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Beitrâge zur Riemannschen Géométrie im Grossen

von Ernest Dubois, Zurich

Einleitung

Die im Titel genannten ,,Beitrâge" betreffen hauptsâchlich I. das Problem der
Fortsetzbarkeit einer gegebenen «-dimensionalen Riemannschen Mannigfaltigkeit zu
einer grôsseren, ebenfalls n-dimensionalen, Riemannschen Mannigfaltigkeit, II. die

Einf iihrbarkeit einer lokaleuklidischen (d.h. im Kleinen mit der euklidischen Géométrie

isometrischen) Riemannschen Metrik auf einer topologisch gegebenen
Mannigfaltigkeit, sowie III. naheliegende Problème, die von Zusammenhângen zwischen I.
und IL handeln (Fortsetzbarkeit oder Nichtfortsetzbarkeit gegebener lokaleuklidischer
Mannigfaltigkeiten).

Der Begriff der Fortsetzung einer Riemannschen Mannigfaltigkeit wurde zum er-
sten Mal in der Arbeit von Hopf und Rinow [5] eingefUhrt und hat die folgende ge-

naue Bedeutung: Eine w-dimensionale Riemannsche Mannigfaltigkeit Mn heisst eine

Fortsetzung der «-dimensionalen Riemannschen Mannigfaltigkeit M'n, wenn es ein

echtes Teilgebiet G von Mn gibt, auf welches M'n eineindeutig und lângentreu abge-

bildet werden kann. Damit ist auch der Sinn der Aussage erklârt, dass eine Riemannsche

Mannigfaltigkeit fortsetzbar oder, dass sie nicht fortsetzbar ist. Die Fortsetzbarkeit

und Nichtfortsetzbarkeit sind innere Eigenschaften; d.h. diejenige welche M'
zukommt, kommt auch jeder Mannigfaltigkeit M" zu, auf welche M' eineindeutig
und lângentreu abgebildet werden kann.

Die Untersuchung des Begriffes der „Fortsetzbarkeit" ist motiviert durch den, bei

vielen Problemen der ,,Differentialgeometrie im Grossen" in natûrlicher Weise auf-

tretenden Wunsch, es nicht nur mit ,,Teilen" Riemannscher Mannigfaltigkeiten,
sondera mit ,,ganzen" Riemannschen Mannigfaltigkeiten zu tun zu haben; dabei dûrfte
die nâchstliegende Prâzisierung des Begriffes ,,ganz" gerade der Begriff ,,nicht-fort-
setzbar" sein. Jedoch hat es sich - besonders im Interesse der Erzielung schôner Re-

sultate - als zweckmâssig erwiesen, die Klasse der ,,nichtfortsetzbaren" Riemannschen

Mannigfaltigkeiten noch weiter zu der Klasse der ,,vollstândigen" Mannigfaltigkeiten
einzuschrânken. Dièse sind, wie Hopf und Rinow gezeigt haben, durch jede einzelne

der folgenden vier Eigenschaften charakterisiert:
1. Aufjedem geodâtischen Strahl lâsst sich von dessen Anfangspunkt aus eine Strecke

beliebiger Lange abtragen.
2. Jede divergente Linie ist unendlich lang.
3. Jede Cauchysche Fundamentalfolge von Punkten ist konvergent.
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4. Jede beschrânkte Menge ist kompakt.
In den vollstàndigen Mannigfaltigkeiten gilt insbesondere der, viele Untersuchun-

gen wesentlich erleichternde Satz, dass zwischen zwei Punkten immer (wenigstens)
eine kiirzeste Verbindung existiert.

Geschlossene Riemannsche Mannigfaltigkeiten sind ubrigens immer nicht nur
nichtfortsetzbar, sondern sogar vollstàndig.

Trotz der Vorziige der vollstàndigen Mannigfaltigkeiten diirften aber auch die

nichtfortsetzbaren selbstândiges Interesse und nàhere Untersuchung verdienen.

Es ist trivial, dass jede vollstândige Mannigfaltigkeit nicht-fortsetzbar ist; aber
nicht jede nichtfortsetzbare Mannigfaltigkeit ist vollstàndig; dies haben Hopf und
Rinow durch Konstruktion zweidimensionaler Beispiele gezeigt. S. B. Myers hat be-

merkt [7], dass analoge Beispiele fUr jede Dimension >2 existieren; er hat jedoch
keinen Beweis hierfiir angegeben ; wir werden im folgenden einen solchen Beweis nach-

holen, indem wir zeigen, dass die erwâhnte, fur die Dimension n 2 durchgefiihrte
Konstruktion von Hopf und Rinow auf aile hôheren Dimensionen n ubertragen werden

kann. Es gibt also fur jede Dimension n>\ Mannigfaltigkeiten, die unvollstândig,
aber nicht-fortsetzbar sind (Satz 1, Kapitel I). Unser Kapitel I enthâlt ferner den

folgenden Satz, der flir die Klârung des Begriffes der Fortsetzbarkeit wichtig sein diirfte
(Satz 2): ,,Jede Riemannsche Mannigfaltigkeit ist entweder nicht-fortsetzbar oder zu
einer nichtfortsetzbaren Riemannschen Mannigfaltigkeit fortsetzbar". Die Beweis-

methode hierfiir ist abstrakt-mengentheoretisch (Zornsches Lemma).

Die Sâtze des Kapitels II werden unter anderem zeigen, dass die Klasse der
nichtfortsetzbaren Riemannschen Mannigfaltigkeiten viel grôsser ist als die Klasse der

vollstàndigen; dabei beschrânken wir uns hier auf zweidimensionale Mannigfaltigkeiten -
also Flâchen - und auf lokaleuklidische Metriken. Man weiss, dass unter den topo-
logischen Typen geschlossener Flâchen die des Torus und des Kleinschen Schlauches

die einzigen sind, die lokaleuklidische Metriken zulassen, und dass es unter den Typen
der offenen Flâchen nur drei Typen mit vollstândiger lokaleuklidischer Metrik gibt:
die Ebene, den Kreiszylinder und das Môbiusband ohne Rand (cf. (6)). Was wird aus

diesen Tatsachen, wenn man die Forderung der Vollstândigkeit weglâsst? An den

Aussagen liber geschlossene Fiâchen ândert sich natlirlich nichts; aber flir offene

Flâchen gilt dann der Satz 3: ,,Auf jeder offenen topologisch gegebenen Flàche lâsst

sich eine lokaleuklidische Metrik einfiihren". Und wenn man anstelle der ublichen

Vollstândigkeitsforderung nur die schwâchere Forderung der Nichtfortsetzbarkeit

hinzufiigt, so besagt unser Satz 4: „Auf jeder orientierbaren topologisch gegebenen

offenen Flâche von endlichem Zusammenhang kann man eine nichtfortsetzbare

lokaleuklidische Metrik einfiihren". Die Frage, ob hier die Beschrânkungen auf
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orientierbare Flâchen und auf die endliche Zusammenhangszahl notwendig sind,
bleibt offen.

Offen ist zunâchst auch die Frage, ob die Sâtze 3 und 4 verniinftige Verallgemeine-

rungen auf mehrdimensionale Mannigfaltigkeiten besitzen ; denn die im Kapitel II
benutzten Methoden sind durchaus auf die Dimension 2 beschrânkt: Die orientier-
baren Flâchen werden als Riemannsche Flâchen (im Sinne der Théorie der analyti-
schen Funktionen einer komplexen Variablen) aufgefasst, und auf diesen Riemann-
schen Flâchen werden funktionentheoretischen Untersuchungen angestellt.

