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Kongruenzen zwischen Koeffizienten
trigonometrischer Reihen

und Klassenzahlen quadratisch imaginérer Korper

von M. Gurt und M. StiUNzI (Ziirich)

Prof. ROLF NEVANLINNA gewidmet

Inhaltsangabe und Bezeichnungen

Beziehungen von der im Titel erwdhnten Art finden sich schon bei Cauchy [2] und
in einer Arbeit von Adolf Hurwitz [5].

Es sei d< —4 die Diskriminante eines quadratisch imagindren Korpers mit der
Klassenzahl h(d)=h. Es sei ferner p eine ungerade Primzahl und d= —mp, wo die
natiirliche Zahl m auch gleich 1 sein darf. Dann zeigen wir in der vorliegenden Arbeit,
dass wenn man die von Ankeny, Artin und Chowla [1] eingefiihrten trigonometrischen
Reihen m w

eml__l ZX(t)e"‘= Z C((—l)“’“’”m;n),’% (1)

t=1 n=-1

benutzt, sich das im Vergleich zu den Sitzen in der Arbeit von Adolf Hurwitz [5] iiber-
raschend einfache Resultat

—h=C((—1)"*Y2m; (p—1)2) (mod.p) ()
ergibt. Dabei bedeutet X(n) fiir jede natiirliche Zahl n den Charakter mod. m:

()t (50 x ).

Wir bemerken noch, dass wenn m# 1 ist, auf der linken Seite der Formel (1) die Sum-
mation iiber ¢ auch nur von 1 bis m—1 erstreckt werden kann und auf der rechten
Seite die Summation iiber #» nur von 0 bis oo.

Ausgehend von der Klassenzahlformel

|d] -1

— h|d| = Zn(S), d<-—4, C))

n=1

geben wir im folgenden den Beweis durch sukzessive Betrachtung folgender Fille:
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1. Hauptfall d=0 (mod. 4), d+# —4

In diesem Falle ist in d= —mp die natiirliche Zahl m durch 4 teilbar. Wir zeigen
zuerst, dass wenn die Argumente natiirliche Zahlen sind

X(n)=—X(n+ m/2). (1.1)
Zum Beweise betrachten wir die beiden Unterfille:

1. UNTERFALL: d=4D, wo D=3 (mod. 4), d# —4

Setzt man in d= —m p die natiirliche Zahl m=4m’, so ist m’ eine quadratfreie und

d

zu p teilerfremde natiirliche Zahl. Da - = —m’p =3 (mod. 4) ist, ist m'p=1 (mod. 4),
4

also

m =(-1)?"Y%  (mod. 4).

Ist n eine ungerade natiirliche Zahl, so ist erstens

(- 1)(p+1)/zm) _ ((__ 1)(p+1,/2m,).

n n

X(n)=(

Da der Zihler im letzten Ausdruck = —1 (mod. 4) und der Nenner positiv ist, folgt
nach dem allgemeinen quadratischen Reziprozititsgesetz

n
X = () (- e,
m
Zweitens wird analog, da m’ ungerade ist

(- et 1)/zm) - ((__ 1)(p+1)/2m,)

n+2m n+2m’
+2m' , n

_ (n ,m ) (__ 1)(n+2m -1)/2 —_ (9”7) (___ 1)(n--1)/2.
m m

Mithin gilt die Gleichung (1.1) fiir ungerade natiirliche Zahlen n. Sie gilt aber auch
fiir gerade natiirliche Zahlen, denn dann verschwinden beide Seiten der Gleichung.

