemma will be used in the example and in the next

theorem.

LeMMA: Let E=V®W with V=k(e,),e; and W=k(e,),c; have a topology for
which there is a neighborhood basis at zero composed of sets of the form Up=k (Vo) L,
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L running through some of the subsets of 1. Let

U,=U,-QU,+ Y [e]®U,,® QU,, +
aeluJ
Yl ®[ep] @ Uperey @ ® Uyppep +

with U,.,< U, U,., e, €Uy, N U,., N and all subscripted U’s from the zero neighbor-
n—1

hood basis. If e, ,¢U,,. , and e, ¢ U, then e, ®( ® e, )¢ U, e,, and e, elements of the
1

basis {ea}aeIuJ'

Proof: The summands of U, are of these types: either of the form [e,,]® A4 with 4
containing a factor U,,, _ or of the form U, _® B, or of the form [¢,]® C with a#«;.
Since by hypothesis [, ]¢ U,., -, [e,|®4AcF=[e, ®e; ®---Qey, _,; some f;#ao].
While U,_®B and [¢,]QCcG=[e, ®e,, @ ®e, ;7 F#%]. €, e, Q- Qe, ¢ FOG
and U,c F®G concluding the proof.

Example: Let E=V@®W with V=k(v,);>, and W=k(w;);>,; both totally iso-
tropic and &(v;, w;)=9; ;. Take for 7 the topology with neighborhood basis at zero of
sets UXX =k (v,n;);» . As proved in Theorem 18, the 74 ¥ topology has a zero neighbor-
hood basis of sets UX=k(v;);>,. Each UX* contains some UX (for example UX* >
UX) but not conversely, so 7 is strictly finer than 4 V.

In the zero neighborhood basis for (7(E), ®t) consider any set U= U, + U,® U, +
Y WI®U,, +) [w]®U,,, +... of the general form given in the preceding lemma
and in particular with U,=UX* and U,,=UX*nUX*. Let V=V, +V,Q@V,+...
with the subscripted Vs from the t zero neighborhood basis, and suppose by way of
contradiction that V@ V<U. V;=UX*=k(v,4;);5, for some g. For i odd, v,q,€V;
but v, U1 () Upirbaq,< () UXX =(0), 50 V,& () U,4y.0,,,Thereis an odd i,

iodd iodd iodd
and a v; €V, such that v; ¢U,,, ,,,, - And since iy, is odd, v;4; ¢ U, . Therefore by

the lemma v,,; @v;,®---®v;,¢ U, ;. On the other hand v,¢;, @v;,®- - ®v;,eV;®
V,®-®V,=U,,,, a contradiction.

Examples can be given with V orthogonally closed and totally isotropic, T>14 V
and dim V>N, for which multiplication is not continuous. The state of affairs when
T=14 V and dim V>N, is an open question.

In this chapter two topologies were considered on the tensor product EQE. 1t is
apparent from a comparison of the neighborhood basis at zero that 7, <t®7. In [6]
it is shown that 7,=7®7 when 7 is the weak topology. On the other hand using several
of our earlier results it is now easy to show that 7, is strictly coaser than t®7 for 7 a
14 V topology, V of infinite dimension and codimension.

THEOREM 19: Let E=V@® H have topology t4V, V totally isotropic and of infinite
dimension, H=k(h,), also of infinite dimension. Then 1,<t®r.
Proof: Since card I>N, there is a bijective function f mapping I onto its finite
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subsets. There is a neighborhood basis at zero for the 14V topology of sets U,=
Vvk(hp)se sy For if F is finite dimensional then VA F o VA (V+k(hg)sesw) =
Vok(h)se sy Let V=k(,),cc. U,=V@V+Y [1,]J®V+Y [h]IQU, is a space in
the t®7 zero neighborhood basis (see the lemma to Theorem 18). Suppose by way of
contradiction that U, > EQ U+ U®E, U in the 14 V neighborhood basis at 0. 74 V is
Hausdorff but not discrete since dim V>N, so there is a U, with U¢U,_ i.e., some
v,,€U, v,,¢U,,. Then h, ®uv,,, h,, in the basis for H is clearly in EQ U+ UQ E but by
the preceding lemma it is not in U,. Thus U, contians no 7, zero neighborhood so
T, <T®T.

IV. Groups of 7, H-continuous Automorphisms

In this chapter (E, ®) is a semisimple k-space possessing infinite dimensional
totally isotropic subspaces (cf. 1.4). In particular every maximal totally isotropic
subspace is then of infinite dimension. O(E, @) is the (full) orthogonal group of
(E, ®); k, is the additive group of a d-dimensional linear space over k. We write (x, y)
for @(x, y).

We shall discuss groups of 74 H-continuous automorphisms of (E, ) under the
following special assumptions: (A) H is a maximal totally isotropic subspace of (E, ®);
(B) the space (E, @) is either of denumerable dimension or else (E, ®) is 74 H-complete.

Under these conditions (E, $) admits a decomposition:

L _
E=H®H)®G, H and H totallyisotropic, G anisotropic. (1)

Corresponding to the two cases in (B) we have either dim H=dim H= ¥, or else
H=H* the algebraic dual of H, and ®(h*, h')=h*(h'), h*eH*, h'eH, (1.2 and
Theorem 8).

Since H is assumed maximal, the collection of all 74 H-continuous T'in O( E, ®).
form a subgroup (see Theorem 3) denoted by T(H, ®). The discussion of this group
will proceed by describing in a geometrical fashion the groups and factors of a normal
series. We shall therefore start out with the investigation of various special subgroups
of T(H, D).

IV.1 We start by assuming that dimE=N,. Let & be the subgroup of all
TeO(E, ) with the property that H and G are left pointwise fixed under 7 and
T(H®HA)c H® A (hence T(H® H)=H® H). The restriction of these T to the space
H® A form a group which we identify with K. In other words in the study of & we may
assume that G=(0). We are going to describe & in some detail.