Insbesondere kônnte man vielleicht vermuten, dass der Satz 3 auch fiir beliebig-
dimensionale offene Mannigfaltigkeiten gilt. Dies wird aber im Kapitel III durch den
Satz 7 widerlegt: Dort wird ein Beispiel einer offenen vierdimensionalen Mannigfal-
tigkeit M4 angegeben, die nicht fâhig ist, eine lokaleuklidische Metrik zu tragen.
(Dièse M4 ist die punktierte komplexe projektive Ebene, ist also einfachzusammen-

hângend und daher orientierbar). Âhnliche Beispiele existieren iibrigens sicher fur aile
Dimensionen n=4k (wie im nachfolgendem Text im Anschluss an den Beweis des

Satzes 7 bemerkt wird). Besonders natiirlich aber ist, im Hinblick auf die Sâtze 3 und
7, die Frage, ob man jede offene M3 lokaleuklidisch metrisieren kann; dièse Frage ist

fiir die orientierbaren M3 von J. H. C. Whitehead mit ,,ja" beantwortet worden (cf.

(9)); fiir nicht orientierbare offene M3 ist sie noch offen.

Die soeben erwâhnte Arbeit von Whitehead hat auch die Anregung fiir die
Méthode gegeben, die dem Kapitel III zugrundeliegt; dièse Méthode beruht auf dem Zu-
sammenhang zwischen der Existenz einer lokaleukiidischen Metrik auf einer n-dimen-
sionalen Mannigfaltigkeit einerseits und der Existenz einer Immersion der Mannig-
faltigkeit Mn in den euklidischen Raum En anderseits. (Eine Immersion ist eine ein-

deutige und lokal eineindeutige Abbildung). Von diesem Zusammenhang handeln

unsere Sâtze 5 und 6.

Schliesslich noch eine kurze Bemerkung iiber die Regularitâtsvoraussetzungen, die

unseren Begriffen und Betrachtungen zugrundeliegen: Die Nachbarrelationen
zwischen Koordinatenumgebungen auf der Mannigfaltigkeit werden im Allgemeinen,
d.h. uberall, wo das Gegenteil nicht ausdriicklich gesagt ist, als analytisch vorausge-
setzt; denn ein grosser Teil dieser Arbeit ist Untersuchungen iiber lokaleukiidischen
Metriken gewidmet und wenn es in einer Mannigfaltigkeit Mn eine lokaleuklidische
Metrik gibt, so existieren um jeden Punkt von Mn Umgebungen, welche sich isome-

trisch in den euklidischen Raum En abbilden lassen; die Nachbarrelationen sind fur
solche Umgebungen Bewegungen des En9 d. h., wenn man in einer Mannigfaltigkeit
eine lokaleuklidische Metrik hat, dann kann man sie auch mit einem analytischen
Atlas beschreiben.



Beitrâge zur Riemannschen Géométrie im Grossen 33

KAPITEL I

Allgemeine Sâtze îiber Fortsetzbarkeit und Vollstândigkeit

Wir beginnen mit dem, in der Einleitung schon erwâhnten
Satz 1. Es existieren,fùr aile Dimensionen n, Riemannsche Mannigfaltigkeiten gegebener
konstanter Krûmmung, welche unvollstândig und zugleich nichtfortsetzbar sind, (n>2).

Beweis (cf. (5) und (6)): Wir geben fur jede Dimension n ein Beispiel einer unvoll-
stândigen (also einer offenen) nichtfortsetzbaren Mannigfaltigkeit an.

En sei der durch die Herausnahme des {n — 2)-dimensionalen Raumes xl=x2 0

aus dem euklidischen (x1? x2, xn)-Raume En entstandene Raum, Fo der universelle
Cberlagerungsraum von En.

Fo wird zu einer metrischen Mannigfaltigkeit indem man die in den Umgebungen
der Punkte von En definierte euklidische Differentialgeometrie von En mittels der

Ueberlagerungsbeziehung auf Umgebungen der Punkte von Fo ùbertrâgt. Das Kriim-
mungsmafi dieser Differentialgeometrie von Fo ist ûberall null. Die geodatischen Li-
nien sind die Ueberlagerungslinien der in En verlaufenden Geraden und Geraden-
stûcke. Sind P und Q zwei Punkte in En\ die so beschaffen sind, dass die Verbindungs-
streckePg den Raum x1=x2 0 trifft, Po und Qo zwei die Punkte P und Q iiber-
lagernde Punkte inF0, so existiert inF0 keine geodâtische Linie dieP0 m^ Qo verbindet ;

denn eine solche miisste iiber einem P mit Q in En verbindenden Geradenstûck liegen
und ein solches ist nicht vorhanden, da der Raum xx =x2 0 nicht zu En gehôrt. Da
eine kiirzeste Verbindung immer geodâtisch sein muss, existiert mithin zwischen Po

und Qo keine kiirzeste Verbindung. Es existiert allgemein zwischen beliebigen Punkten
^o> Qo€Fo nur dann eine kiirzeste Verbindung, wenn Po, Qo Anfangs- bezw. Endpunkt
des Weges sind, der durch ,,Durchdrûcken" der Verbindungsstrecke Yq der Punkte

P=ti(P0), Q n(Q0)€E entsteht. Fo ist also unvollstândig. Wir zeigen, dass Fo

nichtfortsetzbar ist. Zu diesem Zweck, stellen wir zunâchst zwei Eigenschaften vonF0 fest:

A) Unter den von einem beliebigen Punkt Po von Fo ausgehenden Richtungen
(welche eineindeutig den Punkten einer («-l)-dimensionalen Richtungskugel ent-

sprechen) gibt es genau eine («-2)-dimensionale Mannigfaltigkeit von ,,Ausnahme-

richtungen" derart, dass man lângs des zugehôrigen geodatischen Strahles nicht jede
Lange abtragen kann.

B) Der geometrische Ort der Punkte Po mit den nachstehenden Eigenschaften 1

und 2 ist eine einfach offene Linie.
1. ,,Die kiirzeste inF0 divergente geodâtische Linie ausP0 hat die Lange a (a>0,

vorgegeben)." 2. ,,AUe divergenten Fundamentalfolgen auf diesen Linien haben un-
tereinander den Abstand null".
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Weiter schliesst man indirekt: WâreF0 auf ein echtes Teilgebiet G einer Mannig-
faltigkeit H eineindeutig und isometrisch mittels einer Abbildung <P abgebildet, dann
hâtte G einen Randpimkt P* und P* eine Umgebung U derart, dass man zwei ihrer
Punkte durch einen und nur einen geodâtischen Bogen verbinden kann und dass das

Buschel aller Geodâtischen aus irgend einem Punkte von U ein regulâres Koordinaten-
system fur die ganze Umgebung tt liefert. (Bogenlânge lângs der Geodâtischen). Man
betrachtet nun einen Punkt P aus UnG und das Buschel der Geodâtischen aus P. Auf
allen kritischen Geodâtischen trâgt man die kritische Lange ab, welche sich von
0~1(P) aus in Fo nicht abtragen lâsst.