X(n+m/2)=X(n+2m’)=(

2. UNTERFALL: d=4 D, wo D=2 (mod. 4)

Setzt man in d= —mp die natiirliche Zahl m=8m’, so ist m’ eine quadratfreie und
zu p teilerfremde ungerade natiirliche Zahl.
Ist n eine ungerade natiirliche Zahl, so ist erstens

X (n) = ((— 1)(:“’/2m) _ ((—- 1)"’:”22 m’) _ (;2;) (:’;}>(p+ 1)/2 (%)
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Da n positiv ist, folgt nach dem allgemeinen quadratischen Reziprozititsgesetz:

X =(- )T ()T T (L),

Zweitens wird

X(n+m2)=Xn+4m)= ((— 1)"’“’/2m) _ ((_ 1)+ 112 m,)

n+4m n+4m’
2 _1 \@+tnr2
_—<n+4m’)<n+4m') <n+4m’)
(n+4m)2-1 ntdm—1 p+i ntdm =1 m -1 /p 4 Ay
_-:(_1) 8 .(__1) 2 2.(__1) 2 2( - )
m

Reduziert man die Exponenten mod. 2, so folgt, da nm’ ungerade ist
m A= , =1 pi i =i
X(ne D)=y (1)
m

=—(- 1)”%‘;:1 (= l)n—;‘l 'p“;}.(_ 1)";—1"% (ll;)

m

Folglich gilt (1.1) fiir ungerade natiirliche Zahlen n; wie schon beim 1. Unterfall gilt
sie aber auch fiir gerade natiirliche Zahlen n, denn dann verschwinden beide Seiten
der Gleichung.

Im folgenden brauchen wir diese Fallunterscheidung nicht mehr, d.h. es sei von
nun an nur vorausgesetzt, dass d=0 (mod. 4), d< —4 ist.

Da p ungerade und X(n) fiir positive n ein Charakter mod. m ist, folgt aus (1.1):

X(n)=—-X(n+ mp[2). (1.2)

Fiir die Klassenzahl h=h(d) ergibt sich mithin

|dl—1 mp—1
d n
— hld| = Z n(—)= Z nX(n)(—),
n p
n=1 . n=1
also da mp/2 gerade ist
mp/2—1 mp—1

_ Z nX(n)(§)+ Z n*X(n*)(f';).

n=1 n*=mp/2+1
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Setzt man in der 2. Summe n*=n+mp/2, so folgt aus (1.2):

mp/2—1 mp/2—-1

—hmp= Z nx(n)G)— Z (n+mp/2)X(n)<g)=

n=1 n=1

mp/2—1

)
2h = X X (n) (Z) (1.3)

mp/2—1 mp/2—1

2(§)h= z X(n)(—z—l—?)s X X(n)2n)?~P"? (mod.p), (1.4)

n=1 n=1

Daher wird

Modulo p wird mithin

2
also 2 (—«) h mod. p kongruent dem Koeffizienten von

p
K- D)2 2 ~1 (1.5)
p—1 in Z X (n)exp2nx.
S
2 : n=1

J

Die zuletzt aufgefiihrte Summe und auch jede Summe, fiir welche fiir jede feste Potenz
von x bis zur (p-1)-ten Potenzinklusive der Koeffizient mod. p kongruent ist dem K oeffi-
zienten der gleichen festen Potenz von x in dieser Summe, wollen wir mit S (x)bezeichnen.
Wir fassen in S(x) die Glieder zusammen, die modulo m kongruenten Werten von n
entsprechen:

mp/2—1 m-—1
S(x)= Y X(m)exp2nx= ) X(t)Y exp2(t+ km)x. (1.6)
n=1 t=1 k
Fiir den Exponenten 2(z+km)x gilt:
O<t+km<mp/2, (1.7)
also
O0<t/m+k<p/2
oder

—tim<k<pl2—tim=(p—1D2+(1/2~-1t/m).
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Mithin durchliuft k£ die Werte

k=0,1,2,....(p—=3)2,(p—-1)2 fir t<m/2 (1.8)
k=0,1,2,...,(p — 3)/2 fir t>m/2 '
Es ist also

m/2—1

S(x)= ; X(t)[exp 2tx +exp (2t +2m)x +---+exp 21+ (p — 1)m)x] +

-1

+ ) X(t)[exp 2tx +exp (2t +2m)x +---+exp (2t + (p — 3)m)x],

t=m/2+1
mithin
m/2—1
S(x) = Z X (1) (exp 2tx)

t=1

(exp (p+ 1)mx) — 1
(exp2mx)—1

m-—1
(exp (p— 1)mx) — 1
+ X(t 2t .
Z (1) (exp 2¢2) (exp2mx)—1
t=mj2+1

Nehmen wir die Exponenten sinngemdss nach (1.5) mod. p, so folgt:

m/2—1

S(x) = Z X (1) (exp 21 %) (S’;pz";xz)’"_ll
© (exp —mx)—1
+ X(1*) (exp 2t*x) oI 1
,.=,,,Zz+1 (exp 2mx) — 1

