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Extremalliingen und eine konform invariante

MaBfunktion fiir Kurvenscharen

H. RENGGLI

§ 1. Einleitung

1. Der von L. AHLFORS und A. BEURLING [1] eingefiihrte Begriff der Extremal-
lange spielt eine wichtige Rolle in der Theorie der konformen wie auch der quasi-
konformen Abbildungen. Die Extremalldnge ist eine reellwertige, nicht negative
Funktion, definiert auf der Menge der Kurvenscharen beziiglich einer Riemannschen
Flache. Ferner ist sie konform invariant.

Fiir unsern Zweck ist es von Vorteil, nicht mit der Extremallidnge, sondern mit der
reziproken Funktion, die wir mit u bezeichnen, zu arbeiten. u ist dann nidmlich
monoton (Satz 1) und vollstindig subadditiv (Satz 3), folglich eine MafBfunktion
(Theorem 1). Auch werden wir uns, vor allem aus Griinden der Darstellung, auf die
beziiglich der Ebene definierten Kurven beschrinken.

Wir verwenden den Begriff der MaBfunktion, wie er auf den Arbeiten von
C. CARATHEODORY aufbauend von H. HAHN rein mengentheoretisch gefasst wurde,
und wie er in H. HAHN und A. ROSENTHAL ([2], § 6.1) dargestellt ist.

2. Es stellt sich nun die Frage, welche Mengen bzw. welche Kurvenscharen be-
ziiglich u messbar sind. Wir zeigen in dieser Arbeit, dass jede Kurvenschar I, fiir die
0<u(l')< oo gilt, nicht messbar ist (Theorem 2').

Dieses Resultat hdngt natiirlich eng mit den Additivititseigenschaften von pu
zusammen. Ist ndmlich eine MaBfunktion additiv, so ist jede Menge messbar; um-
gekehrt bilden die u-messbaren Mengen eine g-Algebra, auf der u vollstindig additiv
ist. Um also nicht messbare Mengen zu finden, miissen Eigenschaften der Funktion u
ausfindig gemacht werden, die die Additivitdt verletzen. Unser Resultat beruht des-
halb wesentlich auf einer gewissen Absorptionseigenschaft der Funktion u (Satz 6).

Trotzdem k6énnen wir zeigen, dass in gewissen Féllen die Funktion u sich vollstin-
dig additiv verhilt (Satz 4). Auch 18sen wir das Additivititsproblem fiir eine spezielle
Klasse von Kurvenscharen (Definition 2 und Satz 5). Ferner mochten wir bemerken,
dass Satz 3 schon von M. OHTSUKA [3] benutzt und bewiesen worden ist, wihrend
Satz 4 eine Verschirfung von Lemma 1 in [4] darstelit.

3. Die Einfiihrung der Funktion p mag auch sonst gewisse Vorteile bieten. In
vielen Anwendungen kommt es ndmlich vor, dass man die Kurvenscharen mit un-
endlicher Extremallinge vernachlissigt. In unserer Auffassung heisst das einfach,
dass eine Menge vom MaB Null nicht beriicksichtigt wird.

Zur Erleichterung der Lesbarkeit dieser Arbeit stellen wir zuerst die von uns
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benutzten elementaren Eigenschaften der Extremallidnge in der sich fiir die Funktion U
ergebenden Form kurz zusammen. Da wir mit den Kurvenscharen mengentheoreti-
sche Operationen ausfiihren, fanden wir es auch fiir nétig, den von uns verwendeten
Kurvenbegriff zu prézisieren.

§ 2. Die Mengenfunktion

1. Einen Punkt der euklidischen Ebene E bezeichnen wir entweder durch die
beiden reellen Koordinaten (x, y) oder durch die eine komplexe Koordinate z. Unter
einer Kurve y verstehen wir eine Abbildung y(7)={x(¢), ¥(¢)} entweder des offenen
Intervalls I={z reell: 0<t<1} oder des abgeschlossenen Intervalls I*={t reell:
0<t<1} in E, wobei y(¢) lokal ein-eindeutig und stetig ist und im zweiten Fall
y(0)=7y(1) gilt.

