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Sur une classe d’algébres filtrées

MaX-ALBERT KNUS 1)

Introduction

Les algébres considérées dans ce travail sont des algébres associatives avec
¢lément unité sur un anneau commutatif K avec 1.

Nous rappelons qu’une algebre A est dite positivement graduée si elle est 1a somme
directe d’une famille {4'}, . de sous-modules du module A4 telle que 4°=0 pour i <0
et A'*A’<= A'*4. Une algébre 4 est dite filtrée si elle est la réunion d’une famille de
sous-modules {F;A}; 5 telle que 1) FA=0 pour i<0, 2) FpA=K-1,, 3) F,A<F; 4
pour i<j, et 4) ;A -F;AcF,;A.

A toute algebre filtrée 4, on associe une algébre positivement graduée EA=

@® E'Aou E'A=F,A[F,_, A. La multiplication de E 4 est induite par la multiplication
ieZ
de A. Toute graduation positive telle que A°=K-1, induit la filtration évidente

F,A=@® A*;lalgébre graduée associée est alors (isomorphe a) l’algébre graduée
k<i

donnée. Il existe des exemples intéressants de filtrations ne provenant pas trivialement
d’une graduation. Par exemple, les algébres de Clifford admettent une filtration na-
turelle; ’algébre graduée associée a une algebre de Clifford sur un module libre est
l’algeébre extérieure de ce module. L’algébre enveloppante d’une algébre de Lie L est
également filtrée de fagon naturelle, sans étre positivement graduée. Le théoréme de
POINCARE-BIRKHOFF-WITT caractérise, sous certaines hypothéses, 1’algébre graduée
associée: si L est un module libre sur un anneau commutatif quelconque K ou si L est
un module sur un anneau principal K, 1’algébre graduée associée a 1’algébre envelop-
pante de L est I’algébre symétrique SL de L.

Ces deux exemples peuvent étre traités simultanément, et dans un cadre plus
général, en considérant des algébres Z,-graduées (la Z,-graduation se superpose a la
filtration et a la graduation positive). Dans la premiére partie du travail, nous rappe-
lons les définitions des modules, des algébres et des algébres de Lie Z,-gradués.
Ensuite, nous introduisons la classe d’algébres qui joue un réle central dans ce
travail: les algébres f-enveloppantes U,(L) d’algébres de Lie Z,-graduées L; f est un
2-cocycle sur L a valeurs dans K et U,(L) est le quotient de I’algeébre tensorielle T'L
du module L par I’idéal engendré par les éléments de la forme x®@y—(—1)"" y@x—
[x, ¥Y]1—7(x, )1, xeL, yeL; m est le degré de x en Z,-graduation et n le degré de y.
L’algébre U, (L) résout un probléme d’application universelle. Les algeébres de Clifford

1) L’auteur est au bénéfice d’une bourse de I'Institut Batelle, Geneve.
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et les algébres enveloppantes d’algébres de Lie sont des cas particuliers d’algébres
Uy(L), et il en est de méme du produit tensoriel d’une algébre de Clifford par une
algebre enveloppante. Remarquons qu’inversément, une telle décomposition n’est
possible que pour des algebres U (L) trés particuliéres; cette notion d’algebre f-
enveloppante est donc vraiment plus générale que celles d’algebre de Clifford et
d’algebre enveloppante d’une algebre de Lie.

La filtration de ’algeébre tensorielle 7L induit de fagon naturelle une filtration de
’algeébre U (L). Nous démontrons le théoréme suivant:

Soit K un anneau commutatif dans lequel 2 est inversible. Si le module L est libre sur
K, ou si le module L est quelconque et K est principal, l’algébre graduée associée a
I'algébre filtrée U, (L) est l'algébre symétrique Z,-graduée SL de L. Rappelons que
Palgébre symétrique Z,-graduée d’un module Z,-gradué est le produit tensoriel
d’une algébre symétrique classique (c’est-a-dire non Z,-graduée) par une algébre
extérieure.

La démonstration de ce théoréme reprend une méthode de WitT, ([13], voir aussi
LAzArD [9]) développée pour les algebres de Lie classiques. En utilisant un résultat
de CARTIER [4], on peut voir que ce théoréme est également valable si K est un anneau
de Dedekind dans lequel 2 est inversible. Ce résultat s’applique en particulier aux
algébres de Clifford. 11 s’ensuit par exemple que ’application canonique d’'un module
dans une algebre de Clifford sur ce module est injective si ’anneau des scalaires est
de Dedekind et si 2 est inversible.

Une autre généralisation est donnée, dans le cas ou K est arbitraire, (2 est
toujours supposé inversible): nous démontrons, a l'aide de I’algébre f-envelop-
pante d’un produit d’algébres de Lie Z,-graduées, que l’algebre graduée associée
a Uy(L) est encore P'algtbre symétrique de L si le module L n’est pas libre
mais projectif. Remarquons que le module U (L) est alors lui-méme projectif.
Inversément, nous montrons que les algébres U (L) sur des modules projectifs L
sont caractérisées par leurs algébres graduées associées; nous avons en effet le théo-
réme suivant:

Soit K un anneau commutatif dans lequel 2 posséde un inverse. Si A est une algébre
Z,-graduée filtrée telle que 'algeébre graduée associée E A soit isomorphe a l'algébre
symétrique S M d’un module projectif Z.,-gradué M, alors il existe une structure d’algébre
de Lie L sur M et un 2-cocycle f sur L tels que A=U(L).

Ce théoréme général s’applique aux algébres de Clifford et aux algébres f~envelop-
pantes classiques (introduites indépendamment par CoHN [7] et SRIDHARAN [12]). Ces
cas particuliers avaient déja été traités auparavant, le premier par Roy [11] et le
second par SRIDHARAN [12], dans le cas ot M est un module libre.

Je remercie trés vivement Monsieur le professeur B. ECKMANN qui me proposa le
théme de ce travail et qui m’encouragea constamment.



Sur une classe d’algébres filtrées 113

1. Modules et algébres

Soit K un anneau commutatif avec 1. Tous les produits tensoriels seront pris sur K.

Un K-module Z,-gradué M est un couple de K-modules (M, M;). Les éléments de
M, seront parfois appelés éléments de degré O et les éléments de M, éléments de
degré 1.

M est également un K-module, la somme et la multiplication par un scalaire étant
définies par composantes. M est donc isomorphe a la somme directe M,® M, . Inversé-
ment toute somme directe de deux K-modules définit un K-module Z,-gradué.

