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Beitrige zur Riemannschen Geometrie im Grossen

von ERNEST DUBoIS, Ziirich

Einleitung

Die im Titel genannten ,,Beitrdge* betreffen hauptséchlich I. das Problem der
Fortsetzbarkeit einer gegebenen n-dimensionalen Riemannschen Mannigfaltigkeit zu
einer grosseren, ebenfalls #n-dimensionalen, Riemannschen Mannigfaltigkeit, II. die
Einfiihrbarkeit einer lokaleuklidischen (d.h. im Kleinen mit der euklidischen Geome-
trie isometrischen) Riemannschen Metrik auf einer topologisch gegebenen Mannig-
faltigkeit, sowie 11I. naheliegende Probleme, die von Zusammenhingen zwischen 1.
und II. handeln (Fortsetzbarkeit oder Nichtfortsetzbarkeit gegebener lokaleuklidischer
Mannigfaltigkeiten).

Der Begriff der Fortsetzung einer Riemannschen Mannigfaltigkeit wurde zum er-
sten Mal in der Arbeit von HoPF und RiNnow [5] eingefiihrt und hat die folgende ge-
naue Bedeutung: Eine n-dimensionale Riemannsche Mannigfaltigkeit M" heisst eine
Fortsetzung der n-dimensionalen Riemannschen Mannigfaltigkeit M'", wenn es ein
echtes Teilgebiet G von M" gibt, auf welches M’" eineindeutig und ldngentreu abge-
bildet werden kann. Damit ist auch der Sinn der Aussage erklért, dass eine Riemann-
sche Mannigfaltigkeit fortsetzbar oder, dass sie nicht fortsetzbar ist. Die Fortsetzbar-
keit und Nichtfortsetzbarkeit sind innere Eigenschaften; d.h. diejenige welche M’
zukommt, kommt auch jeder Mannigfaltigkeit M"’ zu, auf welche M’ eineindeutig
und ldngentreu abgebildet werden kann.

Die Untersuchung des Begriffes der ,,Fortsetzbarkeit* ist motiviert durch den, bei
vielen Problemen der ,,Differentialgeometrie im Grossen* in natiirlicher Weise auf-
tretenden Wunsch, es nicht nur mit ,,Teilen*‘ Riemannscher Mannigfaltigkeiten, son-
dern mit ,,ganzen‘‘ Riemannschen Mannigfaltigkeiten zu tun zu haben; dabei diirfte
die nichstliegende Prizisierung des Begriffes ,,ganz* gerade der Begriff ,,nicht-fort-
setzbar sein. Jedoch hat es sich — besonders im Interesse der Erzielung schoner Re-
sultate — als zweckmissig erwiesen, die Klasse der ,,nichtfortsetzbaren* Riemannschen
Mannigfaltigkeiten noch weiter zu der Klasse der ,,vollstindigen* Mannigfaltigkeiten
einzuschrinken. Diese sind, wie Hopf und Rinow gezeigt haben, durch jede einzelne
der folgenden vier Eigenschaften charakterisiert:

1. Aufjedem geoditischen Strahl lidsst sich von dessen Anfangspunkt aus eine Strecke
beliebiger Linge abtragen.

2. Jede divergente Linie ist unendlich lang.

3. Jede Cauchysche Fundamentalfolge von Punkten ist konvergent.
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4. Jede beschrinkte Menge ist kompakt.

In den vollstindigen Mannigfaltigkeiten gilt insbesondere der, viele Untersuchun-
gen wesentlich erleichternde Satz, dass zwischen zwei Punkten immer (wenigstens)
eine kiirzeste Verbindung existiert.

Geschlossene Riemannsche Mannigfaltigkeiten sind iibrigens immer nicht nur
nichtfortsetzbar, sondern sogar vollstindig.

Trotz der Vorziige der vollstidndigen Mannigfaltigkeiten diirften aber auch die
nichtfortsetzbaren selbstdndiges Interesse und ndhere Untersuchung verdienen.

Es ist trivial, dass jede vollstindige Mannigfaltigkeit nicht-fortsetzbar ist; aber
nicht jede nichtfortsetzbare Mannigfaltigkeit ist vollstindig; dies haben Hopf und
Rinow durch Konstruktion zweidimensionaler Beispiele gezeigt. S. B. MYERS hat be-
merkt [7], dass analoge Beispiele fiir jede Dimension >2 existieren; er hat jedoch
keinen Beweis hierfiir angegeben ; wir werden im folgenden einen solchen Beweis nach-
holen, indem wir zeigen, dass die erwidhnte, fiir die Dimension n=2 durchgefiihrte
Konstruktion von Hopf und Rinow auf alle h6heren Dimensionen » iibertragen wer-
den kann. Es gibt also fiir jede Dimension n>1 Mannigfaltigkeiten, die unvollstindig,
aber nicht-fortsetzbar sind (Satz 1, Kapitel I). Unser Kapitel I enthilt ferner den fol-
genden Satz, der fiir die Kldrung des Begriffes der Fortsetzbarkeit wichtig sein diirfte
(Satz 2): ,,Jede Riemannsche Mannigfaltigkeit ist entweder nicht-fortsetzbar oder zu
einer nichtfortsetzbaren Riemannschen Mannigfaltigkeit fortsetzbar“. Die Beweis-
methode hierfiir ist abstrakt-mengentheoretisch (Zornsches Lemma).

Die Siitze des Kapitels I werden unter anderem zeigen, dass die Klasse der nicht-
fortsetzbaren Riemannschen Mannigfaltigkeiten viel grosser ist als die Klasse der voll-
stindigen; dabei beschrinken wir uns hier auf zweidimensionale Mannigfaltigkeiten —
also Fliachen — und auf lokaleuklidische Metriken. Man weiss, dass unter den topo-
logischen Typen geschlossener Fliachen die des Torus und des Kleinschen Schlauches
die einzigen sind, die lokaleuklidische Metriken zulassen, und dass es unter den Typen
der offenen Flichen nur drei Typen mit vollstdndiger lokaleuklidischer Metrik gibt:
die Ebene, den Kreiszylinder und das Mébiusband ohne Rand (cf. (6)). Was wird aus
diesen Tatsachen, wenn man die Forderung der Vollstindigkeit wegldsst? An den
Aussagen iiber geschlossene Flidchen #dndert sich natiirlich nichts; aber fiir offene
Flichen gilt dann der Sarz 3: ,,Auf jeder offenen topologisch gegebenen Fldche lédsst
sich eine lokaleuklidische Metrik einfiihren‘“. Und wenn man anstelle der {iblichen
Vollstindigkeitsforderung nur die schwichere Forderung der Nichtfortsetzbarkeit
hinzufiigt, so besagt unser Satz 4: ,,Auf jeder orientierbaren topologisch gegebenen
offenen Fliche von endlichem Zusammenhang kann man eine nichtfortsetzbare
lokaleuklidische Metrik einfiihren‘‘. Die Frage, ob hier die Beschrinkungen auf
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orientierbare Flichen und auf die endliche Zusammenhangszahl notwendig sind,
bleibt offen.

Offen ist zunédchst auch die Frage, ob die Sétze 3 und 4 verniinftige Verallgemeine-
rungen auf mehrdimensionale Mannigfaltigkeiten besitzen; denn die im Kapitel II
benutzten Methoden sind durchaus auf die Dimension 2 beschrinkt: Die orientier-
baren Flichen werden als Riemannsche Flidchen (im Sinne der Theorie der analyti-
schen Funktionen einer komplexen Variablen) aufgefasst, und auf diesen Riemann-
schen Flichen werden funktionentheoretischen Untersuchungen angestelit.

