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Degeneracy of Orbits of Actions of R” on a Manifold")

RICHARD SACKSTEDER

(Columbia University and the City University of New York)

1. Introduction

Let V' be a compact manifold (possibly with boundary) and let ¢ : R"x V=V be
an action of Euclidean m-space (considered as an abelian group) on V. This means
that ¢ (0,p)=p and ¢ (x+y,p)=¢ (x,0(y,p)) for any x, y in R" and p in V. If p is
a point of V, the orbit of p, denoted by O (p)={¢ (x,p): x € R"} is a submanifold of
V of dimension d (p). If I(p)={xe€ R™: ¢ (x,p)=p} is the isotropy subgroup at p,
I(p) is closed in R™ and O (p) is diffeomorphic to R™/I(p), which is the product of
Euclidean space by a torus. The larger 7 (p), the more degenerate is the orbit O (p).
Our purpose here is to investigate some conditions on V or ¢ which force an orbit to
be degenerate.

Let m (¢) denote the minimum value of d(p). We say that ¢ is locally free if
m=m (¢)=d (p) and that ¢ is foliating if d (p)=m (¢). The maximum possible values
of m (o) for, respectively, locally free, foliating, and arbitrary actions are called the
rank, super rank, and total rank of V and they are denoted by R (V), S (V), and T (V).
It is obvious that

OSR(IV)=SV)=T(V)=n. (1.1)

In this terminology, some of the known results in the subject are:

1. (H. HopF [2]). The Euler characteristic of ¥ is zero if and only if R (V)>0.

2. (Lima [3]). R(S?)=1.

3. (ROSENBERG [7]). R(S'x S?)=1.

4. (SACKSTEDER [8]). If ¢ is a foliating action with m (¢)=n—1, every non-dense
orbit is properly imbedded in V.

5. (SACKSTEDER [8], cf. REEB[6], p. 110). Either thereis a coveringmap S! x R* "1 -V,
or every foliating action ¢ on ¥ with m (¢)=n—1 has a compact orbit.

6. (LiMa and ROSENBERG [5]). Suppose that there is no coveringmap S* x R" " '—V
and the fundamental group of ¥ does not contain an (n—1)-fold direct sum of the
integers. Then R (V)<n—1. (This contains 2. and 3. above).

7. (LiMa [4). If n=2, R(V)=S(V)=T (V).

8. (TrRiviaL). If T(V)=n, then R(V)=S(V)=T (V)=n and V is the n-torus.

1) This work has been partially supported by the National Science Foundation under Grant
NSF GP-3433.
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Our results are most closely related to LiMA’s Theorem 7. Theorem 1 asserts
roughly that there is no need to consider actions of R™ with m>n for purposes of
investigating degeneracy of orbits because there is always an action of R" with the
same orbits as ¢ : R™ x V-V in this case. Theorem 2 and its corollary give conditions
under which it is possible to find a locally free action with the same orbits as a given
foliating action. Theorems 3, 4, and 5 are our main results. Theorem 5 asserts that the
conclusion of the Theorem of LiMA and ROSENBERG cited in 6. can be strengthened to:
“Then T (V)<n—1.” It therefore implies LiMA’s Theorem cited in 7. (under different
differentiability assumptions) and strengthens 2. and 3.

Various regularity assumptions are required for the proofs of our results and
those cited above. These will be made explicit at the appropriate place. The most
natural condition for our methods is described by the following definition. An action
¢ : R™x V-V is said to be a piecewise C* action if V is the union of a countable set
of compact submanifolds (with boundary) V,, V,, ... such that each point of V is
contained in only finitely many V;’s and the restriction of ¢ to R"x V, defines a C*
action on V; for i=1, 2, ... The results cited in 4., 5., and 6. are valid for piecewise C?
actions, although in some cases they were originally stated for C? actions. No essential
changes in the proofs are required for the extension to the piecewise C? case.