Im Falle y:/— E betrachten wir zwei Kurven y(¢) und y*(z) als gleich, falls eine
ein-eindeutige und stetige Abbildung #(z) von I auf I existiert, so dass y(7(1))=y*(t)
fiir jedes 1, Tel. Die Gleichheitsdefinition fiir geschlossene Kurven ist analog. Zu-
sitzlich zur {iblichen Aquivalenzrelation fiir orientierte Kurven fligen wir also hinzu,
dass auch entgegengesetzt durchlaufene Kurven dquivalent sind.

Mit I' bezeichnen wir eine Menge von Kurven y. Die von den Kurven v, yerl, in
E iiberdeckte Punktmenge wird der Tridger von I' genannt und mit G notiert.

2. Sei g eine in E definierte, erweitert reellwertige Funktion, die nicht negativ ist.
In jedem Punkte ist durch ¢(z)|dz| ein konform invariantes Differential und damit
eine sogenannte konforme Metrik definiert.

Falls (fz0® im Lebesgueschen Sinne existiert, so bezeichne F(g) dieses Integral.
Wir treffen hier und im folgenden die Verabredung, dass Operationen wie Quotienten
oder Integrale dann den Wert oo haben sollen, falls sie nicht definiert sind. Ferner sei
F(G; @) das iiber eine messbare Punktmenge G, G < E, erstreckte Integral ([

Unter der ¢-Linge /,(¢) einer Kurve y verstehen wir das Integral (, o ds, das fiir
rektifizierbare Kurven als Lebesguesches Integral iiber die Kurvenlidnge erklart wird.
Es kann in naheliegender Weise auf lokal rektifizierbare Kurven verallgemeinert
werden. L(I';@)=inf} [,(¢) ist die sogenannte Minimalldnge der Schar I' beziiglich
der durch ¢ definierten konformen Metrik.

Nun werde jeder Kurvenschar I' eine erweiterte reelle Zahl u(I') zugeordnet durch

DEFINITION 1.

F
w(r)=inf O
e« L'(T';0)
Eine Funktion ¢ wird Extremalmetrik genannt und durch P bezeichnet, falls
w(I)=F(P)/L*(T';P) gilt.
Unter Benutzung unserer Konvention ergibt sich leicht die folgende dquivalente
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DEerINITION 1'. p(I ):infa F (o), wobei nur solche ¢ zuldssig sind, fiir die L(T;0)>1
gilt.

Die Funktion p ist in dem Sinne konform invariant, dass sie einer Schar I und
ihrem konformen Bild I’ dieselbe Zahl zuordnet.

3. Unmittelbar ergibt sich
SATZ 1. Fiir jede Schar I gilt 0<u(I')<co. Ist I'*<T, so folgt p(I'*)< u(I).
Ferner bendtigen wir

SATZ 2. Sei R={(x,y):0<x<a,0<y<b} und S eine Teilmenge des Intervalls
I={x reell: 0<x<a}. Die Kurvenschar I sei wie folgt erklirt: yel falls xeS und
y(f)={x, bt},0<rt<1.

Dann gilt u(I')=m*S/b, wobei m* S das dussere Lebesguesche Maf3 von S bezeich-
net.

Beweis. Sei M messbar und ScMc . Sei K diejenige Teilmenge von R, deren
Projektion M ist. Wir beschridnken ¢ auf die messbare Menge K und setzen dort
0(z)=1/b. Dann gelten L(I';0)=1 und pu(I')<F(K;0)=mM]/b, also u(I')<m*S/b.

