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Kongruenzen zwischen Koeffizienten

trigonometrischer Reihen

und Klassenzahlen quadratisch imaginârer Kôrper

von M. Gut und M. Stunzi (Zurich)

Prof. Rolf Nevanlinna gewidmet

Inhaltsangabe und Bezeichnungen

Beziehungen von der im Titel erwâhnten Art finden sich schon bei Cauchy [2] und
in einer Arbeit von Adolf Hurwitz [5].

Es sei d<— 4 die Diskriminante eines quadratisch imaginâren Kôrpers mit der
Klassenzahl h(d) h. Es sei ferner p eine ungerade Primzahl und d— — mp, wo die

natiirliche Zahl m auch gleich 1 sein darf. Dann zeigen wir in der vorliegenden Arbeit,
dass wenn man die von Ankeny, Artin und Chowla [1] eingefuhrten trigonometrischen
Reihen

benutzt, sich das im Vergleich zu den Sâtzen in der Arbeit von AdolfHurwitz [5] uber-
raschend einfache Résultat

- h s C((- l)(p+1)/2m ; (p - l)/2) (mod. p) (2)

ergibt. Dabei bedeutet X(n) fur jede natiirliche Zahl n den Charakter mod. m :

(3)

Wir bemerken noch, dass wenn m # 1 ist, auf der linken Seite der Formel (1) die Sum-

mation ûber t auch nur von 1 bis m -1 erstreckt werden kann und auf der rechten

Seite die Summation ûber n nur von 0 bis oo.

Ausgehend von der Klassenzahlformel

M|-i

d<-4, (4)

n=l

geben wir im folgenden den Beweis durch sukzessive Betrachtung folgender Fâlle:
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1. Hauptfal! d=0 (mod. 4), d^-4
In diesem Falle ist in d— — mp die natùrliche Zahl m durch 4 teilbar. Wir zeigen

zuerst, dass wenn die Argumente natiirliche Zahlen sind

X(n) -X(n + ml2). (1.1)

Zum Beweise betrachten wir die beiden Unterfaile :

1. Unterfall: d=4D9 wo Z) 3 (mod. 4), </# -4
Setzt man in d= — mp die natiirliche Zahl m 4m\ so ist m'eine quadratfreie und

d
zu p teilerfremde natiirliche Zahl. Da -m'p=3 (mod. 4) ist, ist m'p l (mod. 4),
also

m's(-l)(p-1)/2 (mod. 4).

Ist n eine ungerade natiirliche Zahl, so ist erstens

Da der Zâhler im letzten Ausdruck — 1 (mod. 4) und der Nenner positiv ist, folgt
nach dem allgemeinen quadratischen Reziprozitatsgesetz

Zweitens wird analog, da m' ungerade ist

J+2m,

\ m' J \trij
Mithin gilt die Gleichung (1.1) fur ungerade natiirliche Zahlen n. Sie gilt aber auch

fur gerade natiirliche Zahlen, denn dann verschwinden beide Seiten der Gleichung.

2. Unterfall: rf=4D, wo D=2 (mod. 4)

Setzt man in J= —mp die natiirliche Zahl m 8 m', so ist m'eine quadratfreie und

zu p teilerfremde ungerade natiirliche Zahl.
Ist n eine ungerade natiirliche Zahl, so ist erstens
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Da n positiv ist, folgt nach dem allgemeinen quadratischen Reziprozitâtsgesetz :

n2-l n-l p+l n-l m'-l
X(n) (- l)~-(- 1)~ ' "^ •(- ipr • —

Zweitens wird

I(n + m/2) X(n + 4m')
n + 4m'

2 W -i \<p+n/2/ m

n + 4 my \n + 4 m / \n + 4 mr

(n + 4m')2-l n + 4m'-l p+l n + 4m'-l m'-l „
m

Reduziert man die Exponenten mod. 2, so folgt, da nmr ungerade ist

(_!) 2

n-l p+l n-l m'-l

Folglich gilt (1.1) fiir ungerade natiirliche Zahlen n; wie schon beim 1. Unterfall gilt
sie aber auch fiir gerade natiïrliche Zahlen n9 denn dann verschwinden beide Seiten

der Gleichung.
Im folgenden brauchen wir dièse Fallunterscheidung nicht mehr, d.h. es sei von

mm an nur vorausgesetzt, dass d=0 (mod. 4), d< — 4 ist.