2. Preliminaries

Here we collect some results which will be needed later. Most of them are well-
known and easy to prove. Let ¢ : Gx V-V be a piecewise C? action of a connected
Lie group G on a compact n-manifold V. Let 4 denote the Lie algebra of G. It is easy
to see that to each element x of A there corresponds a vector field ¢ on V. For let
{g(t):0=71 =<1} bea C' curve in G such that g (0) is the identity and g’ (0) corresponds
to x. For any point p of V consider the curve 4 (1)=¢ (g (¢), p). Then ¢ (p) is by
definition the tangent vector at p determined by 4'(0). Each element g of G induces
a map g* which sends a tangent vector at p to one at ¢ (g,p). When G is abelian it is
easily seen that the vector fields ¢ are invariant under the maps g*. Therefore we
have:

LEMMA 2.1. Let ¢ : R™ x V-V be a piecewise C? action. Let x be in R™ (considered
as the Lie algebra of R™) and let ¢, be the corresponding R™ invariant vector field.
Then, if .(p)=0, ¢%(9)=0 for all q in O (p).

Under the conditions of Lemma 2.1, the subspace B (p)={xe R™: ¢, (p)=0}
will be called the isotropy subspace at p. Note that B(p)cI(p) and Lemma 2.1
asserts that B (p)=B(q) if ¢ is in O (p).

In all of the lemmas below ¢ is a piecewise C*(k =2) action of R™ on V and in the
first py, p,, ... is a sequence in V such that p=1lim p,.
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LEMMA 2.2. The isotropy subgroups and subspaces are upper semi-continuous in the
sense that B (p)> lim sup B(p;) and I (p)= lim sup I (p;).
The proof of this lemma is straightforward. The following one is well-known.

LEMMA 2.3. Let x and y be in R™. Then the vector fields ¢, and ¢, commute, that is
[@y, ©;1=0. Conversely, if Xy, ..., X,, are piecewise C* vector fields on V which commute,
there is a piecewise C* action ¢ : R"x V—V and a basis ey, ..., e, of R™ such that
X,=o, if x=e;. (Here, if V is a manifold with boundary X,, ..., X,, are required to be
tangent to the boundary.)

3. Actions with the Same Orbits

It is possible for two distinct actions on V to have the same orbits. In this case
the actions are equivalent for most of the purposes of this paper. In this and the
following section we investigate this phenomenon. Let ¢ : R™ x V—V be a piecewise
C* action on a connected (not necessarily compact) n-manifold, where k =2.

THEOREM 1. If m>n, almost all (m—1)-dimensional subspaces K of R™ are such
that the orbits of @ restricted to K are the same as the orbits of ¢. Therefore, there is a
piecewise C* action \y: R"x V-V with the same orbits as ¢.

Proof. Define B (p) as in section 2 and note that B (p) has dimension m—d (p).
We say that a subspace F of R™ is effective at p if R™ is spanned by F u B(p), and
otherwise Fis called ineffective at p. Fiseffective at pifand only if O(p)={@(x,p): xe F}.
Moreover, if F is of dimension m—1, F is ineffective if and only if F contains B (p).
Lemma 2.1 shows that if F is effective at p, F is effective at every point in O (p).

The theorem will be proved by showing that the (m —1)-dimensional subspaces
which are ineffective at some p in V' form a subset of the Grassman manifold M,, ,,_,
of dimension not greater than n—1<m—1=dim M,, ,,_,. It suffices to prove this for
all points g where d(q)=d(p)=d in a small neighborhood of an arbitrary point p of V,
since countably many such sets cover V.

First suppose that " has a Riemannian metric and let G(q) be the non-negative
definite quadratic form on R™ which assigns to a vector x in R™ the length of ¢'(¢)
in the Riemannian metric on V. Note that a vector is of length zero in this metric if
and only if it is in B(g). Let C(q) denote the subspace of R™ spanned by the eigen-
vectors belonging to the m—d smallest eigenvalue of G(q) with respect to a fixed
positive definite metric on R™. Note that near g, C(g) depends (k — 1) times differen-
tiably on g. Moreover, C(q)=B(q) if d(q)=d.