Insbesondere konnte man vielleicht vermuten, dass der Satz 3 auch fiir beliebig-
dimensionale offene Mannigfaltigkeiten gilt. Dies wird aber im Kapitel III durch den
Satz 7 widerlegt: Dort wird ein Beispiel einer offenen vierdimensionalen Mannigfal-
tigkeit M* angegeben, die nicht fihig ist, eine lokaleuklidische Metrik zu tragen.
(Diese M* ist die punktierte komplexe projektive Ebene, ist also einfachzusammen-
hiingend und daher orientierbar). Ahnliche Beispiele existieren iibrigens sicher fiir alle
Dimensionen n=4k (wie im nachfolgendem Text im Anschluss an den Beweis des
Satzes 7 bemerkt wird). Besonders natiirlich aber ist, im Hinblick auf die Sdtze 3 und
7, die Frage, ob man jede offene M3 lokaleuklidisch metrisieren kann; diese Frage ist
fiir die orientierbaren M3 von J. H. C. Whitehead mit ,,ja** beantwortet worden (cf.
(9)); fiir nicht orientierbare offene M? ist sie noch offen.

Die soeben erwihnte Arbeit von Whitehead hat auch die Anregung fiir die Me-
thode gegeben, die dem Kapitel I1I zugrundeliegt; diese Methode beruht auf dem Zu-
sammenhang zwischen der Existenz einer lokaleuklidischen Metrik auf einer n-dimen-
sionalen Mannigfaltigkeit einerseits und der Existenz einer /mmersion der Mannig-
faltigkeit M" in den euklidischen Raum E” anderseits. (Eine Immersion ist eine ein-
deutige und lokal eineindeutige Abbildung). Von diesem Zusammenhang handeln
unsere Sdtze 5 und 6.

Schliesslich noch eine kurze Bemerkung iiber die Regularititsvoraussetzungen, die
unseren Begriffen und Betrachtungen zugrundeliegen: Die Nachbarrelationen zwi-
schen Koordinatenumgebungen auf der Mannigfaltigkeit werden im Allgemeinen,
d.h. iiberall, wo das Gegenteil nicht ausdriicklich gesagt ist, als analytisch vorausge-
setzt; denn ein grosser Teil dieser Arbeit ist Untersuchungen iiber lokaleuklidischen
Metriken gewidmet und wenn es in einer Mannigfaltigkeit M" eine lokaleuklidische
Metrik gibt, so existieren um jeden Punkt von M" Umgebungen, welche sich isome-
trisch in den euklidischen Raum E" abbilden lassen; die Nachbarrelationen sind fiir
solche Umgebungen Bewegungen des E", d. h., wenn man in einer Mannigfaltigkeit
eine lokaleuklidische Metrik hat, dann kann man sie auch mit einem analytischen
Atlas beschreiben.
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KAPITEL I

Allgemeine Sitze iiber Fortsetzbarkeit und Vollstindigkeit

Wir beginnen mit dem, in der Einleitung schon erwiihnten
SATZ1. Es existieren, fiir alle Dimensionen n, Riemannsche Mannigfaltigkeiten gegebener
konstanter Kriimmung, welche unvollstindig und zugleich nichtfortsetzbar sind, (n>2).

Beweis (cf. (5) und (6)): Wir geben fiir jede Dimension » ein Beispiel einer unvoll-
stidndigen (also einer offenen) nichtfortsetzbaren Mannigfaltigkeit an.

E" sei der durch die Herausnahme des (n—2)-dimensionalen Raumes x, =x,=0
aus dem euklidischen (x,, x,, ..., x,)-Raume E" entstandene Raum, F, der universelle
Uberlagerungsraum von E™'.

F, wird zu einer metrischen Mannigfaltigkeit indem man die in den Umgebungen
der Punkte von E™ definierte euklidische Differentialgeometrie von E™ mittels der
Ueberlagerungsbeziehung auf Umgebungen der Punkte von F, iibertrigt. Das Kriim-
mungsmaf dieser Differentialgeometrie von F ist iiberall null. Die geodétischen Li-
nien sind die Ueberlagerungslinien der in E™ verlaufenden Geraden und Geraden-
stiicke. Sind P und Q zwei Punkte in E™, die so beschaffen sind, dass die Verbindungs-
strecke f’—é den Raum x, =x,=0 trifft, P, und Q, zwei die Punkte P und Q iiber-
lagernde Punkte in F,, so existiert in F,, keine geodétische Linie die P, mit Q, verbindet;
denn eine solche miisste iiber einem P mit Q in E™ verbindenden Geradenstiick liegen
und ein solches ist nicht vorhanden, da der Raum x, = x, =0 nicht zu E™ gehort. Da
eine kiirzeste Verbindung immer geoditisch sein muss, existiert mithin zwischen P,
und Q, keine kiirzeste Verbindung. Es existiert aligemein zwischen beliebigen Punkten
Py, Q,€F, nur dann eine kiirzeste Verbindung, wenn P,, Q, Anfangs- bezw. Endpunkt
des Weges sind, der durch ,,Durchdriicken** der Verbindungsstrecke PQ der Punkte
P=n(P,), Q=n(Q,)€eE entsteht. F, ist also unvollstindig. Wir zeigen, dass F,, nicht-
fortsetzbar ist. Zu diesem Zweck, stellen wir zunichst zwei Eigenschaften von F,, fest:

A) Unter den von einem beliebigen Punkt P, von F, ausgehenden Richtungen
(welche eineindeutig den Punkten einer (n—1)-dimensionalen Richtungskugel ent-
sprechen) gibt es genau eine (n—2)-dimensionale Mannigfaltigkeit von ,,Ausnahme-
richtungen* derart, dass man lings des zugehorigen geodétischen Strahles nicht jede
Lénge abtragen kann.

B) Der geometrische Ort der Punkte P, mit den nachstehenden Eigenschaften 1
und 2 ist eine einfach offene Linie.

1. ,,Die kiirzeste in F, divergente geoditische Linie aus P, hat die Linge a (a>0,
vorgegeben).* 2. ,,Alle divergenten Fundamentalfolgen auf diesen Linien haben un-
tereinander den Abstand null®.
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Weiter schliesst man indirekt: Wire F,, auf ein echtes Teilgebiet G einer Mannig-
faltigkeit H eineindeutig und isometrisch mittels einer Abbildung ¢ abgebildet, dann
hitte G einen Randpunkt P* und P* eine Umgebung U derart, dass man zwei ihrer
Punkte durch einen und nur einen geodétischen Bogen verbinden kann und dass das
Biischel aller Geodatischen aus irgend einem Punkte von U ein regulidres Koordinaten-
system fiir die ganze Umgebung I liefert. (Bogenlinge lings der Geoditischen). Man
betrachtet nun einen Punkt P aus NG und das Biischel der Geoditischen aus P. Auf
allen kritischen Geodétischen trdgt man die kritische Linge ab, welche sich von
@~ (P) aus in F, nicht abtragen lisst.

