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On the Isoperimetric Problem in a Riemann Space
To Professor Heinz Hopf on his 70th birthday

By YosHIE KATSURADA, Sapporo

Introduction

As well-known, the isoperimetric problem in an Euclidean space of two dimensions
is to find the shortest simple closed curve enclosing a fixed area. The solution is a
circle. The analogous problem in an Euclidean space of three dimensions is to find the
simple closed surface with minimum area enclosing a fixed volume. Here again the
classical answer is the sphere.

One knows (see, for instance, [1, 2]) that the closed surfaces with constant mean
curvature are closely related to the isoperimetric problem, because of the following.

THEOREM. Let S be a simple closed surface, then S has constant mean curvature H
if and only if S is stationary with respect to the isoperimetric problem ([1], p. 75).

In previous papers ([3, 4]), the author has investigated some properties of a closed
orientable hypersurface with the first mean curvature H, =constant in an (m+1)-
dimensional Riemann space R™*!,

It is the aim of the present paper to generalize the above Theorem to hypersurfaces
in R"*! and to investigate the connection with the isoperimetric problem in R™*!.
In § 1 some integral formulas for a closed orientable hypersurface which is the boundary
of a domain in R™*! are derived; §2 gives a variational interpretation for these
formulas and for a formula (I) of Minkowski type in R™*! ([3], p. 288). In §3 the main
theorem is proved.

§ 1. Some integral formulas

We consider a Riemann space R™*!(m+123) of class C*(v=3) which admits a
one-parameter continuous group G of transformations generated by an infinitesimal

transformation
#=x 4+ E(x)ot (1.1)

(where x* are local coordinates in R"*' and ¢’ are the components of a contravariant
vector £). We suppose that the paths of these transformations cover R™*! simply and
that ¢ is everywhere continuous and #0. If ¢ is a Killing vector, a homothetic Killing
vector, a conformal Killing vector, etc. ([5], p. 32), then the group G is called isometric,
homothetic, conformal, etc. respectively.

We now consider a domain D in R"*! such that its boundary is a closed hyper-
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surface V'™ of class C? imbedded in R™*!, locally given by
x' = x"(u%); (1.2)

here and henceforth, Latin indices run from 1 to m+ 1 and Greek indices from 1 to m.
Let us consider a differential form of degree m at a point P of the domain D,
defined by

(& dx, ... dx)) = /g (& dx, ..., dx) (1.3)

m

where dx* is a displacement in the domain D and g denotes the determinant of the
metric tensor g;; of R™*'. Then the exterior differential of the differential form (1.3)
divided by m! becomes as follows

1 N
%d((é, dx, ..., dx)) = — g Lg,;dV (1.4)
. 4

where Z; g;; is the Lie derivative of the tensor g;; with respect to the infinitesimal
point transformation (1.1), and dV means the volume element of D.

Integrating both members of (1.4) over the whole domain D, and applying Stokes’
theorem, we have

1 i _Li LN O P
__ZJJ‘g -é?gijdV—mJ fd((f, dx, ...,dx))—mJ J((C, dx, ..., dx))
b D v (1.5)

V'™ being the boundary of D. On the other hand, we can easily see the following
relation ((¢,dx, ...,dx)) =& n;m! dA, where dx* means a displacement along the hyper-
surface V'™, i.e., dx* =(0x*/0u*)du®, and n; is a unit normal covariant vector at a point
P of the hypersurface V'™ and dA denotes the area element of V™. Thus we obtain the

integral formula
_%f...fg"fggijdV=f---f,f"n,.dA (o).
¢
D an

Let the group G be conformal, that is, & satisfy the equation
Lg;i=¢+¢i= 2¢(x)gi;
g

(cf. [5], p. 32), where the symbol ”; ” always means the covariant derivative, then («)

becomes
—(m+ l)f---fd)dV:f---ffinidA (o), -
D ym
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Let G be homothetic, that is, ¢ = C=constant, then
~(m+ 1)CV=f---f§inidA (@),
Vm

V being the total volume of D. Especially, if our space R™*! is an Euclidean space E™*1
and if we take a point of D as origin of the euclidean coordinates x’ and attach to each
point x the vector &' with the components £ = x' (i.e., the position vector of x), then the
transformations (1.1) are homothetic, that is, C=1, thus the formula («), becomes the
following well-known formula

