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tîber die FINSLERschen hôheren arithmetischen Operationen

Von Hilbert Levitz*, New York University

1. Einleitung

In [4] stellte Finsler eine transfinite Folge von arithmetischen Operationen auf, die
durch Funktionen (j)a(Ç, t]) von zwei Variabeln £, r\ gegeben sind, wobei a, £, rj aile
Ordnungszahlen kleiner als Q durchlaufen. Die kleinste Zahl /i, die die Gleichung
(t>x(o), œ) x lôst, spielt eine besondere Rolle. Ist axy </j, dann hat y die Darstellung
7 <£*(£> f)> wobei a, £, rç<y sind.

Bachmann [2] zeigte, dass n<E(0) ist, wobei £(0) eine bestimmte Zahl ist, die von
Veblen [7] beschrieben wurde.

Hier geben wir eine Verbesserung dièses Ergebnisses von Bachmann. Wir beweisen,
dass \i gerade die sogenannte Schùtte-Feferman Zahl k0 ist. Es wurde von diesen Ver-
fassern gezeigt, dass k0 eine wichtige Bedeutung fiir die verzweigte Typenlogik hat
[3], [5], [6].

Wir beweisen auch: $a({, rj)<K0 so bald a, £, r\<K0.

2. Die Operationen von Finsler

Die v-fache Itération der Funktionen $a(£, r\) sei durch die Forderungen erklârt:

(f>*(Ç,ri) Lim $*(<!;,rç), wenn A eine Limeszahl < Q ist.
v < A

Man beweist sehr leicht mit transfiniter Induktion nach /?:

Die Funktionen $„(<!;, /;) sind definiert, wie folgt:

ff

Dièse Arbeit wurde von dem Ojjîce o/ Scientific Research of the United States Air Force unter-
stutzt.
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allgemein <£a+ A (£, rj) <£f (rç, rç) fur a > 3

(j)x(Ç,ri) Lim $„,(£, rç), wenn A eine Limeszahl < Q ist.

3. Einige Eigenschaften der Normalfunktionen

Wir beschreiben einige Eigenschaften der Normalfunktionen wie es in Bachmann
steht [1, § 8].

Es sei ^(x) eine beliebige Normalfunktion mit dem Argumentbereich 0<x<Q.
Die Itération \j/n von i// definiert man folgendermassen :

Wenn die Lôsungen der Gleichung il/(x) x der Grosse nach geordnet werden,
erhâlt man eine neue Normalfunktion, die man die Ableitung i//' von if/ nennt. Es gilt
[l,pg.36]:

W (0) Lim ^"(a) fur a < \j/' (0), (1)
n<cn

f (£ + 1) Lim f (a) fur f ({) < a < ^r'({ + 1). (2)

Ausgehend von der Normalfunktion fo(x) cox, 0<x<Q, bildet man eine trans-
finite Folge von Ableitungen {/J, wie folgt:

n<x

wenn k eine Limeszahl <Q ist und F/1, die Wertbereich der Funktion/, bezeichnet.

Esgilt[l,pg.39]:

/,+1(0) Lim/;(a) fur a^/,+1(0), (3)
n<m

Lim/,"(«) fur /,H(fl<«i/,+ 1({ + l), (4)
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h (0) Lim /„ (a) fur a < fx (0), (5)

wenn X eine Limeszahl ist.

/A({ + 1) Lim fn(a) fur /A({) < a < /A({ + 1), (6)

wenn X eine Limeszahl ist.
Eine weitere Eigenschaft von/, ist/,(x) ^ x [1, pg. 25].
Fur 1 <rç, 0<a ist/,(a) eine a-Zahl. Deshalb ist fur 1 <r\ die Menge von allen Ord-

nungszahlen, die kleiner als fn{a) sind, gegeniiber den Operationen von Addition,
Multiplikation, und Potenzbildung abgeschlossen [1, p. 68].

Die kleinste Lôsung der Gleichung/x(0) x heisst die Schùtte-Feferman Zahl.
Um eine biindige Bezeichnungsweise zu gewinnen, fiihren wir eine Grosse — 1 ein.