Somit erhâlt man in U eine (n — 2)-dimensionale Mannigfaltigkeit: Kn~2. Gegeben
einen Punkt g von II welcher nicht auf Kn~2 liegt, dann existiert ein Punkt Q in UnG
welcher nicht auf das (« — l)-dimensionale Gebilde der Geodâtischen welche einer-
seits durch Q und anderseits durch einen Punkt von Kn~2 laufen, liegt. Von Q aus

gesehen, ist die Richtung von Q keine kritische Richtung, also kann man Q von Q aus
innerhalb G lângs einer Geodâtischen erreichen, d.h., dass Q zu G gehôrt und es ist

(auf U beschrânkt) H-~G Kn~2. Nun betrachten wir in P* das Buschel der
Geodâtischen, welche senkrecht auf Kn~2 stehen, und darin einen Kreis vom Radius a.

Wobei a so klein zu wâhlen ist, dass dieser Kreis ganz in U liegt. Dieser Kreis ist eine

Punktmenge welche die Voraussetzungen von B) erfiillt, der ist aber eine geschlossene

Linie. Man ist somit zu einem Widerspruch gelangt. q. e. d.

Andere âhnliche Mannigfaltigkeiten F+1 und F_l5 also offene nichtfortsetzbare

Mannigfaltigkeiten mit der konstanten Krûmmung +1 bzw. — 1, erhâlt man, indem

man statt dem euklidischen Raum En eine Kugel Sn oder einen hyperbolischen Raum
Hn zu Grunde legt. Im ersten Fall entferne man aus Sn eine (n — 2)-dimensionale Kugel
Sn"2 und im zweiten Fall aus Hn einen («-2)-dimensionalen hyperbolischen Raum
Hn~2. F+1 bzw. F_t ist dann der universelle tîberlagerungsraum des Restes. Die
Oberlegungen bleiben dann wôrtlich gleich.

Eine Anwendung des Zornschen Lemmas: Satz 2

Die Frage nach der Existenz einer nicht fortsetzbaren Fortsetzung eines beliebigen

Raumçs lâsst sich mit den allgemeinen Sâtzen der Mengenlehre beantworten. Zu-
nâchst einige bekannte Begriffe:

1) Eine Menge heisst geordnet wenn in ihr eine ,,binâre" Relation definiert ist,

welche man mit ,,kleiner" bezeichnet:

a < b.

Dièse Relation braucht keine einfache zu sein, d.h. je zwei Elemente der Menge in

Beziehung zu setzen. Sie besitzt aber die folgenden Eigenschaften :
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a) Transitivitât: Aus a<b, b<c folgt a<c.
b) Asymmetrie: Es kann nicht zugleich a<b und b<a bestehen.

2) Eine geordnete Menge M heisst total geordnet, wenn fur beliebige a, beM ent-
weder a<b oder b<a gilt.

3) Ein Elément s einer Menge M heisst obère Schranke fiir eine Teilmenge M' aus
M wenn aus aeMr folgt a^s.

4) Eine geordnete Menge M heisst induktiv geordnet, wenn jede totalgeordnete
Teilmenge eine obère Schranke in M besitzt.

Dann lautet das Lemma von Zorn :

,,Eine induktivgeordnete Menge besitzt mindestens ein maximales Elément."

Damit kônnen wir jetzt beweisen :

Satz 2. Fur aile r mit lgrgoo oder r œ, ist, innerhalb der Klasse Cr, jede Rie-
mannsche Mannigfaltigkeit entweder nichtfortsetzbar oder zu einer nichtfortsetzbaren
Riemannschen Mannigfaltigkeit fortsetzbar.

Beweis. Ist Mt eine Fortsetzung von M, so kann es môglicherweise verschiedene
isometrische Abbildungen von M auf einen echten Teil von Mt geben es kann sogar
eine Mannigfaltigkeit M Fortsetzung von sich selbst sein, wie das Beispiel des halben
euklidischen Raumes es lehrt. Um das zu vermeiden (wie man gleich sehen wird),
zeichnen wir in der Mannigfaltigkeit M einen Punkt Po (den Basispunkt) und das

Biischel der Richtungen in Po (die Grundrichtungen) aus. Bei jeder Fortsetzung von
M wird der Basispunkt Po verfolgt und sein Bild gemeinsam mit dem der Grundrichtungen

wird zum Basispunkt bzw. Grundrichtungen der Fortsetzung Mt von M. Dièse

so prâzisierte Fortsetzung von M bezeichnen wir mit M[. Wir betrachten nunmehr die
Gesamtheit {M'} aller mit Basispunkt und Grundrichtungen versehenen Fortset-

zungen M' von M. Zwei Mannigfaltigkeiten M[ und M'2 sollen dann und nur dann als

gleich gelten wenn man sie so auf einander isometrisch abbilden kann, dass hierbei
der Basispunkt und die Grundrichtungen von M[ in den Basispunkt und in die
Grundrichtungen von M2 ubergehen. Ebenso nennen wir M'2 eine Fortsetzung von M[ wenn
wieder Basispunkte und Grundrichtungen sich entsprechen.

Unser Satz wird bewiesen sein, wenn wir zeigen werden, dass es unter den

Mannigfaltigkeiten mit Basispunkt und Grundrichtungen eine gibt, die sich nicht weiter auf
eine mit Basispunkt und Grundrichtungen versehene Mannigfaltigkeit fortsetzen
lâsst ; denn eine solche Mannigfaltigkeit wird, wie sofort zu sehen ist, nach Fortlassung
des Basispunktes eine absolut nicht fortsetzbare Mannigfaltigkeit.

Jetzt sind wir so weit, das Zornsche Lemma anwenden zu kônnen. Als Menge 501

nehmen wir die Gesamtheit aller mit Basispunkt und Grundrichtungen versehenen

Fortsetzungen von M. Unter M[ < M'2 verstehen wir, dass Mr2 eine Fortsetzung von M[
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ist. Wir miissen nun verifizieren, dass 9JI von dieser Relation induktiv geordnet
wird:

Zunâchst die Ordnungsaxiome.
Die Transitivitât M[<M'2AMr2<M^M[<M'z ist einleuchtend.
Die Asymmetrie besagt: es kann nicht zugleich M[<M'2 und M2'<M[ bestehen.

Wiirde dies nicht der Fall sein, so folgt aus der Transitivitât, dass M[<M[ d.h. dass

die Mannigfaltigkeit eine Fortsetzung von sich selbst wâre. M[ wâre also so in sich
selbst isometrisch abbildbar, dass Basispunkt und Grundrichtungen sich entsprechen
und doch so, dass das Bild von M[ in sich selbst nicht das ganze M[ ausmacht, d.h.
dass dièses Bild einen Randpunkt in M[ hat. Sei P* dieser Randpunkt. Nun verbinden
wir P* mit dem Basispunkt Po mit Hilfe eines Weges co. In einer Koordinatenumge-
bung vonP0 ist die betrachtete Abbildung die Identitât, denn Basispunkt und
Grundrichtungen gehen in einander ûber und die Abbildung ist eine Isometrie. Der Weg co

ist eine kompakte Menge und lâsst sich also in endlich viele Intervalle so einteilen,
dass jedes Intervall ganz in einer einzigen Koordinatenumgebung von M[ zu liegen
kommt. U0 U(P0), Uu UN-=U(P*\ mit U,nU/+1^0 seien dièse so definierten