Infolge u(I')< co gibt es zu jedem £>0 eine auf R beschrinkte, durch g gegebene
konforme Metrik, so dass L(I';¢)>1 und F(R;¢)<u(I')+e¢ gelten. Unter Benutzung
des Satzes von FuBINI und der Schwarzschen Ungleichung folgt

b

1< (f@(x, y)aly)2 < b}ez(x, y)dy

fast iiberall auf S. Sei unter Beachtung unserer Konvention f auf I durch f (x)=
{802 (x, y) dy definiert. Bezeichnet M, M c I, diejenige Punktmenge, auf der f(x)>1/b
ist, so gilt S« M undM ist messbar. Somit folgen

1 1 1
I;m*SSI;mMSff <FR;@o <u(l)+e, also I;m*SSu(I‘).
M
§ 3. Einige Eigenschaften der Funktion y

1. Als erste Eigenschaft wird gezeigt, dass die Mengenfunktion p vollstindig
subadditiv ist.

SAtz 3. Es seien I'; (i=1, 2, 3, ...) abzdhlbar viele Kurvenscharen. Dann gilt

u(ig Fi) < Elu(l“i).
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Beweis. Sei I'=JiZ I';. Ist u (I';})= oo fiir mindestens eine Schar, so gilt Satz 3
trivialerweise. Es seien also alle pu (I';) endlich. Gemaiss Definition 1’ gibt es zu jedem
¢>0 und zu jedem Index i eine durch g; definierte konforme Metrik, so dass L(I';;0;)
>1 und F(g)<p (I;)+¢/2" gelten. Sei g (z)=sup; ¢; (z). Offenbar gilt o?(z)<
Y2107 (2)- Damit ergeben sich L(I';0)=1 und F(e)< Y2, F(g;), woraus nach
Definition 1’ die Ungleichung

nry< 3w +e
folgt.

2. Als zweite Eigenschaft wird gezeigt, dass die Mengenfunktion pu in gewissen
Fillen vollstindig additiv ist.

SATZ 4. Es seienT;(i=1, 2, 3, ...) abzdhlbar viele Kurvenscharen. Sind die Triger
G, der Scharen I, derart in messbaren Mengen G} enthalten, dass die Mengen G} NG’}
fiir i#j Flichenmaf Null haben, so gilt

i=

IJ(U Fi) = _Zlﬂ(ri)'

Beweis. Sei I'=\J;2, I';. Fir u(I') = oo folgt Satz 4 aus Satz 3. Ist aber pu(I)
endlich, so gibt es nach Definition 1’ zu jedem &>0 eine durch ¢ gegebene konforme
Metrik, so dass L(I';¢)=>1 und F (¢)<u (I')+e¢ gelten. Sei g; die auf G;* beschrinkte
Funktion ¢. Da die G}’ n G} fiiri # j FlichenmaB Null besitzen, ergibtsich) ;2 | F(G} ;0,)
<F (). Ferner ist L(I';;o;))=>1 fiir jedes i. Somit folgt Y2, u(I)<pu(I)+e,
was vereint mit Satz 3 das gewiinschte Resultat liefert.

3. Wir geben zuerst die Definition der sogenannten regulidren Kurvenscharen.
Dann lésen wir fiir diese das Problem der vollstindigen Additivitét.

DEFINITION 2. Eine Kurvenschar I' werde regulir genannt, falls 0 < u (I') < oo ist und
auf dem als messbar vorausgesetzten Trdger G von I' eine Extremalmetrik P existiert,
die dort fast iiberall positiv ist.

SATZ 5. EsseienT';(i=1, 2, 3, ...) abzdhlbar viele reguldre Kurvenscharen, fiir die

2 u(l;) endlich ist. Dann und nur dann gilt p(\JiZ, T')=Y.2, u(T), falls die

Mengen G;N G, fiir i#j Flichenmafi Null besitzen. Uberdies ist dann auch \ J2, T';
reguldr.

