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Extremallângen und eine konform invariante

Mafifunktion fîir Kurvenscharen

H. Renggli

§ 1. Einleitung

1. Der von L. Ahlfors und A. Beurling [1] eingefûhrte Begriff der Extremal-
lânge spielt eine wichtige Rolle in der Théorie der konformen wie auch der quasi-
konformen Abbildungen. Die Extremallânge ist eine reellwertige, nicht négative
Funktion, definiert auf der Menge der Kurvenscharen beziiglich einer Riemannschen
Flâche. Ferner ist sie konform invariant.

Fur unsern Zweck ist es von Vorteil, nicht mit der Extremallânge, sondern mit der

reziproken Funktion, die wir mit n bezeichnen, zu arbeiten. ^ ist dann nâmlich
monoton (Satz 1) und vollstândig subadditiv (Satz 3), folglich eine MaBfunktion
(Theorem 1). Auch werden wir uns, vor allem aus Griinden der Darstellung, auf die

beziiglich der Ebene definierten Kurven beschrânken.
Wir verwenden den Begriff der MaBfunktion, wie er auf den Arbeiten von

C. Carathéodory aufbauend von H. Hahn rein mengentheoretisch gefasst wurde,
und wie er in H. Hahn und A. Rosenthal ([2], § 6.1) dargestellt ist.

2. Es stellt sich nun die Frage, welche Mengen bzw. welche Kurvenscharen
beziiglich \i messbar sind. Wir zeigen in dieser Arbeit, dass jede Kurvenschar F, fur die

0<fx(F)< oo gilt, nicht messbar ist (Theorem 2').
Dièses Résultat hângt natiirlich eng mit den Additivitâtseigenschaften von ju

zusammen. Ist nâmlich eine MaBfunktion additiv, so ist jede Menge messbar; um-
gekehrt bilden die ju-messbaren Mengen eine cr-Algebra, auf der ^ vollstândig additiv
ist. Um also nicht messbare Mengen zu finden, miissen Eigenschaften der Funktion \i
ausfîndig gemacht werden, die die Additivitât verletzen. Unser Résultat beruht des-

halb wesentlich auf çiner gewissen Absorptionseigenschaft der Funktion jx (Satz 6).

Trotzdem kônnen wir zeigen, dass in gewissen Fâllen die Funktion jj, sich vollstândig

additiv verhâlt (Satz 4). Auch losen wir das Additivitâtsproblem fiir eine spezielle
Klasse von Kurvenscharen (Définition 2 und Satz 5). Ferner môchten wir bemerken,
dass Satz 3 schon von M. Ohtsuka [3] benutzt und bewiesen worden ist, wâhrend
Satz 4 eine Verschârfung von Lemma 1 in [4] darstellt.

3. Die Einfûhrung der Funktion \i mag auch sonst gewisse Vorteile bieten. In
vielen Anwendungen kommt es nâmlich vor, dass man die Kurvenscharen mit un-
endlicher Extremallânge vernachlâssigt. In unserer Auffassung heisst das einfach,
dass eine Menge vom MaB Null nicht beriicksichtigt wird.

Zur Erleichterung der Lesbarkeit dieser Arbeit stellen wir zuerst die von uns
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benutzten elementaren Eigenschaften der Extremallânge in der sich fur die Funktion jâ

ergebenden Form kurz zusammen. Da wir mit den Kurvenscharen mengentheoreti-
sche Operationen ausfiihren, fanden wir es auch fur nôtig, den von uns verwendeten

Kurvenbegriff zu prâzisieren.

§ 2. Die Mengenfunktion fj.

1. Einen Punkt der euklidischen Ebene E bezeichnen wir entweder durch die
beiden reellen Koordinaten (x, y) oder durch die eine komplexe Koordinate z. Unter
einer Kurve y verstehen wir eine Abbildung y(t) {x(t), y(t)} entweder des offenen
Intervalls /={/ reell: 0</<l} oder des abgeschlossenen Intervalls /* {/ reell:

0<t<\} in E, wobei y(t) lokal ein-eindeutig und stetig ist und im zweiten Fall

Im Falle y:I-*E betrachten wir zwei Kurven y(t) und y*(r) als gleich, falls eine

ein-eindeutige und stetige Abbildung /(t) von / auf / existiert, so dass 7(/(t)) 7*(t)
fiir jedes t, te/. Die Gleichheitsdefînition fiir geschlossene Kurven ist analog. Zu-
sàtzlich zur iiblichen Âquivalenzrelation fiir orientierte Kurven fiigen wir also hinzu,
dass auch entgegengesetzt durchlaufene Kurven àquivalent sind.