Si M et N sont deux K-modules Z,-gradués, un homomorphisme de K-modules
Z,-gradués f: M— N est un couple d’homomorphismes de K-modules ( fy, f) tel que
fo:My—Ngyetf:M;—Nj,.

Si M et N sont deux K-modules Z,-gradués, M@ N est le K-module Z,-gradué tel
que

(M@®N),=M,®N, i=0,1.

M®N est le K-module Z,-gradué tel que

(M®N)0=M0®N0@M1®N1
(M®N); =M,® N, ® M; ® N,

M < N signifie My<N, et M, =N;.
K peut étre considéré comme un K-module Z,-gradué avec

K,=K et K, =0.

On a alors MK KQM=M.
Une K-algébre Z.,-graduée A est un K-module Z,-gradué 4=(4,, 4;) avec deux
homomorphismes ¢: A® A— A et n: K— A tels que les diagrammes

e®A

ARARA—ARA KRA2A2AR®K
A®¢ o nea) “ | 4®n
ARA —5> A  ARATAGA®A

soient commutatifs.

@ est la multiplication. On notera ¢ (x®y)=xy. Le premier diagramme dit que la
multiplication doit étre associative, le second qu’elle doit posséder un élément unité
1Ly=n(1g).

Remarquons que si a;ed;, a;eA;, alors a;a;eA;,; (i+j est calculé mod. 2).
L’unité 1, est de degré 0, 1,€4,.

Par abus de langage, nous utiliserons désormais les termes de module et d’algebre
pour un module Z,-gradué et une algébre Z,-graduée.
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Soient A=(Ay, A,) et B=(B,, B;) deux K-modules et soit 7: 4® B—B® A ’homo-
morphisme tel que
1(@a®b)=(—1)""b®a acA,, beB,.

L’algébre A=(A,, 4,) est commutative si le diagramme

ARASARA

quil//(‘p

est commutatif, c’est-a-dire si

a;a;=(—1)7a;a; a;cA;a;eA;.

Si A=(A,, 4;) et B=(B,, B,) sont deux K-algebres, A® B est la K-algébre dont la
multiplication est la composition
AX®XBR®ARB
et I'unité K K@K "4®"% AQB.
Le produit dans 4A® B est donc défini par
(a;®b,)(a,®b;)=(—1)Y"a;a,®b;b, a,e€A,a,€cA,, b;eB,etb,eB,.

A®t®B ¢a®oB

—-AQAQ®BR®B - A®B

Nous dirons parfois que A® B est le produit tensoriel Z,-gradué de A4 et B.
Un homomorphisme de K-algébres f: A— B est un homomorphisme de K-modules
f: A— B tel que les diagrammes

AR A4 4 K24

rer), o L r
B®B—,,>B K—,;7B
soient commutatifs.
Un idéal (bilatére) J=(Jy, J;)=A est un sous-module de A4 tel que JA<=4A et
AJcA. AlJ=(Ayx[Jy, A1]J,) est une K-algébre dont le produit est déterminé par la

condition que la projection A— A/J soit un homomorphisme de K-algebres.

Exemples
Soit M =(M,y, M,) un K-module.
TM=@® Q@M est une K-algébre, I’algébre tensorielle de M.

k k
(TM)o= K@M, ®(M M), ®--
(TM)1= M1@(M®M)1 @D

La multiplication est donnée par le produit tensoriel et I'unité par I’injection K—TM.
Remarquons que M peut étre identifié & un sous-module de 7M.
Soit J I'idéal de T M engendré par les éléments de la forme

x®@y—(—1)"y®x xeM,yeM,.
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Le quotient TM/J est une K-algébre, I’algébre symétrique SM de M. On vérifie
que S M est commutative.

DEeFINITION. Une graduation positive sur une K-algébre 4 =(4,, 4,) est une famille
de sous-modules {4'};.z du K-module 4 telle que

1) AA=0 pour i<0
2) @ A'=4

ieZ

3) A-Afc A"V pourtout ieZ,jeZ.

Une K-algébre 4 munie d’une graduation positive est dite positivement graduée.
Les éléments de A' sont appelés éléments homogénes de degré positif i. 1, est de
degré positif 0. Si A°=K-1,, A est dite connexe.

Remarque. Si I'on tient compte explicitement de la Z,-graduation de A4, la
définition ci-dessus signifie que

Ag= @ (4)y, (A)=0 i<0
ieZ
A =@ (4);, ) =0 i<0
ieZ
et
(A (A)y = (A" s, m+n mod?2.
A est donc bigraduée.

Si A=@ A’ et B= @ B' sont deux algébres positivement graduées, un homo-
ieZ ieZ
morphisme d’algébres positivement graduées f: 4— B est un homomorphisme d’al-
gébres f: A— B tel que f(4')= B'. Comme f=(f;, f}), cela veut dire que

fo ((Ai)o) < (Bi)o
fi ((Al)1) <=(B); -
L’algébre tensorielle TM d’un K-module M est positivement graduée
TM=@®T'M
ieZ
si 'on pose T"M=M®M®@---®M (i facteurs) pour i>0, T° M=K et T' M =0 pour
i<0.
T M est connexe.
L’algébre symétrique SM d’un K-module M est également positivement graduée,

SM=@®S' M. On le voit en remarquant que I'idéal J est engendré par des éléments

ieZ . .
homogenes. Soit 7 ’application canonique TM—>TM[J/=SM. Ona S'M=n(T'M).
7 est donc un homomorphisme d’algébres positivement graduées.

PROPOSITION 1. 7 est un isomorphisme sur M =T"M. Identifiant M et n(M), on
peut plonger M dans SM.
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Démonstration ([5]) Jn M =0, car les composantes homogénes des éléments de
J différents de zéro sont de degré positif supérieur ou égal a deux, alors que les
éléments de M sont de degré positif un.

Les algébres TM et S M résolvent des problémes d’applications universelles.

PRroOPOSITION 2. Soit M un K-module. Pour toute K-algébre A et pour tout homo-
morphisme de K-modules ¢:M— A4, il existe un unique homomorphisme de K-
algébres ¢:TM— A qui rende le diagramme

M—2 54

i AP
T™M

commutatif. i est I'injection M—>T M.

Si A est commutative, @ se factorise en un homomorphisme (également noté @)
de SM dans A.

M—2—A
N/
lew ,

SM

Démonstration ([5]) ¢(x;®-®x,)=¢(x;) -+ ¢(x,). Si A est commutative, @ est
nul sur J et induit un homomorphisme SM— A4.

M=(My,M,). Si M, =0, SM est I’algébre symétrique classique SM, (non Z,-
graduée) de M. Si M,=0, S M est 'algébre extérieure AM, de M,.

