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The Index of a Tangent 2-Field')

by EMERY THOMAS (Berkeley)
Dedicated to Professor H. Hopf

1. Introduction

Let M be a connected, smooth, Riemannian manifold, and let k be a positive integer.
By a k-field on M we mean an ordered set of k orthonormal tangent vector fields.
We say that M has a k-field with finite singularities if there is a k-field on the manifold
obtained from M by removing a finite number of points. Let (X,..., X;) be such a
k-field. Choose a triangulation of M such that each singular point of the k-field lies in
the interior of a distinct m-simplex (m=dim M). Let p be a singular point, say in the
interior of the closed simplex . Suppose now that M is oriented. The tangent bundle
of M restricted to o is then isomorphic to the trivial bundle ¢ x R™, by an orientation
preserving isomorphism, and this isomorphism can be chosen to be compatible with
the standard Riemannian metric on ¢ x R™. Thus for each point ¢ in o—{p} we
can regard (X;(q),..., X,(¢)) as an orthonormal k-frame in R™ - thatis, as a pointin
the Stiefel manifold V,, ,. Since M is oriented the boundary of o, 4, is then an
oriented (m— 1)-sphere. By the above remarks one sees that the k-field restricted to
¢ givesamap ¢—V,, , and the homotopy class of this map is then an element of the
homotopy group 7,,_;(V,. ). We define this homotopy class to be the index of the
k-field at the singular point p (see HopF [12], [13]), and write this Index (X, ..., X),.
Now let {p,, ..., p,} be the set of singular points of the k-field. We define

Index (X3, ..., X;) =) Index (Xy, ..., X3),, € Tpe sy (V1) -

One can show that this definition of the index agrees with the definition one
obtains via obstruction theory. (See § 29-34 in [24].) This implies that the definition
is independent of the choices made above; in particular it is independent of the orien-
tation of M. Also, from obstruction theory it follows that Index(Xj,..., X;)=0 iff
there is a k-field without singularities on M which coincides with (Xi, ..., X;) on the
(m—2)-skeleton of M. (See 34.2 of [24].)

A l-field X on M is simply a field of unit tangent vectors. Since V,, ; =(m—1)-
sphere and =,,_(V,, 1)=Z, we may regard Index (X) as an integer. The celebrated
theorem of H. HoprF [12] states that if X is a 1-field with finite singularities on a closed

ifold2
manifold?) M, then Index (X) = x (M),
where (M) denotes the Euler characteristic of M.

1) Research supported by the National Science Foundation.
2) By using local coefficients one can definetheindex on a non-orientable manifold (See [24,§39.5].)
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Let (X;, X,) be a 2-field with finite singularities on a closed oriented manifold M
of dim m, with m>4. The index of (X;, X,) is then an element of the homotopy
group 7,,_{(V,, 2)- This group depends on the parity of m as is shown below (see [8]):

g7 i m e
U T\ Z @Z, if m  even.

Thus if m is odd we can regard Index (X,, X,) as an integer mod 2. If m is even we

write
Index (Xl’ Xz) = (IndexO(Xl, Xz), IndeXZ(Xl, Xz)),

where Index, (X;, X,)eZ, Index, (X, X,)e Z,. It is easily shown (see § 7 below) that
Index,(X;, X,)=x(M). In a previous paper [27] we have proved: If m=2 or 3 mod 4,
and if (X1, X,) is a 2-field with finite singularities, then

Index,(X;, X,) =0, if m=2(4),
Index (Xl’ X2)=0, if m53(4).

The purpose of this paper is to consider 2-fields on m-manifolds where m=0, 1 mod 4.

The case of 4-manifolds has been completely solved by F. HirzeBrucH and H.
Hopr [11]. For the rest of the section let M denote a closed oriented manifold of
dim m, with m>4. Let w,Me H'(M; Z,) denote the i'"" Stiefel-Whitney class of M,
i>1. Recall (see § 39.1 in [24]) that if m is odd then M has a 2-field with finite singu-
larities iff w,,_; M =0, while if m is even then M has such a 2-field iff 6*w,,_, M =0.
(Here 6* denotes the Bockstein coboundary from mod 2 coefficients to integer
coefficients.) MASSeEy [17] has shown that if m is even then one always has
0*w,,_, M =0. Thus an orientable manifold of even dimension always has a 2-field
with finite singularities.

Define

x"M =) dim H;(M; Z,).

If y* M is an even integer (as will be the case, for example, when m is odd), we define 3)
an integer mod 2 by
2, M=%y "Mmod?2.

We will prove the following result. (Recall that M is called a spin manifold if w, M =0.)

THEOREM 1.1. Let M be a closed spin manifold of dim 4k+1, k>0, such that
Wwa M =0. If (Xy, X,) is any 2-field with finite singularities, then

Index (Xl’ Xz) = zzM.

As an immediate consequence we have

3) See KERVAIRE, Math. Ann. 131 (1956) 220.
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COROLLARY 1.2. Let M be a closed spin manifold of dim 4k+1, k>0. Then M
has a 2-field without singularities if, and only if,

W4kM=0, 22M=0.

In case M is a n-manifold, this is given as part of Theorem 2 in [6].

The case m=0 mod 4 requires an additional hypothesis. Let M be a manifold of
even dimension, say 2q. We call M symplectic if, for all classes ue H4(M; Z,),
u?=0. We show below that if M is a spin manifold of dim 8k +4, k>0, then M is
symplectic. Also, we will show that if M is symplectic then w, M =0, and so the
Euler characteristic of M is an even integer. Therefore, by Poincaré duality, it follows
that y* M is also even and so £, M is defined. We will prove

THEOREM 1.3. Let M be a closed spin manifold of dim m, where m=0 mod 4 and
m>4. If m=0 mod 8 assume that M is symplectic. Then for any 2-field (X;, X,) with

finite singularities. Index, (X,, X,) = #, M.
Suppose that dim M =4k, k>0; set d;=dim H;(M; Z,). By Poincaré¢ duality,

2k—-1

x(M) = Z, (— 1) 2d; + dyy,

2k-1

X+M= Z 2di+d2k‘
i=0

Therefore, 2k—1

M= (20— (= 0)d) + 2,

and so if y(M) is even
22 M = (3x(M)) mod 2.
In particular
22 M =0 if, and only if, x(M)=0mod 4.