Fur — 1 definieren wir folgendes :

- 1 < x fur 0 < x,
x fur co < x,

- 1 - 1 fur x 0,
tj fiir 0 < x < œ und x y\ + 1,

l+(-l) 0,
^(— 1) co, wenn ifr irgendeine Normalfunktion ist.

Offenbargilt:

- 1 + (a + P) (- 1 + a) + 0 fur aj > 0,

l+(jS + x) (l+jS) + x fiir p> -l,x>0,
œ(l + p) + (û'X co-(l + i5 + x) fur p > - l,x > 0.

4. Einige Hilfsâtze

Hilfsatz 1. Es ist 05(a>-x, f1(j8)) f1(i?4-x) fur aile p> -1, x>0.
Beweis: Nach der Définition der FINSLERschen Operationen geniigt es zu zeigen :

Dies wird mit transfiniter Induktion nach y bewiesen:

Falll. y=0:

Fa// 2. y v + \, d.h. y sei ein Nachfolger:
Die Induktionsvoraussetzung lautet
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daraus folgt

*ï(f i (fl./i (0 + v)) Lim «(/, (0),/, (j8 + v)). (7)
n<co

Nun zeigen wir mit Induktion nach «:>1, dass

/rl{fi(P + v) +1) < e < /,(/? + v +1) ist.

Ist dièse Behauptung wahr, dann folgt

/o"(/i (/? + v) + 1) < /0(C) </>:(/, {filU (fi + V))<fl(fi + v + l).
Im Falle )5+v= -1 folgt nach (3), im Falle /? + v# — 1 nach (4)

Lim «(A (jj),/! (^ + v)) Lim (A (^ + v) + 1) /, (fi + v + 1) /, (fi + y); (8)
n<û> n<a>

weiterhin ergibt sich nach (7), (8)

Aber das ist, was bewiesen werden soll.

Fall2.1 /i l:
Fall2.1.1 )8=-l, v=0:

«Cfi («Ji V + v)) Ma*"*) /o(^) •

Setzt man Q (o(o, so hat Q die erforderlichen Eigenschaften :

/o'^CAtf + v) + 1) /o(/iO» + v) + 1) /x(P + v)

a»+l<e</1(O) /1(j8 + v

Fc// 2.7.2 iM -1 oder v#0:
Dann ist /J+V/-1, und/0(/1(j8+v))=/1()S + v)) d.h.

also

01 (/i W./i 0» + v)) ^i(/! (/?),/, (/» + v)) (A

(a/' (/(+v))(/l ('+v/l (/>))
c

Setzt man 6=/i(/î+v)/lW), dann ist
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Fall2.2 n
Die Induktionsvoraussetzung nach n lautet fur k<n:

wobei

fo~l (/, (fi + v) + 1) < P < fdP + v + 1). (9)
Also gilt

"
/o {P 7o

Setzt man Q=P-fo(PY'^\ dann hat g die erforderlichen Eigenschaften, denn wegen
(9) gilt

/Ô(/i (/î + v) + 1) < /0(P) </,()? + v + 1),

aber/1(jî + v+1) ist eine e-Zahl, und daraus folgt

/o*(/i (/» + v) + 1) < P-/i (P/1 (/1) Q < /i G» + v).

Fall 3. y sei eine Limeszahl:
Nach der Induktionsvoraussetzung nach y erhâlt man

4>l
" y(/i 00./i 0»)) Lira « ' "(/i (J8)./i 0»)) Lim h (P + *) /i (/» + v) •

A<y A<y

Damit ist der Beweis von Hilfsatz 1. beendet.

Hilfsatz 2. Ist (f>a(Ç, ri) eine FINSLERsche Opération und g(x) eine Normal-
funktion mit den Eigenschaften:

a) <f>a(ù>-x,g(p))=g(p + x) fur aile x>0, p> -1,
b) g(x) ist eine e-Zahl fiir jc>0,

dann gilt:
g'0» + x) fur x > 0, jï > - 1.

