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Sur une classe d'algèbres filtrées

Max-Albert Knus *)

Introduction

Les algèbres considérées dans ce travail sont des algèbres associatives avec
élément unité sur un anneau commutatif K avec 1.

Nous rappelons qu'une algèbre A est dite positivement graduée si elle est la somme
directe d'une famille {Al}ieZ de sous-modules du module A telle que Al 0 pour /<0
et A1- AjcAi+J. Une algèbre A est dite filtrée si elle est la réunion d'une famille de

sous-modules {FiA}îeZ telle que 1) FtA 0 pour i<0, 2)F0A K-lA, 3)FtAczFjA
pour i<j, et 4) F^-F^cF^.

A toute algèbre filtrée A, on associe une algèbre positivement graduée EA
®ElAoixE1 A — FiAIFi^l A. La multiplication de EA est induite par la multiplication

teZ
de A. Toute graduation positive telle que A° K-lA induit la filtration évidente

FtA ® Ak; l'algèbre graduée associée est alors (isomorphe à) l'algèbre graduée
k<:i

donnée. Il existe des exemples intéressants de filtrations ne provenant pas trivialement
d'une graduation. Par exemple, les algèbres de Clifford admettent une filtration
naturelle; l'algèbre graduée associée à une algèbre de Clifford sur un module libre est

l'algèbre extérieure de ce module. L'algèbre enveloppante d'une algèbre de Lie L est

également filtrée de façon naturelle, sans être positivement graduée. Le théorème de

Poincaré-Birkhoff-Witt caractérise, sous certaines hypothèses, l'algèbre graduée
associée : si L est un module libre sur un anneau commutatif quelconque K ou si L est

un module sur un anneau principal K, l'algèbre graduée associée à l'algèbre enveloppante

de L est l'algèbre symétrique SL de L.
Ces deux exemples peuvent être traités simultanément, et dans un cadre plus

général, en considérant des algèbres Z2-graduées (la Z2-graduation se superpose à la
filtration et à la graduation positive). Dans la première partie du travail, nous rappelons

les définitions des modules, des algèbres et des algèbres de Lie Z2-gradués.
Ensuite, nous introduisons la classe d'algèbres qui joue un rôle central dans ce

travail: les algèbres /-enveloppantes Uf(L) d'algèbres de Lie Z2-graduées L;/est un
2-cocycle sur L à valeurs dans K et Uf(L) est le quotient de l'algèbre tensorielle TL
du module L par l'idéal engendré par les éléments de la forme x®y-(- l)mn y®x-
[*> y] -/(*, y)' 1, xeL, yeL; m est le degré de x en Z2-graduation et n le degré de y.
L'algèbre Uf(L) résout un problème d'application universelle. Les algèbres de Clifford

x) L'auteur est au bénéfice d'une bourse de l'Institut Batelle, Genève.
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et les algèbres enveloppantes d'algèbres de Lie sont des cas particuliers d'algèbres

Uf(L), et il en est de même du produit tensoriel d'une algèbre de Clifford par une
algèbre enveloppante. Remarquons qu'inversement, une telle décomposition n'est
possible que pour des algèbres Uf(L) très particulières; cette notion d'algèbre /-
enveloppante est donc vraiment plus générale que celles d'algèbre de Clifford et
d'algèbre enveloppante d'une algèbre de Lie.

La filtration de l'algèbre tensorielle TL induit de façon naturelle une filtration de

l'algèbre Uf(L). Nous démontrons le théorème suivant:
Soit K un anneau commutatifdans lequel 2 est inversible. Si le module L est libre sur

Kt ou si le module L est quelconque et K est principal, l'algèbre graduée associée à

Valgèbre filtrée Uf(L) est l'algèbre symétrique Z2-graduée SL de L. Rappelons que
l'algèbre symétrique Z2-graduée d'un module Z2-gradué est le produit tensoriel
d'une algèbre symétrique classique (c'est-à-dire non Z2-graduée) par une algèbre
extérieure.

La démonstration de ce théorème reprend une méthode de Witt, ([13], voir aussi

Lazard [9]) développée pour les algèbres de Lie classiques. En utilisant un résultat
de Cartier [4], on peut voir que ce théorème est également valable si K est un anneau
de Dedekind dans lequel 2 est inversible. Ce résultat s'applique en particulier aux
algèbres de Clifford. Il s'ensuit par exemple que l'application canonique d'un module
dans une algèbre de Clifford sur ce module est injective si l'anneau des scalaires est

de Dedekind et si 2 est inversible.
Une autre généralisation est donnée, dans le cas où K est arbitraire, (2 est

toujours supposé inversible): nous démontrons, à l'aide de l'algèbre /-enveloppante

d'un produit d'algèbres de Lie Z2-graduées, que l'algèbre graduée associée

à Uf(L) est encore l'algèbre symétrique de L si le module L n'est pas libre
mais projectif. Remarquons que le module Uf(L) est alors lui-même projectif.
Inversement, nous montrons que les algèbres Uf(L) sur des modules projectifs L
sont caractérisées par leurs algèbres graduées associées ; nous avons en effet le théorème

suivant:
Soit K un anneau commutatif dans lequel 2 possède un inverse. Si A est une algèbre

Z2"graduée filtrée telle que l'algèbre graduée associée EA soit isomorphe à l'algèbre
symétrique SMd'un moduleprojectifZ2-gradué M, alors il existe une structure d'algèbre
de Lie L sur M et un 2-cocyclef sur L tels que A ~ Uf(L).

Ce théorème général s'applique aux algèbres de Clifford et aux algèbres/-enveloppantes

classiques (introduites indépendamment par Cohn [7] et Sridharan [12]). Ces

cas particuliers avaient déjà été traités auparavant, le premier par Roy [11] et le

second par Sridharan [12], dans le cas où M est un module libre.

Je remercie très vivement Monsieur le professeur B. Eckmann qui me proposa le

thème de ce travail et qui m'encouragea constamment.
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1. Modules et algèbres

Soit K un anneau commutatif avec 1. Tous les produits tensoriels seront pris sur K.
Un K-module Z2-gradué M est un couple de ^-modules (Mo, Mx). Les éléments de

Mo seront parfois appelés éléments de degré 0 et les éléments de Mx éléments de

degré 1.