2. Algébres de Lie

Une K-algébre de Lie est un K-module L=(L,, L,) muni d’'un homomorphisme
@:L®L— L (on notera ¢ (x®y)=[x, y]) tel que:

1) [x, y]=(= 1" [y, x]
2) (= )" [x [y, 2]+ (= )™ [, [z, x]] + (= )" [z [x, y]] =0
pour xeL,, yeL,etzeL,.
3) [x,x]=0sixeL,
[x,[x,x]] =0sixeL,.

La condition 1) signifie que le produit ainsi défini est anticommutatif. L’identité
2) est appelée identité de Jacobi.

Remarquons que si xeL,, et yeL,, [x, y]eL,+,, m+n mod 2.

Signalons que 1) entraine 2[x, x]=0 pour xeL, et que 2) entraine 3[x,[x, x]]
=0 pour xeL,. 3) découle donc de 1) et 2) si 2 et 3 sont inversibles dans K.
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L n’est pas une algébre de Lie au sens classique, car, par exemple, [x, x] n’est pas
identiquement nul. Si L; =0, L= L, est une algébre de Lie classique. Les algébres de
Lie graduées ont été introduites par CARTIER [3] (voir également HILTON [8]).

Les conditions 1) et 2) peuvent étre remplacées par des diagrammes commutatifs

LROLSL
A

LeL’ *

L®ILRXL—LRILRKL—LRIXLRL
L®og), L@t L Leg||Le
L®L L®L
2 ol e
r<~——- -—————1L

7 est ’homomorphisme défini au paragraphe 1.
Un homomorphisme de K-algébres de Lie f/:L— L’ est un homomorphisme de
K-modules f: L— L' tel que le diagramme

LOL-I5L
VLY ")

soit commutatif, c’est-a-dire tel que f([x, y])=[f(x), f(»)], xeL, yeL.

Exemples

1) Tout K-module M posséde une structure d’algebre de Lie. Il suffit de poser
[x, y]=0 pour tout x et y de M.

2) Soit A=(A,, A,) une K-algébre. L’opération

(x, p)I=xy—(—1)"yx xeAd, yeAd,
définit sur le K-module A une structure de K-algébre de Lie. On notera dorénavant

cette opération [x, y].

Soit L une K-algébre de Lie et soit f une forme K-bilinéaire sur le K-module
L=(L,, L,) donnée par un homomorphisme de K-modules f/: L& L— K. f est nulle sur
L®L;, i#j, car f(L;, L))=K;, ;. f est donc la somme d’une forme bilinéaire sur L,
et d’une forme bilinéaire sur L;.

DErINITION. La forme bilinéaire f sur L est appelée 2-cocycle a valeurs dans K si
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D f(xp)=(=1)""f (%)

) (=) f Ly 2D+ (= )" f (0,2, xD) + (= )" f (2. [x, y]) =0
pour xeL,, yeL,etzeL,.

3) f(x,x)=0sixeL,.

Signalons que f(x,[x, x]) est égal & zéro si xe L, car [x, x]eL,. Les conditions 1)
et 2) peuvent également étre traduites en diagrammes commutatifs.

ALGEBRE f~ENVELOPPANTE D’UNE ALGEBRE DE LIE

Soient L une K-algébre de Lie et f un 2-cocycle sur L a valeurs dans K. Soit TL
I’algébre tensorielle sur le K-module L et soit /1'idéal de T L engendré par des éléments
de la forme

x®y_(_ 1)m"y®x_[x9y]~f(x’y)'1 XELm’yELn’

DEFINITION. U (L)=TL/I est I'algébre f-enveloppante de L.

Cette définition a un sens car I posséde bien deux composantes I, et I, les éléments
qui engendrent 7 étant homogénes (en Z,-graduation).
Cas particuliers

1) f=0

Uo(L)=U(L) est I’algébre enveloppante de L. Si de plus [, ]=0, U(L) est ’algébre
symétrique SL de L.

2) f=0et L,=0

U(L) est I'algebre enveloppante de I'algébre de Lie «classique» L,. Voir par
exemple BOURBAKI [2], § 2.

3) L,=0

U,(Lo) est I'algébre f-enveloppante de SRIDHARAN [12]. ConN [7] I’a aussi intro-
duite sous le nom d’algébre de Birkhoff-Witt.

4) Ly=0

[,1=0 car [L, Li]<L,. f est une forme bilinéaire symétrique. Posons Q(x)=
1 f (x, x) (supposons 2 inversible dans K). U,(L) est alors l'algébre de Clifford Cy(L,)
de L, associée a la forme quadratique Q. Pour plus de détails sur ces algebres de
Clifford, on pourra consulter par exemple BOURBAKI [1], § 9.

Remarquons que dans le cas 3) la Z,-graduation est triviale, mais pas dans le cas
4).

Soit n, 'application canonique TL—TL/I. n, induit par restriction un homo-
morphisme de K-modules i,: LU (L) et

H:if(x)’ if(y)] =if([x’ Y])+f(x, y)l xeL, yEL

ir(L) engendre U (L) mais i, n’est pas injectif en général. CHEVALLEY [6], p. 230,
ex. 12, donne un exemple ot L—-C,(L) n’est pas injectif et CARTIER [4] (voir égale-
ment BOURBAKI [2], § 2, exercice 9) un exemple ou L— U(L) dans le cas classique
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(Ly=0) n’est pas injectif. Nous donnerons plus tard des conditions suffisantes pour
que i, soit injectif.

U,(L) résout un probléme d’application universelle. Soient 4 une K-algébre, L
une K-algebre de Lie et f un 2-cocycle sur L a valeurs dans K.

DgrINITION (Voir [12]). Un homomorphisme de K-modules u:L— A sera appelé
un f~homomorphisme si

[n(x), u(¥)] = p([x, y]) + f (x,¥)'14 xeL, yeL.
Exemple. A=U(L). i, est un f~homomorphisme de L dans U,(L).

PROPOSITION 3. (caractérisation universelle des algébres U (L)). Soient L une
K-algebre de Lie et f un 2-cocycle sur L a valeurs dans K. Pour toute algébre 4 et pour
tout f~homomorphisme u:L— A il existe un unique homomorphisme de K-algébres
ii: Uy (L)—> A tel que le diagramme

Uy (L)
soit commutatif,
Démonstration. p induit un homomorphisme d’algébres TL—A (Prop. 2) qui est
nul sur 1.
Cette proposition contient comme cas particuliers, la caractérisation universelle
des algebres enveloppantes d’algébres de Lie et des algébres de Clifford.