Somit erhilt man in U eine (n —2)-dimensionale Mannigfaltigkeit: K"~ 2. Gegeben
einen Punkt Q von U welcher nicht auf K"~ 2 liegt, dann existiert ein Punkt Q0 in UnG
welcher nicht auf das (n—1)-dimensionale Gebilde der Geoditischen welche einer-
seits durch Q und anderseits durch einen Punkt von K"~ 2 laufen, liegt. Von Q aus
gesehen, ist die Richtung von Q keine kritische Richtung, also kann man Q von Q aus
innerhalb G lings einer Geodéitischen erreichen, d.h., dass Q zu G gehort und es ist
(auf U beschrinkt) H—G=K""2. Nun betrachten wir in P* das Biischel der Geodi-
tischen, welche senkrecht auf X"~ 2 stehen, und darin einen Kreis vom Radius a.
Wobei a so klein zu wihlen ist, dass dieser Kreis ganz in U liegt. Dieser Kreis ist eine
Punktmenge welche die Voraussetzungen von B) erfiillt, der ist aber eine geschlossene
Linie. Man ist somit zu einem Widerspruch gelangt. g. e. d.

Andere dhnliche Mannigfaltigkeiten F,, und F_,, also offene nichtfortsetzbare
Mannigfaltigkeiten mit der konstanten Kriimmung +1 bzw. —1, erhélt man, indem
man statt dem euklidischen Raum E" eine Kugel S” oder einen hyperbolischen Raum
H" zu Grunde legt. Im ersten Fall entferne man aus S” eine (n — 2)-dimensionale Kugel
S"~2 und im zweiten Fall aus H" einen (n—2)-dimensionalen hyperbolischen Raum
H""2 F,, bzw. F_, ist dann der universelle Uberlagerungsraum des Restes. Die
Uberlegungen bleiben dann wortlich gleich.

Eine Anwendung des Zornschen Lemmas: Satz 2

Die Frage nach der Existenz einer nicht fortsetzbaren Fortsetzung eines beliebigen
Raumes ldsst sich mit den allgemeinen Sidtzen der Mengenlehre beantworten. Zu-
néichst einige bekannte Begriffe:

1) Eine Menge heisst geordnet wenn in ihr eine ,,binire* Relation definiert ist,
welche man mit ,,kleiner* bezeichnet:

a<b.

Diese Relation braucht keine einfache zu sein, d.h. je zwei Elemente der Menge in
Beziehung zu setzen. Sie besitzt aber die folgenden Eigenschaften:
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a) Transitivitdt: Aus a<b, b<c folgt a<c.

b) Asymmetrie: Es kann nicht zugleich a<b und b <a bestehen.

2) Eine geordnete Menge M heisst total geordnet, wenn fiir beliebige a, be M ent-
weder a<b oder b<a gilt.

3) Ein Element s einer Menge M heisst obere Schranke fiir eine Teilmenge M’ aus
M wenn aus ae M’ folgt a<s.

4) Eine geordnete Menge M heisst induktiv geordnet, wenn jede totalgeordnete
Teilmenge eine obere Schranke in M besitzt.

Dann lautet das Lemma von Zorn:
,,Eine induktivgeordnete Menge besitzt mindestens ein maximales Element.*

Damit konnen wir jetzt beweisen:

SATZ 2. Fiir alle r mit 1 Sr< 00 oder r=w, ist, innerhalb der Klasse C", jede Rie-
mannsche Mannigfaltigkeit entweder nichtfortsetzbar oder zu einer nichtfortsetzbaren
Riemannschen Mannigfaltigkeit fortsetzbar.

Beweis. Ist M, eine Fortsetzung von M, so kann es moglicherweise verschiedene
isometrische Abbildungen von M auf einen echten Teil von M, geben es kann sogar
eine Mannigfaltigkeit M Fortsetzung von sich selbst sein, wie das Beispiel des halben
euklidischen Raumes es lehrt. Um das zu vermeiden (wie man gleich sehen wird),
zeichnen wir in der Mannigfaltigkeit M einen Punkt P, (den Basispunkt) und das
Biischel der Richtungen in P, (die Grundrichtungen) aus. Bei jeder Fortsetzung von
M wird der Basispunkt P, verfolgt und sein Bild gemeinsam mit dem der Grundrich-
tungen wird zum Basispunkt bzw. Grundrichtungen der Fortsetzung M, von M. Diese
so prazisierte Fortsetzung von M bezeichnen wir mit M;. Wir betrachten nunmehr die
Gesamtheit {M'} aller mit Basispunkt und Grundrichtungen versehenen Fortset-
zungen M’ von M. Zwei Mannigfaltigkeiten M; und M, sollen dann und nur dann als
gleich gelten wenn man sie so auf einander isometrisch abbilden kann, dass hierbei
der Basispunkt und die Grundrichtungen von M, in den Basispunkt und in die Grund-
richtungen von M, iibergehen. Ebenso nennen wir M, eine Fortsetzung von M; wenn
wieder Basispunkte und Grundrichtungen sich entsprechen.

Unser Satz wird bewiesen sein, wenn wir zeigen werden, dass es unter den Mannig-
faltigkeiten mit Basispunkt und Grundrichtungen eine gibt, die sich nicht weiter auf
eine mit Basispunkt und Grundrichtungen versehene Mannigfaltigkeit fortsetzen
ldsst; denn eine solche Mannigfaltigkeit wird, wie sofort zu sehen ist, nach Fortlassung
des Basispunktes eine absolut nicht fortsetzbare Mannigfaltigkeit.

Jetzt sind wir so weit, das Zornsche Lemma anwenden zu kénnen. Als Menge It
nehmen wir die Gesamtheit aller mit Basispunkt und Grundrichtungen versehenen
Fortsetzungen von M. Unter M < M, verstehen wir, dass M, eine Fortsetzung von M
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ist. Wir miissen nun verifizieren, dass I von dieser Relation induktiv geordnet
wird:

Zunichst die Ordnungsaxiome.

Die Transitivitdt M{ <M, A M; < M3=>M; < Mj ist einleuchtend.

Die Asymmetrie besagt: es kann nicht zugleich M; <M, und M, <M, bestehen.
Wiirde dies nicht der Fall sein, so folgt aus der Transitivitidt, dass M, <M, d.h. dass
die Mannigfaltigkeit eine Fortsetzung von sich selbst wire. M; wire also so in sich
selbst isometrisch abbildbar, dass Basispunkt und Grundrichtungen sich entsprechen
und doch so, dass das Bild von M| in sich selbst nicht das ganze M; ausmacht, d.h.
dass dieses Bild einen Randpunkt in M/ hat. Sei P* dieser Randpunkt. Nun verbinden
wir P* mit dem Basispunkt P, mit Hilfe eines Weges . In einer Koordinatenumge-
bung von P, ist die betrachtete Abbildung die Identitdt, denn Basispunkt und Grund-
richtungen gehen in einander iiber und die Abbildung ist eine Isometrie. Der Weg w
ist eine kompakte Menge und lésst sich also in endlich viele Intervalle so einteilen,
dass jedes Intervall ganz in einer einzigen Koordinatenumgebung von M, zu liegen
kommt. Uy=U(Py), Uy, ..., Uy=U(P*), mit W;AU;,,#0 seien diese so definierten
Koordinatenumgebungen. Wie schon bemerkt, ist die Selbstabbildung von M| — M;
in U, die Identitét; in U ist es sicher nicht mehr die Identitit, denn P* tritt nicht als
Bild auf. Folglich gibt es eine erste Umgebung U,, fiir welche die Abbildung M- M;
nicht die Identitét ist. Aber in dem Teil, in dem U, _, in U, iibergreift, ist die Abbildung
immer noch die Identitdt. Da wir uns in einer Koordinatenumgebung befinden, haben
wir folgende Situation vor uns: Das Innere einer n-dimensionalen Kugel des Para-
meterraumes wird so in sich Riemannsch-isometrisch abgebildet, dass in einem Teil
der Kugel die Abbildung die Identitdt sei, dann ist nach einem bekannten Ergebnis
der Riemannschen Geometrie die Abbildung iiberhaupt die Identitit, d.h. die be-
trachtete Abbildung ist in Y, die Identitit. Wir sind somit zu einem Widerspruch
gelangt, es kann also nicht sein, dass M; < M. Unsere so definierte Ordnungsrelation
geniigt somit dem Axiom der Asymmetrie.