Da/? ungerade und X(n) fur positive n ein Charakter mod. m ist, folgt aus (1.1):

(1.2)

Fur die Klassenzahl h=h(d) ergibt sich mithin

mp-l

-ln=l
also da mp/2 gerade ist

mp/2-l mp-l

-1 ¦*«©? E/xw®-
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Setzt man in der 2. Summe n*=n + mp/2, so folgt aus (1.2):

mp/2-l mp/2-1

-hmp= V nX(n)(-\- Y (n

n=l n=l
mp/2-1

-v z *«©¦
Daher wird

mp/2-l

(1.3)

n=l
Modulo /? wird mithin

mp/2-l mp/2-l

(mod./»), (1.4)

also 2 - I h raod. p kongruent dem Koeffizienten vonW
(d-D/2 mp/2-l

in ln=l

(n) exp 2nx.
(1.5)

Die zuletzt aufgefùhrte Summe und auch jede Summe, fiir welche fur jede feste Potenz

von x bis zur {p- l)-ten Potenz inklusive der Koeffizient mod./? kongruent ist dem Koeffi-
zientendergleichenfestenPotenzvon xin dieser Summe, wollen wir mitS(;c)bezeichnen.
Wir fassen in S(x) die Glieder zusammen, die modulo m kongruenten Werten von n

entsprechen:
m pi2 — 1 m-l

S(x)= X X(n)exp2nx= £ *(*)£ exp 2(* + km)x. (1.6)

Fiir den Exponenten 2(t+km)x gilt:

0<t + km<mpl2,

0<t/m + k< p/2

-tlm<k< p/2 - f/m (p - l)/2 + (1/2 - r/m).

(1.7)
also

oder
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Mithin durchlàuft k die Werte

k 0,1,2, ...,(p - 3)/2,(p - l)/2 fur r < m/2
/c 0,l,2,...,(p J

Es ist also

fur r>m/2J U '

m/2-1
Ç(x\ — V Yo yx) — 2^ A \

r=l
m-l

+ E
+

mithin

x

;<)[exp

X(f)

m/2-1

« -1

2 f x 4- exp (21 + 2 m) x H h exp (21 + (p — 1) m) x] +

[exp 2fx 4- exp (2t + 2m)x 4--*1

(exp (p 4- l)mx)
(exp 2 m x) —

m-l

_j_ \ jç(j\ Cgxo 21xS

+ exp(2r4-(p-3)m)x],

1

(exp (p — l)mx) — 1

(exp 2 m x) — 1

Nehmen wir die Exponenten sinngemàss nach (1.5) mod. p, so folgt:

m/2-1

S(x)
(exp 2 m x) — 1

X(r*)(exp2**x)
(exp 2 m x) — 1

Setzt man in der 2. Summe t* t+m/2, so erhâlt man unter Beriicksichtigung von
(1.1):

m/2-1
(exp m x) — 1

(exp 2 m x) — 1

Mithin ist
m/2-1

(exp m x) — 1

m/2-1
1 — exp m x

S(x) 2 V Z(0(exp 2tx)
(exp 2 m x) —
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Da X(n) fur positive n ein Charakter mod. m ist, folgt:

m/2-1 m/2-1

X(t)w
(2f + m)x

+ 2 } X04m)~ —i-.
(exp2mx)-l £,

v 7
(exp 2mx) - 1

Setzt man t* + m/2=t so ergibt sich vermôge (1.1):

m/2-1 m-l
exp2rx V1 /x

;
* -2 X(0; ,; x ,»(exp2mx)-l £j (exp2mx)~l

f=l t m/2+l
also gemâss (1) :

Aus den Formeln (1.4) und (1.5) folgt:

- l)(p+1)/2m ; ^\ (mod.p)

und daher die zu beweisende Kongruenz (2) :

-hmc((- l)(p+1)/2m ; ^-^ (mod./»).