(m+ 1)V=—f---fxinidA.
ym

In the case m+1=3, we have 3V= —[...[,.x'n,d4 (cf. [2], p. 18).
Furthermore in the Riemann space R"*1, let G be isometric, that is, C=0, then

we have
f“'féinidA=0 (a),-.
ym

By making use of the formula («), and the formula (I), of the previous paper
([4], p. 3), we have the following

THEOREM 1.1. If D is a domain in R™*' admitting a conformal Killing vector ¢
(i.e.,&,;+¢&,.,=2¢g;) and if its boundary V™ is a closed hypersurface with H, = con-
stant, then it follows that

(m + I)Hlf---f¢dV=f---f¢dA (1.6)
D ym

where H, means the first mean curvature of V™.
Proof. Multiplying the formula (&), by H,(=const.), we obtain

—(m+ 1)H1f---f¢dV=H1f~--f&in,.dA.
D ym

By making use of the formula (I), of the previous paper H, |...[ymEndAd=—{...[ympdA
(cf. [4], p. 3), we see that (m+1)H, [...[p dV=]...[ym¢ dA.

COROLLARY. If D is a domain in R™*' admitting a homothetic Killing vector &
(i.e., &, ;+&;.,=2 C g;;) and if its boundary V™ is a closed hypersurface with H, = const.,
then we have

ye— 2 (1.7)

where A is the total area of V™.
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Proof. Substituting ¢ =C (=const.) into both members of (1.6), we obtain easily
(L.7).

Especially, if our space R™* ! isan Euclidean space E™*! and if ™ is a hypersphere
with radius y, then the formula (1.7) becomes V'=y-A/m+1.

§ 2. On variational problems of integral formulas

In this section, we shall discuss the preceding integral formulas and the integral

formulas of the previous paper ([4], p. 3) from the point of view of the calculus of
variations.

We now consider a variation of a geometrical object in R"*!, defined by
#=x"+4 E(x)e (2.1)

where ¢ is a parameter near ¢=0; then substituting (1.2) into (2.1), we get a family
% =x'(u", ¢) of admissible hypersurfaces of the form

= x(u) + E(xF (u))e. (2.2)

For each value of ¢ near ¢=0, we thus obtain a domain D(¢) with a boundary V™ (¢),

where D(0)=D, V™(0)= V"™, let V (&) be the total volume of D(e). Now we have the
following

THEOREM 2.1. If (6V/0€),- o is the first variation of the total volume of D (&) along D
with respect to a direction &', then

oV 1 .,

o =—|.. | Po..dV. 2.3

(66>e=0 ZJ' fg §gu ( )
D

Proof. Let V be the total volume of D(g), which is given by the integral form

-=f'--fﬁ(df, oy dX

D(¢)

where §=g(x,¢) and dx' =dx'+(0&'/0x")dxe. For the first variation of ¥ along D we

have P 5
= |- | —/g(dx, ..., dx 5—(dx, ..., dX),
j Jae\/g(dx, , dx)+\/gag( x dx)

D(e)
1% 1 0gii .. il 65’)
e S e + gy dx, .
(as)s___o 2v \/gg ( 6 glla i &8ii ( )

if [,
=5] |’ Leudv
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because of dV'=./g(dx,...,dx) and L, g;;=(0g,;/0x") &'+ g,;(0E/0x)+ g, (0 €0 x))
(cf. [5], p. 9).

Therefore we evidently have the following

CoOROLLARY 2.1. The first variation of the total volume of D(e) along D, with
respect to a direction & becomes as follows

oV oV oV
(*’6;)3=0=(m+1)f‘f¢dV, (aé)8=0=(m+l)CV, or (b—E_)B___O:O

according to &' being a conformal Killing vector (£, g;;=2 ¢ g;;), a homothetic
Killing vector, or a Killing vector.

CoROLLARY 2.2. The first variation of the total volume of D(e) along D, with
respect to a direction &, is given by

(‘Z_‘:)O =~ [ [enaa. (2.4

V m

The proof easily follows from the integral formula («) and (2.3).

We consider next a closed orientable hypersurface V™ of class C* imbedded in
R™*1 locally given by (1.2). then we obtain a family %= x(4* ¢) of admissible hyper-
surfaces of the form (2.2). For each value of ¢ near ¢=0, we have a hypersurface
V™ (g), where ¥™ (0)= V"™, and we have a value A(c) of the total area of V™ ().
Then we shall prove the following theorem.

