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Uber die FINSLERschen héheren arithmetischen Operationen

Von HILBERT LEviTZ*, New York University

1. Einleitung

In [4] stellte Finsler eine transfinite Folge von arithmetischen Operationen auf, die
durch Funktionen ¢,(&, ) von zwei Variabeln &, n gegeben sind, wobei «, &,  alle
Ordnungszahlen kleiner als Q durchlaufen. Die kleinste Zahl u, die die Gleichung
¢, (w, w)=x 16st, spielt eine besondere Rolle. Ist w <y < pu, dann hat y die Darstellung
y=¢,(&, n), wobei a, £, n<y sind.

Bachmann [2] zeigte, dass p < E(0) ist, wobei E(0) eine bestimmte Zahl ist, die von
Veblen [7] beschrieben wurde.

Hier geben wir eine Verbesserung dieses Ergebnisses von Bachmann. Wir beweisen,
dass u gerade die sogenannte Schiitte-Feferman Zahl k, ist. Es wurde von diesen Ver-
fassern gezeigt, dass k, eine wichtige Bedeutung fiir die verzweigte Typenlogik hat

(31, 5], (6]

Wir beweisen auch: ¢,(&, 1)<k, so bald a, &, n<k,.
2. Die Operationen von Finsler
Die v-fache Iteration der Funktionen ¢,(&, 1) sei durch die Forderungen erklért:
¢9 (&m) =n

¢ (En) = 0. (& D2 (Esm)
¢2(¢,n) = Lim ¢ (&,n), wenn A eine Limeszahl < Q ist.
v< A4

Man beweist sehr leicht mit transfiniter Induktion nach f:

¢ (Em) = d(& 92 (Cm).
Die Funktionen ¢,(&, n) sind definiert, wie folgt:
bo(&m) = Po(0,n) =n+1

¢y (Em)=d5(0,m) =n+¢&
b2 (& n) = ¢i(1,0)=1n-¢

*) Diese Arbeit wurde von dem Office of Ecientiﬁc Research of the United States Air Force unter-
stiitzt.
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¢3(&,n) = ¢5(n,1) = n*

ba(&m) = $5(nm) ="
s (&) = ¢i(n,m) usw.
allgemein ¢, (¢,n) = ¢5(n,n) fir a>3
¢, (¢,n) = Lim ¢,(&,n), wenn A eine Limeszahl < Q ist.

a<d

3. Einige Eigenschaften der Normalfunktionen

Wir beschreiben einige Eigenschaften der Normalfunktionen wie es in Bachmann
steht [1, § 8].

Es sei y(x) eine beliebige Normalfunktion mit dem Argumentbereich 0<x<Q.
Die Iteration y" von y definiert man folgendermassen:

W) =¢
&) = (¥"(9).

Wenn die Losungen der Gleichung y(x)=x der Grosse nach geordnet werden,
erhilt man eine neue Normalfunktion, die man die Ableitung y’ von § nennt. Es gilt

[1, pg. 36]:

Y’ (0)=Lim y"(«) fir a<y’'(0), (1)
Y'(¢+1)=Limy"(a) fir Y (&) <a<y’'(¢+1). 2

Ist0<a<y’(B), soist Y (a) <y’(P) fiir 0 < B; dies ergibt sich aus y () <y (¥’ (B) )=
=y'(B).

Ausgehend von der Normalfunktion f,(x)=w*, 0<x <, bildet man eine trans-
finite Folge von Ableitungen { £}, wie folgt:

fo(x)=wx
furi=fy fir 0s<n<@,
Vf/'l:anq’

n<ai

wenn A eine Limeszahl <€ ist und Vf, die Wertbereich der Funktion f, bezeichnet.
Es gilt [1, pg. 39]:

fq+1(0)=L1m f:(d) fUl' asfn+l(0)’ (3)

n<w

fq+1(§+1)=lefn"(a) flil' fq+l(€)<a5fq+1(§+1)a (4)

n<a
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f1(0) = LLT fo(@)  fur  a< f£,(0), (5)
wenn A eine Limeszahl ist.
[i¢+1)=Lim f(«) fir f,()<a<fi(é+1), (6)

n<a

wenn A eine Limeszahl ist.

Eine weitere Eigenschaft von f, ist f,(x) > x [1, pg. 25].