Koordinatenumgebungen. Wie schon bemerkt, ist die Selbstabbildung von M[->Mfl
in Uo die Identitât; in VLN ist es sicher nicht mehr die Identitât, denn P* tritt nicht als

Bild auf. Folglich gibt es eine erste Umgebung Uk, fur welche die Abbildung M[->M'i
nicht die Identitât ist. Aber in dem Teil, in dem Uk-t in Uk ubergreift, ist die Abbildung
immer noch die Identitât. Da wir uns in einer Koordinatenumgebung befinden, haben

wir folgende Situation vor uns: Das Innere einer /i-dimensionalen Kugel des Para-

meterraumes wird so in sich Riçmanmch-isometrisch abgebildet, dass in einem Teil
der Kugel die Abbildung die Identitât sei, dann ist nach einem bekannten Ergebnis
der Riemannschen Géométrie die Abbildung ûberhaupt die Identitât, d.h. die
betrachtete Abbildung ist in Vtk die Identitât. Wir sind somit zu einem Widerspruch
gelangt, es kann also nicht sein, dassM^ <M[. Unsere so definierte Ordnungsrelation
geniigt somit dem Axiom der Asymmetrie.

Jetzt zeigen wir, dass jede totalgeordnete Teilmenge von 9Jt eine obère Schranke

in 90Î besitzt.

Gegeben sei also eine total geordnete Reihe :

(*) - mî,Mi,..., m;,m;+1,

unserer Mannigfaltigkeiten, die so beschaffen ist, dass aus a<P folgt M'a<M'fi. Wir
wollen die Existenz einer mit Basispunkt und Grundrichtungen versehenen, also zu
901 gehôrenden Mannigfaltigkeit M" nachweisen, auf welche jede Mfa fortsetzbar ist.

Die gesuchte Mannigfaltigkeit M" wird folgendermassen konstruiert: Einen jeden

Punkt P einer jeden der Mannigfaltigkeiten (*) lassen wir einen Punkt P" der neuen

Mannigfaltigkeit erzeugen. Zwei PunktePi undP2 sollen dann und nur dann denselben
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Punkt P" erzeugen, wenn sie verschiedenen Mannigfaltigkeiten M'a und M'p angehôren
und auseinander durch die in ihrer Art einzige, durch M'a<Mp ausgedriickte isome-
trisehe Abbildung hervorgehen. Die Gesamtheit aller Umgebungen eines Punktes P"
aus M" erhalten wir dadurch, das wir von einem jeden Originalpunkt P der P" er-
zeugt, die in M" zustandekommenden Bilder aller seiner Umgebungen (in seiner

Mannigfaltigkeit) betrachten. Als Nachbarrelation im Durchschnitt zweier
Umgebungen von M" nehmen wir die entsprechende Abbildung in einer Mannigfaltigkeit
aus (*), aus der sie hervorgehen. Ebenso wird die Metrik der Mannigfaltigkeiten (*)
nach M" durchgedrûckt. Es ist somit klar, dass unsere Punktmenge M" eine n-dimen-
sionale Riemannsche Mannigfaltigkeit ist. M" ist auch mit einem Basispunkt und
Grundrichtungen versehen und jede Mannigfaltigkeit aus (*) lâsst sich zu M" fort-
setzen, also ist M" die gesuchte obère Schranke. Aile Voraussetzungen des Zorn-
schen Lemmas sind somit erfiillt; somit existiert in der Menge aller Fortsetzungen
einer gegebenen topologischen Mannigfaltigkeit mit einer inneren Metrik eine mit
Basispunkt und Grundrichtungen versehene nicht fortsetzbare Fortsetzung. Dass
dièse Fortsetzung auch nach Weglassen des Basispunktes und der Grundrichtungen
nicht fortsetzbar ist, ist klar; denn bei einer môglichen Fortsetzung, kônnte man den

Basispunkt und die Grundrichtungen bei der Abbildung, welche zur Fortsetzung ge-
hôrt, einfach verfolgen und man hâtte eine Fortsetzung mit Basispunkt und
Grundrichtungen. q. e. d.

KAPITEL II

Spezielle Untersuchungen des Faites der Dimension n 2

Satz 3. Aufjeder topologisch gegebenen offenen Flâche lâsst sich eine lokaleukli-
dische Metrik einfuhren.

Beweis: Ist der gewâhlte topologische Typus orientierbar, so existiert bekanntlich
eine Riemannsche Flâche dièses Typus. Wir werden uns daher zunâchst darauf be-

schrânken, zu zeigen, dass es môglich ist, aufjeder offenen Riemannschen Flâche eine

lokaleuklidische Metrik einzufiihren.

Dazu beniitzen wir eine Verallgemeinerung des Weierstrassschen Satzes uber die

Produktdarstellung der ganzen Funktionen, welche von Behnke und Stein (1) bewie-

sen wurde*):
Gegeben seien eine offene Riemannsche Flâche und darauf eine Folge von Punkten

-Pi,P2, •.., welche keinen Hâufungspunkt besitzt, sowie eine Folge ml9m29 ...von ganzen,

*) Man vergleiche auch (4).
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nicht negativen Zahlen. Dann existiert eine analytische Funktion F(P), welche auf der

ganzen gegebenen Flâche regulâr ist, in den Punkten Pl9P2, mr, m2-, -fâche
Nullstellen hat und sonst nirgends verschwindet.

Daraus folgt zunâchst, dass es auf jeder offenen Riemannschen Flâche Funktionen
gibt, welche regulâr und nicht identisch null sind. Sei F(P) eine solche Funktion; wir
betrachten das Differential dFdieser Funktion. Dièses besitzt zwar in gewissen Punkten

Ql9 Q29 mx-y m2-, -fâche Nullstellen. Nach dem obigen Satz von Behnke und
Stein, gibt es aber eine ganze Funktion G(P), welche genau in Ql9 Q2, mr, m2-,
-fâche Nullstellen besitzt, so dass das Differential co dF(P)/G(P) auf der ganzen
Riemannschen Flâche nirgends null wird. Wenn wir ds=\co\ setzen, so definiert ds

eine auf der ganzen Flâche regulâre Metrik, welche ûberdies lokaleuklidisch ist, denn

in einer Koordinatenumgebung ist

ds
F'(z)
G(z)

\dz\=y/E-\dz\

wobei z u+iv ein isothermes Parametersystem ist; darin ist die GauBsche Kriim-
mung:

0
1 |F'
Al

E ° G(z)

weil F'(z)/G(z) eine analytische Funktion von z und #0 ist.

Sei jetzt der gewâhlte topologische Typus nicht orientierbar; dann gibt es Flâchen
V2 dièses Typus, welche eine Winkelmetrik besitzen, d. h. auf denen die Nachbar-
relationen durch konforme und antikonforme Abbildungen gegeben sind. Die orien-

tierbare zweiblâttrige Oberlagerungsflâche W2 lâsst sich dann als Riemannsche

Flâche definieren; die natûrliche Projektion n von W2 auf V2 induziert somit in V2

zwei Scharen von Koordinatenumgebungen, welche entgegengesetzt orientiert sind

und antikonform miteinander zusammenhângen.
Die Tatsache, dass W2 eine zweiblâttrige tJberlagerung von V2 ist, bedeutet, dass

es in W2 eine Involution q> gibt, derart, dass

Dabei kehrt cp die Orientierung um, d.h. wenn man Koordinatenumgebungen von P

und (p(P) betrachtet, so dass P und <p{P) im Nullpunkt liegen,
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u'+iv'sz1

dann ist cp(z) eine analytische Funktion von z.