THEOREM 2.2. Let (0A/0¢),- o be the first variation of the total area of V™ (¢) along
V™, with respect to a direction &', then

0A 1 ox' ox’
il =—|-|PLg,— —g*dA. 2.5
(aa),,:o 2_[ f & 81 gu ou?® &3]
ym

Proof. As well-known, the total area of V'™ (¢) is given by the form

4@ = [+ [ V2@ @, ..

Vm(e)

where g(e) means the determinant of the metric tensor g,; (¢) of the hypersurface

V™ (e) (i-e., 8ap(e) =g1;(X) (0X'/0u7) (0% /0u")).
Differentiating the above integral form with respect to ¢, we have

0A 0
5; =J...jbé\/g(e) (du, ..., du)
Vm(e)

where ¥* and ¢ are independent parameters.
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On making use of the following results

o, B¢ g oc

o B )

€ 2\/g ox* o(ax"/au)au
og 6g,, ox' ox! ()2 0g N 2 £k 2
o7 = oxt ow ou® D8 Gamaun 286D g p8” 2,

og oe N4 6{ ox' ox’ SN
6(65”75u;) FCh (gkj(x) P+ gu(x ) il 3u* 5‘58 (e)8.,

we obtain

NS ox' ax!
5e ) =%
€ e=0

ap
fg,,a S8 dVEA.

Consequently for the first variation of the total area of V'™ (¢) along V'™, we can see

0A J J‘g ox' ox’ "
0¢ Je=0 g”au Gu” )

COROLLARY 2.3. The first variation of the total area of V™ (¢) along V™, with
respect to a direction &', becomes as follows

0A 0A 0A4
— =mf.--f¢dA, =mCA or — =0
68 e=0 ae e=0 ae e=0

vm

according to & being a conformal Killing vector, a homothetic Killing vector or a
Killing vector.

From Theorem 2.2 and the formula (I) of the previous paper (cf. [4], p. 3), we can
see easily the following

CoroOLLARY 2.4. The first variation of the total area V'™ (¢) along V™ with respect
to a direction &, has the form

1 /64 ;
-<T> == [ [ enan. @6)
m\ C€ Je=0

ym

If our space R™*!isan Euclidean space E™*! and if we take to each point x the

vector &'(x) with the components &'=x’(i.e., the position vector of x), then the
vector ¢ is a homothetic Killing vector with C=1, and ¢ n, is the support function
p for xe V™. In this case, the formula (2.6) becomes

f---lepdA+A=0,

ym
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this being nothing but the formula of Minkowski type of ¥™ in E™*! given by C. C.
HsIUNG (cf. [6], p. 286). Therefore we can see the formula (2.6):

f leé'ndA+ ((M) =0
68 =0

as a generalization of the formula of Minkowski type.

Remark 1. Although the vector field &(x) is not defined on the whole Riemann
space but defined on a certain domain including both D and V™, all the preceding
theorems are valid.

Remark 2. In case an arbitrary vector #' is defined on the hypersurface V'™ given
by (1.2), we can find also the following formulas

(asl 0__f fn(u)ndA @.7)
(%:1)8:0 =— mf ---le n'(u*)n;dA (2.8)

for the first variation of the total volume of D(¢) along D and the first variation of the
total area of V'™ (¢) along V'™, by means of a family % =x'(u% ¢) of the hypersurfaces
of the form

and

(% e) = x"u®) +n' (ue.

§ 3. The isoperimetric problems

In this section, we shall prove the following theorems closely related to what may
be called an isoperimetric problem in R™*1,

If (64/0¢),— =0 for all variations with respect to a direction such that
(6V/0¢),- =0, then the hypersurface V'™ is called a pseudo-stationary hypersurface.

THEOREM 3.1. Let V™ be a closed orientable hypersurface in R™*'. Then the first
mean curvature of V™ is constant if and only if V™ is a pseudo-stationary hypersurface.