Fiir 1 <n, 0<a st f, () eine e-Zahl. Deshalb ist fiir 1 <#n die Menge von allen Ord-
nungszahlen, die kleiner als f,(a) sind, gegeniiber den Operationen von Addition,
Multiplikation, und Potenzbildung abgeschlossen [1, p. 68].

Die kleinste Losung der Gleichung £, (0)=x heisst die Schiitte-Feferman Zahl.

Um eine biindige Bezeichnungsweise zu gewinnen, fiihren wir eine Grésse —1 ein.
Fiir —1 definieren wir folgendes:

—-1<x fir 0<x,
x fir w<x,
—1+x=¢(—1 fir x=0,
n fir 0<x<w und x=n+1,

1+(-1)=0,

Y (— 1) = o, wenn ¢ irgendeine Normalfunktion ist.
Offenbar gilt:

—1+(@+p)=(-1+a)+p fir «f=0,

1+B+x)=1+p)+x fir p>-1,x=0,

o(l+pf)+owx=w(1+p+x) fir f>-1,x=>0.

4. Einige Hilfsiitze

HiLesaTZ 1. Esist ¢5(w-x, f, (B))=f, (B+x) fiir alle B> —1, x>0.
Beweis: Nach der Definition der FINSLERschen Operationen geniigt es zu zeigen:

62 '(f1(B)f1(B)=f1(B+y) firalle f=-1,720.

Dies wird mit transfiniter Induktion nach y bewiesen:
Fall 1. y=0:

¢::.y(f1(ﬂ)’f1(ﬂ))=¢2(f1(ﬂ)’f1(ﬂ))=fl(ﬁ)=f1(ﬂ+0)=f1(ﬂ+Y)°

Fall 2. y=v+1, d.h. y sei ein Nachfolger:
Die Induktionsvoraussetzung lautet

¢% " (f1(B), f1(B) = f1(B +v);
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daraus folgt

03 T (f1(B), f1(B) = 62 " (f1(B). £1(B)) =
= (bﬁ’(fl(ﬁ), ‘Iﬁw(fx (ﬁ)’f1 (ﬁ))) =
= ¢4 (f 1(B), f1 (B + v)) = Lim ¢3(f, (B), £, (B + v)).

n<w

Nun zeigen wir mit Induktion nach n>1, dass

5 (f1 (B f1(B+ V) = fo(Q), wobei
S 1B+ +1)<Q< f(B+v+1)ist.
Ist diese Behauptung wahr, dann folgt

f(,)'(fl(ﬁ +v)+ 1)< fo(Q) =2 (fL(B) . fr(B+ V)< fi(B+Vv+1).
Im Falle §+v= —1 folgt nach (3), im Falle §+v# —1 nach (4)

Lim¢1(f1(ﬂ),f1(ﬁ+V))zLim(f1(»3+V)+ D=fiB+v+1)=fi(B+7);

n<ow n<w

weiterhin ergibt sich nach (7), (8)
63 "(f1(B). f1(B) = f1(B+7).

Aber das ist, was bewiesen werden soll.
Fall 2.1 n=1:
Fall 2.1.1 f=—-1,v=0:

$2(£1(8), f1 (B + 7)) = $4(@“”) = fo(a®).
Setzt man Q@ =w*, so hat Q die erforderlichen Eigenschaften:
BB+ + ) =f(fiB+v)+1)=fi(B+v)+1=
=w+1<0<fi(O=fi(B+v+1).

Fall 2.1.2 B# —1 oder v#0:
Dann ist f+v# —1, und £, (f; (B+V))=f1(B+V), d.h.

WO £1(B +9);
also

LB F1 (B + V) = B (1 (B) f1 (B + v)) = (f1 (B + v A+ Oy =

S1(B)
=(a)f1 (ﬂ+v))(f‘ (B+v) ) — a)(fl (ﬁ+v)f‘ (B))

Setzt man Q=f, (B+v)"*®, dann ist

s+ +)=fiB+V)+1<fi(B+VYW'P=0<fi(B+Vv+1).