Ist eine Funktion F(P) analytisch auf W2, so ist auch F((p(P)) analytisch auf W2.
Nach Behnke und Stein existiert auf W2 eine analytische Funktion F(P) welche

nicht identisch verschwindet; dann ist

auch analytisch. Weiter gilt
F(P)F(<p(P))

f(<p(P))=f(P).
Fur das Differential dffolgt

df(v(P))
sodass schliesslich \df(P)\ bei der Involution q> invariant bleibt. \df{P)\ hat in
Pt, P2, wr, w2-, -fâche Nullstellen wiederum gibt es nach Behnke und Stein eine
auf W2 uberall holomorphe Funktion g9 die genau in Pl5P2» • • ^r, w2-, -fâche
Nullstellen hat. Demnach ist der Ausdruck

ds - \df(P)\

uberall auf W2 regulâr und beziïglich der Involution <p invariant, also auf V2 eindeutig
definiert. Schliesslich stellt ds eine lokaleuklidische Metrik dar, denn in einem Koordi-
natensystem ist die Gauss'sche KrUmmung

0. q.e. d.

Satz 4. Auf jeder topologisch gegebenen offenen orientierbaren Flâchen von end-

lichem Zusammenhang lâsst sich eine nichtfortsetzbare lokaleuklidische Metrik ein-

fiihren.
Der Beweis wird derart gefiihrt, dass wir jeden topologischen Flàchentypus von

endlichem Zusammenhang so erzeugen, indem wir aus einer geschlossenen Flâche
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vom Geschlecht g endlich viele Punkte herausnehmen. Um funktionentheoretische
Betrachtungen machen zu kônnen, konstruieren wir die gesuchte Metrik auf einer
Riemannschen Flâche.

Ein analytisches Differential œ=f(z) dz erzeugt eine Metrik

ds \f(z)\-\dz\

welche iiberall, wo/(z)#0 und regulâr ist, lokaleuklidisch ist.
Wir beginnen mit einer lokalen Betrachtung:
Hilfssatz: Die lokaleuklidische Metrik

ds \f{z)V\dz\

ist in den Nullstellen vonf{z) nicht fortsetzbar.

Dabei hat die Aussage: ,,Z>/e Metrik ist in dem Punkt Po fortsetzbar" natùrlich die

folgende Bedeutung: Fo sei der durch die Herausnahme des PunktesP0 aus einem vor-
gelegten Raume F entstandene Raum. Fo sei mit einer bestimmten Metrik versehen.

Dann heisst dièse Metrik in Po fortsetzbar, wenn es eine topologische und isometrische

Abbildung (£ des Raumes Fo auf ein echtes Teilgebiet G eines Raumes M gibt mit der

folgenden Eigenschaft: Seien r ein Randpunkt von G in M, gneG eine Folge von
Punkten, welche gegen r konvergiert und lï eine Umgebung vonP0 (in F); dann liegen

Beweis des Hilfssatzes: Wir fiihren ihn fur eine m-fache Nullstelle, von der wir
annehmen diirfen, dass sie im Nullpunkt des Koordinatensystems liegt.

Zunâchst zeigen wir, dass, falls die Metrik im Nullpunkt fortsetzbar ist, die Fort-
setzung sich durch Hinzunahme eines einzigen Punktes ergibt.

Dazu betrachten wir in der z-Ebene Kreise um den Nullpunkt; wenn deren Radien
klein sind, so sind die Lângen dieser Kreise, in der obigen Metrik gemessen, kleiner
als die euklidischen Lângen der entsprechenden Kreise, denn ds<\dz\. Da die eukli-
disch gemessenen Lângen nach null streben, wenn die Radien gegen null gehen, so tun
dies auch die Riemannsch gemessenen Lângen. Daraus folgt, dass es einen einzigen

Randpunkt P* gibt. Denn gâbe es einen weiteren Randpunkt g*, so hâtte Q* einen

positiven Abstand a von P*. Das ist aber ein Widerspruch mit der Voraussetzung,
dass P* und g* beide innerhalb einer Schar von Kreisen, deren Lângen nach null
streben, liegen. Wir nehmen jetzt an, dass unsere Metrik in den Nullpunkt hinein
fortsetzbar ist, und zeigen, dass dies ebenfalls zu einem Widerspruch fiihrt. Im Nullpunkt
selbst muss aus Stetigkeitsgrunden die Gauss'sche Krummung unserer Metrik gleich

null sein. Die Metrik ist somit in einer ganzen Umgebung von z 0 lokaleuklidisch.

In ds=\f(z)\-\dz\ sei also/(z) der Gestalt/(z) zM-g(z), wobei g(0)^0 ist. Die
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Krûmmung einer beliebigen Kurve, in der Metrik ds= |/(z)| • \dz\ ist durch die Formel

ir
1/lL J

gegeben, wobei ke die euklidische Krummung der Kurve z z(t) in der z-Ebene be-

deutet, mit der Konvention, dass:

• / d[ dzl
sign ke sign — are —

dtl dt\
und n die Normale zu z(t) in der Richtung &rg( — i(dz)/(dt)) ist.

Mit f(z) zm-g(z) wird
d logj/l a(m-loglz|+log]g(z)l)

dn on

Wir betrachten jetzt eine den Nullpunkt enthaltende einfachgeschlossene Kurve, etwa

z reiq> (r Konst.), und berechnen ihre totale Krûmmung; lângs \z\=r ist

ô\og\f\/dn m/r + G(r, q>), wobei G(r, (p) beschrânkt bleibt in 0<cp<2n und

0<r^a, e>0. Da ke=l/r, wird die totale Krummung:

2n 2rc

+ G(r, (p) r-d<p (m + i)2n + r G(r, <p)-d(/>

o o

l2onG{r,<p)'d(p ist beschrânkt, so dass, wenn r->0 strebt, §k-ds-^(m + l)2n strebt.
Aber da die Metrik uberall innerhalb der Kurve als lokaleuklidisch angenommen
wurde, sollte §k-ds 2n sein. Das ist aber ein Widerspruch zu dem, was wir errechnet
haben und der Hilfssatz ist bewiesen.

Mit diesem Hilfssatz kônnen wir jetzt fur fast jeden topologischen Typus Beispiele
offener Flâchen mit nichtfortsetzbaren Metriken konstruieren.