Let TeR. We set T=1+L. For xe H, Lx1 H, so Lxe H. We have L a linear map
H® H- H with L(H)=(0). For every ze H® H, we have ||z||=|Tz| =|z+ Lz||, hence
(z, Lz)=0. Since chark #2, the last condition is equivalent to

(Lx,y)=—(x,Ly) forall x,yeH®H. (2)
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(L is “‘antiselfadjoint” or “skew’.) Since Im Lc H and H is totally isotropic we see
that the map T'=1+ L— L is a group isomorphism of & onto the additive group of
linear maps L: H® H— H satisfying (2) and L(H)=(0). The spaces H and H are
spanned by the two halves of some symplectic basis, H=k(h;);»., H=k(h});>,,
@ (h;, h;)=9, ;. With respect to this basis the matrix of L is of the form (g 64) where
A is a denumerable column- and row-finite skew matrix, 4 = —‘A4, ‘4 the transpose of
A. Hence we have the group isomorphism

R = k“o’ dimE - NO . (3)

We now turn to the discussion of the transformations TefR, T=1+ L. By (2) we
see that Ker L=(ImL)*, and in particular KerL is L-closed. We have the following
sequence of subspaces in HO H':

(0)cImL = (KerL)'=(ImL)**c H**=H c KerL =
(KerL)*=(ImL)'cH® H. 4)

We shall prove that 7=1+ L in uniquely determined up to orthogonal similarity by
the dimensions of the three spaces Im L, (ImL)**/Im L and (Im L)*/(Im L)** (cf. [11]
for a similar theorem on selfadjoint L). Further we shall see that H@® H is the ortho-
gonal sum of finite dimensional subspaces that are invariant under 7=1+ L if and
only if (Im L)**/Im L=(0).

It will be convenient to have the following two examples at our disposal. (I) Let
(Ey, @) be an orthogonal sum @P; of hyperbolic planes P;=k(h;, h;), i€l, I either

I

denumerable or finite and even. We set H=k(h;);, H=k(h;);, and define an auto-
morphism T=1+L as follows: L(H)=(0), Lhy;_,=h,; Lhy;=—hy;_,. L (and
1

consequently 7') leaves the pairs P,;_;@®P,; invariant. It is also easy to see that
(Lz, z)=0 for all zeE,. We have (ImL)**/ImL=(0) in this case. (This of course
automatically takes place when H@®H is an orthogonal sum of finite dimensional
invariant subspaces, whatever dim H@® H may be.) (I) In order to obtain an example
with (Im L) # (Im L)** we consider a space (E;, ¥), E; =E,®k(h,), E, as before (i.e.
Y|, =) with denumerable I; further ¥ (hy, h;)=0 (i>0), ¥ (ho, h;)=1, (i>0). Since
Iis not finite, (E;, ¥) is easily seen to be semisimple. Defining L on E, as before and
setting Lh,=0 we have again (Lz, z)=0 for all ze E;. However, this time we find
(Im L) =k(h)is  =k(h)iso=Im LDk (hy), i.e. dim(ImL)**/Im L=1.

THEOREM 20: Let E=H® H be the sum of the totally isotropic spaces H and H, E
semisimple and of denumerable dimension. An automorphism TeR (the automorphisms
leaving H pointwise fixed ) is uniquely determined up to orthogonal similarity by the
dimensions d,, d,, d of the three spaces:
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Im(T—1), Im(T—1)"*/Im (T—1), Im(T—1)*/Im (T—1)**

(i.e.if T and T have the same invariants d;, i=1,2,3, then T=AT A~ for some ortho-
gonal automorphism.?) Further, if d,=0 then E is an orthogonal sum E=E,,®E,
where E  is left pointwise fixed under T, dim E, , =d;, E, is (and is transformed) as E,

in the example above, and dimEy=2d,. Conversely, if E is of the particular form
1

Eoo®E, then d,=0. On the other hand, if d,=c # 0 then E is an orthogonal sum E, @
E, where E,, is left pointwise fixed under T, dim E, ,=d; and E, is the orthogonal sum
of ¢ replicas of a space E, which is (and is transformed) as E, in the example above;
dimE,=d,; = Xy=N,, d,=¢.

Proof: Again we write T=1+ L. We first reduce the general case to the case with
Ker L=(Im L) by splitting off an orthogonal summand E,, of E with dimE,,=d;
(cf. (4) above). The L-closed subspace (ImL)"* < H induces a decomposition by 1.2

1

as follows: E=((ImL)"*®S)®(U,®U,)where S+ U, = H, (ImL)** @ U, = H. Hence
1

Ker L= (ImL)***=(ImL)** ®(U,®U,). So putting Ey,=U,® U, E,, is left point-
wise fixed and dim E,,=d;. We may therefore concentrate on the semisimple space
(ImL)"*@®S. (We note for later that its orthogonal supplement E,, is uniquely
determined up to orthogonal isomorphism by d; since E,, is a sum of hyperbolic
planes). Denoting the restrictions of T and L to the subspace (ImL)**@®S again by
“T” and “L” we are now in the situation where, in addition to (4), (ImL)**=
Ker L(=ImL").

The subspace (ImL)@®S of the semisimple space (ImL)* @S is itself semisimple.
(Quite generally rad(4+ B)crad(4**+B).) We set (ImL)**=ImL®R and dis-
tinguish two cases R=(0) and R#(0). Note that dim R=d,.

Case A: R=(0). We shall decompose ImL@®S into an orthogonal sum of four
dimensional subspaces which are invariant under L. Let {e;};.) be a basis of S and
assume that we have already constructed 4-dimensional semisimple subspaces Fj,
F,,..., F,_, which are pairwise orthogonal, invariant under L and of the following

shape:
F; = k(y;, x; Ly, Lx;) = k(y; Lx)® k(x;, —Ly,),
x; and yeS,

i

the two dimensional summands being hyperbolic planes with bases as indicated. Let
n—1

e,, be the first basis vector of S not contained in K= @ F;. We shall construct a four
1

dimensional semisimple subspace F,c K 1 which is invariant under L (and again of

n

the same shape as the F;’s with i <n) such that e, @ F;. In this fashion we construct an
1

2) As the proof will show, we can always find such an A with A(H)=H; thus A€ I(H, D).
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orthogonal sum @ F; of invariant subspaces F; such that Sc @ F;. Since L(S)=ImL
we then also have Im L c @ F;, hence @ F;=(Im L)@®S. It thus remains to show how to
construct F,. Since K is finite dimensional and semisimple we have (ImL)®S=

K®K*, and we decompose e,, accordingly, e, =e, +¢.., e, €K, e,eK*. By 1.2 the
space K* is of the form K*=R,®R, with R,cImL, R,cS. Since ¢, €S, S totally

n—1

isotropic, we have e,,— Y (4;x;+ u;¥;)LK, x;, ;€S by assumption about the spaces
1

F(i<n). In other words e,,eS and thus e, eR;. Since KerLn S=(0) we have 0
Le, and e,eK" implies Le,,e K*n(ImL)=R,. Since furthermore K*=R,®R, is
semisimple (both R, and R, are totally isotropic), there exists ye R, with (Le/,, y)=1.