(7)

®)
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Fall 2.2 n=k+1, k#0:
Die Induktionsvoraussetzung nach » lautet fiir k<n:

d’i(fl (B f1(B + V) = fo(P),

wobei

o ((fiB+V)+1)<P<fi(B+v+1). )
Also gilt

ot (f1(B).f1 (B + V) = ¢4 (f1(B), ¢5 (1 (B). f1 (B +v))) =
= 64 (£ (B). fo(P)) = fo(PYo " ) =
_ (wP)(Io 1 B) _ pegoy 1B fo(P-fo(PY' ).
Setzt man Q=P f(P)'*®, dann hat Q die erforderlichen Eigenschaften, denn wegen

9) gilt
fo(fi(B+v)+ 1)< fo(P)< fi(B+v+1),

aber f, (B+v+1) ist eine ¢-Zahl, und daraus folgt

fg(fx(ﬂ*‘v)‘{‘ 1)<P'fl(P)fl(ﬂ)=Q<f1(ﬁ+")-

Fall 3. y sei eine Limeszahl:
Nach der Induktionsvoraussetzung nach y erhédlt man

62 (1B S1(B) = Lim ¢3 *(f1(B). f1(B)) = I;im Si(B+2)=fi(B+7).

Damit ist der Beweis von Hilfsatz 1. beendet.

HILFSATZ 2. Ist ¢,(&, n) eine FINSLERsche Operation und g(x) eine Normal-
funktion mit den Eigenschaften:

a) d’a(‘i"X, g(ﬁ))=g(ﬁ+x) fiir alle x>0, > —1,
b) g(x) ist eine e-Zahl fiir x>0,
dann gilt:

Pos2(0x,8'(B)) =g (B+x) fir x=0,f=>-1.

Beweis: Zuerst beweisen wir mit transfiniter Induktion nach y die folgende Be-
hauptung:
Pl(w,0)=g(—1+1y) firale y=0. (10)
Fall 1. y=0:

Pl (w,0) = pY(w,w) =w=g(—1+0)=g(-1+7).
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Fall 2. y=v+1:
Nach der Induktionsvoraussetzung ist

¢z (0, 0) =g (=1 +),
¢z (0, w) = ¢:+l (0, @) = ¢,(w, ¢:(w’w)) = ¢a(w’g(— 1+ v))
Nach der Voraussetzung a) ist ¢,(w, g(—1+v))=g((—1+v)+1), also
$i(ww)=g((—1+v)+1)=g(-1+(+1)=g(-1+y).

Fall 3. 7y sei eine Limeszahl:

also

¢l (w,w) = Lim ¢} (w,0) =Lim g(— 1+ 1) =g(—1+7y).
i<y A<y

Damit ist (10) bewiesen.
Aus (10) ergibt sich nach der Definition der FINSLERschen Operationen

Gur1(y,0)=g(—1+y) firale y=>0. (11
Sodann beweisen wir mit transfiniter Induktion nach y
$2(2(B).g(B))=g(B+g(p)y) firalle 7>0,p%—1. (12)
Fall 1. y=0:
¢2(B.2(B)) = ¢2 (2(B).g(B)) = g(B) = g(B + 2 (B)-0) = g(B + g(B)-7).
Fall 2. y=v+1:

Aus B#1 und Voraussetzung b) folgt w-g(B)=g(B), also
¢:(g(B).8(B) = b2 " (8(B). £ (B)) = d.(g(B). 2 (2(B),2(B)))-

Nach der Induktionsvoraussetzung ist

¢2(g(B),g(B)) = g(B+g(B)v),

also

¢.(g(B), 9:(g(B),2(B)) = ¢.(g(B), g (B + g(B) ) = du(w-g(B), g (B + g(B)V)).

Ferner ist nach der Voraussetzung a)

ba(w-g(B).8(B+g(B)v))=g(B+8(B)v+g(h)=
=g(B+gB)(v+1)=g(B+2(B)y).

Fall 3. y sei eine Limeszahl:
$.(g(B)g(B) = Lim ¢:(g(B).2(B) = }g:l g(B+g(B)N)=2g(B+g(h)).

Damit ist (12) bewiesen.
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Aus (12) ergibt sich nach der Definition der FINSLERschen Operationen

bar1(1:8(B)) =g(B+g(B)y) firalle y=>0p#—1. (13)
Sodann beweisen wir mit transfiniter Induktion nach y:
dzii(g'(B).g'(B) =g (B+y) firalle y>0,f>-1. (14)
Fall 1. y=0

basl (8 ()8 (B) = bar1 (8 (BgB) =g (B)=g (B+0)=¢g (B+7).
Fall 2. y=v+1:

¢z 1(8' (B).g'(B) = 2417 (8" (B).&'(B)) = b+ 1 (g (B), $2+1 (g (B). 8" (B)))
Nach der Induktionsvoraussetzung folgt

doi1(g (B)rg(B)=g(B+V),

somit

bav1 (8 (B) 824 1(g (B).8'(B))) = dav 1 (g (B). &' (B + V)
= Lim ¢, (g (). 8" (B +v))
Fall 2.1 B= -1, v=0:
Wir zeigen mit Induktion nach n>1:

dar1(8 (B8 (B+v)=2g(Q), wobei g" '(0)<Q<g(0).

