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On Finitely Generated Fuchsian Groups!)

by ALBERT MARDEN

We will prove the following two theorems.

THEOREM 1. Let G be a finitely generated Fuchsian group in the unit disk A. Then
a) 2=4/G is a Riemann surface of finite topological type, and b) A is ramified over at
most a finite number of points {p;} of Q. Conversely, if G satisfies a) and b), then G is
finitely generated.

THEOREM 2. G is finitely generated if and only if every fundamental region P has a
finite number of sides.

DEerINITION. A fundamental region P for G is a connected open set in 4 which
satisfies the following conditions.

1. Every point in 4 is equivalent under G to a point in P (= relative closure in 4).

2. No two points in P are equivalent.

3. Each component of the relative boundary of P in 4 is an open Jordan arc or a
Jordan curve and is the union of possibly infinitely many closed Jordan arcs, called
sides (two sides can intersect only at a common end point).

4. The sides of P are arranged in pairs (s;, s;) where (i) S;(s;) =s; for some S;€G,
(i) S;#S f ! for each j#i with at most a finite number of exceptions, (iii) each side of P
appears once and only once in the set {s;, s}}.

Theorem 1 is well known and is fundamental in the theory of Fuchsian groups.
By the use of variational methods it has been proven by AHLFORS [1] (in a more
general form), BErs [2], and EARLE [3]. From a more general point of view it is a
consequence of a theorem of SELBERG [8]. Theorem 2 is also known provided P
satisfies the additional hypotheses that (a) its sides are non-Euclidean line segments,
and (b) only a finite number of images of P under G meet any given compact set in A.
In this form, a proof has recently been given by L. GREENBERG [5]. M. HEINS’ proof
[6] requires that P also be convex (in this paper HEINS also proves Theorem 1). The
first proof of Theorem 1 and of Theorem 2 in the case of Poincaré normal polygons
was given by FENCHEL and NIELSEN [4].

The purpose of this paper is to give direct, elementary proofs of Theorems 1 and 2
which are much shorter than those referred to above, and in the case of Theorem 2,
more general as well. In fact our definition of fundamental region is, in a sense, the
weakest one for which Theorem 2 is true: If P does not satisfy the principal condition 4
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(ii) then Theorem 2 is false in general. Our proofs are purely topological in character
and make use of some elementary properties of surfaces of finite topological type.
We will show that Theorem 1b is a simple consequence of the fact that a cycle in the
exterior of a region which is homologous to a cycle in the interior is homologous to a
cycle on the boundary. And Theorem 2 is a consequence of the fact that if there are
infinitely many mutually disjoint simple closed curves not ~1 on a surface of finite
type, then two of them bound an annular region.

Proof of a). Suppose A4,,..., 4,, generate G and let = denote the projection 4—-Q.
Assuming 0 is not a fixed point of G, denote by [0, 4;(0)] the non-Euclidean line
segment from 0 to A4,(0) (actually any arc will do) and set o; == ([0, 4;(0)]), I <i<m.
We claim that the curves {«;} generate the fundamental group of 2 with origin at
n(0) and consequently that 2 is of finite topological type.

If 7 is a closed curve in  with initial point =(0) there is a lift 7* of 7 in 4 with
initial point 0 and end point 7*(1). We may write t*(1)=B,,B,,, ... B;(0) where each
B, is some A;**. Consider the arc 7'* in 4 from 0 to t*(1) obtained by joining the
non-Euclidean line segments [0, B,(0)], [B,.(0), B,B,-1(0),..., [Bn ... B2(0),
B,, ... B;(0)]; each of these segments projects onto some curve a;°'. Since 7* is
homotopic to 7'*, 7 is homotopic to 7(z'*), that is 7 is homotopic to a product of the «;.

Proof of b). Let 2, be a relatively compact subregion of £ containing all the
curves a; such that each component of 0Q, is a dividing cycle and no component of
Q—Q, is compact. We claim that 4 is not ramified over Q' =Q—Q,,.