1
It is readily checked that F,=k(y, e,,, Ly, Le,)=k(y, Le,)®k(e,, —Ly) satisfies all
the induction assumptions.

Case B: R#(0), (ImL)**=(ImL)®R. We shall prove the assertion of the
theorem for the special case d, =dim R= 1. Example I, discussed earlier in this section,
may then be taken as representative. It follows from Witt’s theorem in the denumerable
case that any semisimple space E=V**@®S of denumerable dimension, ¥ and S both
totally isotropic with dim ¥**/V=¢#0 is an orthogonal sum of ¢ replicas of a semi-
simple space V@S, of denumerable dimension, ¥, and S, both totally isotropic
such that dim V3*/V,=1 and V=@V, (see [8], the application following Theorem 4).

[

It is therefore sufficient to discuss the case where dimR=1, (ImL)**®S=(ImL)®
S@k(r). In contrast to the former case where we have set up directly a canonical
form for Im L@ S, this time we shall prove uniqueness up to orthogonal similarity by
considering a second map T=1+ L with the same invariants d; as for T and then
proceed to give orthogonal decompositions as follows:

ImL®S=@F =&k L) +kE— Lj)]
as in case A4 but in addition we have

(r’ y) = (f’.}—’) and (r’ x) = (f’ )?) Q)

for all summands in the decompositions above. Note that we shall automatically have
(r, Ly)=(#, Ly) and (r, Lx)=(7, Lx) as all these numbers are zero, the vectors
belonging to the totally isotropic spaces (ImL)** and (ImL)** respectively. If 4 is
the linear extension of the map sending r into 7 and y, x, Ly, Lx into 7, X, Ly, L%
respectively, then A is an orthogonal isomorphism, and we have L°c4=A¢°L (and
ToA=A°T). Acan be extended to all of E by extending it to the orthogonal supple-
ments of (ImL)"*@®S and (ImL)** @S respectively (cf. the beginning of our proof).

Assume then that we have already constructed the spaces F,,..., F,_, and
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Fy, ..., F,_, such that (5) holds for these summands. As in case A, we find an F, such

that @ F; contains one more prescribed basis vector of S. We have to construct a
1

suitable match F, for F, such that (5) holds again for the spaces F, and F,. We have
n—1

1
F,=k(y,, Lx,)®k(x,,—Ly,), v, and x, in S. Let K= @ F,. Furthermore let K'° be

1
the orthogonal of K in (ImL)®S, (ImL®S)=K@K*°. Since the orthogonal of
(ImL)®S in (ImL)® S@®k(7) is (0), we cannot have 7L K*° or else, for suitable x in
Im L, 7F—x would be orthogonal to all of (ImL)® S (since K is finite dimensional and
semisimple). Hence there exists j,€ K*° with (7,, 7)#0. Further, by 1.2, the space K*°
is of the form K*°=R @R, with R,cImL and R, <. Since 7L ImL, hence 7LR,,
we may even pick j, in R; = § with (5,, 7)#0.

Thus if we should have (y,, r)#0 in F, then we have found j,eS with (,, 7)#0.
Replacing y, by a suitable multiple we may assume ( y,,, 7) =(,, 7). On the other hand, if
itshould be the case that (y,, r)=0 then we simply pick some y, in the infinite dimen-
sional space (R®k(7))*n S. In either case we have found ,eS with (5,, 7)=(y,, r).

Since ||L7,]|=0 and K*°=R,+ R, is semisimple, there is an %,eR, =S with
(%0, Ly,)=1. The space G=k(J,, X9, LJ,, LX,) is semisimple. It remains to adjust

1

the value (%,, 7). Again by 1.2 the orthogonal of (K®G) in (ImL)®S is of the form
R,®R, with R,cIm L, R,=S. As before we cannot have Fe(R,®R,)*. Hence we
find ze R, 8§ with (7, z)#0. X,+ Az is isotropic for every A and (%,+ A4z, Ly,)=
(%> Ly,)=1. Since (7, z)#0 we may pick 4 such that (%, + Az, 7)=(x,, r). We then put
X,=Xo+ Az for this choice of A and F,=k(7,, %,, Ly,, LX,) enjoys all the required
properties.

It is to be observed that in the construction of the spaces F; and F; we have to
alternate between the roles of the spaces (ImL)®.S and (Im L)@ S so as to make sure
that @ F; and @F; exhaust the spaces (ImL)®S and (Im L)®S respectively. In other

nt+1
words, in the next step we first construct F,,; according to case A so that @ F;
1

contains one more prescribed basis vector; after that we find a suitable match F,,,
such that (5) holds by the immediately preceding construction. This completes the
proof of Theorem 20.

For any T=1+ Lef we have T?=1+2L. Hence T and T? have the same in-
variants d,. Therefore T2=A4 °T° A~ ! for a suitable orthogonal automorphism 4 by
Theorem 20 with 4(H)=H. Thus T=A°T°A~'T~" and we have the

COROLLARY: R is contained in the commutator subgroup of T(H, ®).
1V.2 There is at least one nondenumerable case for which Theorem 20 can be

salvaged, namely for the spaces H®H where H is of denumerable dimension and
H=H*:
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THEOREM 21: Let H* be the algebraic dual of H, H of denumerable dimension, both
H* and H totally isotropic for ® and ®(h*, h)=h*(h). Let K be the group of those
orthogonal automorphisms of H*@® H which leave H* pointwise fixed.

(i) Every TeR is uniquely determined up to orthogonal similarity by the invariants
d,, d, and d, of Theorem 20;

(ii) 8 is contained in the commutator subgroup of T(H*, ®).

Proof: For fixed T=1+Lef we set V=(KerL)n H, H=V®S. We have a

1

canonical decomposition H*@H=(V*®V)®(S*®S). Furthermore KerL=H*®V

L

=(V*®S*)@V. Hence (ImL)'* =(KerL)*=S* and (ImL)' =S*" =S*®(V*@®V).
Thus dim(¥V*+ V)=dim(Im L)*/(Im L)** =d;. Furthermore V*+ V is left pointwise
fixed by T'since V*+ V< H*+ V'=Ker L. As in the previous case we are left with the
semisimple space S*@S=(ImL)"*@S. If S is finite dimensional then dim S=dim S*
and S +.S* is an orthogonal sum of an even number of hyperbolic planes which are
left pairwise invariant under L. Nothing remains to be proved in this case. If S is of
denumerable dimension, then the semisimple subspace (Im L)®S of (Im L)**@®S is of
denumerable dimension (Im L= L(S)) and admits, as we know by the proof of Theo-
rem 20, an orthogonal decomposition

(ImL)® S = @ [k(x, Ly, ®k(ru—Lx)]  x.yeS

®(x;, Ly;)=®(y;,, —Lx,)=1. Consider a second automorphism T=1+L with the
same invariants d;, i=1, 2, 3. There is a similar decomposition ImL®S=®[k(x,,