Ist diese Behauptung wahr, so gewinnen wir durch Anwendung von (1) die gewiinschte
Beziehung (14).

Fall 2.1.1. n=1:
Nach (11) folgt
Gz+1 (& (B8 (B+ V) = ¢or1(0,0) =g(— 1+ 0)=g(w).
Setzt man Q =w, so hat Q die erforderlichen Eigenschaften, denn
g ' 0)=2"0)=0<0=0<g(0).
Fall 2.1.2. n=k+1:

1E B (B+V)=dur1(8 (B).dts1 (g (B8 (B+V)).

Da aber die Induktionsvoraussetzung nach n fiir k<k+1=n
a+1(g'(B).g' (B + ) =g(P)
lautet, wobei
g7 (0)<P<g(0) (15)
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gilt, folgt

bur1(8' (B), bav1 (&' (B).8" (B + V) = bus 1 (8'(B), 8(P)) = s 1 (w0 g(P)).
Wegen (15) ist P#1, deshalb ist (13) anwendbar, und man erhilt

bar1 (0, 8(P)) = g(P + g(P) ).
Setzt man Q=P+ g(P)-w, so gilt nach (15) g“(0) <g(P)<g’(0).
Ferner gilt
g ' (0)=g0)<P+g(P)ro=0<g(0),

weil g’(0) eine e-Zahl ist.
Fall 2.2 B# —1 oder v#£0:
Wir zeigen mit Induktion nach n>1:

ber1 (& (B8 (B+Vv)=2g(Q), wobei g '(g(B+v)+1)<Q<g (B+v+]1).

Ist diese Behauptung wahr, so gewinnen durch anwendung von (2) die gewiinschte
Beziehung (14).
Fall 2.2.1. n=1:
Aus B+1# —1 ergibt sich g(g’'(B+v))=g'(B+v), also
Dar1(8' (B), 8 (B+ V) = dor1(g'(B).g(g' (B+V).

Ferner ist (13) anwendbar, und man erhilt:

bar1 (8 (B).28(g’ (B+v))=2g(g' (B+v)+g(g(B+v)g(B).

Setzt man Q=g'(B+v)+g(g’'(B+v)) g’ (B), dann hat Q die erforderlichen Eigen-
schaften, denn

@B+ + ) =g @B+ +D)=gB+v)+1<Q<g (B+v+1).
Fall 2.2.2. n=k+1:
Die Induktionsvoraussetzung nach n lautet fiir k <k+1=n:

vr1(g' (B).g' (B +v)=g(P),

wobel

. g EB+v)+1)<P<g(B+v+1) (16)
ist. Es folgt

SEELE (B).8 (B + V) = buss (&' (B), 05 (8" (B).8 (B + V) = a1 (&' (B).&(P)).
Aus (16) ergibt sich P# —1, deshalb ist (13) anwendbar, und man erhilt

bar1(2'(B).2(P)) =g(P + g (P)g'(B)).
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Setzt man Q=P+g'(P)-g'(B), dann hat Q die erforderlichen Eigenschaften, denn aus
(16) folgt

ki 1 , L)
g@B+v)+1)<gP)<g (B+v+1),
und da g'(B+v+1) eine ¢-Zahl ist, folgt weiter:
g @B+ +)=gE@B+V+1)<P+g(P)g(P)<g(B+v+1).

Fall 3. y sei eine Limeszahl:
dzi1(e'(B).g'(B) = Lim dari(g (B8 (B) = Lim g'(5 + 4)=g'(B +7).-

Damit ist (14) bewiesen.
Aus (14) ergibt sich nach der Definition der FINSLERschen Operationen

bas2(@ 7,8 (B) =g (B+y) firalle y=>0,p>-1.

Damit is der Beweis von Hilfsatz 2 beendet.