M est également un ^-module, la somme et la multiplication par un scalaire étant
définies par composantes. M est donc isomorphe à la somme directe MQ@Mi. Inversement

toute somme directe de deux ^-modules définit un /C-module Z2-gradué.
Si M et N sont deux ÂT-modules Z2-gradués, un homomorphisme de ^-modules

Z2-gradués/:M-*Af est un couple d'homomorphismes de ^-modules (/0,/i) tel que
/o:Mo->JVoet./i:M1->Ar1.

Si M et TV sont deux ^-modules Z2-gradués, M@N est le AT-module Z2-gradué tel

que
(M 0 N\ Ml®Nl î 0, 1.

M®N est le /^-module Z2-gradué tel que

(M ® JV)0 M0®N0 ®M1 ®N1

(M ® N)t =M0®Nl®Ml®N0

McN signifie MoczNo QtM1c:Ni.
K peut être considéré comme un ^T-module Z2-gradué avec

K0 K et Kt=0.
On a alors M®K^ K®M^ M.

Une K-algèbre Z2-graduée A est un AT-module Z2-gradué A (A0, A^) avec deux

homomorphismes (p:A®A-^A et r\\K-+A tels que les diagrammes

^40^4 —^ A A®A~^A^
soient commutatifs.

q> est la multiplication. On notera (p(x®y) xy. Le premier diagramme dit que la

multiplication doit être associative, le second qu'elle doit posséder un élément unité

Remarquons que si 2LteAo a3eAp alors a.a^A^j (i+j est calculé mod. 2).

L'unité lA est de degré 0, lAeA0.
Par abus de langage, nous utiliserons désormais les termes de module et d'algèbre

pour un module Z2-gradué et une algèbre Z2-graduée.
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Soient A (A0, At) et B=(B09 Bx) deux j£-modules et soit x:A®B-*B®A l'homo-
morphisme tel que

t(a®b) (-l)mnb®a aeAm9beBn.

L'algèbre A (A09 A^ est commutative si le diagramme

A® A-XA®A

est commutatif, c'est-à-dire si

a.dj (- i)iJajat at€Ai9 QjeAj.

Si A (A0, Ai) et B=(B0, Bt) sont deux ^T-algèbres, A®B est la ^-algèbre dont la

multiplication est la composition

A ® B ® A ® B^^^A ® A ® B ® B lî?ï$ A ® B

et l'unité K^K®K nj^ A®B.
Le produit dans A®B est donc défini par

(fli ® bj) {am ® b'n) (- iymata'm ® bjb'H ateAh a'meAm9 bjeBj et b'neBn.

Nous dirons parfois que A® B est le produit tensoriel Z2-gradué de A et B.

Un homomorphisme de ^-algèbres/:^4->J9 est un homomorphisme de X-modules

f:A-*B tel que les diagrammes

soient commutatifs.
Un idéal (bilatère) /=(J0, Jt)czA est un sous-module de A tel que JAaA et

AJczA. A/J=(A0/J0, Ai/J^ est une Â-algèbre dont le produit est déterminé par la
condition que la projection A-+A/J soit un homomorphisme de X-algèbres.

Exemples
Soit M=(M09M1) un iT-module.

TM=®®M est une ^-algèbre, l'algèbre tensorielle de M.
k k

(TM)o=X®Moe(M®M)oe-
(TM)t= M10(M®M)10.--

La multiplication est donnée par le produit tensoriel et l'unité par l'injection K-+TM.
Remarquons que M peut être identifié à un sous-module de TM.
Soit / l'idéal de TM engendré par les éléments de la forme

x®y-(-l)pqy®x xeMp9yeMq.
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Le quotient TMjJ est une X-algèbre, l'algèbre symétrique SM de M. On vérifie

que SM est commutative.

Définition. Une graduation positive sur une ^-algèbre A (Ao, Ax) est une famille
de sous-modules {Ai}uz du ^f-module A telle que

1) A1 0 pour i < 0

2) 0 A1 A
ieZ

3)Ai'Aj^Ai+j pourtout îeZJeZ.
Une i^-algèbre A munie d'une graduation positive est dite positivement graduée.

Les éléments de A1 sont appelés éléments homogènes de degré positif /. 1^ est de

degré positif 0. Si A° K- lA, A est dite connexe.
Remarque. Si l'on tient compte explicitement de la Z2-graduation de A, la

définition ci-dessus signifie que

A0=®(A%, 04% 0 i<0
ieZ

ieZ
et

(A%'(Aj)ncz(Ai+j)m+n, m + n mod2.
A est donc bigraduée.
Si A= ®Al et B= ®Bl sont deux algèbres positivement graduées, un homo-

ieZ ieZ
morphisme d'algèbres positivement graduées f.A^B est un homomorphisme
d'algèbres f:A-+B tel qucf(Ai)<^Bi. Comme/=(/0)/1), cela veut dire que

L'algèbre tensorielle TM d'un J^-module M est positivement graduée

TM= 0 TM
ieZ

si l'on pose VM=M®M®~'®M (i facteurs) pour />0, T°M=Kct TlM=0 pour

TM est connexe.
L'algèbre symétrique SM d'un ^-module M est également positivement graduée,

SM= ®SlM. On le voit en remarquant que l'idéal / est engendré par des éléments
ieZ

homogènes. Soit n l'application canonique TM-^TM/J=SM. On a SiM=n(TîM).
n est donc un homomorphisme d'algèbres positivement graduées.

Proposition 1. n est un isomorphisme sur M=TlM. Identifiant M et n(M)9 on

peut plonger M dans SM.
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Démonstration ([5]) JnM=O, car les composantes homogènes des éléments de

/ différents de zéro sont de degré positif supérieur ou égal à deux, alors que les

éléments de M sont de degré positif un.
Les algèbres TM et SM résolvent des problèmes d'applications universelles.

Proposition 2. Soit M un X-module. Pour toute ^-algèbre A et pour tout homo-

morphisme de AT-modules q>:M-+A, il existe un unique homomorphisme de K-
algèbres (p:TM-+A qui rende le diagramme

M

TM
commutatif. i est l'injection M-+TM.

Si A est commutative, <p se factorise en un homomorphisme (également noté cp)

de SM dans A.
<p

SM
Démonstration ([5]) (p(x1®'-(g)xn) (p(x1) <?(-*„)• Si A est commutative, cp est

nul sur / et induit un homomorphisme SM-+A.