Proof. Suppose H, is constant; if (6V/d¢),- =0, then we get from (2.7)

eim = — dA =0
(63 )a 0 f fﬂ n
and hence from (2.8)

0A
(——~> =-—mf-'-leninidA=-—mHlf-~-fninidA=0.
68 e=0
ym ym

Thus V™ is a pseudo-stationary hypersurface.
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Conversely suppose (§4/0¢),- =0 for every variation with respect to a direction
n' such that (6¥/d¢),- o =0; we must prove that H, is constant. Let ¢ be an arbitrary
function defined on ¥™ such that {...{,mpd4=0. We wish to show first that ¢ is in
fact the normal component of a variation vector ' such that (§V/0e),- ,=0. Let us
consider the family of hypersurfaces % (u*,¢)=x' (u*)+ ¢ n’ ¢, then from (2.4) we see

oV .
(“‘) =—f..'f(pnlnidA=~f...f¢dA=O.
68 e=0
ym ym

Thus ¢ is the normal component of a variation vector such that (6¥/d¢),- o =0.
By hypothesis, V'™ is pseudo-stationary, therefore it follows that

0A
(), == [ [ moda=o.
68 =0
V"I

Thus we have [...[ym H; ¢ dA=0. Also if h is an arbitrary constant, we have
|...Jymh @ dA=0, and hence for any function ¢ such that |...[,~¢ d4=0 and for any
constant 4, we obtain

f-uf(Hl — h)pdA =0.

ym

Now let & be the mean value of H,:

1
h = '“‘J""J‘Hl dA s
A
Vm
then we have

o[- man= [ [ an—s [
ym ym ym
=f--'fH1dA—’l°A=f"'ledA—f"‘ledA=0-
ym ym ym

Consequently taking H, —h for ¢, we obtain

f---f(H1 —h)dA=0.

Therefore H, =h, which concludes the proof.
This theorem is nothing but a generalization of the same theorem in an Euclidean
space given already in [2], p. 19, and this proof follows the same argument as in [2].
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A. D. Alexandrov has already proved the following result in his paper ([7], p. 304),
where in the case of positive curvature, R™*! shall be a sphere and V™ contained in a
hemisphere of R™*!:

THEOREM A. If R™*! has constant curvature and if V™ is a simple closed hyper-
surface with H; = constant, then V"™ is a hypersphere.

From this result, we have (under the same assumptions as above):

COROLLARY 3.1. If V™ is a simple closed hypersurface in R™' with constant
curvature, then V'™ is a hypersphere if and only if V™ is a pseudo-stationary hypersurface.

Now in R™*! let S be the collection of all closed orientable hypersurfaces V'™
enclosing a fixed volume. Then the total area 4 of V™ is a function on S. Let V'™ be a
fixed hypersurface and consider a one parameter family of continuous and differ-
entiable variations of V™, indexed by a parameter ¢. Let V'™ (¢) denote the varied
hypersurface. Then we require that ¥™ (0)= V"™ and that for each ¢, V™ (¢) € S (i.e.
these variations are volume preserving).

The total area A(e) of V™ (¢) is a differentiable function of e. If (§4/d¢),- (=0 for
all volume preserving variations, then V™ is called a stationary hypersurface. Then
we have

THEOREM 3.2. If R™*' admits a homothetic Killing vector field & (¢, ;+ &, ;=2Cgy;,
C#0) and if V™ is a closed orientable hypersurface in R™*', then the flrst mean
curvature H, of V™ is constant if and only if V™ is a stationary hypersurface.

Proof. Let V™ be given by (1.2) and suppose for simplicity that ¥ (0)=1 and let
V'™ (¢) be a variation of ¥'™; denote its total area and the total volume of the domain
bounded by V'™ (¢) by A4 (¢) and V (&) respectively. V'™ (¢) can be represented by

X (u, 8) = x'(u%) + ' (u)e + -

for each value of ¢ near ¢=0, where n'(4*)=(0%'/0¢),- o. Then from (2.7) and (2.8)
we have

0A ,
( ) f fnndA (~~—> =—mJ---fH1n‘n,-dA.
68 e=0 8 e=0
an

Sufficiency in Theorem 3.2. is similar by proved as in Theorem 3.1; that is, sup-
pose Hj is constant and & (4% ¢) is a volume preserving variation of F™ then
(6V[08)y= o= =J...fym n' n; dA=0 and hence

0A i i
( ,) _.—___mf...lerllnidA=—MH1f'“fﬂ!nidA'-:0.
0¢ Je=0
ym L

Conversely, suppose (64/0¢),- =0 for every volume preserving variation. Then
we must show that H, is constant.
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Let ¢ be an arbitrary function defined on V™ such that |...{,m ¢ d4=0; we wish
to show first that ¢ is the normal component of a volume preserving variation.
Consider the family of hypersurfaces