1 i
Ly )®k(5;, —Lx)], ?(%;, Ly)=®(y;, —Lx;)=1. Let 4,:5—8 be the isomorphism
which sends x; and y; into %, y, respectively; and let 45:5*—S* be its transpose:
(A5 5*) (s)=5"(4,s) for all s*€S*, seS. The isomorphism 4:S*@®S—S*@ S defined
by Als«=Ag and A|z=A, ' is orthogonal. and we have L° 4 = A° L. Since the invariant
d, is the same for T'and T, 4 can be extended to all of H*+ H in a trivial fashion. This
concludes the proof of Theorem 21.
IV.3 In this section let (E, ®) be a semisimple space of the following sort:

.+ -
E=H®H)®G, H and H totallyisotropic, G anisotropic. (6)

Dimensions are arbitrary. The spaces H and H form a dual pairing under the form
¢, yinduced by &. Let furthermore T, be the subgroup of O(E, @) of those auto-
morphisms 7 which leave H invariant, T(H )< H. It is readily verified that this implies
T(H)= H; the fact that G is anisotropic is however crucial. We shall investigate here
the group Ty. For.arbitrary fixed Te Ty and all A'e H we set Th' =T h' + T, h’ + T3 k'
with T, W'eH, T,h' e H and Tyh'eG. Since T(H)=H we have T(H*)=H", in par-
ticular 7(G) = H®G. For all geG we set T,=T,g+Tsg where T,geG and TsgeH.
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The linear map T,:G—G is orthogonal, injective and epijective, i.e. T, +€0(G, ?|g).
We now define a map 7*:E—E by linear extension of T*|g =Ty, T*|z =T, and
T*|g=T,. It is easy to check that T* is orthogonal, injective and epijective. We put
T=T*"'oT. T has the following properties

forall heH, Th=h
forall 'eH, Th'=h"+Lh +L,h’ where L,hWeH and L,heG (7)
forallgeG, Tg=g+ Lyg where L,geH.

Let T, be the subgroup of Ty, consisting of all T of the form (7). The maps satisfying
(7) satisfy the conditions

(T-1)H=(0), (T—-1)G<H. (7)

Conversely, if (T—1) H=(0) then the orthogonality conditions give (T—1) Sc H*
for any subspace ScE. In particular, (T—1) H< H®G which is equivalent to the
second equation in (7). We thus see that (7) and (7') are equivalent descriptions of
the subgroup I, <=Iy. Since T(H )= H and thus T(H')= H* = H+ G for the elements
of Ty, it is easily seen from (7’) that I, is an invariant subgroup of I,.

We may summarize our reduction thus far as follows. Every TeX is of the form
T=T*T,TeX,, and T* has the properties T*|y=T|y, T*|g=T; and T*|;=T,.
Since T*eX, implies T*=1, we have I;/I, isomorphic to the group of all 7*. This
group can conveniently be described as follows. Fiist of all, every 7* can be identified
with some element in O(H®H, ¢)x O(G, P|¢) since T* leaves both HOH and G
invariant. As T runs through I, T*|; =T, runs through the whole group O (G, ?|).
On the other hand, since the restriction T*|; .7 leaves both H and A invariant, the
orthogonality conditions imply that T*| is the transpose of (7*|5) ' with respect to
the dual pairing (H, H). T*|y and T*| determine each other uniquely. In other
words, if #(H) is the group of all ¢(H, H)-continuous vectorspace auto-
morphisms of A then T*|z=T,e L (H), (see [2], §4,1). Conversely, every T, e £ (H)
gives rise to an orthogonal automorphism T* of H® H by letting T*|, be the inverse
of the transpose of T,. Thus T, = T*|;7 runs through the whole group #(H) as T runs
through T,,. Since T*—T, =T*|z is a homomorphism, we have thus shown that the
group of all T* is isomorphic to £ (H)x O(G, ®|s):

Tu/To = L (H) x O(G, Plg) )]

Z(H) the group of all ¢(H, H)-continuous vectorspace automorphisms of A.
We now return to the group I, of all automorphisms T satisfying (7). The
orthogonality conditions for these 7 give:

(Lyx,p) 4+ (x,Lyy)=—(Lyx,L,y) x,yeH 9)
(Lyh',g)+ (W.Lyg)=0 HeHgeG (10)
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Conversely, if linear maps L,:H—H, L,: H-G and L;:G— H satisfy (9) and (10)
then (7) defines an orthogonal automorphism 7'in I,. We now discuss these equations.
Considering the dual pairings {H, H) and {G, G) induced by &, (10) shows that
L,:G— H is the negative transpose of L,: H-G. Hence L, and L, are continuous for
the corresponding weak topologies. On the other hand, every L, in £ (H, G) (the
additive group of continuous linear maps H—G) uniquely determines a map L,
satisfying (10). Setting L, =1 L,° L, we see that L, is a particular solution of (9). We
have thus shown that the system (9)—(10) has solutions L,, L; for prescribed L,e
Z(H, G). In other words, as T runs through I,, L, in (7) runs through the whole
group Z(H, G). 1t is easily verified using (7) that the map T— L, is a homomorphism.
We therefore have an epimorphism n: T o— % (H, G). Assume that T'is in the kernel of
n; L,=0 for the corresponding L,. Hence Ly(G)= Hn H*=(0) by (10), and L;=0
also. Further L, is skew by (9). Conversely if L, is skew then (L,x, L,y)=0 for all
x, ye H by (9). In particular ||L, x| =0 for all xe #, and thus L,x=0 as G is aniso-
tropic. In other words L, =0 and T belongs to Kern. Thus Kern contains precisely the
maps T=1+L,, L, any linear map H— H which is skew:

(Lyx,y) +(x,L;»)=0 x,yeH. (11)

If the conditions of Theorems 20 and 21 are satisfied then the group K in these
theorems is precisely Kery restricted to H@® H. We therefore put R =Kern in general
and have

T /R = Z(H, G), (12)

K the additive group of linear maps H— H satisfying (11). (13)
In a slightly different way we may account for our normal series as follows. T,
can be described by the condition (7— 1) H< H for all T. We then select subgroups of
Tu:
T;(T-1)HcH
I.;(T-1)H=(0)
T0;(T-1)H=(0), (T-1)GcH. (14)
K] ;(T-1)H"=(0)

Since the elements of T;; map H onto H (and consequently H* onto H%), it is easily
seen that these subgroups are invariant in Iy. The series T, > F, 2T, > K is a fortiori
normal. We have

Tu/T = L), T/To=O(G, dle), To/fK=L(H,G). (15)

Remarks: 1. The elements of I, are algebraic; every TeX, satisfies the poly-
nomial equation ((—1)*=0, i.e. (T—1)>x=0 for all xeE; the elements of the sub-
group R satisfy the equation (¢ —1)?>=0. The proof is straightforward using (7).
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2. If dimE= ¥, then Z(H) in (8) and (15) is isomorphic to the multiplicative
group of all nonsingular row- and column-finite denumerable matrices. This is seen
by introducing a symplectic basis {A;, h}};5 o for H® H, its two halves spanning H and
H respectively. Furthermore this matrix group is generated by all those TeG L(H)
for which A splits into a direct sum of finite dimensional subspaces H; =k (h}),,_, <i<n,
(j=1,2,...), the decomposition depending on 7. In fact every row- and column-
finite denumerable matrix can be written as a product of two matrices each of which
appears as diagonal under a suitable decomposition into finite blocks ([16]).