M=(M0,M1). Si Mt=0, SM est l'algèbre symétrique classique SM0 (non Z2-
graduée) deM0. SiMo 0, SM est l'algèbre extérieure aMx deM1.

2. Algèbres de Lie

Une K-algèbre de Lie est un X-module L (L0,L1) muni d'un homomorphisme
cp:L®L-*L (on notera ç{x®y)=[x,yj) tel que:

D[^]=(-ir+1[y,x]
2) (- l)mr[*,b, z]] + (- ir b,[z, *]] + (" l)fr[z,[xf y]] 0

pour xeLw, yeLnet zeLr.
3) [^c, x] 0 si xeL0

[x, [x, x]] 0 si xeLt.
La condition 1) signifie que le produit ainsi défini est anticommutatif. L'identité

2) est appelée identité de Jacobi.

Remarquons que si xeLm et yeLn, [x, >>]eLw+lt, m + n mod 2.

Signalons que 1) entraîne 2[x, x]=0 pour xeL0 et que 2) entraîne 3 [x, [x, x]]
0 pour xeLj. 3) découle donc de 1) et 2) si 2 et 3 sont inversibles dans K.
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L n'est pas une algèbre de Lie au sens classique, car, par exemple, [x, x] n'est pas
identiquement nul. Si L1=0, L L0 est une algèbre de Lie classique. Les algèbres de

Lie graduées ont été introduites par Cartier [3] (voir également Hilton [8]).
Les conditions 1) et 2) peuvent être remplacées par des diagrammes commutatifs

L®L-tL
4 /L®L

L® L®L >L®L®L >L®L®L

L®L L®L

L < L

t est l'homomorphisme défini au paragraphe 1.

Un homomorphisme de A^-algèbres de Lie f:L-+L' est un homomorphisme de

A^-modules f:L-+Lf tel que le diagramme

L' ®L

soit commutatif, c'est-à-dire tel que/([x, y~\) [f (x),f (y)~\, xeL, yeL.
Exemples
1) Tout ^-module M possède une structure d'algèbre de Lie. Il suffit de poser

[x, y] 0 pour tout x et y de M.
2) Soit A (A0, Ax) une ÀT-algèbre. L'opération

(x, y)\->xy - (- \)pqyx xeAp, yeAq

définit sur le A'-module A une structure de /C-algèbre de Lie. On notera dorénavant

cette opération [x, y}.

Soit L une /C-algèbre de Lie et soit / une forme A^-bilinéaire sur le iC-module

L (L0, Lx) donnée par un homomorphisme de ^-modules/:L®L-*K./est nulle sur

Lt®Lp i^j, car/(Lf, Lj)czKi+f. /est donc la somme d'une forme bilinéaire sur Lo
et d'une forme bilinéaire sur Lv

Définition. La forme bilinéaire / sur L est appelée 2-cocycle à valeurs dans K si
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2) (- lTrf(x, [y, z]) + (- 1)""7G>,!>, xj) + (- l)"f(z,{x, y}) 0

pour xeLm, yeLnet zeLr.
3) /(x,x) 0sixeLo.

Signalons que/(x,[x, xj) est égal à zéro si xeL1 car [jc, x]eL0. Les conditions 1)

et 2) peuvent également être traduites en diagrammes commutatifs.

Algèbre/-enveloppante d'une algèbre de Lie

Soient L une i^-algèbre de Lie et/un 2-cocycle sur L à valeurs dans K. Soit TL
l'algèbre tensorielle sur le Â-module L et soit /l'idéal de TL engendré par des éléments

de la forme

{\_x,y-\-f{x,yyi xeLm,yeLn.

Définition. Uf(L) TL/I est l'algèbre/-enveloppante de L.
Cette définition a un sens car /possède bien deux composantes /0 et Ii9 les éléments

qui engendrent / étant homogènes (en Z2-graduation).
Cas particuliers

l)/=0
U0(L)= U(L) est l'algèbre enveloppante de L. Si de plus [, ] =0, U(L) est l'algèbre

symétrique SL de L.
2)/=0etL1 0

U(L) est l'algèbre enveloppante de l'algèbre de Lie «classique» Lo. Voir par
exemple Bourbaki [2], § 2.

3) L1=0
Uf(L0) est Valgèbre /-enveloppante de Sridharan [12]. Cohn [7] l'a aussi introduite

sous le nom d'algèbre de Birkhoff-Witt.
4) Lo 0

[?] 0 car \LuL^cL0. /est une forme bilinéaire symétrique. Posons Q(x)

if(x, x) (supposons 2 inversible dans K). Uf(L) est alors l'algèbre de Clifford Cq^)
de Lx associée à la forme quadratique Q. Pour plus de détails sur ces algèbres de

Clifford, on pourra consulter par exemple Bourbaki [1], § 9.

Remarquons que dans le cas 3) la Z2-graduation est triviale, mais pas dans le cas

4).
Soit rjf l'application canonique TL-+TLJL nf induit par restriction un homo-

morphisme de AT-modules if:L-*Uf(L) et

if(L) engendre Uf(L) mais if n'est pas injectif en général. Chevalley [6], p. 230,

ex. 12, donne un exemple où L-*CQ(L) n'est pas injectif et Cartier [4] (voir également

Bourbaki [2], § 2, exercice 9) un exemple où L-+ U(L) dans le cas classique
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(L1=0) n'est pas injectif. Nous donnerons plus tard des conditions suffisantes pour
que if soit injectif.

Uf(L) résout un problème d'application universelle. Soient A une ^-algèbre, L
une ^-algèbre de Lie et/un 2-cocycle sur L à valeurs dans K.

Définition (Voir [12]). Un homomorphisme de ^-modules \i\L^>A sera appelé
un f-homomorphisme si

Exemple. A Uf(L). if est un/-homomorphisme de L dans £//(£).

Proposition 3. (caractérisation universelle des algèbres Uf(L)). Soient L une
AT-algèbre de Lie et/un 2-cocycle sur L à valeurs dans K. Pour toute algèbre A et pour
tout/-homomorphisme fi:L-+A il existe un unique homomorphisme de X-algèbres
ft: Uf(L)-+A tel que le diagramme

soit commutatif.
Démonstration, jj, induit un homomorphisme d'algèbres TL->A (Prop. 2) qui est

nul sur /.
Cette proposition contient comme cas particuliers, la caractérisation universelle

des algèbres enveloppantes d'algèbres de Lie et des algèbres de Clifford.