Beweis: Zuerst beweisen wir mit transfiniter Induktion nach y die folgende Be-

hauptung :

<l>l((o,m) g(- 1 + y) fur aile y > 0. (10)

fa///. y=0:

^(co.œ) tâ(co,œ) œ g(- 1 + 0) g(- 1 + y).
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Fall 2. y v+l:
Nach der Induktionsvoraussetzung ist

^(co,G>) g(-l + v),
also

<t>l(a>,œ) <t>l+l(a>,co) fa(o>,«(co,ai)) 0a(a>,g(- l + v)).

Nach der Voraussetzung a) ist fa(a), g(-14- v))=g((-1 + v) +1), also

^Ko>) g((- 1 + v) + 1) g(- 1 + (v + 1)) g(- l + y).

Fa// 5. y sei eine Limeszahl :

fâfaa)) Lim 0«(co,co) Lim g(- 1 + X) g(- 1 + y).
A<y A<y

Damit ist (10) bewiesen.

Aus (10) ergibt sich nach der Définition der FINSLERschen Operationen

r>0. (11)

Sodann beweisen wir mit transfiniter Induktion nach y

<l>yMP),g(P)) g(P + g G»)'y) fur aile y > 0, p * - 1. (12)

g(P)-y).

Fall 2. y v+l:
Aus p^l und Voraussetzung b) folgt co-g(jS)=g(jS), also

4>l(g(P),g(P)) tt
Nach der Induktionsvoraussetzung ist

also

*.(g(P),4>lisiP),siP))) 4>a(g(fi),g(P + g(/0-v))

Ferner ist nach der Voraussetzung a)

Fa// 5. y sei eine Limeszahl :

<l>yMP),g(P)) Lim <^(g(/0,g(/0) Lim g(j? + g(/?)-A) g(j8 + g(P)-y).
X<y X<y

Damit ist (12) bewiesen.
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Aus (12) ergibt sich nach der Définition der FINSLERschen Operationen

^+1(?,g(«) g(P + g(P)-y) fur aile y > 0, fi * - 1. (13)

Sodann beweisen wir mit transfiniter Induktion nach y :

4>:+l{g'(fi),g'(P)) g'(P + 7) fur aile y > 0, fi > - 1. (14)

Falll. y 0

W+ ï (g' 08), g' (P)) ^«°+, (g' (fi), g 05)) g' (/0 g' (/» + 0) g' (/I + y).

Fall2. y

Nach der Induktionsvoraussetzung folgt

somit

C+l(g'W,g'(]8 + v))

Fall2.1 )5=-l, v=0:
Wir zeigen mit Induktion nach n > 1 :

wobei g""1(0)<Q<g'(0).
Ist dièse Behauptung wahr, so gewinnen wir durch Anwendung von (1) die gewiinschte

Beziehung (14).
Fall 2.1.1. /i l:

Nach (11) folgt

<t>:+i(g'(P%g'(P + v)) 0i+1(a),c») g(- 1 + a>) g(co).

Setzt man g <^> so hat g die erforderlichen Eigenschaften, denn

Fall 2.1.2. n=k + l:
ti++\(g'(P),i'(P + v)) <t>a+i(g(P)^Udg'(P\g'(P + v)))-

Da aber die Induktionsvoraussetzung nach nfûr k<k + l=n

tf+i(g'(/O,g'0 + v)) g(P)

lautet, wobei

g*-1(0)<P<g'(0) (15)
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gilt, folgt

4>a+1 (^ (fi), <t>U i (g' (fil g (P + v))) <*>*+1 (g (fil
Wegen (15) ist P/l, deshalb ist (13) anwendbar, und man erhâlt

Setzt man Q=P+g(P)-œ, so gilt nach (15) g*(0)<g(P)<g'(0).

Ferner gilt
gn~l(0) gk(0) < P + g(P)-co Q < g'(0),

weil g'(0) eine e-Zahl ist.

Fall2.2 0#-l oder v^O:
Wir zeigen mit Induktion nach n > 1 :

«+i(g'08),g'(i8 + v)) g(G), wobei g"-1(g'(^ + v) + l)<e<g'(^ + v + l).
Ist dièse Behauptung wahr, so gewinnen durch anwendung von (2) die gewiinschte
Beziehung (14).