Let S be the (d—1)-dimensional unit sphere in a subspace H of R™ which is
complementary to C(p). Let T be an (n—d)-dimensional submanifold through p
which intersects the orbits transversally and is small enough so that C(q) varies
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differentiably and is transversal to H for every g in T. If (¢, s) is in T'x S, let F(q, 5)
denote the (n —1)-dimensional subspace of R™ which contains C (¢) and whose inter-
section with H is perpendicular to s in the positive definite metric on R™. If d (q)=d,
B (q)=C(q), hence F (g, s) is ineffective by the remark at the beginning of the proof.
Conversely, every ineffective (m — 1)-dimensional subspace at ¢ is of this type. Therefore
the set of (m — 1)-subspaces which are ineffective for some ¢ in T such that d (¢)=d is
contained in therange of F. SincedimTx S=n—d+d—-1=n—1<m—1=dimM,, ,,_,,
Sard’s Theorem implies that almost all (m— 1)-subspaces are effective at every g in T
such that d (¢)=d. Since B (q)=C (q) is constant along orbits if d (q)=d, this shows
that almost all (m—1)-subspaces are effective for every ¢ near p such that d(¢q)=d.
This proves Theorem 1.

4. Foliating and Locally Free Actions

If ¢ is a piecewise C* action (k=2) of R™ on a the n-manifold V, V/¢ will denote
the quotient space obtained by identifying points on the same orbit and f': V-V /¢
the projection map. Now assume that ¢ is a foliating action with d (p)=d and define
B(p) as in section 2. Let A(p) be the orthogonal compliment of B(p) relative to some
metric on R™, so that 4 (p)is always a point of the Grassman manifold M,, ,. Moreover,
A(p) is constant on the orbits of ¢ so that there is a map h: V/¢o—M,, ;,, which sends
O(p) to A(p). Let V,, , be the Stiefel manifold of orthogonal d-frames in R™ and let
n: V,, 4—M,, 4 be the usual projection.

THEOREM 2. Under the conditions described above, there exists a piecewise C*™!
locally free action \y: R x V—V whose orbits agree with those of ¢ if there is a piecewise
C*"Y map g:V/p—V,, 4 such that h=ng.

Note: Here g is said to be a piecewise C*"! map if gfis C*"ton ¥V, i=1, 2, ...,
where each V, is a compact n-dimensional manifold, ¥=uUV,, and every point of V
is in only finitely many V’s.

Proof. For typographical convenience we modify the notation ¢, (p) established
in Section 2 by writing ¢'(x, p) instead. Let e, ..., e,, be a basis for R™ and define
vector fields X, ..., X; by X;(p)=¢'(g:(p), p), where g;(p) is the i’th vector in the
frame g(O(p)). If g,(p)=) 7= 14;;(p)e;, each a;; will be constant along orbits. Then if
Y;(p)=¢'(e;, p), Xi(p)=)7-1a;(p) Y;(p) and Y,a;; (the directional derivative of a;;
in the direction Y, will be zero for all k=1, ..., m. Now Lemma 2.3 implies that
[Y;, Y;]=0, hence Y, a;;=0 implies that [X;, X;]=0. The vector fields Xj, ..., X, are
linearly independent because g (p), ..., g4(p) span A (p). The conclusion now follows
from Lemma 2.3.

COROLLARY 4.1. Let ¢:R™x V-V be as in Theorem 2 with m=d+1 and 2d>n.
Then there is a piecewise C*~1 locally free action \y: R x V*— V* where either V*=V
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or c:V*—>V is a two sheeted covering. In the first case, the orbits of and ¢ agree and in
the second ¢ maps each \ orbit homeomorphically onto a ¢ orbit.