Beweis. Sei I'=\J2; ', Aus der Regularitit folgt leicht, dass auch solche
Extremalmetriken P; existieren, die ausserhalb G; Null und in G; f.i. positiv sind
und fiir die L (I';; P)=1 sowie u(I;)=F (P, gelten. Sei P (z)=sup; P;(z). Analog
dem Beweise von Satz 3 folgen L(I'; P)> 1 sowie u(I < F(P)<Y 2 F(P)=Y.i2, (Ty).
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Da die letztere Summe nach Voraussetzung endlich ist, sind };2, P} und P? f.ii.
endlich. Gilt nun p(I)=Y72, u(I)), so ist infolge F(P)=Y 2, F(P) die f.ii. defi-
nierte, nicht negative Funktion f=[Y;2, P}]—P? f.i. Null. Da aber P, in G, f.i.
positiv ist, muss offenbar auch fin G;nG; fiir i#] f.i. positiv sein. Folglich haben
alle G;N G, fiir i#j FlichenmaB Null. Dies, vereint mit Satz 4, ergibt Satz 5. Dass
in beiden Fillen I' regulér ist, folgt unmittelbar.

KOROLLAR 1. Esseienl;(i=1, 2, 3, ...) abzihlbar viele regulire Kurvenscharen, fiir
die Y 21 p(I';) endlich ist. Hat mindestens eine Menge G, G, fiir i#j positives Map,
so gilt p (U2 T) <22, p(I):

BEMERKUNG 1. Die Beweise der Sdtze 3, 4 und 5 bleiben mutatis mutandis richtig
fiir endlich viele Kurvenscharen. Folglich gelten diese Sditze und auch Korollar 1 analog
fiir endlich viele Kurvenscharen I;.

4. Der folgende Satz zeigt eine gewisse Absorptionseigenschaft von u; m.a.W.
zu jeder Schar I' mit beschrinktem Triager G und endlichem u (I') gibt es eine Schar
4, so dass p (4 UT) beliebig nahe bei u (4) ist.

DEFINITION 3. Sei R={(x, y):a<x<b, c<y<d} ein Rechtecksgebiet und
0 =(d—c)/n, wobei n eine natiirliche Zahl ist.

Die Kurvenschar A ist wie folgt erklirt: yed falls a<x<b;v=1,2,...,n und
y(O)={x, c+(v—1)5+d1}, 0<t<]1.

Das Rechtecksgebiet R sei also durch n—1 horizontale Linien in n gleich grosse
Teilrechtecke unterteilt. Die Kurvenschar 4 besteht nun aus allen vertikalen Seg-
menten, die in den einzelnen Teilrechtecken die horizontal gelegenen Seiten verbinden.

SATZ 6. Esseider Triger G der Kurvenschar I beschrinkt und p (I')< co. Sei R ein
Rechtecksgebiet mit G< R und A eine gemdss Definition 3 erkldrte Schar.

Dann gibt es bei festem R zu jedem ¢>0 ein 6* >0, so dass fiir jedes A mit 6 <o*
die Ungleichungen pu (A)<u (4ul)<u (4)+¢ gelten.

Beweis. Zu jedem &> 0 existiert eine auf R beschrinkte, durch g gegebene kon-
forme Metrik, so dass L (I'; ¢)=>1 und F (R; ¢)<u (I')+¢/2 gelten. Sei gy durch
ox(z)=min [N, ¢ (2)] in R definiert, und N derart gewihlt, dass F(R; g)—e¢/2<
F(R; o) gilt. Sei 6*=1/N und 4 eine in R definierte Schar mit  <4*. Nun ist fiir die
in R durch P(z)=1/5 definierte Metrik L (4; P)=1 sowie u(4)=F (R; P). Seien
0* und g,, in R durch g* (z)=max [¢ (2), P (2)] bzw. g4 (z)=min [g (2), P ()] erklirt.
Dann folgen beziiglich AuI' die Beziehungen L(4uUTl;0*)>1 und p(4ul)<
F(R; ¢*). Uberdies ist g3+ 0*?>=P2+0* und g, >0y. Demnach ergeben sich

u(AuF)sF(R;Q*)sF(R;P)+F(R;e)<u(A)+u(r)+§
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und also
€
u(A)+u(F)+2-—u(AuF)>F(R;P)+F(R;a)—F(R:e*)

€ €
=F(R;Q*)ZF(R;QN)>F(R;Q)—52#(r)_i,
woraus
p(d)+e>pu(d4ur)

folgt. Dies, vereint mit Satz 1, ergibt Satz 6.