Fall 2.2.1. n l:
Aus + l^ -1 ergibt sich g(g'(P + v))=g'(p + v), also

^+1 (g' (fi), g' (P + v)) *.+ i (g' W, g (g' (/J + v))).

Ferner ist (13) anwendbar, und man erhâlt:

4>.+ i(g'(PU(g'(fi + v))) g{g'(P + v)

Setzt man ô=^'(^H-v)+g(g/(j8 + v))-g'(j8), dann hat g die erforderlichen Eigen-
schaften, denn

f~l(t'(P + v) + 1) g° (g'(j? + v) + 1) g'05 + v) + 1< G < g'(P + v + 1).

Fall2.2.2. n
Die Induktionsvoraussetzung nach n lautet fur k<kH-l n:

wobei

g'I"1(g'(^ + v)+l)<P<g'()5 + v+l) (16)

ist. Es folgt

Aus (16) ergibt sich P=£ -1, deshalb ist (13) anwendbar, und man erhâlt
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Setzt man Q=P+g'(P)-gf(P), dann hat Q die erforderlichen Eigenschaften, denn aus
(16) folgt

gk(g(P + v) + 1) < g(P) < g'(fi + v + 1),

und da g'(j3 + v + l) eine e-Zahl ist, folgt weiter:

gtt~l(g'(P + v) + 1) gk(g'(P + v) + 1) < P + g(P)-g(P) < g'(fi + v + 1).

Fall 3. y sei eine Limeszahl :

</C+ ï (g' G»), g' (/»)) Lira #; J (g' (/?), g' (/0) Lim g' (p + k) g' (fi + y).
X<y X<y

Damit ist (14) bewiesen.

Aus (14) ergibt sich nach der Définition der FINSLERschen Operationen

g'(P + y) f^ aile y > 0, fi > - 1.

Damit is der Beweis von Hilfsatz 2 beendet.

Hilfsatz 3. Ist $a(£, rç) eine FINSLERsche Opération und h(x) eine Normal-
funktion mit den Eigenschaften :

a) <l>a(x, h(p))=h(fl + x) fur aile x>0, p> -1,
b) g(x) ist eine e-Zahl fiir aile x^O,

dann gilt:

<j)a+2(œ-xjï(l})) fc'GJ + x) fur aile x > 0, p > - 1.

Beweis: Wir definieren eine Funktion g, die die Bedingungen von Hilfsatz 2 er-

fullt. Sei g(j8)=h(-1 + œ(l + p)) fiir i?£ -1. Offenbar ist g eine Normalfunktion, und
fiir x^O ist g(x) eine e-Zahl; ferner hat man fur jc>0, p> — 1 :

gemâss Hilfsatz 2 erhâlt man

*.(a>-x,g'(/0) g'(jS + x) fur aile x > 0, j8 > - 1.

Es ist leicht zu sehen, dass

g'(fi) ^ h'(fi) fur aile - 1 < p

gilt. Somit haben wir



282 HILBERT LEVITZ

3. Die Hauptergebnisse

Fiir jc^O besteht der Wertbereich der Funktion û>(1+jc) aus den Limeszahlen.
Jeder Limeszahl a ordnen wir eine Zahl 6a und eine Folge {rçj fiir 1 < / < 6a zu, so dass

fur aile a, a=Lim r\ gilt. Ferner verlangen wir die folgenden Eigenschaften :

a) Ist a=co, sei 0a=a> und r\l =2/-h3;
b) Ist <x A+û), wobei A eine Limeszahl ist, sei 0a co und rç,=
c) Ist ol co'À, wobei A eine Limeszahl ist, sei 0a A und ^1 o)

Satz 1. Sei {ftl} die vorher beschriebene Folge von Ableitungen:
a) Ist a 2w + 3, l<,n«o, dann gilt

<t>a(a>-xJn(P)) /W(JS 4- x) fur aile x > 0, j? > - 1.

b) Ist a=A+l, wobei A eine Limeszahl ist, dann gilt

4>.(x>fx(P)) h(P + x) fur aile x ^ 0, p > - 1.