Setzt man in der 2. Summe ¢*=¢+m/2, so erhdlt man unter Beriicksichtigung von

(1.1):

m/2—1
(exp mx) — 1
= 2t -
S()= ) X (e 200) or
t=1
m/2—1
1—expmx
- t 2t .
ZX()(exp x)(epomx)—l
t=1
Mithin ist
mj2-1 ( ) .
exp mx) —
= t 2t ;
S(x)=2 Z X (1) (exp 21) (exp2mx)—1

t=1
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Da X(n) fiir positive n ein Charakter mod. m ist, folgt:

m/2—1 mi2—1

S(x)=—2 z X(t)(ex:;p;;;_1+2 Z X(1* + m)-

t=1 t*=1

exp (2t*+m)x
(exp2mx)—1"

Setzt man ¢*+m/2=t so ergibt sich vermége (1.1):

m/2—1 m—1
exp 2tx exp 2t x
S(x)=-2 X(t -2 X(t ,
() Z ()(epomx)-l }: ()(epomx)—-1
t=1 t=mj/2+1
also gemiss (1):

m—1 ©
exp 2tx 112 2" x"
S(x)=-2) X(t =-2 of (G ) KAl .
(x) Z ()(exp2mx)-1 z (=1 m; n) n!

t=1 n=-1

Aus den Formeln (1.4) und (1.5) folgt:

2 ~1
2 (;) h=-2-20"D2C ((- 1) P D2y p—-z ) (mod. p)

und daher die zu beweisende Kongruenz (2):
w+yz, P~ 1

Bemerkung: Fiir jede nicht negative ganze Zahl n ist C(—4; n)= —E,/2, wo E, die
n-te Eulersche Zahl ist.

2. Hauptfall d=1 (mod. 4), d# — 3. Erster Teil

Aus (4) folgt:
(ldl-1)/2 ld|—1
d d
)
n n
n=1 n=(|d]+1)/2

Setzt man in der 2. Summe n*=|d|—n, so folgt, da gemiss Hecke [4], Satz 137, pg.
187 fiir natiirliche Zahlen n und m

d
<_) - (i) signd, fallsn=-m (mod. |d|), 2.1)

n m
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dass
(ld1-1)/2 (ldl-1)/2

—hldl =2 ,,Zl n (g) — || ,,Zl (g) (2.2)

Anderseits folgt aus (4), falls man je die Summanden gleicher Paritidt zusammen-
fasst:

(ld] - 1)/2 ld] -2
d d
— h|d| = 2n ([ — (2.
” X "(2n)+ 2 " (n)
n=1 n*=1

n*=1 (mod. 2)
Setzt man in der 2. Summe n*=|d|—n’ und hernach n'=2n, so folgt:

(d|-1)/2 (ldj-1)/2

s - ()

n=1
Multipliziert man beide Seiten dieser Gleichung mit (2), so ergibt sich

(dl—1)/2 (ld|—-1)/2
d d d
—hid[Z)=4 n(=)—d 7). (2.3)
2 n n
n=1 n=1

Multipliziert man beide Seiten von (2.2) mit —2 und addiert zum Ergebnis Seite fiir
Seite die Gleichung (2.3), teilt ferner beide Seiten des Resultates durch [d|, so erhilt

man schliesslich:
(ld|-1)/2

A

Gemaiss Formel (3) folgt aus (2.4):

(mp—1)/2

foro(@ Tl e

n=

(2
Multipliziert man beide Seiten dieser Gleichung mit (;), so folgt:

(mp—1)/2

[i()-re]- ) xof2) 2
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Modulo p gilt mithin:

(mp—1)/2
2
h [2 (—) - X(Z):l = Z X (n)(2n)?~Y2  (mod. p) .7
P n=1
2 .
also h [2 (~) - X (2)] mod. p kongruent dem Koeffizienten von
p
X(p- /2 b (2.8)
——————  in X(n)exp2nx
(p - 1)2)! Zl )

Wiederholt man mutatis mutandis die Uberlegungen, die auf die Relation (1.5)
folgen, so ergibt sich

(mp—1)/2 m

S(x)= ; X(n)exp2nx = t;X(t);exp 2(t + km)x. (2.9)

Fiir den Exponenten 2(¢t+km)x gilt
O<t+km<mp|2.

Diese Ungleichungen sind aber die gleichen wie (1.7). Mithin gelten fiir k auch die
Ungleichungen (1.8). Es ist also

(m—1)/2
S(x)= Y X()[exp2tx+exp(Rt+2m)x+---+exp(2t+(p—1)m)x]+
t=1

m

+ Y X()[exp2tx+exp(2t+2m)x+---+exp (2t + (p — 3)m)x].

t=(m+1)/2

Dabei hat es natiirlich hier und in folgenden analogen Summationen die Meinung
dass wenn m=1 ist, der erste der beiden Summanden der rechten Seite identisch ver-
schwindet. Es folgt:

(m-1)/2

S(x)= Z X(t)(eXp2tx)(exP(p+1)mx)"1

(exp2mx)—1

(exp(p—1)mx)—1
(exp2mx)—1

+ Z X (t)(exp 2tx)

t=(m+1)/2
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Nehmen wir die Exponenten sinngemiss nach (2.8) mod. p, so folgt:

(m—1)/2

S(x) = }: X (1) (exp 21x) (ii:pzn:nxz)_..l1 +

t=1
m

+ Z X (1) (exp 2tx) (exp (— mx))— 1

(exp2mx)—1
t=(m+1)/2
Mithin ist
fiir m=1:
(exp—x)—1
S(x)= 2 . 2.10
() =(exp 2 2N (.10)
Siirm>1:
m-1 (m—1)/2
exp 2tx exp mx
() Z ()(exp 2mx)—1 Z (1) (exp 21) (exp2mx)—1
= m_t =t @.11)
exp (— mx)
+ X (t) (exp 2t .
2 (1) (exp x)(epomx)—l
t=(m+1)/2

Wir fiihren zuerst den Beweis zu Ende fiir den Fall, dass m=1 ist. Gemdss (2.10) wird

exp x —exp 2x _ (exp x)(1 +exp x) — 2 exp 2x _
(exp2x)—1 (exp 2x) — 1 B
exp x exp 2x
=(expx)—1_ (exp2x)—1

S(x) =

Wenn m=1, also d= —p ist, ist p=3 (mod. 4) und nach Voraussetzung d# —3, also
p#3. Fiir m=1 gibt die Formel (1) daher

e¢] 0

S(x) = 2 c(1;n)z—:—2 }: C(1;n)

n=-1 n=-—1

(2x)"
n!

Gemiss (3) ist X(2)=(4)=1 und daher gemiss (2.8)

h [2 (%) - 1] =C(1;(p—1)/2) -2 G)) C(1;(p—1)2) (mod.p),
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—h [2 (g) - 1] = [2 (i) - 1] c(1;(p—1)2) (mod.p).

Da die eckige Klammer zu p teilerfremd ist, ergibt sich

—h=C(1;(p—1)2) (mod.p),
womit (2) bewiesen ist.
Bemerkung: Fiir jede natiirliche Zahl n ist C(1; n—1)= B,/ n, wo B, die n-te Bernoulli-
sche Zahl ist.
In der Folge sei also immer m>1. Gemdss (2.11) ist dann

also

m—1 (m—1)/2

exp 2tx
S(x)=_2ZX(t)(exp2mx)-—1 Z X (1) (exp 2t x)