Bemerkung: Fur jede nicht négative ganze Zahl n ist C(—4; «)= —EJ2, wo £„ die
n-te Eulersche Zahl ist.

2. Hauptfalï Jsl (mod. 4), </* -3. Erster Teil

Aus (4) folgt:
(MI-D/2

l -G>
Setzt man in der Z Summe n*~\d\-n, so folgt, da gemâss Hecke [4], Satz 137, pg.
187 fur natûrliche Zahlen n und m

{d\ (d\ ¦ A-] — } sign d, fallsna-m (mod.\d\), (2.1)
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dass
(MI-D/2 (MI-D/2

-MI-2 l ,(J)-M1 £ (J). (2.2,

Anderseits folgt aus (4), falls man je die Summanden gleicher Paritât zusammen-
fasst:

(MI-D/2 \d\-2

h 1 n* 1

n*=l (mod. 2)

-(?)¦
h 1

Setzt man in der 2. Summe n* \d\-n' und hernach n' 2n, so folgt:

Multipliziert man beide Seiten dieser Gleichung mit I — 1, so ergibt sich

(\d\-l)/2

0

Multipliziert man beide Seiten von (2.2) mit -2 und addiert zum Ergebnis Seite fur
Seite die Gleichung (2.3), teilt ferner beide Seiten des Résultâtes durch \d\, so erhâlt

man schliesslich :

)] l ©
«=i

Gemâss Formel (3) folgt aus (2.4):
(mp-l)/2

n= 1

Multipliziert man beide Seiten dieser Gleichung rnitf - 1, so folgt:

(mp-l)/2

£).
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Modulo p gilt mithin :

M. GUT UND M. STÛNZI

(mp-

(mod.p) (2.7)

n=l

r /2\ ialso h 2 - I — X(2) mod. p kongruent dem Koeffizienten von
L \PJ J

(mp-l)/2

in X(n)exp2n*
(2.8)

Wiederholt man mutatis mutandis die Ûberlegimgen, die auf die Relation (1.5)
folgen, so ergibt sich

S(x)=
(mp-1)/2

km)x. (2.9)

Fur den Exponenten 2(t+km)x gilt

0 < t 4- fc m < m p/2.

Dièse Ungleichungen sind aber die gleichen wie (1.7). Mithin gelten fur k auch die

Ungleichungen (1.8). Es ist also

{m-1)12

m

+ Z x(f)EexP 2rx + exp (2f + 2m)x + ••• + exp (2 r + (p - 3)m)x].
(+l)/2

Dabei hat es natiirlich hier und in folgenden analogen Summationen die Meinung
dass wenn w 1 ist, der erste der beiden Summanden der rechten Seite identisch ver-
schwindet. Es folgt:

{m-1)12

SW-

(exp 2 m x) — 1
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Nehmen wir die Exponenten sinngemâss nach (2.8) mod. p, so folgt :

S(x)

Mithin ist

y o
(exp m

m

+ y x(t)

x)- 1

tx)-l +

x
(exp (- mx))- 1

(exp 2 m x) — 1

-^—r. (2.10)
^exp l x) — 1

/«r m>/:
m-1 (m-l)/2

(2.1D

+ l X(0(exp2,x)
eXP("WX)

(exp 2 m x) — 1

Wir fiihren zuerst den Beweis zu Ende fur den Fall, dass m 1 ist. Gemâss (2.10) wird

exp x - exp 2x (exp x)(l + exp x) - 2 exp 2x
S(x)

(exp2x)~ 1 (exp 2x)- 1

exp x exp 2 x

(exp x) — 1 (exp 2 x) —

Wenn m l, also d= -p ist, ist/?s3 (mod. 4) und nach Voraussetzung d^ -3, also

3. Fur m l gibt die Formel (1) daher

S(x)=

Gemâss (3) ist JSf(2)=(i)=l und daher gemàss (2.8)

h |~2 f-") - il s C(l;(p - l)/2) - 2 f-) C(l;(p - l)/2) (mod.^),
L \PJ J W
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- h ïl Q - il » [2 Q - il C(l;(p - l)/2) (mod.p).