ALGEBRE f~ENVELOPPANTE D’UN PRODUIT D’ALGEBRES DE LIE

Soient L et L’ deux K-algébres de Lie. Le K-module L=L®L’ est une K-algébre
de Lie si I’on pose

(G 3 (9] =% xT. vy D (xy)el@L,(x,y)eL L.

DEFINITION. L est le produit des K-algébres de Lie L et L et on écrit L=L x L’

Soient L' et L’ deux K-algébres de Lie et L=L x L’ leur produit. Si /' est un
2-cocycle sur L' & valeurs dans K et si f” est un 2-cocycle sur L' a valeurs dans K, la
forme bilinéaire f sur L définie par

(G 9 (s ¥) = /(6 ¥) + £ (1 ¥) (5 9)eL X Iy (¢, )L x L

est un 2-cocycle sur L a valeurs dans K. On écrira parfois simplement f=f'+f".

L’application canonique x|—(x, 0) de L' dans L induit un f'-homomorphisme de
L' dans U,(L). D’aprés la proposition 3, il existe donc un homomorphisme de K-al-
gebres ¢:U;(L)->U,(L). Pour les mémes raisons, il existe un homomorphisme
Y:Up(L")>Uy(L). L’application bilinéaire (u, v) |->@(u)-¥(v) de Up(L)x Up(L")
dans U,(L) induit alors un homomorphisme de K-modules
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0:Up(L)® Uy (L) > Uy (L)

On a (u®v)=¢(u) ¥ (v). Utilisant le fait que les images de ¢ et de Yy commutent
dans U,(L), on démontre aisément que 0 est un homomorphisme de K-algébres.

ProposiTION 4. 0: U, (L)®U,.(L)-U;(L) est un isomorphisme de K-algébres.
Up (L) ® Uy (L) = Upry po(L % L)

Démonstration ([5] p. 36 pour les algebres de Clifford, voir également [2] § 2).
Construisons un homomorphisme en sens inverse

AU (L) > Up (L) ® U, (L).

L’application A, définie par (x,y) |—=i (x)®1+1®i;.(p), xeL, yeL’ est un
f~homomorphisme de L dans U, (L)®U;.(L"). 4, induit alors I’homomorphisme
cherché 1. On a A(i (x, y))=40(x,y). Comme 0(i, (x)@1)=¢ (i, (x)) ¥ (1)=i,(x),
(x est identifié a son image dans L), on a

120(ip (x)®@1) = A(i;(x)) =4o(x) =iy (x)®1, xeL

De fagon analogue 1°0(1®i,-(y))=1®i,.(y), yeL'.

Les éléments i,.(x)®1, xeL et 1®i,.(y), yeL’ engendrent U, (L)@ U,.(L").
A°0 est donc l'identité sur U,.(L)®@U,.(L").

On voit de méme que 64 est I'identité sur U, (L).

REMARQUE. i,(x, y) correspond & i, (x)®1+1®i~(y) par 'isomorphisme 6. Si
i, est une application injective, 7. et i~ doivent donc étre également injectives. Nous
utiliserons cette propriété par la suite. L’inverse est faux en général.

Citons quelques cas particuliers de la proposition 4:

) UL xL)Y=U(L)®U(L)
) S(LOL)=SL®SL
3) Co(L@L)=Co(L)®Cq (L), 0=0 +0".

Dans les cas 2) et 3) les algébres de Lie ont une multiplication triviale.

Notons que si L;{=L{=0, le produit tensoriel U, (Ly)®U,.(L;) se réduit
a un produit tensoriel d’algébres non-graduées. Mais si Ly=Lg=0, le produit
Co (L})®Cy-(LY) reste un produit tensoriel d’algébres Z,-graduées.

Le K-module L=(L,, L,) est isomorphe a L,@®L,. Sous quelles conditions U,(L)
se décomposera-t-elle en un produit tensoriel U, (Ly)®@Cy(L,)?

Pour obtenir une structure d’algebre de Clifford sur L,, il faut que [Ly, L;]=0.
L, et L, possédent alors une structure d’algebre de Lie. L est le produit de ces deux
algébres de Lie si ces deux algébres commutent, [Lo, Ll] =0. En résumé, il faut donc
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que [L, L;]=0. Soit maintenant f un 2-cocycle sur L. Nous savons que f est une
somme f'+f" ou f' est la restriction de f'a L, et f” la restriction de fa L,. f’ est un
2-cocycle sur L,. f” est un 2-cocycle sur L,, c’est-a-dire simplement une forme bi-
linéaire symétrique. Si 2 est inversible dans K, nous pouvons associer une forme
quadratique a f”. Nous avons alors le corollaire suivant de la proposition 4:

COROLLAIRE. Supposons que 2 soit inversible dans K. Soient L=(L,, L,) une
K-algébre de Lie et fun 2-cocycle sur L a valeurs dans K. Si[L, L,]=0, alors U, (L)~
Up(Lo)®Co(Ly) ot f'=f],, et Q est la forme quadratique associée & f"=f],_.

Pour f=0 et [L, L]=0, on obtient en particulier SL=SL,® A L, ot SL, est
l’algébre symétrique classique de L, et A L, I’algébre extérieure de L,.

3. Algeébres filtrées

DEFINITION. Une filtration d’une K-algébre 4=(A4,, A,) est une famille de sous-
modules {F;4};.z du K-module 4 telle que:

1) FFA=K-1,(c-a-d. FAg=K-1,,Fy A, =0)

2) FA=0pouri<0

3) FAcF;Apouri<j

4 |UFA=4

ieZ

5) FA'FJAcF,.;A i€l jel.

Un homomorphisme d’algébres filtrées f: A—B est un homomorphisme d’algébres
tel que f(F;,A)<F,B, ieZ.

Si A et B sont deux algebres filtrées, F,(A®B)=Im( ® F,A®F;B—>AQ®B)
définit une filtration sur le produit tensoriel 4® B. i+j=p

Exemples. F,TL= @ T*L définit une filtration sur TL et F,.SL= @ S*L une

k<i k<i

filtration sur S L. La projection canonique n:7L— S L est alors un homomorphisme
d’algebres filtrées.

ALGEBRE GRADUEE ASSOCIEE A UNE ALGEBRE FILTREE

A toute algébre filtrée A, il est possible d’associer une algeébre positivement
graduée EA= @ E'A. Par définition E‘A=F,A[F,_; A. Soit n;:F;A—>E'A la pro-
jection canonique. La multiplication de EA est définie par m;(x) m;(y)=m; ;(xy),
xeF; A, yeF; A. On vérifie facilement que E 4 est positivement graduée.