§ 4. Die Funktion y als Mafifunktion

1. Jeder Kurvenschar I' wurde in Definition 1 eine nicht negative, erweiterte
reelle Zahl zugeordnet. Damit ist auf der Menge der Kurvenscharen eine Mengen-
funktion u definiert. Bezeichnet Q die Menge aller zuldssigen Kurven, so kann y also
auf der Menge der Teilmengen von Q erkldrt werden. Dabei sei u(¢)=0. Satz 1
bedeutet nun einfach, dass y auf der Menge aller Teilmengen von Q monoton zu-
nehmend ist. Ferner is u vollstindig subadditiv geméss Satz 3. Somit gilt

THEOREM |. Die Mengenfunktion u, definiert auf der Menge der Kurvenscharen,
ist eine Mapfunktion.

Wir konnen demnach die allgemeine Theorie der MaBfunktionen anwenden
([2], § 6.1). Speziell sind die Scharen I' mit u (I')=0 messbar beziiglich u. Dagegen
werden wir zeigen, dass alle andern Scharen mit endlichem u (I') nicht messbar sind.

2. Wir werden dieses Resultat zuerst fiir Scharen mit beschrinktem Tréger
beweisen. Dazu benétigen wir einen Hilfssatz (Lemma 1).

Es seien 6 und I' zwei Kurvenscharen. Ist zusdtzlich I' messbar beziiglich der
Maffunktion u, so folgen

pO@oul)=pu)+p@-T),
pO)=pu@nr)+pu@-r),

)+ p@)=pO@nl)+u@0I).

Diese Beziehung zusammen mit Satz 6 ergibt

also

LEMMA 1. Es sei der Trdger G der Kurvenschar I' beschrinkt, es sei p (I') < oo und
I’ sei messbar in bezug auf u. Sei R ein Rechtecksgebiet mit G R und A eine gemdiss
Definition 3 erkldrte Schar.
Dann gibt es bei festem R zu jedem ¢>0 ein 6* >0, so dass fiir jedes A mit 6 <o6*
die Ungleichung
p(MN)<pudnl)+e¢
gilt.
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Existierte nun ein den Voraussetzungen von Lemma 1 geniigendes I' mit u(I')>0,
so ergibe sich fiir e<u(I') die Ungleichung u(4 nI')>0, also wire im besondern
AT #0.

3. Wir beweisen jetzt

THEOREM 2. Sei I” eine Schar mit beschrdnktem Trdger G. Gilt 0<u(I')< o0, so ist
I' nicht messbar beziiglich p.

Beweis. Sei I' messbar beziiglich u, sei u(I')<oo und der Triger G von I' be-
schrinkt. Nach Lemma 1 existiert zu jedem &>0 eine Schar 4, so dass u(IN<
pu(dnr)+e/4 gilt. Sei A" diejenige Schar, die der Zahl /2 entspricht, also durch
Unterteilung aus 4 hervorgeht. Analog folgt u(I')<u(4’' nI)+¢/4.

Um Satz 2 auf die Scharen 4 nI' und 4’ " I" anzuwenden, ordnen wir jeder gemaéss
Definition 3 gegebenen Kurve y(¢) von ANl bzw. 4'nT" den Punkt y(0) zu und
bezeichnen mit S bzw. S’ die aus diesen Punkten bestehenden Mengen. S bzw. S’ sind
demnach die Vereinigungsmengen der vertikalen Projektionen von AT bzw.
A’ UT in den einzelnen Teilrechtecken der Hohe 6 bzw. der Hohe 6/2. Nun ldsst sich
Satz 2 auf diesen Fall verallgemeinern. Damit ergibt sich u(4 nI)=m*S/5 bzw.
u(4’ur)=m*S’ 2/5. Sei analog des Beweises von Satz 2 die Menge M derart ge-
wihlt, dass M aus messbaren linearen Teilmengen besteht und S'cM sowie
mM<m*S’'+¢0/8 gelten. Es bezeichne K die Vereinigungsmenge aller Punkte in
den einzelnen Teilrechtecken der Hohe 6/2, die sich dort vertikal auf die betreffenden
Teilmengen von M projizieren. Somit liegt die Schar 4’ TI" in der messbaren Menge
K.