Jetzt zeigen wir, dass jede totalgeordnete Teilmenge von It eine obere Schranke
in 90t besitzt.

Gegeben sei also eine total geordnete Reihe:

* ’ ! ’ !
* - M, M}, ..., M., M, ..

unserer Mannigfaltigkeiten, die so beschaffen ist, dass aus a<p folgt M, <M. Wir
wollen die Existenz einer mit Basispunkt und Grundrichtungen versehenen, also zu
It gehdérenden Mannigfaltigkeit M” nachweisen, auf welche jede M, fortsetzbar ist.
Die gesuchte Mannigfaltigkeit A" wird folgendermassen konstruiert: Einen jeden
Punkt P einer jeden der Mannigfaltigkeiten (*) lassen wir einen Punkt P” der neuen
Mannigfaltigkeit erzeugen. Zwei Punkte P, und P, sollen dann und nur dann denselben



Beitrige zur Riemannschen Geometrie im Grossen 37

Punkt P” erzeugen, wenn sie verschiedenen Mannigfaltigkeiten M, und M; angehdren
und auseinander durch die in ihrer Art einzige, durch M, < M; ausgedriickte isome-
trische Abbildung hervorgehen. Die Gesamtheit aller Umgebungen eines Punktes P”
aus M” erhalten wir dadurch, das wir von einem jeden Originalpunkt P der P’ er-
zeugt, die in M"” zustandekommenden Bilder aller seiner Umgebungen (in seiner
Mannigfaltigkeit) betrachten. Als Nachbarrelation im Durchschnitt zweier Umge-
bungen von M" nehmen wir die entsprechende Abbildung in einer Mannigfaltigkeit
aus (*), aus der sie hervorgehen. Ebenso wird die Metrik der Mannigfaltigkeiten (*)
nach M" durchgedriickt. Es ist somit klar, dass unsere Punktmenge M " eine n-dimen-
sionale Riemannsche Mannigfaltigkeit ist. M" ist auch mit einem Basispunkt und
Grundrichtungen versehen und jede Mannigfaltigkeit aus (*) ldsst sich zu M " fort-
setzen, also ist M” die gesuchte obere Schranke. Alle Voraussetzungen des Zorn-
schen Lemmas sind somit erfiillt; somit existiert in der Menge aller Fortsetzungen
einer gegebenen topologischen Mannigfaltigkeit mit einer inneren Metrik eine mit
Basispunkt und Grundrichtungen versehene nicht fortsetzbare Fortsetzung. Dass
diese Fortsetzung auch nach Weglassen des Basispunktes und der Grundrichtungen
nicht fortsetzbar ist, ist klar; denn bei einer méglichen Fortsetzung, konnte man den
Basispunkt und die Grundrichtungen bei der Abbildung, welche zur Fortsetzung ge-
hort, einfach verfolgen und man hitte eine Fortsetzung mit Basispunkt und Grund-
richtungen. : qg.e.d.

KAPITEL I

Spezielle Untersuchungen des Falles der Dimension n=2

SATZ 3. Auf jeder topologisch gegebenen offenen Fliche ldsst sich eine lokaleukli-
dische Metrik einfiihren.

Beweis: Ist der gewiihlte topologische Typus orientierbar, so existiert bekanntlich
eine Riemannsche Fliche dieses Typus. Wir werden uns daher zunéchst darauf be-
schrinken, zu zeigen, dass es méglich ist, auf jeder offenen Riemannschen Fliche eine
lokaleuklidische Metrik einzufiihren.

Dazu beniitzen wir eine Verallgemeinerung des Weierstrassschen Satzes iiber die
Produktdarstellung der ganzen Funktionen, welche von Behnke und Stein (1) bewie-
sen wurde *):

Gegeben seien eine offene Riemannsche Fliche und darauf eine Folge von Punkten
Py, P,, ..., welche keinen Hdufungspunkt besitzt, sowie eine Folge m,, m,, ... von ganzen,

*) Man vergleiche auch (4).
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nicht negativen Zahlen. Dann existiert eine analytische Funktion F(P), welche auf der
ganzen gegebenen Fliche regulir ist, in den Punkten Py, P,, ... m;-, m,-, ... -fache
Nullstellen hat und sonst nirgends verschwindet.

Daraus folgt zunéchst, dass es auf jeder offenen Riemannschen Fliche Funktionen
gibt, welche regulér und nicht identisch null sind. Sei F(P) eine solche Funktion; wir
betrachten das Differential dF dieser Funktion. Dieses besitzt zwar in gewissen Punk-
ten Q,, Q,, ... my-, m,-, ... -fache Nullstellen. Nach dem obigen Satz von Behnke und
Stein, gibt es aber eine ganze Funktion G(P), welche genau in Q,, Q,, ... niy-, m,-, ...
-fache Nullstellen besitzt, so dass das Differential w=dF(P)/G(P) auf der ganzen
Riemannschen Fldache nirgends null wird. Wenn wir ds=|w| setzen, so definiert ds
eine auf der ganzen Flidche reguldre Metrik, welche iiberdies lokaleuklidisch ist, denn
in einer Koordinatenumgebung ist

ds = [ |dz| = \/E"|dz|

F'(
aol

wobei z=u+iv ein isothermes Parametersystem ist; darin ist die GauBBsche Kriim-
mung:

weil F'(z)/G(z) eine analytische Funktion von z und #0 ist.

Sei jetzt der gewihlte topologische Typus nicht orientierbar; dann gibt es Flidchen
V2 dieses Typus, welche eine Winkelmetrik besitzen, d. h. auf denen die Nachbar-
relationen durch konforme und antikonforme Abbildungen gegeben sind. Die orien-
tierbare zweiblittrige Uberlagerungsfliiche W? ldsst sich dann als Riemannsche
Fliche definieren; die natiirliche Projektion = von W? auf V2 induziert somit in V>
zwei Scharen von Koordinatenumgebungen, welche entgegengesetzt orientiert sind
und antikonform miteinander zusammenhingen.

Die Tatsache, dass W? eine zweiblittrige Uberlagerung von ¥ ist, bedeutet, dass
es in W2 eine Involution ¢ gibt, derart, dass

n(P)=n(p(P))=P (¢*>=1; PeW? PeV?).