As a consequence we have

CoOROLLARY 1.4. Let M be a closed spin manifold as in 1.3. Then M has a 2-field
without singularities if, and only if, y(M)=0.

Recall that a manifold M of even dimension 2q is said to have an almost-complex
structure if there is a complex g-plane bundle w over M such that the tangent bundle
of M is equivalent to the real bundle underlying w. Now this complex bundle w has
a complex 1-field with finite singularities, and the index of this 1-field is simply
x(M) [19, pp. 61, 65]. Moreover the complex 1-field determines a (real) 2-field on M
also with finite singularities and for this 2-field (X;, X,), Index,(X;, X,)=bw, M,
beZ,. Thus by 1.3 and the computation given above for §, M, we obtain

COROLLARY 1.5. Let M be a closed spin manifold as in 1.3. If M admits an almost-
complex structure, then the Euler characteristic of M is divisible by 4.
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This argument was originally used by HopF [13] to show that S* and S® do not
admit almost-complex structures.

Let M be an m-manifold and let V=) [_, V; denote the Wu class [29]. That is, if
ue H" (M ; Z,) then

Sq'(u) =u-V;,

where Sq’ denotes the mod 2 Steenrod operator of degree i, i> 1. The Theorem of Wu
is that

k
WkMzzsqu;‘_i, k_>_1.
i=0

Thus if m is even, say m=2gq,
wy,M=Sq'V,=V].

But by definition, M is symplectic iff V, =0, and so if M is symplectic then w, , M =0,
as asserted above. Also, by an easy extension of [16, Theorem III], one shows that if
M is a spin m-manifold, then V,;,,=0, k>0 (since Sq* H™~%(M;Z,)=0). There-
fore if m=4 mod 8, M is symplectic as remarked above.

2. Proof of 1.1 and 1.3.

Throughout this section M will denote a closed oriented m-manifold, with m=0
or 1 mod 4, m>4. We will show in § 7 that if (X;, X,) is a 2-field on M with isolated
singularities, then the index is independent of the particular choice of 2-field. We define
a mod 2 integer, I, M, by setting

Index2 (Xl’ Xz), if m = 0(4)
I2 = .
Index (X;, X,), if m=1(4).

Let T denote the Thom complex of the tangent bundle of M and Ue H™(T; Z)
the Thom class (see [25], [19]). H*(T) can be regarded as a module over H*(M)
(integer or mod 2 coefficients). By THoM [25] the map H'(M)—H™"!(T), given by
x—U-x, is an isomorphism for all i>0. Thus to determine the mod 2 integer I, M
it suffices to compute U-(I, M u), where ue H"(M;Z,) is the generator. For this we
will need a secondary cohomology operation.

Recall that one has the following ADEM relation [2], when m=0, 1 mod 4.

*) Sq”Sq™"! +8q"Sq" =Sq"*".
If u is an integral cohomology class of dim<m+1, then

Sq'u=0, Sq""'u=0.
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Also, if m is even we can write

Sq™ ! =8q'Sq" "% = (6*Sq™ *)mod 2.
Thus we have the following two non-stable relations:

m =0(4): Sq*(8*Sq""?) =0,

m=1(4):Sq*Sq" "' =0, (1)

where in each case the relation obtains on integral classes of dim <m.

Let 2, denote a (non-stable) secondary cohomology operation associated with
each of the above relations, m=0,1 mod 4. (See [1] and [7].) Thus if X is a space and
if ue H(X; Z), j<m, then Q,, is defined on u, provided that

6*Sq" ?u=0 if m=0(4), Sq" 'u=0 if m=1(4).

Furthermore
Q,(u) isacosetin H™'(X;Z,)
of the subgroup
SQ*H™i"%(X;2), if m=0(4),
SQ*H™ "3 (X;Z,), if m=1(4).
We will prove

THEOREM 2.2. Let M be a closed spin manifold of dim m, where m=0 or 1 mod 4
and m>4. If m is odd assume that w,,_, M =0, while if m even assume that w,, M =0.
Then the operation Q,, is defined on the Thom class U and the operation can be chosen so
that

Q,(U)=U-(IMp).
with zero indeterminacy.

This will be proved in § 7, following the method of MAHOWALD-PETERSON [15].
(Theorem 2.2 is similar to Theorem 3.3.2 in [15], but the details of our proof will be
somewhat different as we will use the point of view of § 5 in [27]).

To prove 1.1 and 1.3 we need to compute the operation Q,,. This is done as follows.
Assume that the tangent bundle of M has been given a Riemannian metric; let E£
denote the set of tangent vectors of length <1, and let E! denote the set of vectors of
length 1. Then T=E/E! (= the space obtained from E by collapsing E' to a point).
Moreover the collapsing map induces an isomorphism

H*(E/E',») ~ H*(E, E"),

and so we regard the Thom class U equally well as a class in H™(E, E'; Z). MILNOR
shows in [19] that there is an isomorphism

e:H*(E, E') ~ H*(M?, M, —diagonal),
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where M? =M x M. Let j: M*>=(M?, M?—diagonal) denote the inclusion, and set
U=j*e(U)eH™"(M?*; Z).

Now the isomorphism e is induced by maps and so commutes with all cohomology
operations. Thus ©,, is defined on U. Assume that w, M =0. Then

Sq* H" " *(M) =0, Sq*H>""*(M?*)=0,

and so ©,, is defined with zero indeterminacy on U and U. By naturality,
Q,(U)=j*eQ, (V).

But j* is injective (as remarked in [3]) and so

Q,(U)=0 if,and onlyif, @,(U)=0.
Since a mod 2 integer is unchanged by squaring, we obtain from 2.2,

PROPOSITION 2.3. Let M be a manifold as in 2.2. Then
Q, (V)= LMu®peH*"(M*; Z,).