3. When H=H* then % (H) is simply G L(H).

IV.4 The connection between T(H, #) and Iy is a simple one. For (E, d) a
semisimple space we denote by J(E, ®) (or simply J) the normal subgroup of
O(E, @) generated by all reflections about hyperplanes of E. In other words, the
elements of J are precisely those orthogonal automorphisms of E which leave
orthogonal summands of FE of finite codimension pointwise fixed. (For a discussion of
5 see [7].) We have the following

LEMMA: For every Te T(H, ®), H maximal, there exists a Tye 3 such that Ty T(H)
=H.

(E, @) is semisimple as usual and here is of arbitrary dimension. Indeed by II
Theorem 3 we have H=(HNT(H))®F, T(H)=(HNT(H))®G with dim F=dimG=
n<N,. F®G is semisimple, and therefore an orthogonal sum of » hyperbolic planes
k(f, g), 1<i<n. E=(F®G)®(FOG)", HNT(H)=(F®G)" . We define T, to be the
identity on (F®G)"*. On (F®G) we define T, by Tog;=f; and T, f;=g;, 1 <i<n. Thus
ToT(H)=H. In particular

T(H, D)3 (E, D) = Ty/Ty 0 F(E, D). (16)

We end this section with two theorems which apply whenever the ground field &
belongs to the class described in 1.4, independently of the form &. More generally
they deal with spaces of the type (1) with G of finite dimension. (In the following,
XY denotes the semidirect product of the groups X and Y. See for example [15]
page 212.)

THEOREM 22: Let E be as in (1) with G of finite dimension.

(i) If E is of denumerable dimension we have T(H, ®)/J(E, D)=L *Ko.

(i) If H=H* we have O(E, ®)=I(H*, ®) and O(E, ®)/J(E, ?)= ©*K,.

R, is the quotient of the abelian group & (of (1), (13) and Theorem 21) modulo the
transformations in R of finite rank; %, is the quotient of the multiplicative group of
denumerable row- and column-finite matrices modulo its matrices of finite rank; ®, is
the quotient of G L(H) modulo its transformations of finite rank.

Proof: Combining the decompositions of the previous section with the above
lemma we find for every Te T(H, ®) a decomposition T'=T,° To T, with Toe J(E, D),
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TeR, Tylc=1g, Tily and —T,|y transposes of each other (T,|ye-Z(H)). One
verifies that the factors in this representation are unique modulo transformations T,
T', T, of finite rank. We obtain thus a bijective j: T/ J—L, X K (resp.T/J— G, x Ky).
The group structure of I/J is readily transferred to the Cartesian product under j:
For S, TeX, S=8,°8°8,, T=T,>T°T,, the coset (S °T)is mapped into the pair of
cosets (Sx°Ty), (§™, T) under j where S7* =T, ' §T,e K. Further, by the last lemma
in IL.1, we have O(E, ®)=T(H, ®) in case (ii). Q.E.D.

THEOREM 23: Let Ty and Oy be the quotients T|J and O|J in (i) and (ii) of
Theorem 22. For X a group let Ky be its commutator subgroup. Corresponding to (i) and
(ii) respectively we have

)] Ky = Ko *R0, %H/Kzs ~ Zo/Kg,
n K93 = Kgo*Ro, DS/KDS = 0y/Kg,

where in (jj) we make the additional assumption that the field contains more than three
elements when dim H> N,,.

Proof: We first show that every element uefR, is a commutator of the form
u=[v, s]=vsv" s ' =vsv " los~! where veZ, (resp. ®,) sefK,, and vsv™ e R,. We
choose a representative T in u, T=1+ Le K. For every yek we have T,=1+ yLeR.
Let further T)eI(E, ¢) be of the following sort: TY|g=16, TX|g=0"1lz, THy=
o~ '-1|y for O#oek. Since T,|s=1|g also, we find [T}, T,]=T)T,T: ‘T, '=
1+y(6*—1) L. Thus, if k contains more than three elements, there is a 0#oek with
0% —1#0, and we may choose y=(o>—1)"". For such a choice we have [T, T,]=
1+L=T. T corresponds to an element in .Z, (resp. ®,) under the isomorphism
JiTJ> Lox K (resp. O/J= Gy * K,), namely the coset (7). (If dim H= X, then the
results follows from the proof of the corollary to Theorem 20 and the second part of
Theorem 21 without assumptions on k). On the other hand, let us write (x, y) for an
element in the semidirect product X*Y, xeX, ye Y. Multiplication goes as follows
(x, ¥)*(u, v)=(xu, y"v)=(xu,u” ' yuv). 1t is straightforward to verify that the commu-
tator [(1, y) (x, 1)] equals (1, [y, x])=(1, yxy~!x~1). Since we have shown that every
ueR, is of the form yxy~'x~! with ye#, (resp. ®,) and xe K, we see that every
element (1, u)e L xR, (resp. G, *K,) is a commutator. Hence every element ([y,,
V2], x)eKgp, * K (resp. K, * K) is a product of two commutators since ([yy, ¥,], X)
=[(»1, 1), (¥2, 1)I*(1, x). Thus K, * R, (resp. Kg, * K) is contained in the commu-
tator subgroup of £, * K, (resp. ®,*RK,). The converse is trivial. Q.E.D.

V. Non-denumerable Spaces

Among the infinite dimensional k-spaces (E, @), k arbitrary, essentially only the
denumerable case has thus far been treated with success. There are at least two
reasons for this: practically all of the techniques applied in the finite and denumerable
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case prove to be rather useless when dim £> X, (e.g. proofs by induction in the finite
case and inductive constructions in the denumerable case); secondly, many of the vital
theorems of the finite or denumerable case actually cease to be valid if dimE> ¥,.
For example later we shall give an example of a space E=V,®V,, V, and V, totally
isotropic and of the same dimension, for which there is no symplectic basis whose two
halves span V; and V, respectively (whereas for dim E< X, there is always such a
basis). In the following we shall list some theorems and examples illustrating features
of the nondenumerable case.