Fur das Geschlecht null ist die einfachste offene Flâche die Ebene mit ihrer, sogar
vollstândigen, naturlichen Metrik: ds-\dz\. Hat man die Punkte z=at, z=a2,
z~aN aus der Zahlenebene entfernt, so ist in dieser N-fach punktierten Ebene die
Metrik

ds \{z - at)'{z - a2) (z - aN)\-\dz\

lokaleuklidisch und nach dem Hilfssatz in den Punkten au a2,..., % nicht fortsetzbar.
Dièse Metrik ist in den Umgebungen dieser Punkte unvollstândig. Man bemerke, dass
in der einfach punktierten Ebene sogar eine vollstândige lokaleuklidische Metrik ein-
gefuhrt werden kann; dièse ist isometrisch zur naturlichen Metrik des Zylinders in E3.
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Um nun Beispiele von Flâchen mit hôherem Geschlecht zu gewinnen, betrachten
wir das Differential :

dz
oj _. _ 2=12

y/(z ~ ai)'(z ~ ai) •••» (z - Û2f+i)

Um sein Verhalten in der Nâhe eines Windungspunktes a( zu untersuchen, fiihren
wir den uniformisierenden Parameter £2=z—ax ein. Da dz 2Ç'dC, wird

2Ç'dÇ
co

also ist (o in der Umgebung von at ein regulâres Differential, welches ungleich null ist.
In der Umgebung des Punktes unendlich fiihren wir den uniformisierenden

Parameter Ç2 l/z ein; dz= -2-dÇ/Ç3 und

Damit co einen eindeutigen Wert erhâlt, schneidet man die Zahlenebene folgender-
massen auf ;

oo

Also ist das Differential œ eindeutig auf einer Riemannschen Flâche vom
Geschlecht g.

Wënn wir jetzt \co\ ds setzen, so definiert es eine lokaleuklidische Metrik auf der

zugehôrigen Riemannsche Flâche.

Im Falle g=l definiert das Differential eine vollstândige lokaleuklidische Metrik,
denn in diesem Fall ist a> auch im Punkte oo regulâr. Im Falle g>2 dagegen wird co

im Unendlichem null und erzeugt somit eine unvollstândige lokaleuklidische Metrik
auf der einfach punktierten Flâche vom Geschlecht g; nach dem Hilfssatz (und auch

nach dem Satz iiber die Curvatura intégra l\K'dA =(1 -g)-47i) ist dièse Metrik nicht
fortsetzbar.
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Eine nichtfortsetzbare Metrik auf einer mehrfach punktierten Flâche erhalten wir,
indem wir das Differential

œk (z — bx)'{z — b2)'..-,'(z — bk)-co wobei bt ^ aj

betrachten. Dabei ist jetzt zu beachten, dass dièses Differential fur k—g—l im Un-
endlichem regulâr und verschieden von null ist. Sei zunâchst k^g— 1, dann stellt
\œk\=ds eine unvollstàndige, nichtfortsetzbare, lokaleuklidische Metrik auf der
(& + l)-fach punktierten Flâche vom Geschlechtg dar. Falls k<g— 1, ist die Metrik
in der Umgebung des Punktes oo unvollstândig; ist dagegen k>g — 1, dann ist die
Metrik in der Umgebung des Punktes oo vollstàndig. Ist aber k=g — 1, so ist die Metrik

im Punkte oo regulâr, so dass die Flâche vom selben topologischen Typus ist wie
die Flâche mit /r=g — 2, denn wk hat nur noch g—1 Singularitâten. Um eine Metrik
auf der g-fach punktierten Flâche zu erhalten, betrachte man etwa:

û>i (z - ki)2*(2 ~ b2) (z - fcg-Oco.

Dièse Konstruktionen versagen aber im Falle des einfach punktierten Torus (g=l),
denn ds—\œ\ ist auf dem ganzen Torus regulâr und definiert also eine vollstândige
Metrik. Weiter ist ds \(z — b)-œ\ eine auf dem zweifach punktierten Torus nichtfortsetzbare

lokaleuklidische Metrik, denn dièses ds wird in z b singulâr und das
Differential hat einen Pol im Unendlichem. Unsere Konstruktionen haben somit, bis auf
die einzige Ausnahme des einfach punktierten Torus, Beispiele von nichtfortsetzbaren
lokaleuklidischen Metriken geliefert. Auf einem einfach punktierten Torus betrachten
wir die Metrik :

Satz. Dièse Metrik ist unvollstândig und in z b nicht fortsetzbar.
Beweis. Um die Schreibweise zu vereinfachen, dtirfen wir annehmen, dass è=0.
Zunâchst zeigen wir, dass die so definierte Mannigfaltigkeit M unvollstândig ist.

Ein divergenter Weg endlicher Lange ist nâmlich z (*) /*, t>0. Auf diesem Strahl ist
e1/z beschrânkt und co ist sogar analytisch in der Umgebung von z=0.

Wir zeigen jetzt: M kann nicht fortgesetzt werden.

Annahme: Es existiert eine Fortsetzung M von M. Es bezeichne U denjenigen Teil
von M, der dem Ring [0<|z|<e] in der Parameterebene entspricht, wobei e>0 so

klein bemessen ist, dass die Windungspunkte von co ausserhalb von U liegen. lï be-

sitzt eine Fortsetzung fï - iiber den inneren Rand des Gebietes hinaus -, von der wir
ohne Verlust der Allgemeinheit annehmen diirfen, dass sie einfach oder zweifach zu-

sammenhângend ist. U kann also auf ein schlichtes ebenes Gebiet Q abgebildet werden.

Dabei geht U in ein Ringgebiet P ûber, dessen âusserer Rand mit dem âusserem

Rand von Q (oder dem Rand ûberhaupt von Q) iibereinstimmt.
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Da P vom gleichen konformen Typus ist, wie der Ring [0< |z| <e], entsteht P aus
Q durch Wegnahme eines einzigen Punktes Wo. Die aus dem Obigen sich ergebende
konforme Abbildung von [0< \z\ <s] auf P kann man zu einer konformen Abbildung
von [|z| <e] auf Q erweitern, indem man z 0 den Punkt Wo zuordnet:

z - Ebene w-Ebene

Nun betrachten wir denjenigen Kurvenbogen y auf M, dem in der z-Ebene das

offene Intervall (0, e/2) auf der reellen Achse entspricht.
Eine leichte Abschâtzung liefert :

Lange von y fo/2|e1/f-a;(0l oo.

Anderseits bemerken wir, dass y in der w-Ebene ein analytischer Kurvenbogen
entspricht. Da ferner die w-Ebene auch in der Umgebung von Wo eine isotherme
Parameterebene ist, schliessen wir:

Lange von y<co

Damit sind wir bei einem Widerspruch angelangt. q. e. d.

(Eîn weiteres Beispiel einer nichtfortsetzbaren lokaleuklidischen Metrik auf einem

einfachpunktierten Jorus hat mir Prof. A. Huber angegeben ; er betrachtet die Metrik

wobei

<p(z)
(z -h m + i nf

m,»= -oo
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Dann lâsst sich zeigen, auf genau gleiche Art wie oben, dass dièse auf einem Torus
definierte lokaleuklidische Metrik nicht fortsetzbar sein kann.)

Dagegen bleibt die Frage offen, ob man auf einer beliebig vorgegebenen unendlich-

zusammenhwgenden Flâche eine lokaleuklidische Metrik einfùhren kann, welche
nichtfortsetzbar ist.

T. Radô hat schon 1922 ein Beispiel einer Riemannschen Flâche angegeben, welche

konform nicht fortsetzbar ist. Dièse Flâche ist notwendigerweise von unendlichem
Zusammenhang, denn wie S. Bochner 1926 beweisen konnte, ist jede offene endlich-
zusammenhângende Riemannsche Flâche zu einer geschlossenen Flâche konform
fortsetzbar.

Das Radôsche Beispiel liefert aber auch ein Beispiel einer Flâche, welche metrisch
nicht fortsetzbar ist ; denn fiihrt man darauf auf irgend eine Weise eine regulàre Metrik

ein, so ist dièse nicht fortsetzbar, weil eine metrische erst recht eine konforme
Fortsetzung ist.