Dabei kehrt ¢ die Orientierung um, d.h. wenn man Koordinatenumgebungen von P
und ¢(P) betrachtet, so dass P und ¢ (P) im Nullpunkt liegen,
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¢(0)=0

U+ivs2 U'+ivzs2'

dann ist (Hz_) eine analytische Funktion von z.
Ist eine Funktion F(P) analytisch auf W2, so ist auch F(¢ (P)) analytisch auf W2.
Nach Behnke und Stein existiert auf W? eine analytische Funktion F(P) welche
nicht identisch verschwindet; dann ist

f (P)=F(P)F (o (P))

auch analytisch. Weiter gilt
f(e(P) =1 (P).
Fiir das Differential df folgt
df (¢(P)) = df (P) = df (P),

sodass schliesslich |df(P)| bei der Involution ¢ invariant bleibt. |df(P)| hat in
P, P,, ... my-, m,-, ... -fache Nullstellen wiederum gibt es nach Behnke und Stein eine
auf W? iiberall holomorphe Funktion g, die genau in P,, P,, ... my-, m,-, ... -fache
Nullstellen hat. Demnach ist der Ausdruck

ol
J1g(P)l-lg(e (P))
liberall auf W2 regulir und beziiglich der Involution ¢ invariant, also auf V2 eindeutig

definiert. Schliesslich stellt ds eine lokaleuklidische Metrik dar, denn in einem Koordi-
natensystem ist die Gauss’sche Kriimmung

1 If' ()
K=—=-41
E° % V1@ 1g(@ @)

=0. g.e.d.

SATZ 4. Auf jeder topologisch gegebenen offenen orientierbaren Flichen von end-
lichem Zusammenhang ldsst sich eine nichtfortsetzbare lokaleuklidische Metrik .ein-
fiihren.

Der Beweis wird derart gefiihrt, dass wir jeden topologischen Fldchentypus von
endlichem Zusammenhang so erzeugen, indem wir aus einer geschlossenen Fliche
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vom Geschlecht g endlich viele Punkte herausnehmen. Um funktionentheoretische
Betrachtungen machen zu kénnen, konstruieren wir die gesuchte Metrik auf einer
Riemannschen Fliche.

Ein analytisches Differential w=f(z) dz erzeugt eine Metrik

ds = |f (2)|"|dz|

welche iiberall, wo f(z)#0 und reguldr ist, lokaleuklidisch ist.
Wir beginnen mit einer lokalen Betrachtung:
HiLFssATZ: Die lokaleuklidische Metrik

ds =1 (z)|"|dz|

ist in den Nullstellen von f (z) nicht fortsetzbar.

Dabei hat die Aussage: ,,Die Metrik ist in dem Punkt P, fortsetzbar** natiirlich die
folgende Bedeutung: F, sei der durch die Herausnahme des Punktes P, aus einem vor-
gelegten Raume F entstandene Raum. F,, sei mit einer bestimmten Metrik versehen.
Dann heisst diese Metrik in P, fortsetzbar, wenn es eine topologische und isometrische
Abbildung € des Raumes F, auf ein echtes Teilgebiet G eines Raumes M gibt mit der
folgenden Eigenschaft: Seien r ein Randpunkt von G in M, g,eG eine Folge von

Punkten, welche gegen r konvergiert und U eine Umgebung von P, (in F); dann liegen
fast alle €™ !(g,) in U.

Beweis des Hilfssatzes: Wir fiihren ihn fiir eine m-fache Nullstelle, von der wir
annehmen diirfen, dass sie im Nullpunkt des Koordinatensystems liegt.

Zunichst zeigen wir, dass, falls die Metrik im Nullpunkt fortsetzbar ist, die Fort-
setzung sich durch Hinzunahme eines einzigen Punktes ergibt.

Dazu betrachten wir in der z-Ebene Kreise um den Nullpunkt; wenn deren Radien
klein sind, so sind die Lingen dieser Kreise, in der obigen Metrik gemessen, kleiner
als die euklidischen Lingen der entsprechenden Kreise, denn ds < |dz|. Da die eukli-
disch gemessenen Lingen nach null streben, wenn die Radien gegen null gehen, so tun
dies auch die Riemannsch gemessenen Lingen. Daraus folgt, dass es einen einzigen
Randpunkt P* gibt. Denn gibe es einen weiteren Randpunkt Q*, so hitte Q* einen
positiven Abstand a von P*. Das ist aber ein Widerspruch mit der Voraussetzung,
dass P* und Q* beide innerhalb einer Schar von Kreisen, deren Lingen nach null
streben, liegen. Wir nehmen jetzt an, dass unsere Metrik in den Nullpunkt hinein fort-
setzbar ist, und zeigen, dass dies ebenfalls zu einem Widerspruch fiihrt. Im Nullpunkt
selbst muss aus Stetigkeitsgriinden die Gauss’sche Kriimmung unserer Metrik gleich
null sein. Die Metrik ist somit in einer ganzen Umgebung von z=0 lokaleuklidisch.
In ds=|f(2)|*|dz| sei also f(z) der Gestalt f(z)=z"g(z), wobei g(0)#0 ist. Die
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Kriimmung einer beliebigen Kurve, in der Metrik ds=| f(z)| - |dz| ist durch die Formel

L[ dlog|f]
k=—|k L4
tf|[’+ on ]

gegeben, wobei k, die euklidische Kriimmung der Kurve z=z(¢) in der z-Ebene be-
deutet, mit der Konvention, dass:

sign k s’nd dz
i . = sign —| arg —
g g s gd

und n die Normale zu z(¢) in der Richtung arg(—i(dz)/(dt)) ist.
Mit f(z)=z"-g(z) wird

0 log |f| _ 9(m-log |z| + log lg(2)])
on on

Wir betrachten jetzt eine den Nullpunkt enthaltende einfachgeschlossene Kurve, etwa
z=re'® (r=Konst.), und berechnen ihre totale Kriimmung; lings |z|=r ist
dlog|fl/on=m[r+G(r, ), wobei G(r, ) beschrinkt bleibt in 0<¢p<2n und
0<r<e, e>0. Da k,=1/r, wird die totale Kriimmung:

ol
§k-ds=§ k, + ———-—‘)—g-'—ﬂ]-|dz|
on

2 2r
B 1
=J T——::»——+G(r, ¢)]r-d¢=(m+l)2n+rJG(rs ¢)-de
0 0

jé"G(r, @) do ist beschrinkt, so dass, wenn r—0 strebt, §k'ds—+(m+1)2n strebt.
Aber da die Metrik iiberall innerhalb der Kurve als lokaleuklidisch angenommen
wurde, sollte §k -ds =2n sein. Das ist aber ein Widerspruch zu dem, was wir errechnet
haben und der Hilfssatz ist bewiesen.

Mit diesem Hilfssatz konnen wir jetzt fiir fast jeden topologischen Typus Beispiele
offener Flichen mit nichtfortsetzbaren Metriken konstruieren.