Generalizing an example given in [4], we start by constructing spaces useful for
various examples. Let a and b be arbitrary infinite cardinals; let £ be a field of any
characteristic with cardk > max(a,b), ¥ and W k-spaces of dimension a and b respect-
ively. We shall define symmetric forms @ on V@ W by specifying only the values
@ (V, W). This is done in such a way that (E, ¢) will be semisimple if in addition we
merely require that at least one of ¥ and W have an orthogonal basis for @, isotropic
or not; otherwise @ may be defined completely arbitrarily on the subspaces ¥ and W.
We proceed as follows: If char k=2, let I and J be disjoint subsets of k with card I=q
and cardJ=b. If chark 2, decompose k into k,uU k, such that aek, if and onlyif
—aek,, k,nk,={o}. Since cardk,>max(a, b) we may let I and J be disjoint
subsets of k; with card I=a and cardJ=b. In either case a4+ f#0 for acl, feJ.

In ¥V and W we introduce bases V=£k(v,),.; and W=k (w);.,. We set

1

(I)(va, Wﬁ) = &—JrjAﬂ' .

i<j i<j s
a;’s are distinct and the B’s are Jdistinct, it is easily seen that V'*n W=(0) and
WA V=(0). More precisely, if in v=) A,v,, only m coefficients 4, are non-zero, and
if vLw, for m different basis vectors w, then v=0. Under the additional proviso that
one of the two bases, say {v,}, is orthogonal we conclude that @ is non degenerate:
x=Y Av,+Y pu;w,, and x LE implies x LV, and hence ), s;w,,Lv,, for i sufficiently
large. Hence u;=0 by the previous condition. But then x=) Aiv, eV and xLW
implies x=0. Since ¥*n W=V W*=(0), the construction can of course be inter-
preted as giving dual pairings (¥, W) for arbitrarily prescribed dimensions for ¥ and
W. If we choose a#b and V and W totally isotropic for @ then we obtain a space
(V+ W, &) which does not admit an orthogonal basis. This is a consequence of the

following more general theorem:

Since det(1/(e;+B;)1<ij<n= [1(2i—;) [T(B:=B)] 1(2;+B:) ™" #0 provided the

THEOREM 24: Let (E, ®) be a semisimple space spanned by an orthogonal basis. If
V| is a totally isotropic subspace of E then there is a subspace U, <V, with dimU, =
dimV,, and E admits a Witt decomposition (cf. 1.2)
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1
E=(U ®U,)®E,

and in particular dim E/V, >dim V. Furthermore

(i) If E=V,®V, with V, and V, totally isotropic then dimV, =dimV, and we may
choose U, <V, in the above decomposition.

(i) If dimV, <N, and Vit=V, we may choose U,=V,.

Proof: For finite dimensional V, the assertion is well known. We assume that
dimV, is infinite. Let {e,},., be an orthogonal basis for E. We consider all those
finite sets of basis vectors e, which span spaces F with Fn V; #(0), furthermore sets
& of such spaces F with the property that F, n F,=(0) for F,, F,e%#, F;#F,. The
sets & are partially ordered by =. By Zorn’s lemma there is a maximal element %
We have an orthogonal decomposition E=(@F)®E,, E, spanned by the e, not

Fo

occurring in the F in & . Since ¥V, is infinite dimensional we notice that card %, is

necessarily infinite. Let @ F=F,. We have dimE, >dim V;; for if dimE, <dim V, we
Fo

could decompose a basis {v,} of V; as follows: v,=e,,+e,,, e;,€E,, e,,€E,, and the
projections {e,,} would be linearly dependent. Therefore there would be a linear
combination 0#) 4;v, €E; with ) A;v, e F,c E,, F, spanned by finitely many basis
vectors e,. This contradicts the maximality of #,. Hence we must have dimE, >
dim V. Since card %, is infinite and the Fe %, are finite dimensional, we have dim E,
=card # . Hence card % ;, > dim V. But by the definition of the sets F and # we have
card# <dimV, for all #. Thus card # ; =dim V;. We pick a vector vy #0, vpe FnV,,
for each Fe# . Since F is semisimple, there exists an isotropic vyeF with & (v,
1

vp)=1. We set Uy =k(vp)pe 5, U€k(Vp)pe 5, For Fe# , we have F=k(vf, vp) ® Gy
1
Setting E, = E,®®GF we obtain the desired decomposition E=(U,@U,)®E, of our

Fo

theorem. Further since U, n V; =(0), dimE/V, >dimU,=dimU, =dimV;.

Now to prove (i) assume in addition that E=V,@®V,, V, a totally isotropic com-
plementof V;.We have just proved that dim V, >dim V. Hencedim V; =dim V, =dim E.

In order to prove that we may choose U, =V, and U, <V, we repeat the earlier
device. This time we consider finite dimensional spaces F spanned by some e,, ve L,
such that (Fn V,)®(FnV,) is not totally isotropic. There is a maximal set #, of such
spaces F (with respect to <), F; nF,=(0) for F,, F,eZ#,, F;+F,; and we have an
orthogonal decomposition of E, E= ((—BF )®E,. Suppose that we had dimE/E, <

dimV, =dim E=dimE,. Setting W= (E1 N V)@ (E, nV,) we have in that case that
dimE;/W=dimE/E, <dim E,. By the first part of our theorem W cannot be totally
isotropic. There is a ve E; nV; and a v'e E; 'V, with & (v, v)*0. The vectors v and v’
are contained in a space F,c E, spanned by some finitely many e,. F, qualifies for
membership in & , thus contradicting the maximality of % . This shows that we must
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have dim E/E, =dim V;. The proof now goes through as before. This time we may
pick nonzero vectors vpeFNV; and vpe FnV, for all Fe#,. This completes the
proof of (i).

The assertion (ii) is readily reduced to the denumerable case. Let {v,};> , be a basis
of Vy; v;=) a;,e, {e,} an orthogonal basis of E. Hence V, cE,, E, spanned by the
e, with a; ,#0, i>1. We now apply the theorem of 1.2 to E,. This completes the proof
of Theorem 24.

An important corollary of Theorem 24 is the following:

CoROLLARY: Let (E, @) be a semisimple space spanned by an orthogonal basis,
F some subspace of E. We have dim (rad F)<dim E/F.