KAPITEL III

Der Begriff der Immersion; Untersuchungen des Falles n^3

Seien X und Y zwei topologische Râume, so verstehe ich unter einer Immersion

von X in Y eine Abbildung/: X-* Y mit der folgenden Eigenschaft: Jeder Punkt xeX
hat eine Umgebung U(x)c: X der&rt, dass/|U(x) eine Einbettung von VL(x) in F
liefert. (Einbettung Topologische Abbildung).

Satz 5. Wenn es eine Immersion einer n-dimensionalen Mannigfaltigkeit Mn in den

n-dimensionalen euklidischen Raum En gibt, dann kann man in Mn eine lokaleuklidische

Metrik einfùhren.
Beweis. Nach der Définition ist eine Immersion der Mannigfaltigkeit Mn in En

eine Abbildung <P der Form :

dabei ist p ein beliebiger Punkt auf der Mannigfaltigkeit und ft(p)9 f2{p)9 -,fn(p)
die rechtwinkligen Koordinaten des Bildpunkts <P(p). In seiner Koordinatenumgebung
hat/? die Koordinaten xu x2, *„•

Da #(/?) lokal eine Einbettung ist, ist die Funktionaldeterminante

ô(xu x2, xn)

lokal existiert also eine Umkehrabbildung $~l. Mit ihrer Hilfe kann ich die euklidi-
sche Metrik des En nach Mn zurucknehmen, d.h., dass ich in Mn die folgende Metrik
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einfuhre:

wobei also:
n

V dfj ôfj
gik= / ji* fc Q-e.d.

l^j CX CX

Umgekehrt kann man noch zeigen :

Satz 6. Ist Mn einfachzusammenhângend, so folgt aus der Existenz einer lokal-
euklidischen Metrik auf'Mn, die Existenz einer Immersion von Mn in En.

Beweis. Gegeben ist also die lokaleuklidische Metrik, daraus konstruiere ich eine

Abbildung 4> welche eine Immersion ist. Es seien U(1), U(2), U(h) Umgebungen der
Punkte p(1)y2) ...,Jp(/°, sodass U(OnU('+1V0 fur i l, 2, ...,A-1. Da es in der

Mannigfaltigkeit Mn eine lokaleuklidische Metrik gibt, kann ich dièse Umgebungen
so wâhlen, dass es fur jede U(0 eine Einbettung <Pii} in den euklidischen Raum exi-
stiert.

In U(1) definiere ich & 0(1\ Es existiert genau eine Bewegung \x2x des En mit der

folgenden Eigenschaft:

A*2i°^(2)(^(1) n t/(2)) <p(1Uu(l) n C/(2)).

fi2i ist eine isometrische Abbildung des ganzen En auf sich, sodass die Zusammen-

setzung ^2i°^(2) noch eine Einbettung der ganzen Umgebung U(2) in den En liefert.
Da jetzt ii2\°0i2) und 0(i) im Durchschnitt U(1)nlt(2) ubereinstimmen, kann ich in
y(2) tp — ^2io0(2) setzen. Weiter erklâre ich 0 in lt(3) als li2i°fiz2°0(3). So kann ich
schrittweise 0 bis zur Umgebung Uih) definieren und somit auf der Vereinigung
{Jhj=lVLiJ). Nur ist es noch nicht gesagt, dass dièse Définition eindeutig ist, wo zwei

sich nicht in der Numerierung folgende Umgebungen aufeinander iiberlappen.
Sei nun co ein stetiger Weg, welcher in/?( 1} beginnt und iiber/>(2), /?(3), nach/?(/l)

fiihrt und zwar so, dass jeder seiner Punkte sich in wenigstens einer der Umgebungen
UU) befindet.

Daïin sage ich, dass ich 0, von 0=$(1) ausgehend lângs dem Weg œ definiert habe.

Umgekehrt, wenn von der Définition einer Funktion 0 lângs einem Weg co die Rede

ist, so soll immer eine solche Définition von 0 in einer ganzen Umgebung von œ ge-

meint sein.

Ausgehend von einer gegebenen Einbettung einer Umgebung Vi eines beliebigen

Punktes p, ist es môglich lângs jedem stetigen Weg der Mannigfaltigkeit Mn eine

Funktion 0 zu definieren, welche iiberall lokal eine Einbettung ist. Denn, nehmen wir

an, es wâre lângs dem Weg ct>' nicht môglich, (et/ sei also das stetige Bild des Inter-
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vallesO<?<l, wobei * OdemPunkt/?(O)=pentspricht), so gibt es einen Parameter-
wert r=T mit 0<t wo 0 nicht mehr definierbar ist. Aber <P existiert bei jedem Wertdes
Parameters finit 0< t<x. Seit' ein Parameterwert miti' <t und U(p(Tf))nU(p(x))^9.
Bis zu der Umgebung U(/?(t')) ist also 0 definierbar und liefert eine môgliche Ein-
bettung von U(p(x')) in E"; andererseits, da es in der Mannigfaltigkeit Mn eine lokal-
euklidische Metrik gibt, existiert eine Einbettung e von U(/?(t)) in den En; sei \i die

Bewegung des En sodass:

ix o s (U (p (t')) nU(p (t))) 4> (U (p (t')) n U (p (t))),
dann ist /x° s eine Fortsetzung der Abbildung 0 und dièse ist also bis zum Ende des

Weges œ' definierbar. Ausgehend von der Einbettung eines beliebigen Stiickes von
M", kann man also die Abbildung 0 lângs aller Wege bis zu jedem beliebigen Punkte
erklâren. Damit unsere Abbildung 0 eine Immersion ist, miissen wir noch zeigen, dass

man in einem Punkte b dieselbe Abbildung 0 erhâlt, wenn man ausgehend von der-
selben Immersion einer Umgebung eines Punktes a, 0 lângs zwei homotope Wege
zwischen a und b definiert. Seien coi und œ2 dièse zwei homotope Wege, so gibt es eine

stetige Abbildung cp des Rechteckes 0<x<l, 0<y<l in die Mannigfaltigkeit Mn
sodass:

Ich lege in dièses Quadrat ein Gitter mit der Maschengrôsse e. Da das Bild des Rechteckes

eine kompakte Menge in der Mannigfaltigkeit ist, kann ich e>0 so wàhlen, dass

y

q

0,0
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erstens, wenn q irgend ein Gitterpunkt ist und qf ein beliebiger Punkt mit qq' < -jl-e
ist, <p(q') in einer Umgebung H(^>(^)) von cp(q) liegt, welche sich in den euklidischen
Raum einbetten lâsst; zweitens 1/e eine ganze Zahl ist.