(exp mx) + 1
(exp2mx)—1

m-—1
+ }: X (f) (exp 2tx)
t=(m+1)/2

Da das Quadrat von X(2) gleich 1 und fiir positive Argumente X(2¢)=X(2¢—m) ist,
folgt:

(exp—mx) + 1
(exp2mx)—1"

m—1 (m—1)/2

exp 2tx exp (2t*x)
S(x)=-2 X(t + X(2 X(2r*
() Z ()(epomx)—l @ Z ( )(expmx)—l
1=1 =1
m-—1 .
exp (2t" —
+X(2) X(21* — m) SR —m)x
(expmx)—1
=(m+1)/2

Setzt man in der vorletzten Summe 2¢* =t und in der letzten Summe 2¢*—m=¢, so
ergibt sich

m—1 m-1
exp 2tx exp tx
S(x)=—-2) X() + X (2 X (1) +
(x) Z ()(epomx)—l @ Z ()(expmx)—l
=1 tEOt(:'Iid.Z)
m-—2
exp tx
X(2 Xy —m—m——
+XQ) Z ()(expmx)——l
tElt(zmid.Z)
also
m—1 m—1
exp 2tx exp tx
S(x)=-2) X(1) + X (2 X (1) :
() Z ()(exp2mx)—-1 ()Z ()(expmx)-—l
t=1 t=1
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Nach Formel (1) ergibt sich, da X(m)=0 ist
2 x)" "
S(x)=-2 Z C((— ) V2m; n)( ), X(2) 2 C((— 1) P2m; n)i'.
n!

n!
n=-—1 n=-1

Daher ist gemiss der Formel (2.8):

2 2
h [2 ( ) - X(Z)] = [X(Z) ~2 <“>] C((=1)®*Y2m;(p—1)2) (mod.p).
p p
Fiir den Fall, dass die eckige Klammer zu p teilerfremd ist, wird

—h=C((- )®*"?m; (p—1)2) (mod.p),

womit (2) bewiesen ist.
Die eckige Klammer ist aber genau dann und nur dann zu p teilerfremd, wenn p=3

2
und gleichzeitig X(2)= (~) =(%)=—1 oder wenn p#3 ist.
p
Es ist also (2) nur noch zu beweisen fiir den Fall, dass p=3 und gleichzeitig X(2)=1,

d
also (2>= —1 ist. Dies sei in der Folge immer angenommen.

2. Hauptfall =1 (mod. 4), d# — 3. Zweiter Teil
Da d= —3m=1(mod. 4) ist, ist m=1 (mod. 4) und wegen X(2)=1 sogar m=1
(mod. 8). Ferner ist X(n) jetzt gleich (T), folglich X(n)=X(m—n), falls beide Argu-
n

mente natiirliche Zahlen sind. Endlich ist m =1 (mod. 3) oder m =2 (mod. 3)undm#1.
Wir setzen zur Abkiirzung

(m—1)/2 ]
n*
!
3
n*=1
m—1
n*
D = Z X(n*) (—3—) 5 (31)
n*=(m+1)/2
(3m-1)/2
n*
3
n*=m+1

Dann ist also nach Formel (2.5)
3h=A+D+G. (3.2
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Aus dieser Gleichung gewinnen wir in drei Schritten eine Gleichung, in der 4 selbst
durch eine Summe von ganzen Zahlen ausgedriickt wird.
Wir setzen in A den Summationsbuchstaben n*=n,
in D den Summationsbuchstaben n*=m—n
und in G den Summationsbuchstaben n*=m+n.
-1

Es wird, weil —1 =(~3—) ist:

(m—1)/2

ccora o)+ (52)-(52)

n=1

Da die geschweifte Klammer fiir jeden Wert von » immer verschwindet, ist 4 + G=D,
also gemdss (3.2):

D =3h/2. (3.3)
Wir zeigen nun, dass 420 (3.4)
ist.
Ist erstens m=1 (mod. 3), so ist
(m=5)/2 (m=3)/2
A= Y X@Y- Y X(@%.
n*= ;' (:ul)d. 3) n*= ;‘(:gd. 3)
Da X(2)=1 ist, folgt
(m—3)/2 (m—3)/2
A= Y  X(4n*)- Y o X(2nY).
= ;'*(:nl)d. 3) n*= g‘(:lgd. 3)