To compute Q,,(U) we reduce U mod 2. Consider the following non-stable rela-
tions (see (*)):
m=0(4):Sq*(6*Sq" %) +Sq"Sq' =0,

m=1(4):5¢>Sq™ "' + Sq'(Sq™ "' Sq") =0, 2.4)

where in each case the relation obtains on mod 2 classes of dim < m. Let 3, denote a
(non-stable) operation associated with each relation in 2.4.

Let M be a manifold as in 2.2. Regarding U as a class mod 2, &, is defined on U,
and with zero indeterminacy when m=1. When m=0, Q,, has Sq"H"(M?) as in-
determinacy subgroup. But if M is symplectic them Sq™H™(M?*)=0, and so §,,(U)
will again be defined with zero indeterminacy. By considering the universal examples
for Q and @ it is easily shown that, with all these hypotheses on M, ,, can be chosen

so that 3,,(U) = 2,(V), 2.5)

where Q,, denotes the specific choice of operation given in 2.2.
Thus, as our final step, we compute 3,,(U). Let ¢: H*(M *)— H*(M ?) denote the
isomorphism induced by interchanging the factors of M 2.

THEOREM 2.6. Let M be an m-manifold as in 2.2. If m is even assume that M is
symplectic. Then there is a mod 2 class Ae H™(M ?) such that

*

a) Umod2=A+14,

b Autd=2,Mu®u),
c) @, is defined on A.
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The proof will be given in § 4.
Proof of 1.1 and 1.3. By 2.3 and 2.5,

3,(U)=LMudp).

Now &, is a non-stable operation of degree m. By 2.6 c) { is defined on 4 and thus
also on t A. Therefore, by [7, cf. 2. 3],

GA+tA)=0(A)+Q(tA)+AUtA.
Since ¢ is the identity on H>™(M?), we have by naturality,
Q,.(4)=18,(4)=0,(tA4).
Consequently, by 2.6 a) and b),
0, (U)=0,(A+1A)=AVtA=2,Mudp).
But 3,,(U)=1, M(u® p), and so
LM=}M,

which completes the proof of 1.1 and 1.3.

3. Mod 2 vector spaces

Most of the work in proving Theorem 2.6 will come in the case m even. This
section develops some simple facts about mod 2 vector spaces needed for this case.
The proof of 2.6 is then given in the next section.

Let V be a finite-dimensional mod 2 vector space. An endomorphism ¢ of V is
called an involution if t*=1. An endomorphism d is called a boundary if d*=0.
Suppose that ¥ has an involution ¢ and a boundary d. We say that the pair (¢, d) is
regular if

td=dt, 3.1
and
there are subspaces 4, B in V such that
dB=0 and V=A@QtAPIdADPtdA®PBDtB. 3.2)
Define

A=t+1:V-oV.

LEMMA 3.3. Let ¢t be an involution on V and d a boundary such that the pair (t, d)
is regular. Then

¢ (Ker d) n(Ker 4) = 4(Ker d).
Proof. Because V'is a Z,-module, 42 =0. Also by 3.1, Ad=d A4, and so
4A(Kerd)c KerdnKer 4.
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We prove 3.3 by showing that the opposite inclusion holds. Let ve V be an element
such that

By 3.2 we can write v as
v=a,+ta,+day+tda,+ by +1tb,,
where the a’s are in 4 and the &’s in B. Since dv=0 and d B=0, we must have

dal == dtaz = 0.
Furthermore

Av=(a; +a,)+(ta, +ta,)+(day+da,)+(tda; + tda,)
+(by + by)+(tb, +1tb,).

Since 4v =0 this means, by 3.2, that

a; =da,, da3=da4, b1=b2‘
Therefore
v=A4(a, +day+b,;), and d(a,+da;+b,)=0,

which completes the proof.

Let X be a space whose total singular integral homology module is finitely
generated. Let H*(X) denote the mod 2 cohomology algebra of X. By the Kiinneth
theorem for cohomology,

H*(X*)~ H*(X) @ H*(X),

where X?=Xx X.

Let r: H*(X *)—> H*(X ?) denote the involution induced by transposing the factors
of X2. We will call an element ve H*(X ?) symmetric if Av=0, where 4=t+1. Let
a=(ay,..., «,) be a basis for H*(X 2). An element ve H*(X 2) will be called symplectic
with respect to « if

v=> ¢ ;o ®uq,
s J
where all ¢;;=0, 1<i<q.

LEMMA 3.4. Let ve H*(X ?) be a symmetric class. If v is symplectic with respect to
one basis, then it is so with respect to any basis.

Proof. With respect to a second basis for H*(X), the matrix C=(c;;) becomes a
matrix C’ =(c;{;), which is obtained from C by symmetric row and column operations
[27, p. 188]. Thus C’ is also symmetric. Moreover each such pair of row and column
operations leaves unchanged the diagonal elements of C (since c¢;;=0 and we are
working over Z,). Thus C’ remains symplectic, i.e., ¢;;=0, 1<i<q. This completes
the proof.

The main result of the section is the following.
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PROPOSITION 3.5. Let ve H*"(X?), n>0. Suppose that
4v=0, Sq'v=0
and that v is symplectic. Then there is a class u such that
Au=v, Sq'u=0.

Proof. Set d=Sq'. Then d?>=0 and td=dt. We choose a basis ay,..., a, for
H*(X) so that for some integer r,

do;=a,,;,, 1<i<r,
da;=0, 2r+1<j<gqg.

Define W< H*(X?) to be the subspace spanned by all basis elements o; ® ;» with
i#j. Notice that the class v is in W because v is symplectic.