Un homomorphisme d’algébres filtrées f:4—B induit un homomorphisme des

algébres graduées associées Ef- EA—EB (E'f:E'A—>E'B),

PROPOSITION 5. Soit f: A— B un homomorphisme d’algebres filtrées.
Si Ef: EA— E B est un isomorphisme, alors f est un isomorphisme.
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Démonstration. Le résultat s’établit par induction a I'aide du lemme des cinq:

0-F_,A->FA->EA-0
2 ! 12
0-F,_,B->FB->EB-0

PropPosITION 6. Les applications canoniques ¢,: 4—>A® Bet ¢,: B—»AQ® B définies
par x |>x®1, xed et y |>1®y, yeB induisent un épimorphisme d’algébres
¢:EAQEB—E(A®B).

REMARQUE. EA® E B est un produit tensoriel Z,-gradué.

Démonstration. L’homomorphisme ¢,:4—->A® B est un homomorphisme d’al-
geébres filtrées. ¢; induit donc un homomorphisme E¢,:EA—E(A®B). De facon
analogue, ¢, induit un homomorphisme E¢,:EB—E(A® B). Les images de E¢, et
de E¢, commutent dans E(A®B). Il existe donc un homomorphisme d’algébres
9:EAQEB—E(A®B) tel que ¢(u®v)=Eq@,(u)-E@,(v),ucEA,veEB. ¢ est un
épimorphisme car la filtration de A® B est induite par les filtrations de 4 et B.

4. Généralisation du théoréme de Poincaré-Birkhoff-Witt

FILTRATION DES ALGEBRES f~-ENVELOPPANTES

Soient L=(L,, L,) une K-algébre de Lie et f un 2-cocycle sur L & valeurs dans K.
F,TL=@® T*L définit une filtration sur I’algébre tensorielle 7L du K-module L.

k<i
Soit {F, U (L)};.z la filtration de U,(L) induite par I’application canonique

et soit E U, (L) I'algebre graduée associée.
EiUf(L) = F U (L)/F;-, U, (L)
Appelons 7; la projection F,U,(L)>E’U,(L). Comme i (L) engendre U,(L),
myi;(L) engendre E U (L).
GENERALISATION DU THEOREME DE POINCARE-BIRKHOFF-WITT

PROPOSITION 7. E U, (L) est une algébre commutative.
Démonstration. Nous savons que pour xeL,, yeL,

l[if(x)’ if()’)]] = if([x9 y]) + f (x’ y)l :

Le terme de gauche appartient 4 F, U,(L), le terme de droite & F; U,(L). On a
donc 7, [i (%), i;(¥)] =0, c’est-a-dire

myip(x) i, (p)=(—=D)""nyip(y) 7y if(x).
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D’ou la proposition car n,i,(L) engendre EU,(L).

n,:TL—U,(L)est un homomorphisme d’algébres filtrées. #, induit par conséquent
un homomorphisme En,;:ETL—EU,(L) des algébres graduées associées. Comme
ETL est canoniquement isomorphe & T'L et comme E U, (L) est commutative (Prop.
7), En, induit un homomorphisme ,:SL—-EU,(L) (Prop. 2), SL est 'algebre
symétrique de L. On vérifie aisément que ¥, est un épimorphisme. Nous voulons
maintenant montrer que sous certaines conditions ¥, est un isomorphisme. Intro-
duisons tout d’abord quelques notations.

Soit M =(M,, M,) un sous-module du K-module L qui soit la somme directe d’une
famille de K-modules monogenes

My= @ Kz; M =& K-z.
Aedo Ae Ay

Si z, est d’ordre fini, on notera cet ordre ¢;. On notera A le degré en Z,-graduation
de z;. Nous pouvons supposer A, et A, totalement ordonnés. Soit A la somme
ordinale A,+ A,. Rappelons que dans cette somme, un élément de A, est toujours
plus petit qu’un élément de A,. Un K-module libre M est un exemple d’une somme
directe de modules monogénes. (z;),., est alors une base de M.

Appelons FMTL le module @ T*L®T"M. Un élément de degré n de F'TL

k<n

appartient & T"M et peut s’écrire Y b,z, ®z,,® - Qz,, f;€A. Nous dirons qu’un
u

mondme z; @ ®z;, Xz, , -z, €T"M est ordonné si Ay <+ <A, <A< <
An L€ A pour 1 <i<ret ,eA, pour r+1<i<n.

Notons {x, y} I'élément x®y—(—1)"" y®x—[x, y]—f(x,»)1, xeL,, yeL, de
TL. I est I'idéal de TL engendré par les éléments {x, y}, xe L, ye L. Nous appelerons
I, le K-module engendré additivement par les éléments de la forme PR {x, y}®Q de
F,TL et IM le K-module engendré par les éléments P®{x, y}®Q de F)'TL.

LEMME 1. Supposons que 2 soit inversible dans K. Tout élément de F," T L peut se
mettre modulo I sous la forme

2(112;_1@"-@2%4—)}"—1, ALEA
A

les mondmes z; ®-:-®z,, étant ordonnés. Les coeflicients a; sont définis modulo le
p.gcd. deg,,, ..., et y" ! qui appartient & F,_; TL est défini de fagon univoque
modulo I,_;.

Démonstration. Nous savons qu'un élément de degré n de F)YTL peut s’écrire
Yb,z, @@z, , u;e A. Modulo I, on a, pour un mondme de degré n,
n

PRz,®z,0Q0=(-D"PRz07,00+P8z,2]®Q0 +/(,2) POQ.

Si A<u, on pourra ainsi inverser z, et z,. La correction appartient & F,_; T'L. Si
A=p, leA;, on a
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PRz,®2;,0=—PR2z;®2,®0+P®[z,,2,]®0+ f(2,,2,)PRQ

modulo I™. Puisque 2 est inversible, on peut écrire

PRz,®z;,00=4P®[z,,2,]® Q0+ 1f(z,,2,) P®Q

modulo IM. Le terme de droite appartient & F,_, T L. Nous appelerons cette opération
une réduction par rapport a z;. Un monéme z, ®---®z, peut donc étre ordonné par
une suite d’inversions et de réductions. On démontrera par induction sur le nombre
d’opérations (inversions et réductions) que la correction totale modulo I,_; est
indépendante de I’ordre des opérations.