HiLrsATZ 3. Ist ¢,(&, ) eine FINSLERsche Operation und A(x) eine Normal-
funktion mit den Eigenschaften:

a) ¢.(x, h(B))=h(B+x) fiir alle x>0, f=—1,

b) g(x) ist eine e-Zahl fiir alle x>0,
dann gilt:

Gar2(0x, ' (B)=h(p+x) firalle x=>0,=>-1.

Beweis: Wir definieren eine Funktion g, die die Bedingungen von Hilfsatz 2 er-
fiilit. Sei g(B)=h(—1+w(1+ p)) fiir > —1. Offenbar ist g eine Normalfunktion, und
fiir x>0 ist g(x) eine e-Zahl; ferner hat man fiir x>0, f> —1:

b (0 x,8(B)) = (@ x,h(— 1+ 01+ P))=h(-1+o(l+ ) +ox)=
=h(—1+o(l+p+x)=g(B+x),

gemiss Hilfsatz 2 erhilt man

P (w-x,8'(B) =g (B+x) firalle x>0,>-1.

Es ist leicht zu sehen, dass

gB)=hn(p) firalle —-1<8

gilt. Somit haben wir

a0 x, 0 (x)) = I (B + x). (Q.E.D.)
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3. Die Hauptergebnisse

Fiir x>0 besteht der Wertbereich der Funktion w(1+x) aus den Limeszahlen.
Jeder Limeszahl a ordnen wir eine Zahl 6, und eine Folge {5} fiir 1 <:1<#, zu, so dass
fiir alle «, x=Lim n gilt. Ferner verlangen wir die folgenden Eigenschaften:

1<0,

a) Ista=w, sei 6,=wund n, =21+ 3;
b) Ist a=A1+w, wobei A eine Limeszahl ist, sei 6,=w und n,=A+21+1;
¢) Ist a=w-A, wobei A eine Limeszahl ist, sei §,=4 und n,=w-1+ 3.

SATz 1. Sei {f,} die vorher beschriebene Folge von Ableitungen:
a) Ist a=2n+3, 1<n<w, dann gilt

b (@ x, f,(B)=fa(B+x) firalle x>0p>-1.

b) Ist a=A+1, wobei A eine Limeszahl ist, dann gilt

d.(x, f:(B)=f,(B+x) firalle x>0,f>-1.

¢) Ist a=A1+2n+1, wobei A eine Limeszahl und 1 <n<w ist, dann gilt
Go(@ %, f14n(B)) = frsn(B+x) firalle x>0,p>-1.

d) Ist a eine Limeszahl, dann gilt

ax(fa(ﬂ)’fa(ﬂ))=f¢(ﬁ+x) fiir alle XZO,ﬁZ"' 1.

Beweis (Nach transfiniter Induktion nach «) Wir nehmen an, dass a), b), c), d) fiir
alle a’ <o gelten. Wir miissen zeigen, dass a), b), ¢), d) auch fiir « gelten

a) Seia=2n+3,1<n<ow.

Fall 1. n=1:
Unsere Behauptung ist genau Hilfsatz 1.

Fall 2. n=k+1, k#0:
Hier gilt nach Induktionsvoraussetzung a):

Do+ (@ x, f,(B) = fi (B + X) firalle x>0,f>~-1.
Also folgt nach Hilfsatz 2
P2n+3(0°x, f,(B)) = ¢2k+3+2(w'xsfk+1 B) = fis1(B+ x)= fo(B + x)

fiir alle x>0, > —1.
b) Sei a=A+1, wobei A eine Limeszahl ist.
Nach der Induktionsvoraussetzung b) gilt

G328 f2(B) = f1(B+x) firalle x>0,8> -1,
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also folgt nach der Definition der FINSLERschen Operationen

Gav1 (% f2(B)=f.(B+x) firalle x>0 8>-1.

¢) Sei a=A+2n+1, wobei A eine Limeszahl und 1 <n<w ist:
Fall 1. n=1:

Nach Induktionsvoraussetzung b) gilt

i1 (%, [2(B)=f1(B+x) firalle x>0,8>-1,
also folgt nach Hilfsatz 3

bi+3(@ %, f141(B)) = fas1(B+x) fiiralle 1>0,B>1.