Ich betrachte jetzt die endliche Anzahl von Deformationswegen :

(p(x,m-e) m 0, 1, 2,
e

Die Définition von 0 welche man erhàit, indem man cp(x, m-s) oder cp{x, (m+ l)-e)
folgt ist dieselbe, denn cp(x, m-s) und cp(x, (m+ l)-e) verlaufen in zwei benachbarten
Ketten von Umgebungen, welche sich stândig uberlappen. Man erhâlt dieselbe
Définition, indem man einer Kette von Umgebungen folgt oder der andern, denn wenn
man etwa drei Umgebungen H, 93, ÎB der Punkte w, v, w einer Mannigfaltigkeit mit
lokaleuklidischer Metrik betrachtet, derart, dass VLntynW^ty, so erhâlt man, aus-
gehend von einer Einbettung <P welche in U erklârt ist, dieselbe Einbettung <P von 2B

gleichobmandirektd>in 2B oderzunâchstin 33 understdanninîBdefiniert. Schrittweise
kann man also ausgehend von der Définition von 0 lângs œl, eine Immersion &2 von
der Umgebung von co2 konstruieren, welche in b mit der Abbildung 0 ùbereinstimmt.

Somit hângt 0 nur von der Homotopieklasse des gewâhlten Weges ab und dièse

Abbildung ist iiberhaupt vom Wege unabhângig in einer einfachzusammenhângenden
Mannigfaltigkeit. q. e. d.

Mit Hilfe der Kontraposition dièses letzten Satzes kann man das Folgende be-

weisen :

Satz 7. Es gibt eine vierdimensionale offerte einfachzusammenhângende Mannig-
faltigkeit, welche keine lokaleuklidische Metrik tragen kann.

Beweis. Der zweidimensionale komplexe projektive Raum P2 kann als vierdimensionale

réelle Mannigfaltigkeit M4 aufgefasst werden. M4 kann als vierdimensionaler,
mit einer zweidimensionalen Sphâre S2 abgeschlossener euklidischer Raum gedeutet
werden. M4 ist geschlossen und einfachzusammenhângend. Sei M'4 M4—p*, wobei

p* ein beliebiger Punkt von M4 ist. M'4 ist einfachzusammenhângend und offert. Ich

behaupte: Es kann auf M'4 keine lokaleuklidische Metrik eingefûhrt werden. Das

zeige ich indirekt: Ich nehme an, es gebe auf M'4 eine lokaleuklidische Metrik; da

M'4 einfachzusammenhângend ist, gibt es nach Satz 6 eine Immersion von M'4 in den

E4. Ich betrachte in M'4 zwei komplexe Geraden D2 und D/2, welche nicht durch/?*
verlaufen (d.h. zwei zweidimensionale geschlossene Flâchen in M'4) und welche so

nahe an einander gewâhlt werden, dass die Immersion einer Umgebung von D auch

die Abbildung von D'in den E4 liefert.

Sei/die Immersion von M'4 und f{D) bzw./(D') die Bilder von D bzw. Df.f(D)
und/(D') sind zwei geschlossene Flâchen in E4, welche unter Umstânden Doppel-

punkte oder allgemein mehrfache Punkte aufweisen kônnen. Es kônnen Schnittpunkte

von/(D) mit/(D') vorkommen, welche nicht von Schnittpunkten von D mit Df her-



Beitrâge zur Riemannschen Géométrie im Grossen 49

riihren, nàmlich in der Nàhe von ihren Doppel- oder mehrfachen Punkten; denn

wenn die Flâche/(D) sich selbst schneidet, so schneidet die in der Nâhe von/(Z>)
verlaufende/(Z>') die Flâche/(Z)). Die gesamte Anzahl von Schnittpunkten von/(Z>)
und/(D') in der Nâhe einer mehrfachen Stelle ist aber gerade ; denn wenn ein Stiick von
f(D) das in der Nâhe eines ersten Astes von f(D) verlâuft, einen zweiten Ast von
/(/)') schneidet, so schneidet auch das Stiick von f{D') welches in der Nâhe des

zweiten Astes von f(D) verlâuft, den ersten Ast von/(D).
Die Schnittzahl von D mit D' ândert sich also durch die Immersion / hôchstens

um eine gerade Zahl; da aber dièse Schnittzahl in M'4 genau 1 betrâgt, sind wir zu
einem Widerspruch angelangt, weil in E4 die Schnittzahl zweier orientierbarer zwei-
dimensionaler Flâchen gerade sein muss. q. e. d.

Bemerkungen

1. Man kann sich genau so uberlegen, dass in der oben erwâhnten Mannigfaltig-
keit M'4 keine lokalsphârische oder keine lokalhyperbolische Metrik existieren kann.

2. Man kann mit derselben Méthode eine 8-dimensionale und allgemein eine 4 k-
dimensionale Mannigfaltigkeit konstruieren, welche keine lokaleuklidische Metrik zu
tragen vermag. Man geht dabei von dem komplexen vierdimensionalen, bzw. kom-
plexen 2A>dimensionalen projektiven Raume aus und entferne davon einen Punkt
p* ; réel gefasst, sind es Mannigfaltigkeiten M'8 bzw. Mr4k, welche offenbar nach dem

obigen Beweis keine lokaleuklidische Metrik tragen kônnen. Fur die Dimensionen

n ^ 5, n # 4k, bleibt die Frage offen, ob man auch dann Beispiele von Mannigfaltigkeiten
angeben kann, welche nicht lokaleuklidisch metrisierbar sind.

Die Dimension n 4 ist aber die kleinste, bei welcher man solche Mannigfaltigkeiten

antreffen kann; denn J. H. C. Whitehead hat das folgende bewiesen (9):
Satz 8. Fur n<3, und aile r mit l<r<oo gibt esfùrjede offerte, orientierbare, n-

dimensionale Mannigfaltigkeit der Klasse C eine Immersion in den euklidischen Raum

En, vermittels einer regulâren Abbildung der Klasse Cr.

Daraus folgt, wenn man diesen Satz anwendet, und wie Whitehead es auch selber

bemerkt, die Existenz einer lokaleuklidischen Metrik auf jeder offenen orientierbaren

Mannigfaltigkeit der Dimensionen 1, 2 und 3.

In dem Fall der Dimension n 2 wissen wir schon nach Satz 3, dass es lokaleuklidische

Metriken auf allen topologischen Typen offenen Flâchen gibt, also auch noch

auf den nichtorientierbaren.
Der Beweis des Satzes 3 geschieht aber auf funktionentheoretischer Basis und

lâsst sich nicht zu dem Fall der lokalhyperbolischen oder der lokalsphârischen Metrik
verallgemeinern; der Whitehead'sche Beweis verlâuft aber geometrisch und liefert

offenbar gleichlautende Aussagen sowohl fur die lokalhyperbolische als auch fiir die

lokalsphârische Metrik. Die wesentliche Bedeutung des Satzes von Whitehead liegt
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aber darin, dass der Fall der Dimension n 3 auch noch erledigt wird, ailerdings nur
in dem orientierbaren Falle.

Man kann sich fragen, ob eine Verfeinerung der Whitehead'sche Méthode, wobei

man etwa die zweiblàttrige orientierbare Oberlagerung einer nichtorientierbaren
dreidimensionalen Mannigfaltigkeit M3 betrachten wiirde, auch den nichtorientierbaren

Fall nicht liefern kônnte. Dièse Frage ist noch unbeantwortet.

3. Zum Schluss sei noch erwâhnt, dass Poénaru [10] das Folgende bewiesen hat:
Satz 9: Von jeder offenen parallelisierbaren n-dimensionalen Mannigfaltigkeit

gibt es eine Immersion in den En. Nach Satz 5 ist somit die Parallelisierbarkeit einer
offenen n-dimensionalen Mannigfaltigkeit eine hinreichende Bedingung dafiir, dass

man sie lokaleuklidisch metrisieren kann.
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