Soit P®z,®z,82,®Q un mondme de degré n et soit j le nombre d’opérations.
Supposons v>pu>A. Traitons tout d’abord le cas v=pu, u> 4, pe A . On peut réduire
par rapport a z, ou échanger z,, et z;. On obtient dans chaque cas un mon6éme avec j— 1
opérations. Par induction, la suite des opérations ne changera rien a la correction
modulo I,_,. Les deux expressions ainsi obtenues se raménent modulo IM & des
formes qui sont égales modulo I,_;. En effet, on a d’une part

PRz,®z,®2;,080=%4P®[2,,2,]®2,®0+41f(2,2,)P®z,®0

modulo IM. D’autre-part

PRz,®z,®z,®00Q
=(- 1)ZP®ZM®ZA®Z,,®Q+P®zu®[zﬂ,z,1]®Q+f(zu,z,1)P®z”®Q
=P®2;,®2,®2,80+P®2,8[2,,]®Q + f(2,,2)P®2,®Q +
+ (-1 P®[2,52,102, 0+ (= 1) f (24, 2)P® 2, ® Q
=4P®z;®[2,,2,]®0+1f (2,2, )P® 2,0+ PRz, ®[z,,2;,]®Q +
+f(zpz)P®z,®Q +(— 1)1P®[zﬂ, 7;]®z,@0 +
+(-1)'f (2 2)P®2,®Q

modulo .
Mais f(z,, z;)+(—1)*f(z,, 2;)=0. C’est évident si =1, et si 1=0, f(z,, z;)=0
car f(Lgy, L;)=0. On obtient donc finalement

PRz,®2,0z;,®0=4P®z;®[2,,2,]®0++f(2,,2)P®2,® Q +
+P®2,®[2,2,]90+ (- 1)'P®[2,2,]®2,®0

modulo Y. La différence des deux expressions ainsi obtenues pour P®z,8z,8z,®0
vaut modulo I, _,

%P ® [[zw Z.u]’ z;]®Q -P® [Zu’ [z, Zl]] ®0+
+3f (24 2,1, 2)P®Q — f (20 [2 22]) P ® Q.

Mais cette différence est nulle d’aprés I'identité de Jacobi et le fait que f soit un
2-cocycle.
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Le cas v>pu, u=A4, pe A, se traite de la méme fagon. Dans le casv=p=24, ved,,
c’est-a-dire dans le cas d’un mondéme PRz,®z,®z,®Q, deux réductions modulo
IM sont possibles,

PR[z;,2,]®2;,80+3f(2,,2)P®z,®Q ou
%P®Z,1®[z,1, Za]®Q+%f(zxs Z}.)P®ZA®Q

On voit que ces deux expressions sont égales modulo I,_; en utilisant I'identité
[[z1 221, 2:]=0.

Nous pouvons maintenant supposer v>u>A. Dans ce cas, nous pouvons tout
d’abord échanger z, et z, ou z, et z;. De nouveau, par induction, la suite des opérations
ne changera rien a la correction modulo I,_,. Les deux expressions ainsi obtenues se
raménent modulo IM 2 la forme commune P®®z;,®z,®z,@Q et on vérifie que les
corrections sont égales modulo I,_,. Les calculs sont du méme type que ceux faits
ci-dessus.

Pour un monéme PRz,®z,00®z,®z,®R, u=>A et p>v, il faut également
distinguer plusieurs cas. Si u=4, Ae A, et p> v, on peut réduire par rapport a z; ou
échanger z, et z,. Siu=A et p=v, ke A,, pe A, on peut réduire par rapport a z; ou
par rapport a z,. Si finalement u> A et p>v, on peut échanger z, et z; ou z, et z,.
Dans tous les cas, on se rameéne a une forme commune et on vérifie que les corrections
sont égales modulo I,_,.

LeMME 2. Supposons que 2 soit inversible dans K. Si K est un anneau principal
ou si L est un K-module libre, In F, T L =1, pour tout entier k.

Démonstration 1) K est un anneau principal.

Il est trivial que I,cIn F,TL. Soit y un élément de InF,TL. y appartient & un
sous-module I,, n>k de I. Montrons que si n>k, y appartient a I, _;. Par définition
de I,, y peut se mettre sous la forme

y=ZPj®{xjvyj}®Qj’ Pj®{xjayj}®Qj€FnTL.
J

Dans cette somme n’apparaissent qu’un nombre fini d’éléments de L. Soit M le
K-module engendré par ces éléments. Puisque ’anneau K est principal, M est somme

directe de modules monogénes. Si on applique le lemme I & la somme ZPj®{xj, y;1®
J
Q;, on trouve une correction y"~1 &gale & zéro et si on 'applique a y, une correction

y"~! égale 4 y. Comme cette correction est déterminée univoquement modulo I,_;,
y appartient a I, _,.

2) L est un K-module libre.

Nous pouvons choisir M= L et appliquer le lemme I comme dans le cas 1).

THEOREME 1. Supposons que 2 soit inversible dans K. Si K est un anneau principal
ou si le K-module L=(L,, L,) est libre,  ;:S L—E U(L) est un isomorphisme.
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Démonstration. D’aprées le lemme 2, le terme de plus haut degré de tout élément de
I appartient au noyau de ’homomorphisme canonique 7L— S L.

REMARQUE. Le théoréme 1 et les lemmes qui le préparent sont dus a WitT [13]
(voir aussi LAZARD [9]) pour les algébres de Lie classiques sur un anneau principal.
Lorsque le K-module L est libre, une autre démonstration classique (celle donnée en
particulier par BOURBAKI [2], § 2 No 7) pourrait étre reprise sous certaines modifi-
cations pour les algebres f~enveloppantes Z,-graduées. Cela a été fait par Ross [10]
lorsque le cocycle f est nul. La présence du cocycle f ne compliquerait pas beaucoup
la démonstration de Ross.

Le théoréme 1 posséde un certain nombre de corollaires. Nous supposons une
fois pour toutes que 2 est inversible dans K.

CoROLLAIRE 1. Si K est un anneau principal ou si L est un K-module libre,
I'application canonique i,: L—U,(L) est injective et K=K" 1y,
Dorénavant, nous identifierons L et i (L).

COROLLAIRE 2. Si (z;),., est une base du K-module L, les mondmes ordonnés
Z), """ 2a,, A€ A, de Uy (L), forment une base du K-module U (L).

Démonstration. Rappelons qu’un mondéme z;,...z; ‘'z, . ...z, est dit ordonné si
M< <A <A1 < <A, A€A, pour 1<i<r et L;eA; pour r+1<i<n. Soit 4,
I’ensemble des suites croissantes de n éléments de A du type décrit ci-dessus et soit W
le sous-module de 7L qui a pour base (2, ®z,,® - ®z, ), (4, 42, ..., 4,)€ 4,. On voit
facilement que W est isomorphe a S” L et que la restriction de En, & W est un isomor-
phisme de W sur un supplémentaire de F,_, U,(L) dans F, U,(L) (voir [2], § 2, 7.).
Enp(2;,02;,8-®z,, )=2,,° 2, ... 2;,. D’du le corollaire.