Fall 2. n=k+1, k#0:
Nach induktionsvoraussetzung c) gilt

¢a+2k+1(w‘x,f1+k(ﬂ)) =fiw(B+x) firalle x>0,p>-1
also folgt nach Hilfsatz 2

¢1+2u+1(w'xaf).+n(ﬁ))= ¢A+2k+3(w'xafa+k+1(ﬁ))
= fisks1(B+x)=f1sn(B+x) firalle x>0,>—1.

d) Sei a eine Limeszahl, dann zeigen wir durch transfinite Induktion nach x, dass
d) fiir o gilt.
Fall 1. x=0:
¢z (f2(B), 12 (B)) = ¢2 (fu(B), fu(B)) = fo(B) = fu(B + 0) = fu(B + x).

Fall 2. x=v+1:
Die Induktionsvoraussetzung d) nach x fiir v<v+1=x lautet:

¢z (fo(B), fo(B)) = f.(B+v) firalle f>—1.
Daraus folgt
¢: (fo(B), o (B)) = ba™ " (£.(B). f(B)) =
= &2 (f2(B), Dz(fa(B), £2(B)) = &b (fu(B), fu(B + V),

ferner

¢a(/2(B), fo(B + v)) = Lim ¢, (f.(B), fa(B + v))

1<0,

Fall 2.1 B+v=—1,d.h. B=—1,v=0und f,(f+v)=wfiiralle y>0, und £, (f) = .
In diesem Falle

G, (2 (B), fu (B + V) = &y, (05 f,(B + v)) fiir irgendeine y > 0. an
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Fall 2.1.1. a=w:
Dann hat man gemiss der Definition von #,, , =21+ 3 <a. Nach (17) und nach
der Induktionsvoraussetzung a) nach a, angewandt auf n, <a, gilt

bn, (fo(B). £ (B + V) = &, (@, £,(B + v)) =
= ¢2l+3(w’ft(ﬁ + V)) =fl(ﬂ + v+ 1) =fl(0)’

also folgt
Lim b (f2(B): o (B + V) = Lim £,0) = £(0) = fa(B +v + 1) = fu(f + x).

Fall 2.1.2. a=A+w, wobei A eine Limeszahl ist:
Dann ist ,=w und n,=A+21+1. Nach (17) und nach der Induktionsvorausset-
zung c) nach «, angewandt auf 7, <a, ist

O, (o (B)s fo(B + 7)) = &y, (fu(B). f21, (B + V) =
=¢rn+1(0, 10, (B+V)=fi0.(B+v+1)=f,,,(0).

Daraus folgt
Lg’n (,b,h(f;(ﬂ),fa(ﬁ + V)) = Lim f).+;(0) = fl+m(0) = fa(o) = fa(ﬂ + V).

Fall 2.1.3. a=w-A wobei A eine Limeszahl ist:
Dann ist ,= 4, n,=w-1+ 3. Nach (17) und nach der Induktionsvoraussetzung c) nach
o, angewandt auf n, <a, ist

¢n.(fa(ﬁ)’fa(ﬁ .y V)) = ¢Ih(a)’fw'l+1 (ﬂ + V)) = ¢w-;+3(wnfm-|+l (ﬁ + V))
=fw~l+l(ﬁ +v+ 1) =fw-x+1(0)
also

L<non ¢n. (fa(ﬁ)’fa(ﬁ . V)) = Lir:l fw-1+1(0) = fw}.(O) = fa(ﬂ +Vv+ 1) = fa(ﬁ + x)‘

Fall 2.2. B4+v#—1:

In diesem Falle gilt £,.(f,(B+v))=/,(B+V) fir o’ <a und w-f,(B+v)=£(B+V);
Falle 2.2.1. a=w; deshalb ist 0,=w und 7,=21+3:

Nach der Induktionsvoraussetzung a) nach «, angewandt auf 5, <a, gilt

G0, (o (B), fo(B + V) = b2is3 (@ £o (B), £i(fu(B + V) = £.(fa (B + ¥) + fu(B)),

also

le ¢'Ix(fa(ﬁ)9fa(ﬁ + V)) = }‘:m fl(fa(ﬁ + V) + fa(ﬂ))'

Aus (6) ergibt sich
L<im f(fe(B+V)+fa (B) = L<im fi(faB+V)+ fu(B) = fu(B+Vv+1)=

=f(B+v+1)=/f(B+x).
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Fall 2.2.2. a=A+w; deshalb ist 6,=w undn,=1+2:+1, wobei A eine Limeszahl
ist:
Nach der Induktionsvoraussetzung c) nach «, angewandt auf n,<a, gilt

G0 (Lo (B) £ (B + V) = as20s1 (@ fo (B), fasi (fu (B + V) = frn, (S (B +¥) + fo(B))

also

Lim ¢, (f,(B), f.(B + v)) = Lim f,,(f.(B + v) + £.(B)).