Now set s=g—2r, and let b;=a,,,,;, 1<i<s, where r and ¢ are given above.
Define 4, Bc W to be the subspaces spanned by the basis elements shown below:

A{; @, do;®a;, 1 <i<j<r;
,®doj, 1<i<j<r;
u®b;,1<i<r,1<j<s.}.
B:{da;®do;j,1<i<j<r;
do;®b;,1<i<r,1<j<s;
b;®b;,1<i<j<s.}.
Then, as is readily seen,

* W=A®tA®B®tB, dB=0.

For any subspace Uc H*(X?), set U'=Un H'(X?), i>0. Notice that the classes
do;® o;, o; ® da; do not occur in 427, for any i, p>0. Thus

dA*?ndtA*? =0,
and so
**) dW?P = dA*P@ dtA*?, p>0.

Suppose now that the class v, given in 3.5, has degree 2n, n>0. We set

V=w"@®dw?".
By (*) and (**),
V=A"@®tA" ®B*" @tB>"®dA*"® dtA*".

Consequently the pair (¢, d) is regular on V. By hypothesis 4v=0, dv=0, and so by
3.3 there is a class ue W 2" such that

Adu=v, du=Sq'u=0.
This completes the proof.
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4. Proof of Theorem 2.6

We retain the notation of §§2, 3. Let M be an m-manifold and let ay,..., oy
be a basis for H*(M) (mod 2 coefficients). Define y; ; to be the value of o; Ua; on the
fundamental mod 2 homology class [M]. In particular y;;=0 if deg a;+deg a;#m;
and y;;=y;;, 1<i, j<q. Let Y be the gx g matrix (y;;) and set C=Y ~'. Then by
MILNOR [19],

*) U=) cjo0®a,
".,

where C=(c;;). Since Y is symmetric so is C.

Notice that g =x* M. By the hypotheses of 2.6, g is even, say g=2d. We choose
the basis {o;} in a special way. Suppose first that m is odd, say m =2k +1. Let ay, ..., o,
be an arbitrary basis for the graded vector space

i‘;o H'(M).

By Poincaré duality, H'(M ) and H™ ‘(M) are orthogonally paired by the cup-product.
Consequently we can choose a basis fy,..., f, for

k
’ZO Hm—l(M)
such that if deg «;+deg B;=m, then

aiUBj—_:éijﬂ.

Take as total basis for H*(M) the elements {o;,..., %4, By, ..., B1}. Then the matrix ¥
has the form shown below:

s '1W
0 -
Y = 1
0. 0
Ll J
Thus C=Y and so by (*) we obtain
d
U=) ;B +B:®;. 4.1)
i=1

Suppose on the other hand that m is even, say m=2k+2. Let {ay,..., &}, {fy, ...,
,..., B} be bases for the respective vector spaces

k

3 ), T M),

i=
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chosen as above so that
oV ﬁj = 0; il

if deg a;+deg f;=m. Assume, as in 2.6, that M is symplectic. Then (see [28]) one
can choose a basis Xy, ..., X;, Jq,..., s for H**1(M) such that

xUx;=0, yovy;=0, xUy;=26;pu.
Now by definition
2(r+s)=q=2d.
Set
Uyi=Xis  Bpyi=yi, 1<Li<s.

Then {ay,..., a4 Bs,..., B} is a basis for H*(M) yielding as above

d
U= Zai®ﬂi+ﬁ;®“i- (4.2)
i=1
For m even or odd we set
d
A= Z o; ® B;.
i=1

Then by (4.1) and (4.2), U=A4 +1t A, which proves 2.6 i). Now
(ai ®ﬂl)u(ﬂ]®a1) = (aiﬁj®ﬁiaj) =

unless i=j. For if dega;+deg f;=m, then by definition o;U f;=06;;u, while if
deg o;+deg B;# m then one of the pairs «; 8;, f;«; has degree greater than m and so
is zero. Thus

d
AUtA = Z,“"ﬁi@a"ﬂi: dp®pu) = M(uQ®upu),

since 2d=q=y"* M. Therefore the class A4 satisfies 2.6 ii).
To prove 2.6 iii) we need the following lemma.

LEMMA 4.3. Let M be an orientable manifold of dim m, m>1. Let ue H'(M),
veH*(M), where r+s=m and 0<r<s.
a) Suppose that m=0mod 4. If r<s, then

0*Sq" ?(u ®v) =0.
If r=s, then
*Sq" *(u®@v)=6*Sq *u®v: +u*®8*Sq" 2.
b) Suppose that m is odd. If r<s—1, then
Sq" ' (u®v)=0.
If r=s-1, then
SQ" '(u®v)=u*®Sq*" v.
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c) Suppose that m is odd and that wy M =0. Then
Sq"~'Sq' H™"(M?*) = 0.

The proof of (a) and (b) follows at once by the Cartan formula, using the fact
that H™(M;Z)~Z. Thus

O*H™ ' (M)=Sq'H" (M) =0.

We leave the details of the proof to the reader. For (c) suppose that m =2k + 1. Then
by ADEM [2],
Sqm—lsql — SqZkSql — SqZSqZk—l 1+ SSqZk“
— SqZ SqZk—l + SSql SqZk
where ¢=0 or 1. But
SqZHZm—Z(M2)=0, SquZm—-l(MZ):(),

since w; M =w, M =0. Therefore Sq" ' Sq' H™(M ?)=0, as claimed, which completes
the proof of the lemma.
Proof of 2.6 ii1)). We must show that the operation Q,, is defined on the class 4.

Case [: m=1 mod 4. By 2.4 this means we must show that
Sq" !Sq'4=0, Sq"'4=0.

The first assertion follows by 4.3 (¢). To prove the second assertion, we assume that
the basis ay,..., a; is ordered so that

dega; <dego;y;, 1<i<qg-1.

Suppose that o, ..., o, are precisely those basis elements with degree (m—1)/2. Then
by 4.3 (b),

Sq" A= i_a? ®Sq* ' B,
i=j
where s — 1 =(m—1)/2. Consequently,
Sq" 'tA=1Sq" 4= _i'qu_lﬂi@)ociz.
i=j
Now U=A+1tA, and by § 2 we know that Sq" ! U=0, which means that
Sq" A +Sq" " 'tA =0.