Fiir das Geschlecht null ist die einfachste offene Fliche die Ebene mit ihrer, sogar
vollstindigen, natiirlichen Metrik: ds=|dz|. Hat man die Punkte z=a,, z=a,, ...,
z=ay aus der Zahlenebene entfernt, so ist in dieser N-fach punktierten Ebene die

Metrik
ds =|(z — a,)(z — ay) ..., (z — ay)|-|dz]|

lokaleuklidisch und nach dem Hilfssatz in den Punkten a4y, a,, ..., ay nicht fortsetzbar.
Diese Metrik ist in den Umgebungen dieser Punkte unvollstindig. Man bemerke, dass
in der einfach punktierten Ebene sogar eine vollstindige lokaleuklidische Metrik ein-
gefiihrt werden kann; diese ist isometrisch zur natiirlichen Metrik des Zylinders in E°.
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Um nun Beispiele von Flichen mit hoherem Geschlecht zu gewinnen, betrachten
wir das Differential:
dz

O Jema) G =ar)on(z—areer)

Um sein Verhalten in der Néhe eines Windungspunktes g; zu untersuchen, fiihren
wir den uniformisierenden Parameter {?>=z—a, ein. Da dz=2{-d(, wird
2¢-d¢

w S R = R

- C\/;é 0 im Punkte a',- ’

g=12, ..

also ist w in der Umgebung von g; ein regulires Differential, welches ungleich null ist.
In der Umgebung des Punktes unendlich fiithren wir den uniformisierenden Para-
meter {2=1/z ein; dz=—2-d{/{3 und
202 dg

w=- —— -,
J#0fir{ =0
Damit w einen eindeutigen Wert erhilt, schneidet man die Zahlenebene folgender-
massen auf’;

oo

a, aj Q2q.1

Also ist das Differential w eindeutig auf einer Riemannschen Fliche vom Ge-
schlecht g.

Wenn wir jetzt |w|=ds setzen, so definiert es eine lokaleuklidische Metrik auf der
zugehorigen Riemannsche Fldche.

Im Falle g=1 definiert das Differential eine vollstindige lokaleuklidische Metrik,
denn in diesem Fall ist @ auch im Punkte oo reguldr. Im Falle g>2 dagegen wird @
im Unendlichem null und erzeugt somit eine unvollstindige lokaleuklidische Metrik
auf der einfach punktierten Fliche vom Geschlecht g; nach dem Hilfssatz (und auch
nach dem Satz iiber die Curvatura integra [[K-dA4=(1—g)-4n) ist diese Metrik nicht
fortsetzbar.
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Eine nichtfortsetzbare Metrik auf einer mehrfach punktierten Fliche erhalten wir,
indem wir das Differential

w,=(z—=>by)(z=by)...,:(z—b) w wobei b;#a;

J

betrachten. Dabei ist jetzt zu beachten, dass dieses Differential fiir k=g—1 im Un-
endlichem reguldr und verschieden von null ist. Sei zundchst k#g—1, dann stellt
|wg|=ds eine unvollstindige, nichtfortsetzbare, lokaleuklidische Metrik auf der
(k +1)-fach punktierten Fliche vom Geschlecht g dar. Falls k <g—1, ist die Metrik
in der Umgebung des Punktes co unvollstindig; ist dagegen k>g—1, dann ist die
Metrik in der Umgebung des Punktes oo vollstidndig. Ist aber k=g —1, so ist die Me-
trik im Punkte oo reguldr, so dass die Fliche vom selben topologischen Typus ist wie
die Flache mit k=g —2, denn w, hat nur noch g—1 Singularititen. Um eine Metrik
auf der g-fach punktierten Flidche zu erhalten, betrachte man etwa:

wp=(z—=b)(z=by) ..., (z~b,_))w.

Diese Konstruktionen versagen aber im Falle des einfach punktierten Torus (g=1),
denn ds=|w| ist auf dem ganzen Torus reguldr und definiert also eine vollstindige
Metrik. Weiter ist ds=|(z—b)- w| eine auf dem zweifach punktierten Torus nichtfort-
setzbare lokaleuklidische Metrik, denn dieses ds wird in z=b singuldr und das Diffe-
rential hat einen Pol im Unendlichem. Unsere Konstruktionen haben somit, bis auf
die einzige Ausnahme des einfach punktierten Torus, Beispiele von nichtfortsetzbaren
lokaleuklidischen Metriken geliefert. Auf einem einfach punktierten Torus betrachten
wir die Metrik:
ds =|e'" b .

SATZ. Diese Metrik ist unvollstindig und in z=>b nicht fortsetzbar.

Beweis. Um die Schreibweise zu vereinfachen, diirfen wir annehmen, dass 5=0.

Zunichst zeigen wir, dass die so definierte Mannigfaltigkeit M unvollstindig ist.
Ein divergenter Weg endlicher Linge ist nimlich z(¢)=it, t>0. Auf diesem Strahl ist
e'/* beschrinkt und w ist sogar analytisch in der Umgebung von z=0.

Wir zeigen jetzt: M kann nicht fortgesetzt werden.

Annahme: Es existiert eine Fortsetzung M von M. Es bezeichne U denjenigen Teil
von M, der dem Ring [0<|z|<e] in der Parameterebene entspricht, wobei £>0 so
klein bemessen ist, dass die Windungspunkte von w ausserhalb von U liegen. U be-
sitzt eine Fortsetzung I - iiber den inneren Rand des Gebietes hinaus —, von der wir
ohne Verlust der Allgemeinheit annehmen diirfen, dass sie einfach oder zweifach zu-
sammenhiingend ist. Il kann also auf ein schlichtes ebenes Gebiet Q abgebildet wer-
den. Dabei geht U in ein Ringgebiet P iiber, dessen dusserer Rand mit dem dusserem
Rand von Q (oder dem Rand iiberhaupt von Q) iibereinstimmt.
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Da P vom gleichen konformen Typus ist, wie der Ring [0<|z| <¢], entsteht P aus
Q durch Wegnahme eines einzigen Punktes W,. Die aus dem Obigen sich ergebende
konforme Abbildung von [0<|z| <¢] auf P kann man zu einer konformen Abbildung
von [|z] <] auf Q erweitern, indem man z=0 den Punkt W, zuordnet:

Z - Ebene w - Ebene

Nun betrachten wir denjenigen Kurvenbogen y auf M, dem in der z-Ebene das
offene Intervall (0, ¢/2) auf der reellen Achse entspricht.
Eine leichte Abschédtzung liefert:

Ldnge von y=[§*|e'"- ()| = 0.

Anderseits bemerken wir, dass y in der w-Ebene ein analytischer Kurvenbogen
entspricht. Da ferner die w-Ebene auch in der Umgebung von W, eine isotherme
Parameterebene ist, schliessen wir:

Léinge von y< o

Damit sind wir bei einem Widerspruch angelangt. q.e. d.

(Ein weiteres Beispiel einer nichtfortsetzbaren lokaleuklidischen Metrik auf einem
einfachpunktierten Torus hat mir Prof. A. Huber angegeben; er betrachtet die Metrik

ds = €| |dz],

wobel
+ o0

¢(@)= Z (z + m1+ in)®

mn=—c
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Dann ldsst sich zeigen, auf genau gleiche Art wie oben, dass diese auf einem Torus
definierte lokaleuklidische Metrik nicht fortsetzbar sein kann.)

Dagegen bleibt die Frage offen, ob man auf einer beliebig vorgegebenen unendlich-
zusammenhdingenden Fliache eine lokaleuklidische Metrik einfithren kann, welche
nichtfortsetzbar ist.

T. Rado hat schon 1922 ein Beispiel einer Riemannschen Fldche angegeben, wel-
che konform nicht fortsetzbar ist. Diese Fldache ist notwendigerweise von unendlichem
Zusammenhang, denn wie S. Bochner 1926 beweisen konnte, ist jede offene endlich-
zusammenhédngende Riemannsche Fliache zu einer geschlossenen Fliche konform
fortsetzbar.