Da die eckige Klammer zu /> teilerfremd ist, ergibt sich

(mod.p)9
womit (2) bewiesen ist.

Bemerkung: Fur jede natiirliche Zahl n ist C(l ; n — 1) BJn, wo i?n die «-te Bemoulli-
sche Zahl ist.
In der Folge sei also immer m> 1. Gemâss (2.11) ist dann

m-l (m-l)/2

2\X 1+ V

m-l

l
(exp 2 m x)

m-l
(exp — m x) + 1

(exp 2 m x) — 1

Da das Quadrat von X(2) gleich 1 und fur positive Argumente X(2t) X(2t-m) ist,
folgt:

m-l (m-l)/2
exp(2t*x)

(exp m x) — 1

1=1 f*=i
m-l
V • * x exp (2r* - m)x

+ X(2) X(2f*-m)--^ ——.Lj (exp m x) - 1

Setzt man in der vorletzten Summe 2t*~t und in der letzten Summe 2f*—m t9 so

ergibt sich
m—1 m—1

y
2

(exp2mx)~ 1 w /j w(expmx)-l
f=2

rsO(mod.2)
2

y

also

(exp
r=i

fsl(mod.2)

(exp2mx)-l /j w(exp
i
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Nach Formel (1) ergibt sich, da X(m)=0 ist
00

-i)1
n\

.(P+D/2m ; n)—.S(x) -2 C((-
Lé

n= -1
Daher ist gemâss der Formel (2.8):

-2 1- \ ; (p — l)/2) (mod. p).

Fiir den Fall, dass die eckige Klammer zu p teilerfremd ist, wird

_ h C((- iy+l)l2m ; (p - l)/2) (mod./»),

womit (2) bewiesen ist.

Die eckige Klammer ist aber genau dann und nur dann zu p teilerfremd, wenn p 3

[2\
und gleichzeitig ^(2) -)=(£)= —1 oder wenn/?^3 ist.

W
Es ist also (2) nur noch zu beweisen fiir den Fall, dass p 3 und gleichzeitig X(2)= 1,

(d\
also { - 1 — 1 ist. Dies sei in der Folge immer angenommen.

2. Hauptfall d=\ (mod. 4), d^ -3. Zweiter Teil

Da d= — 3m 1 (mod. 4) ist, ist m l (mod. 4) und wegen X(2) l sogar m l
(mod. 8). Ferner ist X(n) jetzt gleichl - J, folglich Z(n) Ar(m-n), falls beide

Argumente natiirliche Zahlen sind. Endlich ist m 1 (mod. 3) oder m=2 (mod. 3) und m ^ 1.

Wir setzen zur Abkûrzung
(m-D/2

n* m + 1

Dann ist also nach Formel (2.5)

w* (w+l)/2
(3m~l)/2

(3.1)

(3.2)
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Aus dieser Gleichung gewinnen wir in drei Schritten eine Gleichung, in der h selbst

durch eine Summe von ganzen Zahlen ausgedriickt wird.
Wir setzen in A den Summationsbuchstaben «*=«,

in D den Summationsbuchstaben n*=m—n
und in G den Summationsbuchstaben n*=

Es wird, weil —1=1 — I ist:

(m-l)/

Da die geschweifte Klammer fur jeden Wert von n immer verschwindet, ist A + G=D,
alsogemâss(3.2): D-3fc/2. (3.3)