But, as is seen by the above calculation, Sq" "' 4 and Sq™~'tA occur in disjoint
summands of the bi-graded vector space H*(M)® H*(M). Namely, Sq" "' 4 has
bi-degree (m—1, m), while Sq™ ' ¢4 has bi-degree (m, m—1). Thus Sq" ' 4 =0, as
claimed, which completes the proof of case I.
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Case I1: m=0 mod 4. We will show that the class 4 can be replaced by a class B,
which will continue to satisfy 2.6 i) and ii) and for which

6*Sq""?B=0, Sq'B=0.

Thus the class B will satisfy 2.6 iii) (see 2.4) and so the proof of 2.6 will be completed.

By 4.1 (a) we see that 6*Sq™~ 2 H™(M ?)=0; for if the classes u and v in 4.1 (a)
have degree m/2, then u? =v2=0, since M is symplectic by hypothesis.

In general it is not necessarily true that Sq* 4 =0. Thus we must find a new class B,
satisfying 2.6 i) and ii), such that Sq' B=0.

As usual we set 4=1+1. Then 4 U=0, and so by 3.5 there is a class Be H™(M ?)
such that

AB=U, Sq'B=0.

Set D=B— A; since 4 A="U it follows that 4 D=0. Moreover,
ButB=(A+D)u(tA+D)=AuvtA+AuD+DutA+DuD.

Since M is symplectic, an easy argument shows that M ? is too; therefore Du D =0.
In a moment we show that 4 U D=DutA. This then implies that

BUtB=AUtA=4MUu®pu).

Thus the class B satisfies 2.6 (i)-(iii), and so the proof of 2.6 is complete.

We are left with showing that 4 U D =D u t 4. Bycommutativity of the cup-product,
AU D=Du A. Furthermore, since ¢ is the identity on H>™(M ?), we have by natural-
ity of the cup-product,

AuD=DUA=t(DuAd)=tDUtA.

But tD=D since AD=0. Thus, AuD=DUtA as claimed.

5. The relative Thom complex

Let £ be an oriented n-plane bundle over a space B and suppose that ¢ has a
Riemannian metric [19, p. 21]. Denote by E, E' the respective subspaces of the total
space of ¢ consisting of those vectors of norm <1 and those of norm 1. (In order to
avoid confusion we may sometimes write these spaces as E(¢), E'(£).) We define the
Thom complex T(¢) to be E/E".

Let B’ be a space and f: B’ B a map. Let f*¢ denote the bundle over B’ induced
from & by f. Give f* ¢ the induced Riemannian metric. Then the natural bundle map
fif*E—¢& induces a map

T(f):T(f*&)~>T(2).
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Let B” be a second space and g:B"— B’ a map. Then, up to homeomorphism,

T(g*f*)=T(f9)*?).
T(f)T()=T(fg).
Suppose that A4 is a subspace of B. Then the inclusion 4 =B induces an inclusion
T(¢)<=T (&), where &, =¢|A. Thus, if f:(B’, A')—(B, A) is a map of pairs, we obtain
a map of pairs

(5.1)

T(f):(T(f*8), T(f* )~ (T(6), T(C)-

Now let Ue H"(E, E') denote the Thom class of the bundle ¢ and let p: E—»B
denote the projection. Thom shows that the homomorphism

Ht(B) N Hn—l i(E, El),
given by x—p*xu U, is an isomorphism (i>0). Since the pair (E, E') enjoys the
homotopy-extension property (e.g., we can regard E as the mapping cylinder of
p|E"), the collapsing map (E, E')—(T(¢),x) induces an isomorphism in cohomology.
Following THOM we define ; nti
5 Vg H (B) ~ H (T (£), %)

to be the composite isomorphism. We prove?)

LEMMA 5.2. Let A be a closed subspace of B. Set Tg=T (&), T,=T(&,). Then there
is a homomorphism Vs 4 HI(B, A) > HHa (T, T,)

with the following properties.
a) The following diagram is commutative:

L%k %
.- — H*(B, A)—i—>Hq(B)—£——>Hq(A)———6——>H"+1(B, A)—>--

l!/'/B,A l'/jB lwA l‘/’B,A
ok .k «
o HO (T, Ty) D HOM(Ty) S HO () S HY 7 (T3, T)

Here i*, j* denote homomorphisms induced by inclusions and 6 is the coboundary
operator.

b) Y, 4 is an isomorphism for all q.

c) Let f:(B’, A')~(B, A) be a map of pairs. Then the following diagram commutes:

H%(B, A) T e (B, A")
i l/’B, A l lpB’, A’

Hq+n(TBa TA)—“_—: Hqun(TB" TA’) .
T(f)

4) The result is well known, but I am unaware of a reference.
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d) Let xe H*(B, A), mod 2 coefficients. Then,
Sq* Vg, 4(x) = Z W, a(Wil L Sq’ x).

itj=k
Proof: Following Spanier we define the relative Thom pair of the bundles (&, &,)
to be the pair (E, E, U E'), where E,=E(&,). Let p':(E, E,)—(B, A) denote the pro-
jection. Notice that if xe H'(B, A), then
p*xu UeH""(E,E,UE"),
and so we obtain a homomorphism
Wy 4:H (B,A)» H""(E,E,UE"), i>0.

If A is empty then Y 4 is simply the isomorphism 5 given above.
Notice that if we collapse £' to a point in the pair (E, E,uU E') we obtain the pair
(T, T,). Thus by the 5-lemma the collapsing map induces an isomorphism

H*(E,E,UE")Y~ H*(T, T,).

We define Y ,: H'(B, A)»H"*'(Tg, T,) to be the composition of Y , with the
isomorphism given above. The properties of 5 , will then follow from the analogous
properties of Y5 4. We proceed to develop the properties of Y .

By SPANIER [23, 5.4.9] we see that there is a coboundary operator

A:H(EE})—» H*'(E,E,UE")

so that the following diagram commutes and has exact rows.