Das Radosche Beispiel liefert aber auch ein Beispiel einer Flidche, welche metrisch
nicht fortsetzbar ist; denn fiihrt man darauf auf irgend eine Weise eine reguldre Me-
trik ein, so ist diese nicht fortsetzbar, weil eine metrische erst recht eine konforme
Fortsetzung ist.

KAPITEL III

Der Begriff der Immersion; Untersuchungen des Falles n>3

Seien X und Y zwei topologische Rdume, so verstehe ich unter einer Immersion
von X in Y eine Abbildung f: X— Y mit der folgenden Eigenschaft: Jeder Punkt xe X
hat eine Umgebung U (x)< X derart, dass f |M(x) eine Einbettung von U(x) in Y lie-
fert. (Einbettung = Topologische Abbildung).

SATZ 5. Wenn es eine Immersion einer n-dimensionalen Mannigfaltigkeit M" in den
n-dimensionalen euklidischen Raum E" gibt, dann kann man in M" eine lokaleuklidische
Metrik einfiihren.

Beweis. Nach der Definition ist eine Immersion der Mannigfaltigkeit M" in E"
eine Abbildung & der Form:

®(p) = (f1(p), £2(P), --» fu(P))

dabei ist p ein beliebiger Punkt auf der Mannigfaltigkeit und f;(p), £2(p), ..., fo(P)
die rechtwinkligen Koordinaten des Bildpunkts @(p). In seiner Koordinatenumgebung
hat p die Koordinaten x,, x,, ..., X,.

Da ©(p) lokal eine Einbettung ist, ist die Funktionaldeterminante

Of1s fas s S)

#0;
O(X15 X35 ooes Xp)

lokal existiert also eine Umkehrabbildung @ ~*. Mit ihrer Hilfe kann ich die euklidi-
sche Metrik des E"” nach M" zuriicknehmen, d.h., dass ich in M" die folgende Metrik
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einfiihre:
ds* = Z (df)* = gidx' dx*
i=1
wobei also:
of; df;
8ik = Zé;' oxt q.e.d.
ji=1

Umgekehrt kann man noch zeigen:

SATZ 6. Ist M" einfachzusammenhdngend, so folgt aus der Existenz einer lokal-
euklidischen Metrik auf M", die Existenz einer Immersion von M" in E".

Beweis. Gegeben ist also die lokaleuklidische Metrik, daraus konstruiere ich eine
Abbildung @ welche eine Immersion ist. Es seien A", U, .. U™ Umgebungen der
Punkte pV-p@ . p® sodass UPAUCTVxQ fiir i=1,2,...,h—1. Da es in der
Mannigfaltigkeit M" eine lokaleuklidische Metrik gibt, kann ich diese Umgebungen
so wihlen, dass es fiir jede U™ eine Einbettung ) in den euklidischen Raum exi-
stiert.

In WV definiere ich @ = @1, Es existiert genau eine Bewegung yu,, des E" mit der
folgenden Eigenschaft:

#21()@(2)((](1) A U(2)) —_ @‘”(U“) A U(2)).

U, ist eine isometrische Abbildung des ganzen E" auf sich, sodass die Zusammen-
setzung pu,,° ®® noch eine Einbettung der ganzen Umgebung U‘? in den E" liefert.
Da jetzt p,,o®® und & im Durchschnitt WP AU iibereinstimmen, kann ich in
UP d=p,, o P? setzen. Weiter erklire ich @ in UP als p, 0 3,0 @™, So kann ich
schrittweise @ bis zur Umgebung U™ definieren und somit auf der Vereinigung
A= U9, Nur ist es noch nicht gesagt, dass diese Definition eindeutig ist, wo zwei
sich nicht in der Numerierung folgende Umgebungen aufeinander iiberlappen.

Sei nun o ein stetiger Weg, welcher in p'!) beginnt und iiber p®, p®, ..., nach p
fithrt und zwar so, dass jeder seiner Punkte sich in wenigstens einer der Umgebungen
U befindet.

Dann sage ich, dass ich @, von &= &1 ausgehend lings dem Weg w definiert habe.
Umgekehrt, wenn von der Definition einer Funktion @ lings einem Weg w die Rede
ist, so soll immer eine solche Definition von @ in einer ganzen Umgebung von w ge-
meint sein.

Ausgehend von einer gegebenen Einbettung einer Umgebung I eines beliebigen
Punktes j, ist es moglich lings jedem stetigen Weg der Mannigfaltigkeit M” eine
Funktion & zu definieren, welche iiberall lokal eine Einbettung ist. Denn, nehmen wir
an, es wire lings dem Weg ' nicht méglich, (o’ sei also das stetige Bild des Inter-

(h)
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valles0<7<1, wobei r=0 dem Punkt p(0) = p entspricht), so gibt es einen Parameter-
wert =1 mit 0 <t wo @ nicht mehr definierbar ist. Aber @ existiert bei jedem Wert des
Parameters t mit0 <t <1. Seit’ ein Parameterwert mitt’ <t und U(p(z') ) nU(p(r) ) #0.
Bis zu der Umgebung U (p(z')) ist also @ definierbar und liefert eine mogliche Ein-
bettung von U(p(z")) in E"; andererseits, da es in der Mannigfaltigkeit M™ eine lokal-
euklidische Metrik gibt, existiert eine Einbettung &€ von U(p(r)) in den E"; sei u die
Bewegung des E" sodass:

pee(U(p () N U(p (1)) = ¢(U(p () N U(p(D),
dann ist uo ¢ eine Fortsetzung der Abbildung @ und diese ist also bis zum Ende des
Weges o' definierbar. Ausgehend von der Einbettung eines beliebigen Stiickes von
M", kann man also die Abbildung @ ldngs aller Wege bis zu jedem beliebigen Punkte
erkldren. Damit unsere Abbildung @ eine Immersion ist, miissen wir noch zeigen, dass
man in einem Punkte b dieselbe Abbildung @ erhilt, wenn man ausgehend von der-
selben Immersion einer Umgebung eines Punktes a, @ lings zwei homotope Wege
zwischen a und b definiert. Seien w, und w, diese zwei homotope Wege, so gibt es eine
stetige Abbildung ¢ des Rechteckes 0<x<1, 0<y<1 in die Mannigfaltigkeit M"

sodass:
©0,y)=a o(l,y)=b
¢(x,0)=0; o(x, 1)=0w,

Ich lege in dieses Quadrat ein Gitter mit der Maschengrésse e. Da das Bild des Recht-
eckes eine kompakte Menge in der Mannigfaltigkeit ist, kann ich ¢ >0 so wihlen, dass

Ay
1 1,1

0,0 1 x

“~—g—
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erstens, wenn g irgend ein Gitterpunkt ist und g’ ein beliebiger Punkt mit g¢’<,/2-&
ist, ¢(¢q’) in einer Umgebung U(¢(g)) von ¢(g) liegt, welche sich in den euklidischen
Raum einbetten ldsst; zweitens 1/e eine ganze Zahl ist.