Algèbre/-enveloppante d'un produit d'algèbres de Lie

Soient L et V! deux ^-algèbres de Lie. Le ^-module L L@L' est une X-algèbre
de Lie si l'on pose

[(x, y), (x\ /)] ([x, x'], [y, /]) (x, y)eL ® L", (x', y')eL ® L"

Définition. L est le produit des AT-algèbres de Lie L' et V! et on écrit L L x V!.

Soient L et L" deux K-algèbres de Lie et L LxL' leur produit. Si/' est un
2-cocycle sur L à valeurs dans K et si/" est un 2-cocycle sur L" à valeurs dans K, la
forme bilinéaire/sur L définie par

/((*, y), (*', ^0) /'(*, *') + /"(y> /) (x, y)eU x L", (x', y')eL x L"

est un 2-cocycle sur L à valeurs dans K. On écrira parfois simplement/=/'+/*.
L'application canonique x\->(x, 0) de L'dans L induit un/'-homomorphisme de

L' dans *//(£). D'après la proposition 3, il existe donc un homomorphisme de

^-algèbres <p:Ur(L')-*Uf(L). Pour les mêmes raisons, il existe un homomorphisme

il/:Ur(U)-+Uf(L). L'application bilinéaire (u, v) \-+(p(u)-\l/(v) de Ur(L')xUr(U)
dans Uf(L) induit alors un homomorphisme de .^-modules
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0:Ur(i:)®Ur(L")-+Uf(L)
On a 6(u®v) (p(u)'\l/(v). Utilisant le fait que les images de q> et de \jj commutent

dans Uf(L), on démontre aisément que 0 est un homomorphisme de A^-algèbres.

Proposition 4. 6: Ur{L)®Ur> (£!)-+Uf(L) est un isomorphisme de /C-algèbres.

Ur(L)®Ur(U) s Ur+r(L x L")

Démonstration ([5] p. 36 pour les algèbres de Clifford, voir également [2] § 2).
Construisons un homomorphisme en sens inverse

X : Uf (L) -* Ur (L') ® £//w (L").

L'application Ao définie par (x,y) \->ir(x)®l + l®ir(y)9 xeL, yeL' est un
/-homomorphisme de L dans Ur(L)®Uf»(L"). Xo induit alors l'homomorphisme
cherché X. On a X(if(x,y)) X0(x,y). Comme 6(ir(x)(g)l) (p(ir(x))'il/(l) if(x),
(x est identifié à son image dans L), on a

De façon analogue A°0(l®//"(^))= l®//"(j),
Les éléments /r(x)®l, xeL' et 1®//«00, yE^' engendrent Ur(L)®Ur{Lf).

X°0 est donc l'identité sur Ur(L)®Ur(L").
On voit de même que 6°X est l'identité sur Uf(L).

Remarque. if(x,y) correspond à if>(x)®l + l®if»(y) par l'isomorphisme 9. Si

if est une application injective, ir et if» doivent donc être également injectives. Nous
utiliserons cette propriété par la suite. L'inverse est faux en général.

Citons quelques cas particuliers de la proposition 4 :

1) U(L x L") U(IL)®U(L')
2) S{îl®Lf) SIl®SLf
3) CQ (L 0 L') CQ, {L) ® CQ~ (L% Q Qf + Q".

Dans les cas 2) et 3) les algèbres de Lie ont une multiplication triviale.
Notons que si L[ L'[ Q, le produit tensoriel JJf\L^)®Uf"{L'^) se réduit

à un produit tensoriel d'algèbres non-graduées. Mais si Lq Lq 0, le produit
CQ,(Li)®CQ»(Li) reste un produit tensoriel d'algèbres Z2-graduées.

Le iT-module L (L0, Lt) est isomorphe à Lo©/^. Sous quelles conditions Uf(L)
se décomposera-t-elle en un produit tensoriel Uf,(L0)®CQ(Li)l

Pour obtenir une structure d'algèbre de Clifford sur Ll9 il faut que [Ll5 Lt~\ =0.
Lo et Lx possèdent alors une structure d'algèbre de Lie. L est le produit de ces deux

algèbres de Lie si ces deux algèbres commutent, [Lo, L^\ =0. En résumé, il faut donc
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que [L, L1]=0. Soit maintenant / un 2-cocycle sur L. Nous savons que/est une
somme/' +/" où/' est la restriction de/à Lo et/" la restriction de/à A-/' est un
2-cocycle sur L0.f" est un 2-cocycle sur Ll9 c'est-à-dire simplement une forme bi-
linéaire symétrique. Si 2 est inversible dans K, nous pouvons associer une forme
quadratique à/". Nous avons alors le corollaire suivant de la.proposition 4:

Corollaire. Supposons que 2 soit inversible dans K. Soient L (L0, Lt) une
ÂT-algèbre de Lie et/un 2-cocycle sur L à valeurs dans K. Si [L, L{\ 0, alors Uf(L)
Uf^LQ^Cg^i) où/'=/|Lo et Q est la forme quadratique associée à/"=/|Ll.

Pour /=0 et [L, £] 0, on obtient en particulier SL^SL0® aLx où SLo est

l'algèbre symétrique classique de Lo et aLx l'algèbre extérieure de Lx.

3. Algèbres filtrées

Définition. Une filtration d'une AT-algèbre A=(A0, At) est une famille de sous-
modules {FlA}ieZ du ^-module A telle que:

1) FoA K'lA(c-h-d.FoA0 K'lA,FoAi=0)
2) FXA Opour i <0
3) F,y4 cFjApomi <j
4) U^M=^
5) F.AFjAczF^jA ieZJeZ.
Un homomorphisme d'algèbres filtrées/: A->B est un homomorphisme d'algèbres

télquef(FlA)cFlB9ieZ.
Si A et B sont deux algèbres filtrées, Fp(A®B) lm( ® FlA®FJB-^A®B)

définit une filtration sur le produit tensoriel A®B. i+j p

Exemples. FtTL=®TkL définit une filtration sur TL et FtSL=®SkL une
k<i k<i

filtration sur SL. La projection canonique n:TL->SL est alors un homomorphisme
d'algèbres filtrées.