% .* .*

J —>H"I(B) — H(A) —>Hq+1(B A)
e | v 5.

It 3 *
L getr(E, EY) -2 H‘”"(EA,AA)— H*"Y(E,E, uE") L.

(Because E and E, are disk bundles the excision properties required in [23] are easily
seen to be satisfied.) Since Yz and ¥, are isomorphisms, it follows from the 5-lemma
that ¥ 4 is an isomorphism.

Suppose that f:(B’, A')—(B, A). Then one easily sees that f induces a map
f:(Eg,E v Eg)—(E, EUE"), where Ep. =E(f*¢), E. =E(f*¢&,). Thus the follow-
ing diagram commutes:

f*
H(B, A)—————>H(B', 4')
| 5.4 [i.a
H"*"(E,E,UE")——H""(Eg, E,, UE}).

j‘*
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Suppose finally that xe H*(B, A). Then

Sq“ (Y5, 4x) =Sq“(p*xu U)= Y p*Sq'xusSq’ U=

i+j=k

= Y P*Sq'xu(p*w;Eu U)=

itj=k
= ¥ p’*(Sqixuchf)u U= ) lpg,A(Sqixuwjf).
itj=k itj=k

(Here w;£ denotes the j-th Stiefel-Whitney class of ¢, j>0.) The proof of 5.2 now
follows from these properties of ; 4 and the definition of Y5 .

Remark. As indicated in § 2, we sometimes will regard the Thom class U as an
element of H"(T(£),%)—i.e., U=yg(1)-and then we write z(x)=U" x, for xe H'(B).

6. Lifting the Postnikov invariant

We suppose now that all spaces have basepoint (written *), and that all maps pre-
serve basepoints.

Let B, B’ be complexes, and n:B'—B a map. Let we H"(B; J), where J=Z or
Z,, p a prime. Suppose that w#0 but that z*w=0. We regard w as a map B—K(J, n)
and let

ip
QK(J,n)~E—B

denote the principal fibration over Binduced by w. (See [26]). Since n* w =0, there is a
map q:B’— E such that pg=n. That is, we have the following commutative diagram,
where F=QK(J, n):

F

*) ll m=pq
—E

Let ke H*(E, Z,) be a class such that ¢*k =0. In our applications z will be a fiber
map and k will be a Postinikov invariant for 7. However in this section we consider &
in the more general setting given above, and we study the problem of expressing such
a class k in terms of cohomology invariants determined by B.

Suppose that k has degree . We assume that the mod p cohomology morphism n*
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is surjective in degree ¢t and that 1<2n—2. Then there is an element « of the mod p
Steenrod algebra such that

i*k=oa1,

where 1 denotes the fundamental class of Q K(J, n).
For simplicity we now assume that p =2. We will say the class w is realizable if:
(6.1) there is a vector bundle & over B (of dim s, say) such that

w=w,E.

Furthermore, if J=2Z, we assume that w#0 mod 2.
Let 7 and U denote the Thom complex and class of the bundle &. If Y is any space
and g: Y- B a map, we let Ty, Uy denote the Thom complex and class of g*&.
Recall the cohomology operation a given above. We will say that the pair (w, )
is admissible if the following conditions are fulfilled.
(6.2) There is a relation
aSq" =0,

which holds on integral cohomology classes of degree <s.
(6.3) There is a secondary cohomology operation Q associated with relation 6.2 such
that
Q(Ug)=T(n)*M,

where M is a coset in H**'(T) of the indeterminacy subgroup of €.
Remark 1. If nis odd and J=Z, then in 6.1 we regard w, as 6*w,_,, while in 6.2,
we regard Sq" as 6*Sq" .
Remark 2. Recall that for any space X, 2 has indeterminacy subgroup a H*(X; J).
Define k= H*(E) to be the coset of k with respect to the subgroup

Kernel ¢* n Kernel i* n H'(E).
We prove

THEOREM 6.4. Let (w, a) be an admissible pair as defined above. Then there is a
class k' ex and a class me H*(B) such that

UgmeM and Ug-(k' + p*m)eQ(Up).

Before giving the proof we note the following consequence.
Let X be a complex and A: X— B a map. Suppose that #A* w=0. Then there is a
map /: X— E such that pe/=h. By naturality we obtain from 6.4,

COROLLARY 6.5. For any such map I, Uyg*(I*k'+h*m)eQ(Uy).
We precede the proof of 6.4 with some remarks. Consider the following commuta-
tive diagram, with the notation defined below.
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T QK(J,n+s)

Ti i
**) 1,k
Tq// Tp p
Ty——T, = T,22Y% K@, n+5).
Tn

The left hand portion of the diagram is obtained from diagram (*) by taking the Thom
complex of the various bundles induced from £. Commutativity follows from 5.1.
The map p in the above diagram is the principal fibration induced by the cohomology
class yz(w). By 5.2 (c),

(Tp)*¥s(w) =vep*w=0,

and so the map T p lifts to a map f as shown.
Let i denote the fundamental class of QK(J, n+s). At the end of the section we
prove

LEMMA 6.6. There is a class ke H'**(E) such that
*k=ai, Tq*f*k=0.
Moreover, if R denotes the coset in H'**(E) of k with respect to the subgroup

Kernel i* n Kernel (f° T q)* n H'"*(E),
then
f*rc Uz k.
We use 6.6 to prove 6.4.
Proof of Theorem 6.4. Since w=w,¢ it follows from THoM (see 5.2d) that

¥s(w)=Sq" U.

Thus we can regard the map yz(w): Tz— K(J, n+5s) as the composite of the following
maps:

U Sq" 1,

Ty —K(Z,s) =>K(J,n+s),

where 1, denotes the fundamental class of K(Z, s).
Let f: T,— E be the map given in diagram (**). Set f=Tq.f: Ty~ E, and consider
the following commutative diagram, where the notation is explained below:
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QKWJ,n+s)=QK(J,n+s)

"

E———v—»Y

Tl
- p r

—Ty——>K(J,s)
Tn U

I
//
Ty S K (gon + 5).