1<0q 1<

Aus (6) ergibt sich

Lim f;.+,(f¢(ﬁ +v) + f.(B)) = Limf}.+l(fl+m(ﬁ +v)+ f.(B) =

1<o 1<w

= firo(B+v+ 1) =f,(B+v+1)=fo(B+x).

Fall 2.2.3. ao=w-A; deshalb ist 6,=1 und n,=w-1+ 3, wobei A eine Limeszahl ist:
Nach der Induktionsvoraussetzung c) nach a, angewandt auf 5, <a, gilt

¢'h(fa(ﬁ)’fa(ﬂ + V)) = ¢m-1+3(w.fa(ﬁ)’fa)-l+1(fa(B + 'V))) =
= fo-i1((B+V) + £.(B),

also
Lim 6, (fa(B) £ (B + ) = Lim fu.1s1(£(8 +9) + £.(B).
Aus (6) ergibt sich

Lim f,. 41 (fo 2B+ V) + fu(B) =fo2(B+v+ 1) =f,(B+v+1)=fo(B +x).

1<i

Fall 3. x sei eine Limeszahl:
Nach der Induktionsvoraussetzung d) nach x, angewandt auf y<x, gilt

¢: (f2(B), £(B)) = Lim ¢(fo(B), fu(B)) = Lim £, (B + y) = fa(B + x).

y<x y<x

Damit ist der Beweis von Satz 1. beendet.

SaTz 2. Die Gleichungen ¢, (w, w)=x und f,(0)=x besitzen dieselben L&sungen,
also sind speziell die kleinsten Losungen einander gleich.

Beweis: Zuerst behaupten wir, dass, fiir >0, ¢,(w, ®) und f£,(0) Limeszahlen
sind. Daraus folgt, dass Losungen der Gleichungen ¢, (w, w)=x und f,(0)=x auch

Limeszahlen sind. Ist « eine Losung der Gleichung ¢,(w, w)=x, so erhdlt man nach
Satz 1. d):

o= ¢a(wsw) = ¢’a1 (fa(— 1)’fa(_ 1)) = fa('— 1+ 1) = fa(O)’
d.h., « ist eine Losung der Gleichung £, (0)=x.
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Wir gehen nun daran, unsere Behauptung zu beweisen:
(i) f2(0)ist fiir «>0 eine Limeszahl, weil £,(0) eine e-Zahl ist.
(i) Fiir ¢,(w, w) unterscheiden wir zwei Fiille:
Fall 1. a=v+1:
¢a (CU, (I)) = ¢v+ 1 ((0, (D) = Lim ¢: (CU, 60) .

n<ow

Also brauchen wir nur zu zeigen, dass {¢}(w, )} eine wachsende Folge vom Typ w
ist. Nun gilt aber nach [4, Satz 1.]

d’: (w’ (D) < ¢y ((D, ¢: (Cl), 0))) = ¢:+ ! ((0, w) .

Fall 2. o sei eine Limeszahl:
¢.(w,w) = Lim ¢, (0, ),
A<a
und die Folge {¢,(w, w)} vom Typ « ist wachsend wegen [4, Satz 4]. (Q.E.D.)

SATZ 3. Sei k eine Losung der Gleichung £, (0)=x.
Wenn «, £, n kleiner als « sind, so ist ¢,(&, n) kleiner als .

Beweis: Zuerst wihlt man eine Limeszahl A, so dass « <A <k ist. Sodann setzt man
t=Max(¢, n).

Fall 1. 1<, 1<n:

Aus f,(7) =1, [4, Sitze 5, 6, 7], und unserem Satz 1 ergibt sich

¢¢ (59 7’) = ¢a (é’ T) < ¢a (69 f). (T)) = ¢az (f/l (T)a f}. (T)) < ¢}. (f). (T)’fi. (‘C)) =
= fi(t + 1) < f3 (1) = £i(fc (0)) = £, (0) = x.

Fall 2. £=0 oder n<1:
Aus [4, Satz 9] ergibt sich ¢,(&, n)<k. (Q.E.D.)
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