Mit F bezeichnen wir eine Menge von Kurven y. Die von den Kurven yy yeF, in
E ûberdeckte Punktmenge wird der Trâger von F genannt und mit G notiert.

2. Sei g eine in E deflnierte, erweitert reellwertige Funktion, die nicht negativ ist.
In jedem Punkte ist durch g(z)\dz\ ein konform invariantes Differential und damit
eine sogenannte konforme Metrik definiert.

Falls $jEQ2 im Lebesgueschen Sinne existiert, so bezeichne F(q) dièses Intégral.
Wir treffen hier und im folgenden die Verabredung, dass Operationen wie Quotienten
oder Intégrale dann den Wert oo haben sollen, falls sie nicht definiert sind. Ferner sei

F(G; g) das iiber eine messbare Punktmenge G, GaE, erstreckte Intégral JJG(?2-

Unter der ^-Lânge ly(g) einer Kurve y verstehen wir das Intégral Jyg ds9 das fiir
rektifizierbare Kurven als Lebesguesches Intégral ùber die Kurvenlânge erklârt wird.
Es kann in naheliegender Weise auf Jokal rektifizierbare Kurven verallgemeinert
werden. L(r;^) infr ly(g) ist die sogenannte Minimallânge der Schar F beziiglich
der durch g definierten konformen Metrik.

Nun werde jeder Kurvenschar F eine erweiterte réelle Zahl fi(F) zugeordnet durch

Définition 1.

Eine Funktion g wird Extremalmetrik genannt und durch P bezeichnet, falls

F(P)/L2(r;P) gilt.
Unter Benutzung unserer Konvention ergibt sich leicht die folgende âquivalente
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Définition 1'. /i(F)=infe F(@), wobeinur solche q zulâssig sind,fûr die L(F;q)> 1

gilt.

Die Funktion n ist in dem Sinne konform invariant, dass sie einer Schar F und
ihrem konformen Bild F' dieselbe Zahl zuordnet.

3. Unmittelbar ergibt sich

Satz 1. Fûrjede Schar F gilt 0<fi(F)< oo. Ist F*c:F, sofolgt /x(F*)<^(F).

Ferner benôtigen wir

Satz 2. Sei R {(x, y):0<x<a9 0<y<b) und S eine Teilmenge des Intervalls

I={x reell: 0<x<a}. Die Kurvenschar F sei wie folgt erklârt: yeF falls xeS und

y(t) {x,bt},O<t<l.
Dann gilt ft(F) m*S/b, wobei m*S das âussere Lebesguesche Mafi von S bezeich-

net.

Beweis. Sei M messbar und SczMczL Sei K diejenige Teilmenge von R, deren

Projektion M ist. Wir beschrânken q auf die messbare Menge K und setzen dort
o(z) l/b. Dann gelten L(F;q)=1 und n(F)<F(K;g)=:mM/b, also n(F)<m*S/b.

Infolge /i(F)< oo gibt es zu jedem e>0 eine auf R beschrânkte, durch q gegebene
konforme Metrik, so dass L(F;q)> 1 und F(i?;^)</x(F) + e gelten. Unter Benutzung
des Satzes von Fubini und der Schwarzschen Ungleichung folgt

<b j e2(x, y)dy

fast iïberall auf S. Sei unter Beachtung unserer Konvention / auf / durch / (x)
Jo£2 (•*> y) dy definiert. Bezeichnet M, Mal, diejenige Punktmenge, aufder/(*)> \jb
ist, so gilt 5c M undAf ist messbar. Somit folgen

1 1 f 1

m*S<-mM< \f <F(R;q)<h(F) + e9 also ~m*S<n(F).
b b J b

M

§ 3. Einige Eigenschaften der Funktion jà

1. Als erste Eigénschaft wird gezeigt, dass die Mengenfunktion \i vollstândig
subadditiv ist.

Satz 3. Es seien Ft (/=1, 2, 3, abzâhlbar viele Kurvenscharen. Dann gilt

=i / î=i
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Beweis. Sei F—{JfLl Ft. Ist \i(r,)= oo fiir mindestens eine Schar, so gilt Satz 3

trivialerweise. Es seien also aile \x (Ff) endlich. Gemâss Définition Y gibt es zu jedem
e>0 und zu jedem Index i eine durch gt definierte konforme Metrik, so dass L^iiQi)
>1 und F(Qt)<n (rù + e/T gelten. Sei q(z) supt Qt (z). Offenbar gilt Q2(z)<
Z£i£?(z)- Damit ergeben sich L(F;q)>\ und F(g)< X^i^fe)» woraus nach
Définition 1' die Ungleichung

folgt.
2. Als zweite Eigenschaft wird gezeigt, dass die Mengenfunktion \i in gewissen

Fâllen vollstândig additiv ist.