The map r is the principal fibration with Sq" 1, as classifying map, and j is the fiber
inclusion. Since p is defined to be the fibration with yz(w) as classifying map and since
Y(w)=S8q" U, we may regard p as the fibration induced by U from r. Thus v is simply
the natural map for the induced fibration.

Notice that Y is the universal space for the operation Q. Let we H'**(Y) denote a
representative class for Q, chosen according to the specific choice of Q2 given in 6.3.
Set ko =v*we H'*5(E). Since j*w=u1, we have i*k,=al. Furthermore,

f*koeQ(Tn* U)=Q(Uy).
But by 6.3 there is then a class me H*(B) such that
UmeM and f*ko=Tn*(U-m).
Set ko =ko—p*(U-m).  Then,
*ko=1 ke —1*p*(U-m)=1"ky =ai = i*k,
f¥ko=f*ko —f*p*(U-m)=f*ky — Tn*(U-m) =0.
Consequently, by definition of the coset &, koek. On the other hand k,eQ(p* U)

and so
ko + p*(U- m)eQ(p‘* U).

By 6.6 there is a class k'ex < H*(E) such that

f¥ky=Ugk'.
Therefore, by naturality,
Ug (k' + p*m)eQ(Uy),
since
pf=Tp, Tp*U=Ug, Tp*(Um)=Usp*m.

Thus k" is the desired class and the proof of 6.4 is complete.

We are left with proving 6.6. Before so doing we prove a preliminary result. Let £
be the s-plane bundle over B given in 6.1. Now it is easily seen that the Thom complex
of &|* is simply an s-sphere S°, which we may regard as embedded in Tj. Since the
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fiber map p: E— B maps F to * in B, it follows that T,(T;)=S*< Ty. Furthermore the
map Ypw: Tp— K(J, n+5) can be chosen so that Y,w(S*)=* in K(J, n+s5). Since E
is the fiber space induced by yzw, it follows that S* is embedded in E in a natural
way. Set K=K(J, n+s). Then, p~'(S*)=QK x S*cE, and diagram (**) gives the
commutative diagram shown below, where bold face letters denote maps of pairs.

(T, TF)——€——>(E,QK x §%)

lTp lf)
(7o, §°) = (T3, 5°).

Set g=f|Tr: Tr—>Q2Kx S°. We use the above diagram to prove

LEMMA 6.7. g*(1® 1) mod 2=y (1) mod 2, where i and 1 denote respectively the
fundamental classes for QK and F.

Proof. Let p:(E, F)—(B,*) denote the map of pairs determined by p. Since p has
w as classifying map, we have

(a) d1=-—p*weH"(E, F);
and similarly,
(b) 6(i®1)=—p*Yg.(w)eH"*(E,QK x S°).
Therefore by naturality and the commutative diagram above
(i@ =1*0(1@1)=—1*p*Yygw=— Ty Yp.(w).
By 5.2 (c) and by (a) above,

- T: lﬁB,*(W) == ‘//E,FP*W = WE,F((S l)-
But by 5.2 (), Vg, p(61) =0y (1). Thus, we obtain
S(g*(1®1))=6yr(1) in H"(Tg Tr; J).

By SERRE [21, p. 469], p* w30 mod 2 since (by 6.1) w#0 mod 2. Thus by (a) above
and 5.2 (a),
S:H" "1 (Ty; Z,) > H" (T, Ty; Z,)

is injective and so g*(1® 1) =yx(1) mod 2, as claimed.
Proof of 6.6. Since w=w,¢, it follows by THOM that

Ypw =8q"y(1) =Sq" U.

Let o be the mod 2 Steenrod operation given at the neginning of the section. By 6.2,
«8q"=0 and so ayyw=0. Applying the SERRE exact sequence [21, p. 468] to the
fibration p (see diagram (**)), we see that by exactness there is a class ke H'*5(E)

such Ak
ek dhat *h=ai.
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Furthermore, by using the exact sequence given in § 3 of [26] (with respect to the map
foT,: Ty —E) it is easily shown that k can be chosen so that, in addition, T} f*k =0.
Now the inclusion i:Q K< £ can be factored into the composite
l . 1 &
QK——>QK x S°*——FE,
where / is the natural injection and where j is the inclusion. Since

*k=uai,
it follows that
*hk=a(i®1).

Let k,eH'(E) be the unique class such that
UE. kl =f* &EHt+s(TE) .

We will show that k; ex, which then will complete the proof of 6.6.
Using 5.2 we have:

Upq*ky =Tq*(Ugky)=Tq*f*k=0.
Therefore, g*k,; =0. On the other hand,
Ug-i*ky = Ti*(Ug k) = T*f*k.
But by definition of g and j, /- T;=j-g. Thus '
T'f*hk=g"1"k=g"(2(1®1)),
by the above computation. By 6.7,
g (x(1®1)=ag"(1®1) = ayr(1).
Now the bundle i*p* ¢ is trivial and so by 5.2 (d),
ap (1) = Yp(a1).

Ug- i* k1 = '/’F(i* kx)-

Also, by definition,

Therefore
Yrp(ar—i*k)=0

and so i*k, =a1. Consequently, k, ex, which completes the proof of 6.6.

Remark 3. The theory leading up to 6.4 can be generalized in the following way.
The sinigle cohomology class w can be replaced by a vector of cohomology classes
w=(wy,..., w,), with 7*w,;=0. By making the appropriate changes in 6.1-6.3 one
then can state a more general version of 6.4 so that it includes, for example, Theorem
3.3.2 of [15] as a special case.
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Remark 4. Theorem 6.4 (as well as the generalization suggested above) is a special
case of Theorem 5.9 in [27]. The Thom class U is a “‘generating class” for «, in the
language of § 5 of [27].

7. Proof of 2.2
Let n be an integer greater than three and set
B'=BSO0(n—1),B=BS0(n+1).

For any group G we let BG denote the classifying space for G defined by MILNOR
21]. We denote the various rotation groups by S0(g), g>2.) The inclusion SO(n—1)
=S0(n+1) induces a map n:B'—B. If we regard n as a fiber map, its fiber is the
Stiefel manifold V. .