Ich betrachte jetzt die endliche Anzahl von Deformationswegen:

1
o(x,me) m=0,1,2, .., -.
€

Die Definition von @ welche man erhilt, indem man ¢(x, m-¢) oder ¢(x, (m+1)-¢)
folgt ist dieselbe, denn @ (x, m-¢) und @(x, (m+1)-¢) verlaufen in zwei benachbarten
Ketten von Umgebungen, welche sich stindig iiberlappen. Man erhélt dieselbe Defi-
nition, indem man einer Kette von Umgebungen folgt oder der andern, denn wenn
man etwa drei Umgebungen U, B, W der Punkte u, v, w einer Mannigfaltigkeit mit
lokaleuklidischer Metrik betrachtet, derart, dass UNnBNIW#0O, so erhilt man, aus-
gehend von einer Einbettung @ welche in U erklért ist, dieselbe Einbettung @ von I3
gleichobmandirekt @in IB oder zunichstin B und erstdannin Wdefiniert. Schrittweise
kann man also ausgehend von der Definition von @ lidngs w,, eine Immersion @, von
der Umgebung von w, konstruieren, welche in b mit der Abbildung @ iibereinstimmt.

Somit hdngt @ nur von der Homotopieklasse des gewdhlten Weges ab und diese
Abbildung ist iiberhaupt vom Wege unabhingig in einer einfachzusammenhéngenden
Mannigfaltigkeit. q.e. d.

Mit Hilfe der Kontraposition dieses letzten Satzes kann man das Folgende be-
weisen:

SATZ 7. Es gibt eine vierdimensionale offene einfachzusammenhdngende Mannig-
faltigkeit, welche keine lokaleuklidische Metrik tragen kann.

Beweis. Der zweidimensionale komplexe projektive Raum P2 kann als vierdimen-
sionale reelle Mannigfaltigkeit M * aufgefasst werden. M* kann als vierdimensionaler,
mit einer zweidimensionalen Sphire S?2 abgeschlossener euklidischer Raum gedeutet
werden. M * ist geschlossen und einfachzusammenhingend. Sei M'4 = M* —p*, wobei
p* ein beliebiger Punkt von M* ist. M'# ist einfachzusammenhingend und offen. Ich
behaupte: Es kann auf M'* keine lokaleuklidische Metrik eingefiihrt werden. Das
zeige ich indirekt: Ich nehme an, es gebe auf M'* eine lokaleuklidische Metrik; da
M'* einfachzusammenhingend ist, gibt es nach Satz 6 eine Immersion von M'# in den
E*. Ich betrachte in M'* zwei komplexe Geraden D? und D', welche nicht durch p*
verlaufen (d.h. zwei zweidimensionale geschlossene Flichen in M'*) und welche so
nahe an einander gewihlt werden, dass die Immersion einer Umgebung von D auch
die Abbildung von D’ in den E* liefert.

Sei f die Immersion von M'# und £ (D) bzw. f(D') die Bilder von D bzw. D". f(D)
und f(D’) sind zwei geschlossene Flichen in E*, welche unter Umstdnden Doppel-
punkte oder allgemein mehrfache Punkte aufweisen konnen. Es konnen Schnittpunkte
von f(D) mit f(D’) vorkommen, welche nicht von Schnittpunkten von D mit D’ her-
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rithren, ndmlich in der Ndhe von ihren Doppel- oder mehrfachen Punkten; denn
wenn die Fldche f(D) sich selbst schneidet, so schneidet die in der Nihe von f(D)
verlaufende f(D’) die Fliche f(D). Die gesamte Anzahl von Schnittpunkten von f (D)
und (D) in der Néhe einer mehrfachen Stelle ist aber gerade ; denn wenn ein Stiick von
f(D) das in der Nihe eines ersten Astes von f(D) verlduft, einen zweiten Ast von
f(D’) schneidet, so schneidet auch das Stiick von f(D’) welches in der Nihe des
zweiten Astes von f(D) verlduft, den ersten Ast von f(D).

Die Schnittzahl von D mit D’ dndert sich also durch die Immersion f hdchstens
um eine gerade Zahl; da aber diese Schnittzahl in M'* genau 1 betriigt, sind wir zu
einem Widerspruch angelangt, weil in E* die Schnittzahl zweier orientierbarer zwei-
dimensionaler Flichen gerade sein muss. g.e. d.

Bemerkungen

1. Man kann sich genau so iiberlegen, dass in der oben erwidhnten Mannigfaltig-
keit M'* keine lokalsphirische oder keine lokalhyperbolische Metrik existieren kann.

2. Man kann mit derselben Methode eine 8-dimensionale und allgemein eine 4 k-
dimensionale Mannigfaltigkeit konstruieren, welche keine lokaleuklidische Metrik zu
tragen vermag. Man geht dabei von dem komplexen vierdimensionalen, bzw. kom-
plexen 2k-dimensionalen projektiven Raume aus und entferne davon einen Punkt
p*; reel gefasst, sind es Mannigfaltigkeiten M'® bzw. M'**, welche offenbar nach dem
obigen Beweis keine lokaleuklidische Metrik tragen konnen. Fiir die Dimensionen
n> 5, n#4k, bleibt die Frage offen, ob man auch dann Beispiele von Mannigfaltigkeiten
angeben kann, welche nicht lokaleuklidisch metrisierbar sind.

Die Dimension n=4 ist aber die kleinste, bei welcher man solche Mannigfaltig-
keiten antreffen kann; denn J. H. C. Whitehead hat das folgende bewiesen (9):

SATZ 8. Fiir n<3, und alle r mit 1 <r<oo gibt es fiir jede offene, orientierbare, n-
dimensionale Mannigfaltigkeit der Klasse C" eine Immersion in den euklidischen Raum
E", vermittels einer reguliren Abbildung der Klasse C'.

Daraus folgt, wenn man diesen Satz anwendet, und wie Whitehead es auch selber
bemerkt, die Existenz einer lokaleuklidischen Metrik auf jeder offenen orientierbaren
Mannigfaltigkeit der Dimensionen 1, 2 und 3.

In dem Fall der Dimension n=2 wissen wir schon nach Satz 3, dass es lokaleukli-
dische Metriken auf allen topologischen Typen offenen Flichen gibt, also auch noch
auf den nichtorientierbaren.

Der Beweis des Satzes 3 geschieht aber auf funktionentheoretischer Basis und
ldsst sich nicht zu dem Fall der lokalhyperbolischen oder der lokalsphirischen Metrik
verallgemeinern; der Whitehead’sche Beweis verlduft aber geometrisch und liefert
offenbar gleichlautende Aussagen sowohl fiir die lokalhyperbolische als auch fiir die
lokalsphirische Metrik. Die wesentliche Bedeutung des Satzes von Whitehead liegt
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aber darin, dass der Fall der Dimension n=3 auch noch erledigt wird, allerdings nur
in dem orientierbaren Falle.

Man kann sich fragen, ob eine Verfeinerung der Whitehead’sche Methode, wobei
man etwa die zweiblittrige orientierbare Uberlagerung einer nichtorientierbaren
dreidimensionalen Mannigfaltigkeit M3 betrachten wiirde, auch den nichtorientier-
baren Fall nicht liefern kénnte. Diese Frage ist noch unbeantwortet.

3. Zum Schluss sei noch erwihnt, dass Poénaru [10] das Folgende bewiesen hat:

SATZ 9: Von jeder offenen parallelisierbaren n-dimensionalen Mannigfaltigkeit
gibt es eine Immersion in den E". Nach Satz 5 ist somit die Parallelisierbarkeit einer
offenen n-dimensionalen Mannigfaltigkeit eine hinreichende Bedingung dafiir, dass
man sie lokaleuklidisch metrisieren kann.
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