V() : ® (u% ) = x'(u*) + o n'e, (3.1

then let ¥ (¢) denote the total volume of the domain bounded by the hypersurface
V™ (e), then V(0)=V=1; now the normal component of (0x'/d¢),~ =¢ n' is given
by (0%'/0¢),- on; =@ n' n;=¢. Hence, by virtue of (2.7) we have

() f )] e

by hypothesis. But the variation x* (1% ¢) need not be volume preserving.
However by hypothesis, our space R™*! admits an infinitesimal homothetic
transformation given by (1.1) with the additional condition

é,’;j + ﬁj;i = 2Cg,-j (C #* O, Constant) 5 (32)

Let us choose a coordinate system such that the path of the infinitesimal transfor-
mation is the new x'-coordinate curve, that is, a coordinate system in which the
vector ¢ has the components 8} (where 8% denotes the Kronecker delta); then (1.1)
becomes x''=x+6" 6t and R™*' admits a one-parameter continuous group G of
transformations given by

x'=x"+ 1. (3.3)

Then in this new coordinate system, the condition (3.2) becomes as follows
0gi;/ox' =2 Cg;; ;- Therefore the metric tensor g;; with respect to the new coordinate
system has the form g;;=f;;(x?,...,x"*!) €2¢*". Now we take the family of hyper-
surfaces

V" (e): x* (u% &) = X' (u, &) + — (3.4)

(m + 1) C V( ) o1
we shall show that ¥*™(¢) is a volume preserving variation. Let ¥*(g) be the total
volume of the domain bounded by ¥*"(¢) and let #*' and d4* be a normal vector and
an area element of the hypersurface x*' (4% ¢) respectively. Then from Corollary 2.1
and Corollary 2.2, we have

(m+1)CV*(e)=- ff&‘l nfdA* = — f—--fn’fdA*. (3.5)
V*™(e) V*m(e)

On the other hand, from (3.4) we have the relations

gi_y (X ) fu (x*2 *m+ 1)ezcxn
—f,j(x ~m+1)e2 Cx! e(2/m+1)los(1/V(e)) =g (x)e(llm+l)log(1/V(5))
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thus we obtain

Ve(x*) = g () = if(—g‘) : (36)

Substituting (3.6) in (3.5) and making use of the relations

x*2(u%, &) = X2 (u% €), ..., x*™ (% &) = 7" (u% ¢),

we see that
ol mraar = [ M9 44
o ]ran= | Jhge
Vam(e) Vm(e)
and
(m+1)CV*(e)=-—V1® ---J’ﬁni(s)dA(e)=i/—1€£)(m+1)CV(e)=(m+1)C.

Vm(e)

Thus we have V*(¢)=1, therefore ¥*"(¢) is a volume preserving variation of V'™,
Now, since (0¥ /0¢),- o =0 it follows that

ox*i 6)?‘) ;
m— —] e == n s
0¢ e=0 e e=0 Y
(6x*i) (6)?)
— n={— n=q.
% oo \ 8 /em0

Therefore ¢ is not only the normal component of (8%'/d¢),- o but is also the normal
component of (0x*'/0e),- , and thus ¢ is the normal component of a volume preserving
variation.

By hypothesis, since V'™ is stationary, it follows that (64/0¢),- o=—m [...[ym
Hy ¢ d4=0, thus |...[ymH, ¢ d4=0. Also, if h is an arbitrary constant then
f-..fym @ hdA=0 and hence for any function ¢ such that {...[,m ¢ d4=0 and for
any constant A, f...[ym (H;—h) ¢ dA=0. Now let & be the mean value of Hi:
h=(1/A){...Jym Hy dA then we have [...[ym (H,—h)d4A=0. Consequently we see
f...Jym (Hy —h)* dA=0. Therefore H, =h, which completes the proof.

From Theorem A and Theorem 3.2, we have the following corollary:

COROLLARY 3.2 If R™*!isan Euclidean space E™*1, then a simple closed hyper-
surface with minimal hypersurface area enclosing a fixed volume is a hypersphere.

This may be called a form of the isoperimetric theorem in E™*?,

and we have

The author wishes to express to Professor Heinz Hopf her sincere thanks for his
valuable advice and suggestions.
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