Assume to the contrary that £ is ramified of order t>2 over peQ’. Let c, be the
oriented boundary of a disk about p in ', d, a Jordan arc from 7(0) to ¢,, and § the
closed path from 7(0) along 4, to c,, around ¢, once, and back to n(0) along d,. We
may assume that f does not pass through points over which 4 is ramified and inter-
sects the curves «; only a finite number of times.

Let f* denote the lift of § from 0; g* is a Jordan arc but not a closed curve in 4.
We have seen above that f* is homotopic to an arc f'* such that f'=n(f'*) is a
product of curves «;. Consider the closed curve y* =#*#*~! and a relatively compact,
simply connected region K containing y* with n(dK)nc,=¢ (the points n~'(p) are
isolated in 4). Remove from K the at most finite number of points which lie over p
and denote the resulting region by K.

The collection of disjoint simple closed curves which comprise the components of
n"l(cp) in K, form a homology basis for K;. Hence y*, viewed as a singular cycle, is
homologous to a linear combination of these curves. In 2—{p} this implies that
y=n(y*)=p'p"" is homologous to ntc, for some integer n, possibly zero. In other
words the cycle (nt+1) c, in 2—Q,, with nt+1+#0 since £>2, is homologous in
Q—{p} to the cycle ' in Q,. Therefore (nz+ 1) c, must be homologous to a cycle in
0, in contradiction to our choice of Q,.

The proof of the converse of Theorem 1 is standard and will be omitted.
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Proof of Theorem 2. Let P be a fundamental region. Since G is generated by the
transformations which pair the sides of P, the sufficiency is immediate.

Assume then that G is finitely generated but that P has an infinite number of sides.
P is not compact in 4 for otherwise there would exist a sequence of points {z,} on
distinct sides s; of P which have a limit pe 4 such that the sequence of conjugate points
{z;} on the conjugate sides s; also has a limit p’e 4. If N is a neighborhood of p and N’
of p’ then for infinitely many distinct S;eG, S;(N')n N#¢, in violation of the dis-
continuity of G. In addition P is simply connected for otherwise there would be a
relatively compact component of 4— P which would contain an image of P.

The hypotheses also imply that S;(P) is adjacent to P along s;. Hence if j#i, S;(P)
cannot intersect s; at an interior point unless S;=S;.

In the remainder of the proof all arcs drawn in a region R = P will be understood
to be Jordan arcs which are contained in R except for their end points. In addition
we can choose, and will only deal with, an infinite sequence of pairs {(s;, s;)} such that
S,-;téSf1 for all j#1.

CASE 1. There exists an arc 7 in P which divides P into two regions P,, P, with the
following property. There exists an infinite number of points {z;} in P,, each z; an
interior point of a side of P, but no two points on the same side, such that the conjugate
points {z;} are in P,.

Drawarcs y, in P, from z, to z, and 7} in P, from z} to z}. y, divides P, into two
regions at least one of which, say P;,, contains infinitely many points z; in its boundary,
and y; divides P, into two regions one of which, say P, ,, contains infinitely many points
conjugate to those z; in P,,. Eliminate all z; which are not in P;; and which do not
have their conjugates in P,,. Draw the arcs y, in P,, from z; to z, and y; in P,, from
z, to z3, etc. Thus we can find two infinite sequences of mutually disjoint arcs {y;} in
P, and {y;} in P, such that y,is an arcfrom z, ; _, to z, ;and y; an arc from z}; to zj;_,.