Let X be a complex. Then a map &: X— B can be regarded as an oriented (n+ 1)-
plane bundle over X. Moreover this bundle has two linearly independent cross-sections
iff the map £ can be factored through B’ via 7.

We construct a Postnikov resolution for the map 7, through dimension n+1, as

shown below. i

K(,n—1)—"7%E

q
V.
B'——B——>K(J, n).
T w
Here

J=2Z,, w=wy, if n even
J=2Z, w=d6*w,_yy, if n odd,

where y denotes the canonical (n+ 1)-plane bundle over B. The map p is the principal
fibration with w as classifying map, and i is the inclusion of the fiber of p into E.

Let F denote the ““fiber” of the map ¢ (in the sense of [9]). By the choice of w, we
see that F is (n—1)-connected and that

nnF—_—Zz or Z@Zz,

according to whether n is even or odd. Let y,e H"(F; Z,) denote the fundamental
class if n is even; for n odd let it denote the cohomology class corresponding to the
homomorphism Z@® Z,—Z, given by projection on the right hand summand.
Let ke H"*(E; Z,) denote the transgression of the class y,. Then (see [10], [26]),

i*k=95q%1,q*k=0,

where 1 denotes the fundamental class of K(J, n—1). Moreover, a simple argument
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using the transgression operator (e.g., see [18]) shows that

0, n even

Kernel i* n Kernel g* n H"* ' (E) = { (7.1)

p*W,+y, n odd.

Let £ be a bundle over a complex X as above, and suppose that £*w=0. Then the

map ¢ lifts to the space E. We define
k(&) =Un*k = H" (X),
n

where the union is over all maps n: X— E such that pn=¢£. It is easily shown (see [14],
[26]) that if n is even then &|X"*! lifts to B’ iff 0k (&), while if n is odd then &/ X"*!
lifts to B’ iff x(£)=0 and 0ek(&). In particular, £|X" lifts to B'.

Furthermore, by a standard argument ([14], [26]), one sees that k(&) is a coset in
H"*1(X) of the subgroup S$"*!(X, &) consisting of all classes of the form

Sq?(u) + uuw, (%),

for allue H" ' (X; J). In particular if Sq?u=uuUw, ¢ for all such u, then k(&) consists
of a single class. We use the theory of § 6 to compute the coset k(&).
At the end of the section we prove

LEMMA 7.2. Let n=—1, or 0 mod 4, n>4. Then the operation Q,,, (see §2) can
be chosen so that
Up (W2 Wa—1) € 2u1 1 (Up)

where Uy denotes the Thom class of n*7y.

By definition, w is realizable as given in 6.1. Furthermore by relation 2.1 and by
7.2 it follows that the pair (w, Sq?) is admissible, in the sense of 6.2 and 6.3. (To
satisfy 6.3 we need only observe that n*: H*(B)— H*(B') is surjective.)

Let Ty, Uy denote the Thom complex and Thom class for the bundle &(=¢&*y).
If S"*1(X, £)=0, then one easily sees that Sq? H?"(Ty; J)=0. Therefore, if £&*w =0,
then Q,,, is defined on Uy with zero indeterminacy.

Notice that by 7.1 x is a coset of 0 if n is even, while if » is odd « is a coset of the
subgroup generated by p*w,,,. Thus by 6.5 and 7.2, we have

THEOREM 7.3. Let & be an oriented (n+1)-plane bundle over X such that

Ew=0, S"I(X,§=0.
Then
Ux‘(k(é) + Wa (E)W,o 1 () + byy 1 Wass (5)) = Q,+1(Uy),
with zero indeterminacy, whereQ,, . , is given in 7.2, where b, ., €Z,, and where b, =0

if n is even.
Proof of 2.2. Take X to be a spin manifold M of dim m=n+1, and take (=,
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its tangent bundle. If n=4s—1, MAssey shows that é*w,,_,7=0. If n=4s, we
assume (as in 2.2) that w, ;7=0. Thus in either case t* w=0 and so 7 restricted to M"
has 2 independent cross-sections — i.e., there is a tangent 2-field on M with isolated
singularities. By Wu [29], S"*'(M, t)=0. Thus the class k(z) is independent of the
particular choice of 2-field. In the language of § 2, k() =(I, M) p and so 2.2 follows

directly from 7.3 since w, M =0, and since we assume (in 2.2) that w, M =0, when m
is even.

Proof of 7.2. We recall the following facts about Thom complexes, due to
ATIYAH [4].

(7.4) (ATiYAH). Let X be a complex and let  be a vector bundle over X. Let ¢ denote
(in general) the trivial line bundle. Then

Th®e)=ZT(n), Uhde)=2U(n),

where X denotes the reduced suspension operator and where T, U denote the appropriate
Thom complex and Thom class. Furthermore, if xe H*(X), then

Z(U(m)-x)=(Z U(n)x.

Let y’ denote the canonical (n—1)-plane bundle over the classifying space B'.
Then

™y =9 @2,
and so by 7.4,
Ty =22T', Up=2U,
where T’, U’ denote the Thom complex and class of y’. Also by 7.4 we have

Up(Wy Wy—1) = EZ(U"szn—l)-
But
22U wyw,_ ) = ZZ(U’-SqZU’),

since Sq2 U’ =U" w,, U'*w,_; =Sq" "' U'=(U")* mod 2. Thus
U (Wa Wp_1) = ZZ(U"SQZ U,
and so 7.2 is simply a special case of the following result.

LEMMA 7.5. Let X be a complex and let ue H™~*(X), m=0 or 1 mod 4. Then Q,,
is defined on X *u and Q,, can be chosen so that

22 (u-Sq*u)eQ, (2% u),

Proof. The proof is similar to that given by MAHOWALD-PETERSON for Theorem
2.2.1 in [15], and so is omitted.
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