Proof. The assumption that m=d+1 implies that M,, ;= P*= projective d-space
here. Therefore hf: V— P?. Let b:S?— P be the two sheeted covering and construct
c: V*-Vinsuch a way that there is a map (hf)*: V*— S such that b(hf)*=(hf)c.
The covering ¢ can turn out to be either the identity map or a two-sheeted covering.
The action ¢ can be lifted to an action ¢* on V* and one has the following commu-
tative diagram in which the existence of g* will be proved later

o
LS0(m) ————>V,,

v

| 4 f > Vi h > p*

In the diagram, the map n* sends an m-frame in R™ to the mth vector in it and « sends
an m-frame to the (m—1)-frame obtained by removing the last vector. The piecewise
C*~! map g* is constructed as follows: First observe that the image of (kf)*=image
h* f*= image h* is a zero set in S?, because (hf)* is of rank not greater than n—d<d.
Therefore the image is contractible in S¢ and the existence of g* follows from the fact
that the fibration n* is trivial above the complement of a point of S?. Now the ex-
istence of y follows by an application of Theorem 2 in which V*, ¢*, bh*, and ag*
replace V, ¢, h, and g, respectively. The remaining assertions of Corollary 4.1 are
simple consequences of the commutativity of the above diagram.

Anexample: Let V be the Klein bottle which we represent as the square |x| <1, |y| <1
with the identifications (x, —1)=(x,1) and (1,y)=(—1,—y). Define the action
@:R*x V-V by ¢((u,v),(x, y))=(x, y+(u cos xn/2)+ (v sin xn/2)). Itis easy to check
that the action is compatible with the identifications and has as orbits the sets x=
const., hence ¢ is a foliating action. However, there is no locally free action with the
same orbits as ¢. In this example, m=n=2 and d=1; however one can obtain
examples where 2d >n and m=d+1 from this one, e.g. on ¥ x S'. Such examples
show that the introduction of the covering space V* is essential in Corollary 4.1.

5. The Main Theorems

Here, ¢:R™ x V-V is a piecewise C* action (k=2) on a compact n-manifold V.
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THEOREM 3. Suppose that every orbit of ¢ is of dimension n or n—1. Then there is a
piecewise C* foliating action y: R" x V-V such that all orbits are of dimension n—1.
In view of Corollary 4.1, Theorem 3 and 8 of Section 1 imply the following theorem.

THEOREM 4. Under the conditions of Theorem 3 there is a piecewise C*~1 locally
free action of R"™1 on V*, where either V*=1V or V* is a 2-fold covering of V. There-
SJore if T(V)zn—1,T(V)=S(V)=R(V*), where T, S are defined with respect to
piecewise C* actions and R is defined with respect to piecewise C*~! actions.

This theorem, together with the theorem of LiMA and ROSENBERG [5] (cf. 6)
Section 1 above) implies

THEOREM 5. Suppose that the compact connected n-manifold V is such that there is
no covering map S' x R"'—V and the fundamental group of V does not contain an
(n—1)-fold direct sum of the integers. Then T (V)<n—1.

Special cases of the conclusion of Theorem 5 are T (S")<n—1 and T (S' x $")<n.

6. Lemmas

LEMMA 6.1. Let V, be a (not necessarily compact) manifold with a foliated structure
of co-dimension one, cf. [1, 6]. Let F be a compact leaf of the foliation. Then there is a
tubular neighborhood B of F such that any component J of B—F satisfies either (1)
every leaf which intersects J contains F in its closure, or (i) there are compact leaves in
J arbitrarily close to F. This lemma is essentially the same as a theorem of REEB
([6], p. 139). We therefore omit the proof.

The rest of the lemmas employ the hypotheses of Theorem 3. Moreover, it will
always be assumed that m =n, which does not represent a loss of generality in view of
Theorem 1. The symbol = will mean “diffeomorphic to” and 7"~ ' will denote the
n—1 torus.

LEMMA 6.2. Let p be any point of V. Then the closure of O(p) contains a compact
orbit unless ¢ is already a foliating action.