In addition by a suitable choice of subsequence we may assume that either
property A holds for all y;, y; or property 4 holds for noy;, y;in theinfinitesequence {y,} :

PROPERTY A. y; separates y; from 7 or y; separates y; from (i # j)

To prove this apply the following procedure inductively. Assume that by relabel-
ing, all the arcs y;, 0<j<n, have property A with respect to all the arcs in {y;},
1 <i< oo, but none of the arcs d;, 0 <j<m, has property 4 with respect to any of the
arcs in {y;, 0x}, 1 <i<oo, 0<k<m (m, n=0). Consider y,,,. If infinitely many arcs
in {y;} have property A with respect to y,. (the arcs y;, 0<i<n, do), eliminate those
arcs in {y;} which do not, relabel, and move on to y,. ,. If this is not the case, eliminate
the finite number of arcs in {y;} which do have property 4 with respect to y,.,, set
Om+1=7a+1, relabel, and move on to the new ;.

Consider the sequence of mutually disjoint simple closed curves {a;=n(y,L ;)}
in Q. No o, can be homotopic to 1 in Q—{p;}. For otherwise y;u S, ;(y;) is a simple
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closed curve through z,;_, and z,; and hence S, ;_; =S, ;, which is impossible. There-
fore since Q—{p;} has finite topological type, there exist three of the curves «;, say
a5, &5, a3, such that a, and a, bound an annular region K in Q —{p,} and «; separates
the contours of K. We can also choose K so that n(t)n K=4¢.

The arcs y,, p, divide P, into three regions. If two of these regions lie over K then
y5 is contained in one of them, but not in the other, so that y, satisfies property A4
with only one of the arcs y,, y, in contradiction to our selection of {y;}. We conclude
that y; and y, bound a region R in P, which lies over K and contains y;.

In P,, ¥} and y, bound one or two regions which lie over K. One of these regions
contains y3 and therefore y5 bounds a region R; with, say, »; which lies over
K(n(R})=K). Wecandraw an arc ¢’ in R] from zj to one of z}, z5, say to z}, suchthat
0’ does not separate y; from »; in R;. In R draw an arc ¢ from z, to z; which does
not otherwise intersect y5.

In the annular region K; = K which is bounded by a;, and a5, the simple closed
curve f=n(duUd’) does not separate a, and a;. Hence ff is homotopic to 1 in K|
which we have seen above, is impossible.

CasE 2. No such 7 exists. In this case draw an arc y, from z, to zj. There exist
infinitely many points {z;} such that y, does not separate z; from z; in P. Draw y,
from z, to z3, which is disjoint from y,. Again there are infinitely many points {z;} such
that neither y, nor y, separates z; from z;. Thus we can find an infinite sequence of
disjoint arcs {y,;} such that y; runs from z; to z}.

The simple closed curves a; =7(y,) are mutually disjoint and hence, as above, there
are three of them, say «a,, a5, a5, such that ¢, and a, bound an annular region X in
Q—{p;} and a; separates the boundary components of K. y; and y, divide P into
three regions, one or two of which lie over K and of these, one contains y;. Hence one
of the pairs (y4, 72), (71> ¥3)s (Y2, ¥3), say (71, 72), bounds a subregion R of P which
lies over K. Interchange z, and zj, if necessary so that a, is homologous to «,. Draw
an arc § in R from z} to zj; then a, is homotopic to n(5) &, n(6)'. But then the arc
S, (67') in 4—P from z, must terminate at z, which implies that S,=S,, a contra-
diction.

Remark. If P also satisfies hypothesis (b) a much simpler proof can be given. The
sequence {z,} can be chosen so that {n(z,)} approaches an ideal boundary component
I of 2. By using the fact that if « is a simple closed curve surrounding 7 then n ™" (o)
divides P into a finite number of components, the arcs y,, y; of Cases 1 and 2 can be
chosen directly so that the curves a; approach I in such a way that «; bounds an
annular region 4, in Q—{p;} with a;,, that doesn’t contain «; for j>i+1. It follows
that the pairs (7, ¥;+1), (¥i> ¥i+1) (just the former in Case 2) each bound a region in P
which lies over A4;, since «;,, cannot be connected to a; without crossing «;,;. The
proof is now completed as above.
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