We remark that by the reasoning applied in proving (ii) every subspace H of E is
contained in an orthogonal summand E, of E, dim E, =dim H. This trivial observation
has the following consequences.

THEOREM 25: Let (E, ®) be a semisimple space spanned by an orthogonal basis. Then
(i) E has no subspaces of the form A® B with A*n B=(0) and dim A <dim B.
(i) All maximal totally isotropic subspaces of E are of the same dimension.
(i) If H is a subspace of E with No<dimH<dimE, then dimE=dimE/H =
dimH'>dimH>dimE/H*.
(iv) If H is L-dense in E, i.e. H**=E, then dim H=dimE.
1

To prove (i) write E=E,®FE, with dim4=dimE, and AcE,, hence E,c 4*. If
dim A <dim B, then B must meet E, so A-n B#(0).
The reasoning for (ii) is similar. The relationships in (iii) and (iv) follow from an

i
examination of the decomposition E=(H® H,)® E, with dim H=dim(H® H,).
By (ii) we see that the ¥@® W in our earlier example has no orthogonal basis when
a<b, independently of how @ is defined on V and W.
We now turn from spaces having orthogonal bases to the other extreme, namely
infinite dimensional spaces which possess no infinite non-trivial orthogonal de-
composition.

DEFINITION 2: Let (E, @) be semisimple. (E, @) is called solid if and only if every
orthogonal decomposition @ E, of E has E,=(0) with the exception of finitely many 1.
I

COROLLARY: (E, ®) is solid if and only if there is no decomposition E= F®F t with
F of denumerable dimension.

Indeed every such decomposition E=F® F * gives a non-trivial infinite decompo-
sition as F admits an orthogonal basis. Conversely let E=@®E, with infinitely many
E,#(0). Since each non-trivial E, is semisimple we find an orthogonal summand of
denumerable dimension by picking one suitable vector e, from each of N, non-trivial
summands E,,.
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Finite dimensional spaces are of no interest in this connection. Spaces of de-
numerable dimension are never solid since they have orthogonal bases. Non-trivial
examples of solid spaces are furnished by Hilbert spaces over the reals. The following
example is of a different kind. Let k£ be an arbitrary field, H an infinite dimensional
k-space, H* its algebraic dual. Define ® on E=H*® H by ®(h*, h)=h*(h), h*e H*,
he H and ®(H*, H*)=®(H, H)=(0); then E is solid. In view of the corollary above,
the assertion follows from the following more general:

1

THEOREM 26: Let (E, ®)=(H*@® H)®G be infinite dimensional, H* the algebraic

dual of H, G finite dimensional, H* and H both totally isotropic and @ (h*, h)=h*(h),
1

h*e H*, he H. If A and B are infinite dimensional subspaces of E with E=A®B then
dim A > || k||¥° and dim B> || k||™e.
We remark that the case dimA4= IIkI] o does take place: Let H=H,®H,, dimH,=

No. Then E=(H, (—BHO)@(H1 @HJEDG is a space of the type in Theorem 26, and
dim Hy + Hy = || k| ™°.

Proof of Theorem 26: We endow E with the topology t=1,H* and consider
o:E—-E’ defined as follows. For xeH*, yeH and zeG, let o:x>®,|y, y—=D |y
z-®,|; where @ (h)=®(x, h) etc. ¢ is injective and as usual we make the identifi-
cations o (H*)=H*, 6(H)=H and ¢(G)=G. On the other hand it was proved earlier
that the restrictions of ¢ are isomorphisms as follows, c: H*~H' and o: H~H*
(" with respect to =14 H*). Since G is finite dimensional we see that g: E~E’ is an
(algebraic) isomorphism, and the canonical pairing {E, E’) is induced by @, i.e.
(x, y>=®(x,071y). (We remark that ¢ is also a topological isomorphism when E’ is
supplied with the Mackey topology 7.(E’, E), for 7.(E’, E) is seen to be precisely the
image topology of 74 H* under o). Let F be an arbitrary subspace of (E, ). The -
closure of Fis F°°, ° with respect to any pairing (E, E’>. Hence F is 1-closed if and
only if Fis L-closed as F®=¢(F*) and F*=(0(F))° in our case. We have thus shown:
If the space E of Theorem 26 is endowed with the topology t=14H* then a subspace

L

Fc E is t-closed if and only if it is 1-closed. Assume then that E=A® B and dimA4 <
lk||¥°. 4 is semisimple and 1-closed, hence 7-closed, hence discrete by Corollary 2 to
Theorem 9. Therefore any subspace Sc A4 is t-closed and therefore L-closed in E.
Since S*4=S"'+ B, S*4'4 =3, i.e. S is orthogonally closed in 4 with respect to @|,.
Thus we see that (4, | ) is a semisimple space in which every subspace is orthogonally
closed. Hence A4 is finite dimensional, (cf I.1), which was excluded.

COROLLARY: The spaces of Theorem 26 are solid. The last theorem permits some
observations. _

1) Let F and G be vectorspaces over some field, dim F=¥,, dimG= 280 We
introduce bases F=k(f,),cp G=k(g;):cr, r running through the rationals and A
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running through the reals. We define a symmetric bilinear form ¢ on F®G by
declaring the summands F and G to be totally isotropic and taking

0 if r<i
¢(fr9 e/l)"‘{l lf r}l

It is easily verified that (F®G, ®) is semisimple. Our space contains an orthogonal
1

summand of denumerable dimension: F®G = E,; @ E, where

E,=k(fye€s)-w<n<w» N1 aninteger

E2 = k(fr,, _fm e}.,. - en)~w<n<m,n—1<A,,<n,n<r"<n+1 .

Furthermore if H is of denumerable dimension, and if (H*@ H, &) is defined as in
Theorem 26, we see that the Kaplansky-lattices generated by H* and H in H*® H and
by Fand G in F®G under the operations +, Nn,* are isomorphic:

Fol HeH'
F=F* G=G*+  H-H* H=H™
(0) (0)

Both lattices define the same cardinal numbers (dimensions of quotient spaces of
neighboring spaces). Nevertheless the two spaces are not isomorphic, one being solid,
the other not. In the denumerable case isomorphism of two such lattices would
guarantee isomorphism of the spaces (symplectic bases). For the importance of these
lattices see [8].