Algèbre graduée associée à une algèbre filtrée
A toute algèbre filtrée A, il est possible d'associer une algèbre positivement

graduée EA=®ElA. Par définition ElA FlA/Fl_lA. Soit n^F^-^E'A la pro-

jection canonique. La multiplication de EA est définie par 7il(x)'nJ(y) nl+J(x'y),
xeFtA, yeFjA. On vérifie facilement que EA est positivement graduée.
Un homomorphisme d'algèbres filtrées f.A^B induit un homomorphisme des

algèbres graduées associées Ef.EA-^EB (Elf:ElA^ElB).
Proposition 5. Soit f:A~+B un homomorphisme d'algèbres filtrées.
Si Ef:EA-*EB est un isomorphisme, alors/est un isomorphisme.
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Démonstration. Le résultat s'établit par induction à l'aide du lemme des cinq:

0 -> Fi_1 A -» FtA -* ÉA -* 0

Q-+Fi_1B-+FiB-*EiB->0

Proposition 6. Les applications canoniques q>1 : A-*A ®5 et <p2 ' B-*A®B définies

par x \->x®\, xeA et y \-+l®y9 yeB induisent un épimorphisme d'algèbres

q>:EA®EB-*E{A®B).

Remarque. EA®EB est un produit tensoriel Z2-gradué.
Démonstration. L'homomorphisme <p1:A-+Â®B est un homomorphisme

d'algèbres filtrées. (px induit donc un homomorphisme E(px:EA-*E{A®B). De façon

analogue, q>2 induit un homomorphisme E(p2:EB-*E{A®B). Les images de E(px et
de Ecp2 commutent dans E(A®B). Il existe donc un homomorphisme d'algèbres

cp:EA®EB-*E(A®B) tel que (p(u®v) E(p1(u)-E(p2(v),ueEA,veEB. cp est un
épimorphisme car la filtration de A®B est induite par les filtrations de A et B.

4. Généralisation du théorème de Poincaré-Birkhoff-Witt

Filtration des algèbres/-enveloppantes

Soient L (L0, Lt) une ^-algèbre de Lie et/un 2-cocycle sur L à valeurs dans K.

FtTL=® TkL définit une filtration sur l'algèbre tensorielle TL du ^-module L.

Soit {FiUf(L)}ieZ la filtration de Uf(L) induite par l'application canonique

rjf:TL->TLlI=Uf(L),

et soit EUf(L) l'algèbre graduée associée.

EiUf(L) FiUf(L)IFi_1Uf(L)

Appelons n{ la projection FiUf{L)-^EiUf{L). Comme if(L) engendre Uf(L)9
n1if(L) engendre EUf(L).

GÉNÉRALISATION DU THÉORÈME DE PoiNCARÉ-BlRKHOFF-WlTT

Proposition 7. EUf(L) est une algèbre commutative.
Démonstration. Nous savons que pour xeLm, yeLn

Le terme de gauche appartient à F2 Uf(L), le terme de droite à Fx Uf(L). On a

donc n2\}f{x)9 ï/(>;)Î=0, c'est-à-dire

n1 if(x)'7ti if(y) (- \)mnn1 i^y)-^ if(x).
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D'où la proposition car ntif(L) engendre EUf(L).
t]f : TL-+ Uf(L) est un homomorphisme d'algèbres filtrées. rjf induit par conséquent

un homomorphisme Enf:ETL-*EUf{L) des algèbres graduées associées. Comme
ETL est canoniquement isomorphe à TL et comme EUf(L) est commutative (Prop.
7), Erjf induit un homomorphisme \j/f:SL-±ETJf(L) (Prop. 2), SL est l'algèbre
symétrique de L. On vérifie aisément que \\ff est un épimorphisme. Nous voulons
maintenant montrer que sous certaines conditions \j/f est un isomorphisme.
Introduisons tout d'abord quelques notations.

Soit M=(M0, Mj) un sous-module du ^-module L qui soit la somme directe d'une
famille de J^-modules monogènes

Mo= 0 K*zx Mi= ® K-zx.

Si zx est d'ordre fini, on notera cet ordre ex. On notera I le degré en Z2-graduation
de zx. Nous pouvons supposer Ao et At totalement ordonnés. Soit A la somme
ordinale Ao-\-A1. Rappelons que dans cette somme, un élément de Ao est toujours
plus petit qu'un élément de At. Un ^-module libre M est un exemple d'une somme
directe de modules monogènes. (zx)ÀeX est alors une base de M.

Appelons F^TL le module ®TkL®TnM. Un élément de degré n de F™TL

appartient à TnM et peut s'écrire Y,^nzm®zn2®'"®zn^ ^ie^' Nous dirons qu'un

monôme zx^®--®zkr®zXr+x®-'®zkneTnM est ordonné si A1<-"<Ar<Ar+1<---<
Àn9 XteA0 pour \<i<r et ÀleAl pour r+l<i<n.

Notons {x,y} l'élément x®y-(- \)mny®x-[x,y\-f(x, y)-l,xeLm, yeLn de

TL. I est l'idéal de TL engendré par les éléments {x9 y}, xeL,yeL. Nous appelerons

/„ le X-module engendré additivement par les éléments de la forme P®{x, y}®Q de

FnTL et JnM le i^-module engendré par les éléments P®{x, y}®Q de FfTL.
Lemme 1. Supposons que 2 soit inversible dans K. Tout élément de F^TL peut se

mettre modulo InM sous la forme

I>;iz>ll®.--®z;ln + /~1, ÀteA
x

les monômes zki®'~®zXn étant ordonnés. Les coefficients ax sont définis modulo le

p.g.c.d. de eAl, eXn et y"'1 qui appartient à Fn_iTL est défini de façon univoque
modulo In-.l.

Démonstration. Nous savons qu'un élément de degré n de FnMTL peut s'écrire

m® ***®zMn' ^e^- Modulo /WM on a, pour un monôme de degré n,

on pourra ainsi inverser zM et zx. La correction appartient à Fn_1 TL. Si

u on a
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modulo 1^. Puisque 2 est inversible, on peut écrire

P®zx®zx®Q $P® [zA, zA] ® Q + \f (zA, zx)P®Q

modulo 1%*. Le terme de droite appartient àFn_iTL. Nous appeleronscette opération
une réduction par rapport à zA. Un monôme zMl®---®zMn peut donc être ordonné par
une suite d'inversions et de réductions. On démontrera par induction sur le nombre

d'opérations (inversions et réductions) que la correction totale modulo ln_1 est

indépendante de l'ordre des opérations.
Soit P®zv®zfl®zx®Q un monôme de degré n et soit j le nombre d'opérations.