Satz 4. Es seien Ft (/= 1, 2, 3, abzâhlbar viele Kurvenscharen. Sind die Trâger
Gt der Scharen Ft derart in messbaren Mengen Gf enthalten, dass die Mengen GfnG*
fiir i^j Flâchenmafi Null haben, so gilt

(00
\ 00

Ur,)=I
i=l / f=l

Beweis. Sei r (JI^1 F{. Fur ju (F) =oo folgt Satz 4 aus Satz 3. Ist aber ji(f)
endlich, so gibt es nach Définition 1' zu jedem e>0 eine durch q gegebene konforme
Metrik, so dass L(F;q)> 1 und F(q)<ii (r) + e gelten. Sei Qt die auf G* beschrânkte

Funktion q. Da die Gf n G* fur i^j FlâchenmaB Null besitzen, ergibtsich££ x F(Gf ; Qt)

<F(q). Ferner ist L(rt;^)>l fur jedes i. Somit folgt Y?=i /^(ri)<M(O + e»

was vereint mit Satz 3 das gewûnschte Résultat liefert.
3. Wir geben zuerst die Définition der sogenannten regulâren Kurvenscharen.

Dann lôsen wir fiir dièse das Problem der vollstândigen Additivitât.

Définition 2. EineKurvenschar F werderegulârgenannt,falls0<n (F)< oo ist und

auf dem als messbar vorausgesetzten Trâger G von F eine Extremalmetrik P existiert,
die dort fast ùberall positiv ist.

Satz 5. Es seien Ft (/=1, 2, 3, abzâhlbar viele regulàre Kurvenscharen, fiir die

Er=i MA) endlich ist. Dann und nur dann gilt /i(U£i /\) E£i M (A), falls die

Mengen GtnGj fur i^j Flâchenmafi Null besitzen. Vberdies ist dann auch \JT=\ A
regulâr.

Beweis. Sei F={J^==1Fi. Aus der Regularitât folgt leicht, dass auch solche

Extremalmetriken Pt existieren, die ausserhalb Gt Null und in Gt f.ii. positiv sind

und fur die L{Ft\P^ \ sowie fi(Fi)=F(Pi) gelten. Sei P(z) supiPi(z). Analog
dem Beweise von Satz 3 folgen L (F ; P)> 1 sowie \i (F) < F(P) <££ t F(Pt) ££
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Da die letztere Summe nach Voraussetzung endlich ist, sind Y,i°=i Pf und P2 f.ii.
endlich. Gilt nun m(O E£i »(ri)> so ist infolge F(P) Yfatl Hpd die fu- defi-
nierte, nicht négative Funktion /= [££ l P?]-P2 f.ii. Null. Da aber Pt in G, f.ii.
positiv ist, muss offenbar auch/in GtnGj fur /#j f.ù. positiv sein. Folglich haben
aile GinGj fur i#7 FlâchenmaB Null. Dies, vereint mit Satz 4, ergibt Satz 5. Dass
in beiden Fâllen F regulàr ist, folgt unmittelbar.

Korollar 1. Es seien Ff (/= 1, 2, 3, abzâhlbar viele regulâre Kurvenscharen f fur
die Yf= i A* (Ft) endlich ist. Hat mindestens eine Menge (7,0 Gj/wr i^j positives Mafi,

Bemerkung 1. Die Beweise der Sâtze 3, 4 und 5 bleiben mutatis mutandis richtig
fur endlich viele Kurvenscharen. Folglich gelten dièse Sâtze und auch Korollar 1 analog

fur endlich viele Kurvenscharen Ft.

4. Der folgende Satz zeigt eine gewisse Absorptionseigenschaft von /i; m.a.W.

zu jeder Schar F mit beschrânktem Trâger G und endlichem \i (F) gibt es eine Schar

A, so dass fi (Au F) beliebig nahe bei p (A) ist.

Définition 3. Sei R {(x, y):a<x<b, c<y<d) ein Rechtecksgebiet und
ô (d—c)/n, wobei n eine natiirliche Zahl ist.

Die Kurvenschar A ist me folgt erklârt:yeA falls a<x<b; v l, 2, n und

Das Rechtecksgebiet R sei also durch n — 1 horizontale Linien in n gleich grosse
Teilrechtecke unterteilt. Die Kurvenschar A besteht nun aus allen vertikalen Seg-

menten, die in den einzelnen Teilrechtecken die horizontal gelegenen Seiten verbinden.