Proof. Assume that ¢ is not a foliating action. It can be assumed that d (p)=n—1,
because if d(p)=n, p can be replaced by any point in the boundary of O(p). Let
R""!'< R" be a subspace which is effective at p (cf. Section 3). Then there is an open
neighborhood ¥V, of O(p) such that ¢ restricted to R"~'x ¥V, defines a locally free
action on ¥, by Lemma 2.1. Applying Theorem 8 of [8] and [6, p. 103] to this action,
one sees that O(p) contains a compact leaf in its closure.

LEMMA 6.3. Let p be a point of V such that there is a sequence p, p,, ... of points
of V with O(p))= T" ! and p= lim p,. Then O(p)=T" .
Proof. Since d(p)=n—1, Lemma 2.2 implies that d(p)=n—1 because of
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m(@)=n—1. Let g be a point in the closure of O(p) such that O(q)~T""'. Such a
g (possibly g=p) exists by Lemma 6.2. Let R"~! = R" be effective at ¢, and let V,, be a
neighborhood of O(q) such that the restriction of @ to R*~! x V,, defines a locally free
action on ¥,. Apply Lemma 6.1 to the foliation defined by this action, taking F= O(q).
There must be points of O(p) in some component J of B— O(q) arbitrarily close to
O(q) if O(p) is not compact. Thus the alternative (ii) of the conclusion of Lemma 6.1
could not hold in this case because the compact orbits separate J. Therefore (i) holds.
However, this is also impossible because O(p;) must intersect J for large i, but such
O(p;), being compact, cannot contain O(q) in their closure. This shows that O(p)
must be compact. This proves Lemma 6.3.

Now we define W to be the set of points p of ¥ such that p= lim p;,, where
O(p)=T""' and p#p; W is clearly closed, hence compact, and if p is in W,
O(p)=T""', by Lemma 6.3.

LEMMA 6.4. There exist a finite number of compact n-dimensional submanifolds of
V, Ky, ..., K, such that

(1) W cinterior v K;

(11) The restriction of ¢ to R™ x K, defines an action on K;

(ii)) If i# j, K;n K is either empty or consists of at most two compact orbits;

(iv) K;isafiber space over 7"~ with fiber I. Moreover, there isamapn;:T" ! >T""1
defined by m,(t!, ..., ") =(' (1 +4}),..., "1 (1 + 477 1)), (where (£, ..., ) are real
numbers mod 1 which can be taken as coordinates of T" ! and A} =0 or 1 such that the
pullback of K; by n; is T""' x I, (I=10,1]).

Proof. Let p be a point of W with p= lim p;, etc. as above. Let R" 1< R" be
effective at p, hence define a locally free action on a neighborhood ¥V, of O(p), by
restricting ¢ to R" ! x V,,.

In view of Lemma 6.3, Lemma 6.1 can be applied to F= O(p). Let J be a component
of B—O(p) such that O(p;) intersects J for infinitely many i. Then for some large i,
O(p;) must separate J. Let K be the closure of the component of J—O(p) which
contains points near O(p). It is clear that X satisfies (ii) above with K, replaced by K.
To see that (iv) can be satisfied, let 4=(4", ..., 4") be an orientation cocycle for the
normal bundle of O(p) in V. That is, if O(p)=T"""! has coordinates (¢', ..., "~ ') as
in (iv), 47 is defined to be one or zero according as the orientation of the normal fiber is
reversed or remains the same along the path r'= const. i#j and 0<# <1. It is clear
then that the map n: 7"~ '>T""!=0(p) defined by =n(s, ..., "~ )=(} (1 +4"), ...,
"~ 1(1 44" 1), has the required properties. This shows that K satisfies (iv). A finite
number of such K cover W, hence (i) can be satisfied. Obvious modification of a set
of K’s which cover W can be made to assure that (iii) holds. This proves Lemma 6.4.