Wir zeigen nun, dass
A 0 (3.4)

ist.
Ist erstens m 1 (mod. 3), so ist

{m-5)12 (m-3)/2

n*=l «* 2
n*=l(mod.3) »*=2(mod.3)

Da Ar(2) list, folgt
{m-5)12 (m-3)/2

A= £ X(4n*)- X Z(2n*).
«*=1 «* 2

n*=l(mod.3) n*=2(mod.3)

Es wird mithin, falls man in der ersten Summe 4 n *=n setzt und in der zweiten Summe

2n*=n: 2m_10 m-3

w=4 n=4
« 4(mod. 12) n 4(mod. 6)

Unterteilt man jede der beiden Summen in zwei Summanden, so folgt:
m-9 2m-10 m-9 m-3

A= X X(n)+ E X(n)- £ X(n)- £ *(«*).
n 4 n m + 3 « 4 n*=10

« 4(mod. 12) » 4(mod. 12) n 4(mod. 12) n*= 10 (mod. 12)

Die Summe des ersten und dritten Summanden verschwindet. Ebenso verschwindet
die Sûmme des zweiten und vierten Summanden, wie man sofort sieht, wenn man in
der letzten Summe n*=2m-n setzt.

Ist zweitens m =2 (mod. 3), also

(m-3)/2 (m-l)/2
A- I X{n*) - I X{n*),

«?=1 n* 2
»*=l(mod. 3) n* 2(mod. 3)
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so folgt analog :

also

(m-3)/2 (m-l)/2
A= £ X(2n*)- X X(4n*),

n*=l n* 2
«*=l(mod. 3) n* 2(mod.3)

m-3 2m-2
A= £ X(n) - £ X(n).

n=2 n 8
n 2(mod.6) n 8(mod. 12)

Unterteilt man wieder jeden der beiden Summanden, so ergibt sich:

m-3

n-2
n 2(mod. 12)

m-9

n 8 (mod. 12)

m-9

« 8 (mod. 12)

2m-2
X(n*).

«*= 8 (mod. 12)

Die Summe des zweiten und dritten Summanden verschwindet. Ebenso verschwindet
die Summe des ersten und vierten Summanden, wie man sofort sieht, wenn man in der
letzten Summe wieder n* 2m — n setzt.

Damit ist (3.4) bewiesen.

Geht man aus von den beiden Formeln (3.3) und (3.4) und setzt man in der zweiten
der Formeln (3.1) den Summationsbuchstaben n* m — n, beachtet schliesslich noch,
dass Xi=11)/2 X(") ° ist> so erhâlt man

Ist daher

so ergibt sich

und mithin

li l, wenn m 1 (mod.

fi 2, wenn m 2 (mod.

(m-3)/2

n= — m (mod. 3)

(m-3)/2

X(n)

hl2 -X(3) £ X(n*).
n*= —m (mod. 3)

Zum Schlusse befreien wir uns noch von der Kongruenzvorschrift iiber den Summanden.

Beachtet man, dass X(«*)=X(«*+m) ist, setzt man n* + m=n' und hierauf
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«' 3», so erhâlt man

hl2 -X(3)
n*

(m-3)/2

—m (mod.

M. GUT UND M.

V ^ A
>

A. I r» "T* tri

3)

STUNZI

-X(3)
r,

n

(3m-3)/2

i'eO (mod. 3)

{m-1)12

i=l+(m-M)/3
also

(m-l)/2
*/2 - I X(n).

ii=l + (m-/i)/3

Addiert man Seite fiir Seite die Gleichung:

(m-tt)/3 (m-l)/2
0= I X(n)+ £ *

11=1 n=l+(m-/i)/3
so ergibt sich

(3.6)