Es wird mithin, falls man in der ersten Summe 4 n* =n setzt und in der zweiten Summe
2n*=n: 2m-10

m—3
A= 24 X(n)- 24 X (n).
n=4 (mod.12) n=4 (mod. 6)

Unterteilt man jede der beiden Summen in zwei Summanden, so folgt:

m-—9 2m-10 m—9 m-—3 N
A= Y XM+ Y Xm- Y X(m- Y X(@.
n=4 n=m+3 n=4 n*=10
n=4 (mod. 12) n=4 (mod. 12) n=4 (mod. 12) n*=10 (mod. 12)

Die Summe des ersten und dritten Summanden verschwindet. Ebenso verschwindet
die Summe des zweiten und vierten Summanden, wie man sofort sicht, wenn man in
der letzten Summe n*=2m—n setzt.

Ist zweitens m =2 (mod. 3), also

(m—3)/2 (m—1)/2

A= Y X)) - Y X(@Y),
n*=1 n*=2
n*=1 (mod. 3) n*=2 (mod. 3)
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so folgt analog:
(m=3)/2 (m=-1)/2

A= Y X2nMH- Y X@4n®),

n*=1 n*=2

n*=1 (mod. 3) n*=2 (mod. 3)
also
m—3 2m—2
A= Y Xmn - Y X(»n.
n=2 n=38
n=2( mod. 6) n=8(mod. 12)

Unterteilt man wieder jeden der beiden Summanden, so ergibt sich:

m-—3 m—9 m-—9 2m—2

A= Y XM+ > XMn- Y XMm- Y X@Y.
n=2 n=8 n=8 n*=m+3
n=2 (mod. 12) n=8 (mod. 12) n=8 (mod. 12) n*=8 (mod. 12)

Die Summe des zweiten und dritten Summanden verschwindet. Ebenso verschwindet
die Summe des ersten und vierten Summanden, wie man sofort sieht, wenn man in der
letzten Summe wieder n*=2m—n setzt.

Damit ist (3.4) bewiesen.

Geht man aus von den beiden Formeln (3.3) und (3.4) und setzt man in der zweiten
der Formeln (3.1) den Summationsbuchstaben n* =m —n, beachtet schliesslich noch,
dass Y vz 1"? X (n) = 0 ist, so erhdlt man

(m=1)/2

3h2=D=D+A= Z x(n){(m;">+(§>-(gf>}.

n=1

Ist daher

, wenn m=1 (mod.3))

, wenn m=2 (mod.3)} (3.5)

" ®
Il
o —

so ergibt sich

(m—3)/2
3h2=-3X3) Y  X(n)
nEE;?r;\—o’:iJ)
und mithin
(m—3)/2
W2=—-X3) Y  X(n%).
n*=3—nu

n*= —m (mod. 3)

Zum Schlusse befreien wir uns noch von der Kongruenzvorschrift iiber den Summan-
den. Beachtet man, dass X(n*)=X(n*+m) ist, setzt man n*+m=n’ und hierauf
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n’'=3n, so erhilt man
(m-3)/2 (3m-3)/2

h2=-X(3) Y X@m*+m=-X3) Y X@)=
n* :—E"— ; ::1;0‘:1 .3) n"' ;OS(Tnz'd—. g)

(m—1)/2

=_X(3) Z X(3n)’

n=1+(m—-pu)/3

also
(m-1)/2

hi2=— Y  X(n).

n=1+(m—pu)/3
Addiert man Seite fiir Seite die Gleichung:

(m—u)/3 (m—1)/2

0= Z X(n) + Y X (n),

n=1+(m-—u)/3

so ergibt sich
(m—p)/3

h=2 Y X(n). (3.6)
n=1

Die Gleichung (3.6) gibt also den genauen Wert fiir 4 und ist natiirlich wertvoller als
die Kongruenz (2), die wir jetzt zum Schluss noch beweisen werden.
Es sei, vgl. (1)