2) Let V¥ be a totally isotropic subspace of (E, ®) with V*=V. If dimE= ¥,
then V always admits a totally isotropic algebraic complement W. This is not true in
general. Consider the k-vectorspace H*@® H, H spanned by an infinite basis {4,},.,.
Let K< H* be spanned by the conjugate family of functions &), h*(h,) =96, (1, keI).
Thus H*@H=(L®K)®H, L some algebraic complement of K in H*. We define a
bilinear form & on H*®H as follows: &(L, L)=®(H, H)=(0), ®(h}, h})=4,,,
,kel; ®(L, K)=(0) and ®(h*, h)=h*(h) for h*eH*, he H. (H*®H, ®) is semi-
simple, H* = H, and we have the decomposition:

o
H*@H=K®(L®k(h,—h)).
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In particularif dim H= X, then dim K= N, and (H*+ H, ®) s not solid. If H admitted
a totally isotropic algebraic complement W, H*+ H=W®H, thenw—® |, (we W),
would be an (algebraic) isomorphism Wx~H?*, and H® W would be a space of the
type discussed in Theorem 26, hence solid.

We remark that there are of course spaces which fall somewhere between the solid
case and the case of orthogonal bases: Theorem 25 (i) says that our earlier examples
Ve W (with a<b) and H* + H (of Theorem 26) cannot even be embedded in a space
with an orthogonal basis. Thus by taking orthogonal sums of infinitely many copies
of such spaces we obtain examples of this intermediate kind. As we shall prove at
another time, there are spaces admitting of no orthogonal bases which can neverthe-
less be embedded into spaces with orthogonal bases.

is

Clearly if E is solid and E=H®G then H and G are solid. We now prove the
converse.

THEOREM 27: Let (E, ®) be any semisimple space splitting into an orthogonal sum
E=H®G. Assume that E admits a denumerable orthogonal summand, i.e. E=F®F*
with dim F= N,. Then one of H and G possesses an orthogonal summand of denumerable
dimension.

Proof: Since F is semisimple and of denumerable dimension, F is spanned by an
orthogonal basis fi=h;+g;, heH, ge€G(i=1). Let Hy=k(h)i>1, Go=k(&)i>1-
Splitting off radicals we set Hy=H,@rad H, and G,=G,®radG,. Since Fc G,+ H,,
we see that at least one of H, and G, is infinite dimensional; for otherwise F would
contain a totally isotropic subspace F, with dim F/F, finite, contradicting the semi-
simplicity of F. We assume that dim H, is infinite dimensional, i.e. dim H; = N,. H,
has an orthogonal basis, H,; =k(h});> 1, ||h:]| #0. We shall prove as a first step that we
can introduce a new basis {#]};», for H; such that

B =hj - ZA,,' Wy = b} (1)

J?

with the following property: For every n>1 there exists an m such that

hiek(h forall i>m, )

j)j?n

h; the components in f;=g;+ h; above.
In order to prove this we first express every 4 in terms of the a;:hi= Y (] h;

finite

Put " =h,. Let h{" be the first (" with 2{#0, i.e. A} =2)=-..=A{), ;=0and
,1“’1;&0 Take h<2> Y=k, for i<n, and A® =h{" — 4, /,1,,,11:“) for i>n,. Then for
i>ny, KKPelh];s - Proceeding by induction, we assume that we have already formed
the vectors h(” o B RSO, B, . with AW elh];s, for all i>n,_q, n,_>

ny

Ap—z>... and B™=Y" A h,. Let i{™ be the first 2™ with A{)#0 and i>n,,_,. Take
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hg"'), i<n,

A
™ — m ™, i>n,,.

Then h{"* Ve[h;);5 44 for i>n, and n,>n,_,>n,_,>.... We relabel the sequence
R, B B, B, o, B2, B2, o, ... which we obtain in this fashion with A7,
2»---- The h{ have the property that 4} e [h,];., for all i sufficiently large. Furthermore
(1) is satisfied and the {h;} span all of k(h})=H,.
Now let s be an arbitrary vector in H. h is orthogonal to almost all of the ;.

h§m+1) —

Indeed, since he Hc F® F* we have h=Y B:f;LF for suitable n. For j>n we obtain

1
O(h, hy))=®(h, hj+g;)=D(h, [;)=P(h—Y_ B.f;, f;)=0 since HLG and the f; mutually
orthogonal. Furthermore by (2) there exists an m such that h}ek(h;);, for all i>m.
Thus @ (h, h}) = 0 for i > m. We have:

for every he H, h Lh; for almost all j;
in particular the (symmetric) matrix @ (4], k) 3
is row- and column-finite.

In other words the A are “almost” an orthogonal basis. We proceed to select an
orthogonal family {4}, of non-isotropic vectors in k(k;)=H, such that (2) holds
for the A, i.e. for every n>1 there exists an m such that

hiek(h);s, forall i>m. (4)

This we do as follows. Take 4 =#h!, hence by (1), ||| = |4} | = ||4}|| #0. By (3) there
is an n, > 1 such that @ (4, h7)=0 for all p>n,.

Case 1: if there is an r, >n, with ||h] || #0, we set h3 =h;..

Case 2: if ||h,|| =0 for all p>n, we proceed as follows. By (3) there is an m,>n,
such that @ (4}, 4, )=0 for all p with 1<p<n,. Since H=k(h});5, is semisimple,
there must be a p,>n, such that &(h},, h,,)#0. |h,,+h, [|=2®(h,,, K, )#0.
Further since m,, p, >n,, ®(h, h,,,+H,,)=0. In this case we take h3=h,, +h,,.

These steps can be repeated, and we obtain an orthogonal family A, i>1, | hf|| #0.
Every A is of the form

h;, or  hy, +h,, i<r,m,p;, (5)

according to the two cases arising in each step. In view of (5), property (4) is clearly
inherited from (2).

Finally we show that the A span an orthogonal summand H, of H. Indeed let &
be an element of H. By (3) there is an m such that ®(h, h})=0 for all j=m. So ®(h, h})

=0 for all j>m by (5). Hence h——zl" |aF )~ & (h, AY) B Lk} for all j, i.e. H=H,+ Hj.

This concludes the proof of the theorem.
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COROLLARY: The solid spaces (E, @) form a monoid under the operation of ortho-
gonal (external) sum.

The last theorem provides us with the following types of spaces. Let (E, ®) be
solid, and put — E=(E, —®). Let ¥ and W be spanned by the families {e,+e¢]} and
{e,—e.} respectively, where e, and e, run through the corresponding bases of E and

L

—E. Then since ®(e,, e,)= — ®(e,, e.), the (external) sum E® — E is the sum of two
A

totally isotropic spaces: E® —E=V@® W. However there is no sympletic basis for
E® — E with its two halves spanning ¥ and W respectively. For such a basis {v,, w,},,

1
@ (v, w,)=9,, would give an orthogonal basis {v,+w,, v,—w,},; for E® —E, hence
4

E® — E would not be solid. Therefore E would not be solid by Theorem 27. But this
contradicts our choice of E.
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