Die Gleichung (3.6) gibt also den genauen Wert fiir h und ist natiirlich wertvoller als

die Kongruenz (2), die wir jetzt zum Schluss noch beweisen werden.
Es sei, vgl. (1)

m— 1 oo

/ W ~
(exp L) - 1 I *(0 CXP tX l C(W ; n) nî •

r=l n=0

Da/(—x)= —/(a:), mithin/(x) eine ungerade Funktion ist, ist C(m; 0)=0. Folglich
wird

m-l

f(x
C(m; 1) lim J-±-ï lim

x

I
lim lim ~ :.
*-o x x-*o x ((exp m x) - 1)

Da Zâhler und Nenner fiir x=0 verschwinden, wird

C(w; 1) lim

m-l

lim —-
,.,0 (1 + mx)(exp mx) - 1

Hier verschwinden fiir jc=0 nochmals sowohl der Zâhler wie der Nenner. Daher wird

m-l
£ t2X(t)exptx

C(m; 1) lim j^- T^o(2w + x m exp m x
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d.h.

m-l

m— 1

Weil Yj X(t) O ist, ist
r=i

r=i
Mithin wird modulo 3 :

2m Lj
(mod. 3).

f 0(mod. 3)

Setzt man t 3n und beachtet, dass Ar(3)=l — j=m (mod. 3) ist, so ergibt sich

C(m;l)= X x(n) (mod. 3) (3.8)

Aus(3.6)und(3.8)folgt:
-AsC(m;l) (mod. 3). (3.9)

Die Kongruenz (3.9) ist aber wegen p 3 und (/?—1)/2 1 die zu beweisende Kon-
gruenz (2).

Bemerkung

Da A^l ist, so ist klar, dass wenn h^P ist, der kleinste ganzzahlige positive Rest

mod./?von-CI (-1) 2 m; I gleich der Klassenzahl h=h(d) selbstist.

Nun gelten jedenfalls folgende beiden Sâtze, vgl. Gut [3]:
Es liège ein imaginâr quadratischer Zahlkôrper mit der Diskriminanten d vor, so

dass fur ganzrationalzahliges quadratfreies D :

entweder d=D, D 1 (mod. 4)
oder d=4D,D=2,3(mod. 4).

Ist k der Kôrper der rationalen Zahlen, so ist also der Kôrper mit der Diskriminanten

d der Kôrper k{Jù).
Hauptsatz. Fur die Klassenzahl h des Kôrpers k(Jd\ wo d< -4 ist, gilt die

Ungleichung
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Zusatz. Wenn J=4D, /)=2,3 (mod. 4) ist, gilt sogar die Ungleichung

h< Ml/12 |Z)|/3,

falls man, abgesehen von dem sowieso ausgeschlossenen Fall d= —4, die Kôrper mit
den Diskriminanten d= -8, d= -20 und d= -24 ausschliesst.

Fur aile Diskriminanten d<— 4 ist also insbesondere der kleinste ganzzahlige
/ Eli p-l\positive Rest mod.p von -Ci (-1) 2 m;—- 1 fur/WeungeradePrimzahl/?immer

die Klassenzahl selbst, wenn rf=l (mod. 4) und m \ oder m 3 ist, bezw., wenn
d=0 (mod. 4) und m^ 12 ist.
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Eingegangen den 7. Mai 1966

Zusatz bei der Korrektur:

Wie ich nachtrâglich von den Herren A. A. Kiselev und J. Sch. Slavutsky erfahren habe, enthâlt
eine 1964 in Leningrad erschienene von ihnen verfasste Arbeit (Trudy Cetvertogo Vsesojuznogo
Matematiè'eskogo Sezda, 3.-12. Juli 1961, Bd. II, S. 105-112, Leningrad 1964) nicht nur die Formel
(2), sondern fur h auch Kongruenzen modulo einer Potenz vonp fur gewisse Koeffizienten von grôsse-
rem als dem Index (p-l)/2 der Reihe auf der rechten Seite von (1). Ihr Résultat ist natiirlich mit
anderen Mitteln als dem hier benutzten Eulerschen Kriterium gewonnen worden. [M.G. ]
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