c) Ist a A + 2w-fl, wobei A eine Limeszahl und \<*n<(o ist, dann gilt

4>*{<o-xJa+*{P)) /a+w()8 + x) fur aile x > 0, jj ^ - 1.

d) Ist a eine Limeszahl, dann gilt

/«(/* + *) fur aile x^O./^-l.
Beweis (Nach transfîniter Induktion nach a) Wir nehmen an, dass a), b), c), d) fiir

aile a'<oc gelten. Wir miissen zeigen, dass a), b), c), d) auch fiir a gelten
a) Seia=2« + 3, l<n<<o.
FallL n l:

Unsere Behauptung ist genau Hilfsatz 1.

Fall2. n=k + l9k*0:
Hier gilt nach Induktionsvoraussetzung a):

4>n+*(&-x,fm(P)) Â(P + x) fiir aile x * 0, fi * - 1.

Also folgt nach Hilfsatz 2

fur aile i

b) Sei a=A+l, wobei A eine Limeszahl ist.
Nach der Induktionsvoraussetzung b) gilt

fxiP + *) f"r aile xïO.fiz-1,
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also folgt nach der Définition der FINSLERschen Operationen

4>a+i(xJà(P)) fx(fi + x) fur aile x > 0, p > - 1.

c) Sei a A-f 2^4-1, wobei X eine Limeszahl und \<n<œ ist:
Fa///. n l:
Nach Induktionsvoraussetzung b) gilt

4>a+i{xJxift)) /*(/* + x) fur aile x > 0, fi > - 1,

also folgt nach Hilfsatz 3

$x+3(co'xJx+l(P)) fx+1(fi + x) fur aile A > 0, fi > 1.

Fall 2. #i J,
Nach induktionsvoraussetzung c) gilt

<t>A+2k+i(o>'*JA+k(P)) /a+&(^ + x) fur aile x > 0, 0 > -
also folgt nach Hilfsatz 2

+ x) /A+n(0 + x) fur aile x > 0, fi > - 1.

d) Sei a eine Limeszahl, dann zeigen wir durch transfinite Induktion nach x, dass

d) fur a gilt.
Fall 1. x=0:

PAfMMP)) ti(f*(P)JM /«(/0 f*(P + 0) /.0» + x).

Fa//2. x v + l:
Die Induktionsvoraussetzung d) nach xfùrv<v + l=x lautet:

V f*(P + v) fur aile fi > - 1.
Daraus folgt

ferner

.(0 + v)) Lim

Fa//2J j? + v=-l,d.h.jS=-l,v=0und/y(i8 + v) ce> fur aile y^O, und/a(jS) o>.

In diesem Falle

P +v)) fûr i
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Fall 2.1.1. <x cû:

Dann hat man gemâss der Définition von rjlirjt—2i + 3<cc. Nach (17) und nach
der Induktionsvoraussetzung a) nach a, angewandt auf f;,<a, gilt

*2, + 3(û>,/,(/* + V)) /,(/? + V + 1) /,(0),
also folgt

Lim 4>«[f.(P),f.(fi + v)) Lim /,(0) /„(<>) f.(fi + v + 1) f.(fi + x).
i<0« i<û»

Fall 2.1.2. a=A4-o), wobei A eine Limeszahl ist:
Dann ist 0a=œ und i|I A+2i + l. Nach (17) und nach der Induktionsvoraussetzung

c) nach a, angewandt auf iy,< a, ist

** + 2.+ l(«>./i + ,(0 + V)) /* + ,(/» + V + 1) /A + I

Daraus folgt

Lim hAWlfatf + v)) Lim /,+I(0) /i+-(0) /.(0) -/.(/» + v).

Fa// 2.2.3. a co-A wobei A eine Limeszahl ist:
Dann ist 0a=A, ^,=0)^ + 3. Nach (17) und nach der Induktionsvoraussetzung c) nach

a, angewandt auf ^,<a, ist

v)) i.,+3K,+ i

also

Lim 0,, (/.(/?),/.(^ + v)) Lim /„.,+ (0) /„. ,(0) f.ffi + v + 1) f.(p + x).