Ces deux corollaires s’appliquent en particulier aux algébres de Clifford. Voir
BouRBAKI [1], § 9, pour une autre démonstration du corollaire 2 pour les algébres de
Clifford.

Le théoréme 1 et le corollaire 1 peuvent étre généralisés. Signalons tout d’abord
que ces résultats sont vrais si K est seulement de Dedekind. Ils sont dus & CARTIER [4]
pour les algebres enveloppantes classiques. Sa démonstration se copie pour les
algébres f~enveloppantes Z,-graduées.

CARTIER utilise en particulier la proposition suivante. Si K est un anneau de
Dedekind et si p est un idéal premier de K, ’anneau Jocal K, est un anneau principal.
Le lemme 2 est alors localement valable. On montre alors qu’il est également valable
pour K.

Nous aurons besoin plus loin d’une autre généralisation. Le K-module L n’est
plus supposé libre, mais projectif.

DEFINITION. Un K-module Z,-gradué L=(L,, L,) est dit projectif si les K-modules
L, et L, sont projectifs.
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Comme dans le cas «classique», L est projectif si et seulement si L est facteur
direct d’un K-module libre.

CoROLLAIRE 4. Supposons que le K-module L soit projectif. i i L-oUg(L) est
alors injectif et K= K- 1y, .

Démonstration. 11 existe un K-module M tel que F=L@® M soit un K-module libre.
Si M est muni de la structure d’algébre de Lie triviale, F posséde une structure
d’algébre de Lie, F=L x M. Soit f le 2-cocycle sur F identique & fsur L et nul sur M.
On sait que (Prop. 4)

Uy(F) = U (L)® Uy (M) = U, (L)® SM.

On en conclut tout d’abord que K= K1y, 1, puis que i, est injectif car i ; est injectif
(voir la remarque suivant la proposition 4). On convient alors d’identifier L et i,(L).

COROLLAIRE 5. Si L est un K-module projectif, y,:SL—E U;(L) est un isomor-
phisme.

Démonstration. Nous construisons un homomorphisme ¢ en direction opposée.
Les notations sont celles du corollaire 4.

ul->u®l, ueEUy(L), définit un homomorphisme EU(L)-»EU (L)QSM.
D’aprés la proposition 6, nous savons qu’il existe un homomorphisme d’algébres
EU(L)®SM—E(U (L)®S M) (on convient d’identifier ESM et SM).

L’isomorphisme Uy(F)=U,(L)®S M est un isomorphisme d’algébres filtrées car
la filtration de U;(F) correspond au produit tensoriel des filtrations de U,(L) et de
S M. Par conséquent E(U,(L)®SM)=E Uz(F). D’aprés le théoréme 1, EU(F)xSF
et SFxSL®SM d’aprés la proposition 4. Nous avons donc construit un
homomorphisme EU (L)->SL®SM. A T'aide de 'homomorphisme SM—K égal
a zéro sur S'M, i>0 et égal A l'identité sur K, on obtient I’homomorphisme
cherché ¢.

Indiquons encore un résultat appartenant au méme cercle d’idées, mais qui ne sera
pas utilisé dans la suite.

CoroLLAIRE 6. Si le K-module est projectif, le K-module U (L) est également
projectif.

Démonstration. Les notations sont celles des lemmes précédents. Le K-module
Up(F)2U;(L)®SM est libre d’aprés le corollaire 3. D’autre part le K-module S M

peut étre décomposé en une somme directe SM =K®SM ot SM=@®S'M. On a

i>0
donc U;(F)=U,(L)®U,(L)®SM. U,(L) est facteur direct d’un module libre, donc
projectif.
Signalons de nouveau que ces résultats s’appliquent aux algébres enveloppantes
classiques et aux algébres de Clifford.
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5. Classification de certaines algébres filtrées

Nous supposerons dans ce paragraphe que 2 est inversible dans K. Nous ne ferons
aucune autre hypotheése sur K.

Soit M=(M,, M,) un K-module projectif et soit S M I’algébre symétrique de M.

Soit A(S M) la catégorie dont les objets sont les couples (A4, ) ot A=(A4,, 4;)
est une algebre filtrée et Y, :SM—>EA un isomorphisme d’algébres graduées. Un
morphisme 0:(4, ¥ ,)—(B, Y ) est un homomorphisme d’algébres filtrées 0: 4— B tel

que le diagramme EA_E% . EB

vaN Vi
SM

soit commutatif. Cette construction est due & SRIDHARAN [12].

ProposITION 8. Les morphismes de (S M) sont des isomorphismes d’algébres
filtrées.

Démonstration. E@=yz;' est un isomorphisme. Le résultat suit alors de la
proposition 5.

CoroLLAIRE. Tous les morphismes de (S M) sont des isomorphismes.

Soit L une structure d’algébre de Lie sur M et soit f un 2-cocycle sur L a valeurs
dans K. (Uy(L), ¥,) appartient a A(SM) d’aprés le corollaire 5 du théoréme 1.
Inversément, nous allons montrer que tout objet de A(SM) est isomorphe & un
couple (Uy(L), ¥,) ou L est une structure d’algeébre de Lie sur M et f un 2-cocycle.
Plus précisément:

THEOREME 2. ([12] pour les algébres f~enveloppantes sans Z,-graduation).

Les classes d’objets isomorphes dans W(S M) sont en correspondance biunivoque
avec les couples (L, f) ot L est une structure d’algébre de Lie sur M et fe H*(L, K).
Si fefe H*(L, K), alors (U;(L), Y;) est un objet dans la classe déterminée par (L, f).

DEFINITION. Les cocycles f(x, y) et f'(x, y) sont dits cohomologues s’il existe une
forme linéaire h: L— K telle que

fxy)—=f(x,y)=h(x,y]), xeL,yeL.
H?*(L, K) est I'ensemble des classes de 2-cocycles cohomologues.