Supposons v>ju>A. Traitons tout d'abord le cas v /z, n>À, fieAr On peut réduire

par rapport à z^ ou échanger zM et zA. On obtient dans chaque cas un monôme avecy— 1

opérations. Par induction, la suite des opérations ne changera rien à la correction
modulo /„_!• Les deux expressions ainsi obtenues se ramènent modulo 1^ à des

formes qui sont égales modulo In^v En effet, on a d'une part

modulo /nM. D'autre-part

P®zfl®zfl®zx®Q
(-lfP®zfl®zx®zfl®Q + P®z/l®[zfi,zx]®Q + f(zfi,zx)P®z

l® [>„, zA] ® Q + / {?„ zx)P®zfi®Q
x

x® [>„, zJ ® Q + y (z^ zfl)P®zx®Q + P®z^® [z^, zA]

^, zx)P® zM ® Q + (- \)lP ® [zM, zA] ® zM ® Q +
A7

modulo /nM.

Mais/(zM, zA) + (-l)x/(^, zA) 0. C'est évident si 1=1, et si 1 0, /(zM, zA) 0

car/(L0, L1) 0. On obtient donc finalement

M, zj ® e + y (zM, zM)

+ p®zfl® [>„, zA] ® g + - ix
modulo /nM. La différence des deux expressions ainsi obtenues pour P®zfl®zll
vaut modulo In^.1

[z,, zj] ® e +
+ 1/ ([>„, zJ, zA)F (g) Ô - / (z,, [Z,, zj)P (g) Q.

Mais cette différence est nulle d'après l'identité de Jacobi et le fait que/ soit un
2-cocycle.
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Le cas v>[i, ju A, fieAx se traite de la même façon. Dans le cas v /x A, veAu
c'est-à-dire dans le cas d'un monôme P®zx®zx®zk®Q, deux réductions modulo
JrtM sont possibles,

iP ® [zA, zA] ® zA ® g + 1/ (zA, zA)P ® zA ® Q ou

On voit que ces deux expressions sont égales modulo In_t en utilisant l'identité
[|>a^a],^] 0.

Nous pouvons maintenant supposer v>n>l. Dans ce cas, nous pouvons tout
d'abord échanger zv et zM ou zM et zA. De nouveau, par induction, la suite des opérations
ne changera rien à la correction modulo In_v Les deux expressions ainsi obtenues se

ramènent modulo /nM à la forme commune P®zx®zfl®zY®Q et on vérifie que les

corrections sont égales modulo Jn_x. Les calculs sont du même type que ceux faits
ci-dessus.

Pour un monôme P®zll®zx®Q®zp®zv®R, n>X et p>v, il faut également
distinguer plusieurs cas. Si ju A, XeAï et p> v, on peut réduire par rapport à zA ou
échanger zp et zv. Si ju A et p v, AeAl9 peAl9 on peut réduire par rapport à zA ou
par rapport à zv. Si finalement ju>X et p> v, on peut échanger zM et zA ou zp et zv.
Dans tous les cas, on se ramène à une forme commune et on vérifie que les corrections
sont égales modulo In_x.

Lemme 2. Supposons que 2 soit inversible dans K. Si K est un anneau principal
ou si L est un Â'-module libre, InFkTL Ik pour tout entier k.

Démonstration 1) K est un anneau principal.
Il est trivial que IkaIc\FkTL. Soit y un élément de InFkTL. y appartient à un

sous-module /„, n>k de /. Montrons que si n>k, y appartient à In_x. Par définition
de 4» y Peut s^ mettre sous la forme

y ZPj® {xj, yj} ®Qj, P3® {*„ yj}®QjEFnTL.
j

Dans cette somme n'apparaissent qu'un nombre fini d'éléments de L. Soit M le

^-module engendré par ces éléments. Puisque l'anneau K est principal, M est somme
directe de modules monogènes. Si on applique le lemme 1 à la somme

j
Qp on trouve une correction yn~x égale à zéro et si on l'applique à y, une correction
yn~l égale à y. Comme cette correction est déterminée univoquement modulo In_u
y appartient à In_1.

2) L est un ^-module libre.
Nous pouvons choisir M=L et appliquer le lemme 1 comme dans le cas 1).

Théorème 1. Supposons que 2 soit inversible dans K. Si K est un anneau principal
ou si le K-module L (L0, Lx) est libre, \l/f:SL-+EUf(L) est un isomorphisme.



126 MAX-ALBERT KNUS

Démonstration. D'après le lemme 2, le terme de plus haut degré de tout élément de

/ appartient au noyau de l'homomorphisme canonique TL->SL.

Remarque. Le théorème 1 et les lemmes qui le préparent sont dus à Witt [13]
(voir aussi Lazard [9]) pour les algèbres de Lie classiques sur un anneau principal.
Lorsque le À-module L est libre, une autre démonstration classique (celle donnée en
particulier par Bourbaki [2], § 2 No 7) pourrait être reprise sous certaines modifications

pour les algèbres/-enveloppantes Z2-graduées. Cela a été fait par Ross [10]
lorsque le cocycle/est nul. La présence ducocycle/ne compliquerait pas beaucoup
la démonstration de Ross.

Le théorème 1 possède un certain nombre de corollaires. Nous supposons une
fois pour toutes que 2 est inversible dans À.

Corollaire 1. Si À est un anneau principal ou si L est un À-module libre,
l'application canonique if:L-+Uf(L) est injective et K=K- lUf(L)

Dorénavant, nous identifierons L et if(L).

Corollaire 2. Si (zÀ)XeA est une base du À-module L, les monômes ordonnés

zAl zAn, XneA, de Uf(L), forment une base du À-module Uf(L).
Démonstration. Rappelons qu'un monôme zAl...zAr-zAr + 1...zAn est dit ordonné si

kl<-<Xr<kr+l<-<Àn, À^Aq pour \<i<r et kieA1 pour r+l</<«. Soit An

l'ensemble des suites croissantes de n éléments de A du type décrit ci-dessus et soit W
le sous-module de TL qui a pour base (zAl®zA2® --®zXn), {ku À2, kn)eAn. On voit
facilement que West isomorphe à SnL et que la restriction de Erjj- à West un isomor-
phisme de W sur un supplémentaire de Fn_1 Uf(L) dans Fn Uf(L) (voir [2], § 2, 7.).

l®zA2<g)---®zAJ zA/zA2...zAn. D'ôule corollaire.