Satz 6. Es sei der Trâger G der Kurvenschar F beschrânkt und \x (F)< oo. Sei R ein

Rechtecksgebiet mit GcR und A eine gemâss Définition 3 erklârte Schar.

Dann gibt es beifestem R zujedem e>0 ein <5*>0, so dass fur jedes A mit ô<ô*
die Ungleichungen \i (À)< \i (A uF) < [i (A) + s gelten.

Beweis. Zu jedem e>0 existiert eine auf R beschrânkte, durch q gegebene kon-
forme Metrik, so dass L (F;q)>1 und F (R;q)<h (F) + e/2 gelten. Sei qn durch

qn(z) min [TV, q (z)] in R definiert, und N derart gewâhlt, dass F(R; q) — e/2<
F(R ; qn)> gilt. Sei ô* 1/N und A eine in R definierte Schar mit ô < ô*. Nun ist fur die

in R durch P(z) l/Ô definierte Metrik L(A;P) 1 sowie fi(A) F(R;P). Seien

q* und q+ in R durch q* (z) max [q (z), P (z)] bzw. q* (z) min [q (z), P (z)] erklârt.
Dann folgen bezûglich Au F die Beziehungen L A u F ; q*) > 1 und n A u F) <
F(R; q*). Ûberdies ist qI + q*2=P2 + q2 und q^qn. Demnach ergeben sich

<: F(R ; q*) < F(R ; P) + F(R ; q)
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und also

fi(A) + fi(r) +£2-^(Aur)>F(R;P) + F(R;Q)- F(R ; <?*)

F(R ; e,) > F(R ;ÔN)>F(R;Q)-~>v(r)-^,
woraus

ji(A) + e> h(AkjF)

folgt. Dies, vereint mit Satz 1, ergibt Satz 6.

§ 4. Die Funktion /i als MaBfunktion

1. Jeder Kurvenschar F wurde in Définition 1 eine nicht négative, erweiterte
réelle Zahl zugeordnet. Damit ist auf der Menge der Kurvenscharen eine Mengen-
funktion fi definiert. Bezeichnet Q die Menge aller zulâssigen Kurven, so kann /x also
auf der Menge der Teilmengen von Q erkiârt werden. Dabei sei /i($) 0. Satz 1

bedeutet nun einfach, dass n auf der Menge aller Teilmengen von Q monoton zu-
nehmend ist. Ferner is jâ vollstândig subadditiv gemâss Satz 3. Somit gilt

Theorem 1. Die Mengenfunktion \i, definiert auf der Menge der Kurvenscharen,
ist eine Mafifunktion.

Wir kônnen demnach die allgemeine Théorie der MaBfunktionen anwenden

([2], § 6.1). Speziell sind die Scharen F mit fi(F) O messbar beziiglich \x. Dagegen
werden wir zeigen, dass aile andern Scharen mit endlichem \i (F) nicht messbar sind.

2. Wir werden dièses Résultat zuerst fur Scharen mit beschrânktem Trâger
beweisen. Dazu benôtigen wir einen Hilfssatz (Lemma 1).

Es seien 6 und F zwei Kurvenscharen. Ist zusâtzlich F messbar beziiglich der
MaBfunktion jj,9 so folgen

also

Dièse Beziehung zusammen mit Satz 6 ergibt

Lemma 1. Es sei der Trâger G der Kurvenschar F beschrànkt, es sei ju (F) < oo und
F sei messbar in bezug auf p. Sei R ein Rechtecksgebiet mit G<=.R und A eine gemâss

Définition 3 erklârte Schar.

Dann gibt es beifestem R zujedem e>0 ein <5*>0, so dass fiir jedes A mit ô<ô*
die Ungleichung

gilt.
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Existierte nun ein den Voraussetzungen von Lemma 1 geniigendes F mit /j(F)>0,
so ergâbe sich fur e</i(F) die Ungleichung fi(A nf)>0, also wâre im besondern

AF^0
3. Wir beweisen jetzt

Theorem 2. SeiF eine Schar mit beschrânktem Trâger G. Gilt 0</^(F)<oo, so ist
F nicht messbar bezùglich \i.

Beweis. Sei F messbar bezùglich /*, sei jul(F) <co und der Trâger G von F be-
schrânkt. Nach Lemma 1 existiert zu jedem e>0 eine Schar A, so dass fi(F)<
n(AnF) + e/4 gilt. Sei A' diejenige Schar, die der Zahl <5/2 entspricht, also durch
Unterteilung aus A hervorgeht. Analog folgt ^(F)<ju(J'nF) + £/4.