Fall2.2. P+vï-1:
In diesem Falle gi\tfa.(f<t(P+v))=fx(p + v) fur a'<a und co-fa(p+v)=fx(p + v);
Fa//e 2.2./. <x=a>; deshalb ist 0a=(u und rç, 2*+3:
Nach der Induktionsvoraussetzung a) nach a, angewandt auf rç.ox, gilt

KVMfM + v)) 4>2t+3(<»-f.(P).f,(f.{P + v))) /,(/". 0» + v) + /«(/?)),

also

Lim 4>,,,{f.(p),fa(P + v)) Lim /,(/,(/} + v) + /.(«).
»<0« Km

Aus (6) ergibt sich

Lim ft(fm(p + v) +/. (/?)) - Lim f%(fm{P + v) + /.(«) /.tf + v + 1)
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Fall 2.2.2. a A + co ; deshalb ist 9a œ und r\v A + 21 +1, wobei A eine Limeszahl
ist:

Nach der Induktionsvoraussetzung c) nach a, angewandt auf rjt<oi, gilt

W + V)) =<Px + 2l+l((O-fMJx + l(Â(P + V))) =/a + ,(/«(/? + V)

also

Lim 4>nXWlW + v)) Lim /,+,(/". (/J + v) + /.(/»)).
K0<x i<co

Aus (6) ergibt sich

Lim fl+,(f.(P + v) + /.(p)) Lim/^.C/^O? + v) +

2.2J. a œ-X; deshalb ist 0a A und rjt co'i + 3, wobei A eine Limeszahl ist:
Nach der Induktionsvoraussetzung c) nach a, angewandt auf r]t<a, gilt

also

Lim ^MMf.ip + v)) Lim /„.,+ x (/a(j8 + v)

Aus (6) ergibt sich

KA

Fall 3. x sei eine Limeszahl :

Nach der Induktionsvoraussetzung d) nach x, angewandt auf y<x, gilt

WMJM) Lim <p.(/M.f.W) Lim W + y) W + *) •

y<x y<x

Damit ist der Beweis von Satz 1. beendet.

Satz 2. Die Gleichungen <j>x((o, co)=x undfx(0)=x besitzen dieselben Lôsungen,
also sind speziell die kleinsten Lôsungen einander gleich.

Beweis: Zuerst behaupten wir, dass, fur a>0, <l>a(œ,œ) und/a(0) Limeszahlen

sind. Daraus folgt, dass Lôsungen der Gleichungen <\>x{<o, œ)=x undfx(0)=x auch

Limeszahlen sind. Ist a eine Lôsung der Gleichung #a(a>, co) x, so erhâlt man nach

Satz 1. d):

d.h., a ist eine Lôsung der Gleichung/JC(0)=x.
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Wir gehen nun daran, unsere Behauptung zu beweisen :

(0 /«(0) ist fiir a>0 eine Limeszahl, weil/a(O) eine e-Zahl ist.
(ii) Fur <j)a(co, co) unterscheiden wir zwei Fâlle:
Falll. a v + l:

<t>a (co, co) (j)v+j, (co, co) Lim <f)nv (co, co).
n<a>

Also brauchen wir nur zu zeigen, dass {$J(û), co)} eine wachsende Folge vom Typ co

ist. Nun gilt aber nach [4, Satz 1.]

Fall 2. a sei eine Limeszahl :

4>a (co, co) Lim 4>x (co, co),

und die Folge {$;i(g>, °>)} voni Typ a ist wachsend wegen [4, Satz 4]. (Q.E.D.)

Satz 3. Sei k eine Lôsung der Gleichung/x(0) x.
Wenn a, £, ^/ kleiner als k: sind, so ist <t>a(Ç, ri) kleiner als k.

Beweis: Zuerst wâhlt man eine Limeszahl A, so dass a < X < k ist. Sodann setzt man

Falll. 1<£, l<iy:
Aus/a(t)>t, [4, Sâtze 5, 6, 7], und unserem Satz 1 ergibt sich

/a Oc) /a(/k(0)) A (0) k

Aus [4, Satz 9] ergibt sich ^,(§, f|)<K. (Q.E.D.)
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