Ces deux corollaires s'appliquent en particulier aux algèbres de Clifford. Voir
Bourbaki [1], § 9, pour une autre démonstration du corollaire 2 pour les algèbres de

Clifford.
Le théorème 1 et le corollaire 1 peuvent être généralisés. Signalons tout d'abord

que ces résultats sont vrais si À est seulement de Dedekind. Ils sont dus à Cartier [4]

pour les algèbres enveloppantes classiques. Sa démonstration se copie pour les

algèbres /-enveloppantes Z2-graduées.
Cartier utilise en particulier la proposition suivante. Si K est un anneau de

Dedekind et si p est un idéal premier de K, l'anneau Jocal Kp est un anneau principal.
Le lemme 2 est alors localement valable. On montre alors qu'il est également valable

pour K.
Nous aurons besoin plus loin d'une autre généralisation. Le À-module L n'est

plus supposé libre, mais projectif.

Définition. Un À-module Z2-gradué L=(L0, Lt) est ditprojectif si les À-modules

Lo et Lx sont projectifs.
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Comme dans le cas «classique», L est prqjectif si et seulement si L est facteur
direct d'un i£-module libre.

Corollaire 4. Supposons que le Z-module L soit projectif. if:L-*Uf{L) est
alors injectif et K^K- luf(Ly

Démonstration. Il existe un ^-module M tel que F=L®M soit un ^-module libre.
Si M est muni de la structure d'algèbre de Lie triviale, F possède une structure
d'algèbre de Lie, F=Lx M. Soit /le 2-cocycle sur F identique à/sur L et nul sur M.
On sait que (Prop. 4)

Uf(F)^Uf(L)®U0(M)=Uf(L)®SM.

On en conclut tout d'abord que K^K- lUf(D Pu^s Que '/ est injectif car if est injectif
(voir la remarque suivant la proposition 4). On convient alors d'identifier L et if(L).

Corollaire 5. Si L est un ^-module projectif, ij/f:SL^EUf(L) est un isomor-
phisme.

Démonstration. Nous construisons un homomorphisme (p en direction opposée.
Les notations sont celles du corollaire 4.

w|->w®l, ueEUf(L)9 définit un homomorphisme EUf(L)-+EUf(L)®SM.
D'après la proposition 6, nous savons qu'il existe un homomorphisme d'algèbres
EUf(L)®SM-+E(Uf(L)®SM) (on convient d'identifier ESM et SM).

L'isomorphisme Uf(F)^ Uf{L)®SM est un isomorphisme d'algèbres filtrées car
la filtration de Uf(F) correspond au produit tensoriel des filtrations de Uf(L) et de

SM. Par conséquent E(Uf(L)®SM)^EUf(F). D'après le théorème 1, E Uf(F)^SF
et SF^SL®SM d'après la proposition 4. Nous avons donc construit un
homomorphisme EUf{L)-^SL®SM. A l'aide de l'homomorphisme SM-+K égal
à zéro sur S1 M, i>0 et égal à l'identité sur K, on obtient l'homomorphisme
cherché (p.

Indiquons encore un résultat appartenant au même cercle d'idées, mais qui ne sera

pas utilisé dans la suite.

Corollaire 6. Si le i£-module est projectif, le i^-module Uf(L) est également
projectif.

Démonstration. Les notations sont celles des lemmes précédents. Le X-module

Uf(F)^Uf(L)®SM est libre d'après le corollaire 3. D'autre part le ^-module SM
peut être décomposé en une somme directe SM=K®SM où SM= ®SlM. On a

i>0
donc Uf(F)^Uf(L)®Uf(L)®SM. Uf(L) est facteur direct d'un module libre, donc
projectif.

Signalons de nouveau que ces résultats s'appliquent aux algèbres enveloppantes
classiques et aux algèbres de Clifford.
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5. Classification de certaines algèbres filtrées

Nous supposerons dans ce paragraphe que 2 est inversible dans K. Nous ne ferons
aucune autre hypothèse sur K.

Soit M=(M0,Ml) un ^C-module projectif et soit S M l'algèbre symétrique de M.
Soit SH(SM) la catégorie dont les objets sont les couples (A, \j/A) où A=(A0, At)

est une algèbre filtrée et il/A:SM-+EA un isomorphisme d'algèbres graduées. Un
morphisme0:(v4, il/A)-+(B, \}/B) est un homomorphisme d'algèbres filtrées 0.A-+B tel

que le diagramme

soit commutatif. Cette construction est due à Sridharan [12].

Proposition 8. Les morphismes de %{SM) sont des isomorphismes d'algèbres
filtrées.

Démonstration. E6 \j/B\l/A~1 est un isomorphisme. Le résultat suit alors de la
proposition 5.

Corollaire. Tous les morphismes de 31 (SM) sont des isomorphismes.

Soit L une structure d'algèbre de Lie sur M et soit/un 2-cocycle sur L à valeurs
dans K. (Uf(L),\l/f) appartient à %{SM) d'après le corollaire 5 du théorème 1.

Inversement, nous allons montrer que tout objet de %{SM) est isomorphe à un
couple (Uf(L), if/j) où L est une structure d'algèbre de Lie sur M et /un 2-cocycle.
Plus précisément:

Théorème 2. ([12] pour les algèbres/-enveloppantes sans Z2-graduation).
Les classes d'objets isomorphes dans 3l(SM) sont en correspondance biunivoque

avec les couples (L,f) où L est une structure d'algèbre de Lie sur M et feH2(L, K).
SifefeH2(L, K), alors (Uf(L), if/j) est un objet dans la classe déterminée par (L,f).

Définition. Les cocycles/(jc, y) ctf'(x, y) sont dits cohomologues s'il existe une
forme linéaire h:L-*K telle que

/(x, y) - /'(x, y) /i([x, y]), xeL,yeL.
H2(L, K) est l'ensemble des classes de 2-cocycles cohomologues.