Démonstration. Soit (A4, Y ,) un objet de A(S M). Construisons un couple (L, f).
Soit (n,);: F;A—>F;A|F;_, A la i-¢me projection canonique. Posons
(.)i=V ;' (n,);:F;A—S' M. La suite de K-modules

0——>F,_, A—>F, A" St M——50

est exacte pour tout i>1.
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[FiA, Fy A] = F, A mais (¢4), [F, 4, F; A]=[($.):1 F1 4, ($4)1 F1 A] =0 car SM est
commutative. Par conséquent [F, 4, F, A]JcF, A. F; A est donc une algébre de Lie
pour 'opération [, . FoA=K"1, est un idéal dans cette algébre de Lie. Le K-module
Fy A/Fy A est isomorphe a M. M posséde donc une structure d’algébre de Lie L et cette
structure est déterminée univoquement. Soit [, ] le produit de L. Nous avons mainte-
nant une suite exacte d’algébres de Lie

0—>K-1,—sF, A% L — 50

K-1, est isomorphe a4 S° M, donc & K. F; 4 est donc une extension de L par K. Le
K-module L (=M) est projectif. Il existe par conséquent un homomorphisme de
K-modules ¢: L— F; A tel que (¢ ), soit I'identité de L. (¢,0), ([#(x), t(»)] —t([x, ¥]))
=0, donc [t(x), t(»)]—t([x, y])eK-1,, xeL, yeL.

[1(x), tW)] = t(@x, y]) + f (%, )14 xeL, yeL

fest un 2-cocycle.

Soit ¢’ un second homomorphisme de K-modules L—F; A tel que (¢,),°t’ soit
I’identité de L et soit f’ le 2-cocycle correspondant. ¢t —¢’ définit une forme linéaire
h:L->K et

[ )= f(x,y)=h(x,y]) xeL,yeL

fet f’ sont cohomologues.

Tout couple (L, f) est image d’un couple (4, y,). En effet la construction ci-
dessus appliquée a (U,(L), ¥;) ou fef, redonne le couple (L, f). t est alors I'appli-
cation i.

Montrons maintenant que cette correspondance est biunivoque. Supposons qu’a
(4, y,) corresponde (L, f). Pour tout fef, (U,(L), ¥,) a également pour image
(L, f). Ces deux objets sont isomorphes. Pour le voir, il suffit de contruire un mor-
phisme 7:(4, Y ,)—(U;(L), ¥,) d’aprés le corollaire de la proposition 8.

Pour tout fef, il existe une section ¢: L—F, A (¢c’est-a-dire un homomorphisme de
K-modules tel que (¢,),°¢=1Id;) telle que

[t(x), t(N] = t([x, y]) + f (x, ¥)- 14 x€L,yeL.

En effet, soit f’'€f un 2-cocycle correspondant & une section connue ¢': L—F, 4.
fetf’ sont cohomologues, il existe donc une forme linéaire 4: L— K telle que

fy)=f(xy)=h(xy]) xeL yel

t=t'+h est la section cherchée.

Comme F,AcA, t est un f-homomorphisme de L dans 4. ¢ induit donc un
homomorphisme #: U;(L)—>A d’aprés la proposition 3. # est un homomorphisme
d’algebres filtrées (U, (L) étant filtrée de fagon habituelle) car {|,: L—F; A.
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Pour prouver que 7 est le morphisme cherché, il faut montrer que le diagramme
EU,(L)-2>EA

LI A Va
SM

est commutatif, Il suffit d’établir la commutativité sur E'.
Le diagramme
L(c U(L))—> F, U;(L)—>F, A
\l, my l, (ma
L(=SL)——E'Uy(L)—pE' 4

est commutatif.
Donc
Eioy,=(n,),°t surL (t=1isurlL)
Par conséquent

l/’fO‘//;loEt-: ‘/’f°‘l’;1 ° (T )1 °t°¢’f_1
=y o(da)ioteyy ' car Yyo(my); = ()
=Idgiy, 1, car (¢4 ) °t=1d,
Ei=y,oy;".
CoRrOLLAIRE 1. (U,(L), y,) et (U.(L), Y ,.) sont isomorphes si et seulement si f et
f' sont cohomologues.

REMARQUE. U, (L) et U,.(L) peuvent étre isomorphes sans que f et f' soient
cohomologues.

Nous savons que les algébres de Clifford sont des cas particuliers des algébres
f-enveloppantes U,(L). Reprenons le théoréme 2 dans ce cas particulier.

CoroLLAIRE 2. Une algébre Z,-graduée filtrée dont ’algébre graduée associée est
isomorphe a I’algébre symétrique S M d’un module projectif Z,-gradué¢ M=(M,, M,)
tel que M,=0, est isomorphe a une algébre de Clifford Cy(M) sur M. La forme
quadratique est univoquement déterminée.

Démonstration. Q est univoquement déterminée car la structure d’algebre de Lie
L sur M est triviale. Deux cocycles sont alors cohomologues si et seulement s’ils sont
égaux.

REMARQUE. L’algébre symétrique S M est simplement 1’algébre extérieure de M,.
Roy [11] démontre un résultat analogue au corollaire 2. Il ne suppose pas que ’algébre
A est Z,-graduée. 11 lui est alors nécessaire de supposer que M, est libre.

Soit A= (A4, 4,) une algébre filtrée telle que EA =S M, M un K-module projectif.
Nous savons que A= U,(L) ou L est une structure d’algébre de Lie sur M et f un
2-cocycle sur L. Sous certaines conditions sur L, ’algébre U, (L) se réduit au produit
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tensoriel d’une algeébre f-enveloppante sur L, par une algébre de Clifford sur L,

(Prop. 4, corollaire). Ces conditions peuvent étre remplacées par des conditions sur la
filtration de A.

COROLLAIRE 3. Soit 4=(A,, A;) une algébre filtrée dont I’algébre graduée as-
sociée est isomorphe a I’algebre symétrique d’un module projectif M.

Si [(F, A), F,A]=K-1,, A est isomorphe au produit tensoriel U,.(Ly)® Cy(M,)
ou L, est une structure d’algébre de Lie sur M, f' un 2-cocycle sur L, et Q une forme

quadratique sur M;. ' est déterminée & un cobord pres et Q est déterminée univo-
quement.

Démonstration. Dans la démonstration du théoréme 2, on utilise une application
t:L—F, A telle que

[t(x), t(W] = t([x, y]) + f (x, ¥)' 14, xeL,yeL

et telle que (¢ ,),°r=1d;.

(Les notations sont celles du théoréme 2).

Soit xe L,. t(x)e(F, A), donc [#(x), #(y)] =K1, par hypothése.

Par conséquent (¢ ,);°¢([x, ¥]) =0 car Ker(¢,); =K1, donc [x, y]=0. Comme
cela est vrai pour tout xeL,, tout yeL, on a [L, L]=0. Le résultat suit alors du
corollaire de la proposition 4.
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