Um Satz 2 auf die Scharen A r\T und A' nF anzuwenden, ordnen wir jeder gemâss
Définition 3 gegebenen Kurve y(t) von An F bzw. A'nF den Punkt y(0) zu und
bezeichnen mit S bzw. S'die aus diesen Punkten bestehenden Mengen. S bzw. 5" sind
demnach die Vereinigungsmengen der vertikalen Projektionen von An F bzw.
A' kjF in den einzelnen Teilrechtecken der Hôhe ô bzw. der Hôhe Ô/2. Nun lâsst sich

Satz 2 auf diesen Fall verallgemeinern. Damit ergibt sich }i(A nF) m*S/ô bzw.

n(A' vF)=m*S' 2/5. Sei analog des Beweises von Satz 2 die Menge M derart ge-

wâhlt, dass M aus messbaren linearen Teilmengen besteht und S'czM sowie

m M<m*S' + sô/S gelten. Es bezeichne K die Vereinigungsmenge aller Punkte in
den einzelnen Teilrechtecken der Hôhe ô/29 die sich dort vertikal auf die betreffenden

Teilmengen von M projizieren. Somit liegt die Schar Af nF in der messbaren Menge
K.

Sei S diejenige Teilmenge von An F, deren Kurven in R — K liegen. Unter An-
wendung von Satz 2 ist nun leicht zu sehen, dass die Abschâtzung [m* S—m M]/ô<
n(3) gilt. Mit den obigen Beziehungen folgt daraus

r)-~<it{Z).
o

Auf die in K bzw. R-K gelegenen Scharen Ar nF und 2 kônnen wir Satz 4 und

Bemerkung 1 anwenden. Dies zusammen mit Satz 1 ergibt

F) ii{Skj{A' nF))

woraus man mit Hilfe der obigen Beziehungen

folgert.
4. Fur den allgemeinen Fall mtissen wir zuerst Satz 6 auf den Fall unbeschrânkter

Trâger verallgemeinern. Dazu bilden wir das Innere des Einheitskreises konform auf
ein Rechtecksgebiet Rx und das Âussere des Einheitskreises beziiglich der Riemann-
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schen Zahlenkugel konform auf ein Rechtecksgebiet R2 ab, wobei RlnR2 $ an-

genommen wird. Da \i konform invariant ist, kônnen wir in Rl u R2 rechnen, wobei
auf dem Einheitskreis g(z) oo fiir jede Metrik g gesetzt werde. Fur jene in R2 zu
betrachtenden Scharen A miissen wir jeweilen diejenigen Segmente weglassen, die
eventuell das Bild des Punktes oo enthalten. Im iibrigen lâsst sich der Beweis von
Satz 6 fiir Rt u R2 wiederholen. Man gelangt — nur n(F)< oo voraussetzend — durch
konforme Obertragung zu einer in der Ebene gelegenen Kurvenschar A, fiir die die

Ungleichungen von Satz 6 giiltig bleiben.
Lemma 1 lâsst sich dann sofort fiir messbare Scharen F mit fi(F)< oo formulieren.

Was den Beweis von Theorem 2 anbelangt, hat man nur die dortigen Oberlegungen
in den oben definierten Rechtecksgebieten Rt und R2 durchzufiihren. Somit folgt

Theorem T. Sei F eine Kurvenschar. Gilt 0<n(F)<co, so ist F nicht messbar

bezùglich \i.

5. Was die Scharen F mit /i(r)=oo anbelangt, so gibt es sowohl solche, die

messbar, wie auch solche, die nicht messbar sind. Bezeichnen wir wieder mit Q die

Menge der zulàssigen Kurven, so gelten

Satz 7. a) Ist F eine Schar mit ju(r) O, so ist Q — F messbar bezùglich \i.
b) Ist F eine Schar mit 0</i(r)<oo, so ist Q — F nicht messbar beziiglich fi.
c) Ist F eine Schar, so dass fur jedes F'a F entweder ii(F') 0 oder ii(F')= oo gilt,

so ist F messbar beziiglich fi.

Beweis. a) Die Gesamtmenge Q wie auch die Differenz zweier messbarer Mengen
sind natûrlich messbar.

b) Wâre nâmlich Q — F messbar, so auch die Differenz O — (Q — F) F, in Wider-
spruch zu Theorem 2'.

c) Sei 6 eine Testschar fiir die Messbarkeitsbedingung. Dann gilt infolge der

Voraussetzung entweder fi(6nF) 0 oder fi(0nF) oo. Im ersten Fall ergibt sich

/i(0 — r) ju(0), und somit ist die Messbarkeitsbedingung erfûllt. Im zweiten Fall
folgt sie aber sofort aus der Ungleichung n(6nF)<n(6).
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