Démonstration. Soit (A, \I/A) un objet de 31(5M). Construisons un couple (L,f).
Soit (nA)i:FiA-+FiAIFi.1A la f-ème projection canonique. Posons

(<t>A)i \ljAl{nA)i:FiA-*SiM. La suite de ^-modules

• 0 <^li
est exacte pour tout i> 1.
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{F, A9FlA}^F2A mais (<^)2 {F, A,FtA} [(0^ F, A, (^ Ft AJ 0 car SM est
commutative. Par conséquent lFtA9 F1AjczFiA. FtA est donc une algèbre de Lie

pour l'opération [, ]. F0A K- \A est un idéal dans cette algèbre de Lie. Le ^-module
Fx A/FqA est isomorphe à M. M possède donc une structure d'algèbre de Lie L et cette
structure est déterminée univoquement. Soit [, ] le produit de L. Nous avons maintenant

une suite exacte d'algèbres de Lie

0 >K-lA >FlAi^iL >0

K- \A est isomorphe à S0 M, donc à K. FtA est donc une extension de L par K. Le
.K-module L M) est projectif. Il existe par conséquent un homomorphisme de

^-modules t^L-^F^A tel que ((j)A)1ot soit l'identité de L. (&i)i([*(*), 'OOI -'([*>
0, donc [/(*), t(y)}-t([x9y})eK-lA9 xeL,yeL.

Kl** y]) + /(*> y)' U ^L, yeL

/est un 2-cocycle.
Soit t' un second homomorphisme de A>modules L-^F1A tel que {4>A)i°tf soit

l'identité de L et soit/' le 2-cocycle correspondant, t — t' définit une forme linéaire

h\L-*Kït
f (x9 y) - f'(x9 y) h([x, y]) xeL, yeL

/et/' sont cohomologues.
Tout couple (£,/) est image d'un couple (A, \\ja). En effet la construction ci-

dessus appliquée à (Uf(L)9 \j/f) où/e/, redonne le couple (L,f). t est alors l'application

if.
Montrons maintenant que cette correspondance est biunivoque. Supposons qu'à

(A,\l/A) corresponde (£,/). Pour tout /e/ (Uf(L),\j/f) a également pour image

(L,/). Ces deux objets sont isomorphes. Pour le voir, il suffit de contruire un mor-
phisme i:(A, \fjA)-^{Uf(L), \j/f) d'après le corollaire de la proposition 8.

Pour tout/e/, il existe une section t\L->FxA (c'est-à-dire un homomorphisme de

^-modules tel que (<^)i°f IdL) telle que

En effet, soit/'e/un 2-cocycle correspondant à une section connue t'\L^F1A.
/et/' sont cohomologues, il existe donc une forme linéaire h:L->K telle que

f(x,y)-f'{x,y) H\x>y\) xeL,yeL

t t' + h est la section cherchée.

Comme F1AczA, t est un /-homomorphisme de L dans A. t induit donc un

homomorphisme t: Uf(L)-+A d'après la proposition 3. t est un homomorphisme

d'algèbres filtrées (Uf (L) étant filtrée de façon habituelle) car i\L\L-^F1A.
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Pour prouver que t est le morphisme cherché, il faut montrer que le diagramme

SM

est commutatif. Il suffit d'établir la commutativité sur E1.

Le diagramme
L(cz UfiL^—^F.U^Q-UF.A
I 4*1 \(*a)i
L(c SL) -ï7->£1 Uf(L)-rEl A

est commutatif.
Donc

Ei°il/f (nA)l°t surL (f fsurL)
Par conséquent

t°^fl car ij/A l (n^ (<f>A)x

car (<t>A\ o t IdL

Corollaire 1. (^(L), i/^y) et (l/y (L), ^/f) sont isomorphes si et seulement si/et
/' sont cohomologues.

Remarque. Uf(L) et Uf(L) peuvent être isomorphes sans que/et/' soient

cohomologues.
Nous savons que les algèbres de Clifford sont des cas particuliers des algèbres

/-enveloppantes Uf(L). Reprenons le théorème 2 dans ce cas particulier.

Corollaire 2. Une algèbre Z2-graduée filtrée dont l'algèbre graduée associée est

isomorphe à l'algèbre symétrique SM d'un module projectif Z2-gradué M=(M0, Mx)
tel que Mo=0, est isomorphe à une algèbre de Clifford CQ(M) sur M. La forme
quadratique est univoquement déterminée.

Démonstration. Q est univoquement déterminée car la structure d'algèbre de Lie
L sur M est triviale. Deux cocycles sont alors cohomologues si et seulement s'ils sont

égaux.
Remarque. L'algèbre symétrique SM est simplement l'algèbre extérieure de Mt.

Roy [11] démontre un résultat analogue au corollaire 2. Il ne suppose pas que l'algèbre
A est Z2-graduée. Il lui est alors nécessaire de supposer que Mt est libre.

Soit A (A0, At) une algèbre filtrée telle que EA^SM, M un ^-module projectif.
Nous savons que A^Uf(L) où L est une structure d'algèbre de Lie sur M et /un
2-eocycle sur L. Sous certaines conditions sur L, l'algèbre Uf(L) se réduit au produit
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tensoriel d'une algèbre /-enveloppante sur Lo par une algèbre de Clifford sur Lx
(Prop. 4, corollaire). Ces conditions peuvent être remplacées par des conditions sur la
filtration de A.

Corollaire 3. Soit A=(A0,A1) une algèbre filtrée dont l'algèbre graduée
associée est isomorphe à l'algèbre symétrique d'un module projectif M.

Si [(F^X, FiAjcK'lA9 A est isomorphe au produit tensoriel Ur(L0)®CQ(M1)
où Lo est une structure d'algèbre de Lie sur Mo,/' un 2-cocycle sur Lo et Q une forme
quadratique sur Ml.f est déterminée à un cobord près et Q est déterminée univo-
quement.

Démonstration. Dans la démonstration du théorème 2, on utilise une application
t\L-+FxA telle que

['(*)> t(y)l '([*» y]) + f(x> y)'±A xeL, yeL
et telle que (<t>A)i°t IdL.

(Les notations sont celles du théorème 2).

Soit xeLx. t(x)e(FlA)l donc {t(x), t(y)}czK-lA par hypothèse.
Par conséquent (^)i ° * ([x, yj) =0 car Ker(0A)1 =^T* lA, donc [x, y] 0. Comme

cela est vrai pour tout xeLl9 tout yeL, on a [Lu L]=0. Le résultat suit alors du
corollaire de la proposition 4.
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