LEMMA 6.5. Let K=K; be one of the sets with the properties described in the
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conclusion of Lemma 6.4. Suppose that a C* action  of R" is defined on the boundary
of K such that each component of the boundary is an orbit of y. Then \ can be extended
to a C* action on all of K.

Proof. Let n=m;: T""!—T""! be as in Lemma 6.4. Then the action ¥ lifts to an
action ¥, on the boundary of T7"~! x I by the pullback map. Each component of the
boundary will be an orbit.

Let 7"~ ! x I have coordinates t=(¢, ..., ") where ¢/ is defined mod 1 and 0< "< 1.
Let R" have coordinates x =(x!, ..., x") and define the action y: R"x T" " ! x [-T" "' x I
by y/(x,f)=x/+t/ mod 1 if j<n and y"(x,£)=¢". Then there are linear maps L;:R"— R"
(i=0, 1) such that on 7"~ x {i}, Yo (x,7)=7(L;x, t). It is possible to choose L, and
L, in such a way that there is a C* homotopy L(#) (0=<¢<1)such that L(i)=L,(i=0,1)
and for every ¢, L(¢) is a linear map of R" whose range is of dimension (n—1) and
transversal to the x” axis. (This assertion amounts to saying that the Stiefel manifold
Van-1 is arcwise connected.) Therefore one can define yo(x,1)=y(L(t")x, f). This
defines an extension of Y, to an action on 7" ! x I. The bundle map b: 7"~ ! x I-K
defines the desired action on K by the formula y(x,p)=b(o(x, b~ '(p))), where b~ !
is any local inverse of b defined near p. This definition easily seen to be independent
of the choice of ™! and to give an action with the desired properties.

7. Proof of Theorem 3

Let K; be as in Lemma 6.4 and let M be the closure of ¥V—K;u---UK,. M is a
manifold with boundary. From definition of W and Wcinterior U K it follows that
M contains, at most, finitely many compact orbits of the action ¢. Let R* "' R" be a
subspace which is effective on each of these orbits. Then R"~! is also effective at every
point p of M such that d(p)=n—1. This follows from Lemmas 6.2, and 2.2 and the
fact that M is closed and invariant under ¢. Let P:R">R""! be the orthogonal
projection with respect to some metric on R". Then y(x, p)=¢(Px, p) defines a
foliating action in M with all of its orbits of dimension n—1. In fact, the (n—1)-
dimensional orbits of ¢ will be orbits of ¥ also.

It remains to define ¥ on K|, ..., K,. This is done by induction. Suppose that ¥
is defined on MUK, u---UK;0<i<r in such a way that  defines a piecewise C*
foliating action on M UK, U --- UK, with orbits of dimension n—1, then Lemma 6.5
enables one to extend the actionto M U K, U -+ UK, ,, retaining the desired properties.
In the application of the Lemma, ¥ can be defined arbitrarily on any components of
the boundary of K;,, which are not contained in MUK, uU--- UK. This completes
the proof of Theorem 3.

8. Comments

Theorem 3 can be proved in a somewhat different way, which is longer than the
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one given here, but which has the advantage of revealing more about the orbits of ¢.
The alternate proof shows that all n-dimensional orbits of ¢ have either one or two
components in their boundary. If one of the components consists of a single leaf the
orbit is diffeomorphic to R' x T"~! and its closure is either 7"~ ! x I or all of V. The
leaf in the component is, of course, compact.

No examples of compact manifolds ¥ are known where R(V), S(V), and T (V)
are unequal. It would be interesting to known if they can differ. There is some reason
to hope that these numbers are related to the multiplicity of —1 as a root of the
Poincaré polynomial of V, over some field. If, for example, one defines Z (V') to be
this multiplicity over the rationals, an interesting question is whether R(V)< Z (V)
always holds. R(V)ZZ (V) holds if V is a Lie group. Finally, if V=V, xV, is a
product, R(V)= R(V,)+ R(V,) and similarly for S and T, but no examples are known
where equality fails to hold.
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