{ m—1 o .
f(X)=(W Z X(t)exp tx = ZC("I;H)%

Da f (—x)= —f (x), mithin f (x) eine ungerade Funktion ist, ist C(m; 0)=0. Folglich

wird
m—1
X(t)exptx
) XOee
C(m; 1) =lim —= = lim .
x>0 X  x-ox((expmx)—1)

Da Zihler und Nenner fiir x=0 verschwinden, wird
m-1
Y tX(t)exptx

C(m; 1) = lim —=* :
(m; 1) xl_r,l(l,(1+mx)(expmx)—1

Hier verschwinden fiir x=0 nochmals sowohl der Zihler wie der Nenner. Daher wird

m-1
Y 2 X(f)exp tx

C(m: 1) = i t=1 ,
(m; 1) xl.?;(2m+xm2)expmx
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d.h.

m—1

C(m; 1) = 5-1;1 Z > X(1). 3.7

Weil ¥ X (f) =0 ist, ist
t=

1

Mithin wird modulo 3:

C(m;l)z—?‘»l; Z X(1) (mod.3).

t=3
t=0 (mod. 3)

Setzt man =37 und beachtet, dass X (3)=(%>’=——.m (mod. 3) ist, so ergibt sich

Cim;)=" 3 X(n) (mod.3) (3.8)
n=1
Aus (3.6) und (3.8) folgt:
—h=C(m;1) (mod.3). (3.9)

Die Kongruenz (3.9) ist aber wegen p=3 und (p—1)/2=1 die zu beweisende Kon-
gruenz (2).

Bemerkung

Da h=1 ist, so ist klar, dass wenn A< p ist, der kleinste ganzzahlige positive Rest
p+1

PPt p—-1 . .
mod.pvon —C| (—1) 2 m—— gleich der Klassenzahl h=h(d) selbst ist.

Nun gelten jedenfalls folgende beiden Sitze, vgl. Gut [3]:

Es liege ein imaginir quadratischer Zahlkdrper mit der Diskriminanten d vor, so
dass fiir ganzrationalzahliges quadratfreies D:

entweder d=D, D=1 (mod. 4)

oder d=4D,D=2,3 (mod. 4). )
Ist k der Korper der rationalen Zahlen, so ist also der Korper mit der Diskriminanten

d der Korper k(\/ D).

Hauptsatz. Fiir die Klassenzahl 4 des Korpers k(\/ D), wo d< —4 ist, gilt die

Ungleichung
h<|d|4.
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Zusatz. Wenn d=4 D, D=2,3 (mod. 4) ist, gilt sogar die Ungleichung
h <|d|/12 = |D|/3,

falls man, abgesehen von dem sowieso ausgeschlossenen Fall d= —4, die Koérper mit
den Diskriminanten d= —8, d= —20 und d= —24 ausschliesst.
Fiir alle Diskriminanten d< —4 ist also insbesondere der kleinste ganzzahlige
p+1

Lol -1
positive Rest mod. p von — C((— 1) 2 m ,—1-)—5-) fiir jede ungerade Primzahl pimmer

die Klassenzahl selbst, wenn d=1 (mod. 4) und m=1 oder m=3 ist, bezw., wenn
d=0 (mod. 4) und m<12 ist.
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Zusatz bei der Korrektur:

Wie ich nachtriglich von den Herren A. A. KiseLev und J. Sch. SLAVUTSKY erfahren habe, enthélt
eine 1964 in Leningrad erschienene von ihnen verfasste Arbeit (Trudy Cetvertogo Vsesojuznogo
Matematiteskogo Sezda, 3.-12. Juli 1961, Bd. II, S. 105-112, Leningrad 1964) nicht nur die Formel
(2), sondern fiir # auch Kongruenzen modulo einer Potenz von p fiir gewisse Koeffizienten von grosse-
rem als dem Index (p-1)/2 der Reihe auf der rechten Seite von (1). Ihr Resultat ist natiirlich mit
anderen Mitteln als dem hier benutzten Eulerschen Kriterium gewonnen worden. [M.G.]
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