Sei = diejenige Teilmenge von 4 NI, deren Kurven in R—K liegen. Unter An-
wendung von Satz 2 ist nun leicht zu sehen, dass die Abschidtzung [m*S—m M]/6 <
u(E) gilt. Mit den obigen Beziehungen folgt daraus

u(AﬂF)—%u(A'ﬂF)—§<u(E)-

Auf die in K bzw. R—K gelegenen Scharen A’ I" und = konnen wir Satz 4 und
Bemerkung 1 anwenden. Dies zusammen mit Satz 1 ergibt

(@ +p(@ nI)=p(EV@ N )< p(r),
woraus man mit Hilfe der obigen Beziehungen

ur)<e
folgert.
4. Fiir den allgemeinen Fall miissen wir zuerst Satz 6 auf den Fall unbeschrinkter
Triger verallgemeinern. Dazu bilden wir das Innere des Einheitskreises konform auf
ein Rechtecksgebiet R, und das Aussere des Einheitskreises beziiglich der Riemann-
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schen Zahlenkugel konform auf ein Rechtecksgebiet R, ab, wobei R,nR,=0 an-
genommen wird. Da y konform invariant ist, konnen wir in R; U R, rechnen, wobei
auf dem Einheitskreis ¢(z)= oo fiir jede Metrik ¢ gesetzt werde. Fiir jene in R, zu
betrachtenden Scharen 4 miissen wir jeweilen diejenigen Segmente weglassen, die
eventuell das Bild des Punktes oo enthalten. Im iibrigen ldsst sich der Beweis von
Satz 6 fiir R, U R, wiederholen. Man gelangt — nur p(I')< co voraussetzend — durch
konforme Ubertragung zu einer in der Ebene gelegenen Kurvenschar 4, fiir die die
Ungleichungen von Satz 6 giiltig bleiben.

Lemma 1 ldsst sich dann sofort fiir messbare Scharen I mit u(I") < oo formulieren.
Was den Beweis von Theorem 2 anbelangt, hat man nur die dortigen Uberlegungen
in den oben definierten Rechtecksgebieten R, und R, durchzufiihren. Somit folgt

THEOREM 2'. Sei I' eine Kurvenschar. Gilt 0<u(I')< oo, so ist I nicht messbar
beziiglich u.

5. Was die Scharen I' mit u(I')=oco anbelangt, so gibt es sowohl solche, die
messbar, wie auch solche, die nicht messbar sind. Bezeichnen wir wieder mit 2 die
Menge der zulédssigen Kurven, so gelten

SATZ 7. a) Ist T eine Schar mit u(I')=0, so ist Q— I messbar beziiglich p.
b) Ist I eine Schar mit 0<pu(I')< oo, so ist Q—TI nicht messbar beziiglich p.

c) Ist I eine Schar, so dass fiir jedes I'' =T" entweder u(I'')=0 oder u(I'')= oo gilt,
so ist I’ messbar beziiglich .

Beweis. a) Die Gesamtmenge Q wie auch die Differenz zweier messbarer Mengen
sind natiirlich messbar.

b) Wire ndmlich Q —I' messbar, so auch die Differenz Q—(Q—I')=T, in Wider-
spruch zu Theorem 2'.

c) Sei 0 eine Testschar fiir die Messbarkeitsbedingung. Dann gilt infolge der
Voraussetzung entweder u(6I")=0 oder u(0I')=oco0. Im ersten Fall ergibt sich
p(0—I)=pu(6), und somit ist die Messbarkeitsbedingung erfiillt. Im zweiten Fall
folgt sie aber sofort aus der Ungleichung u(6 nI') < u(6).
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