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Some homeomorphic sphere pairs that are combinatorially distinct

By L. SIEBENMANN and J. SoNDOW ')

§ 1. Introduction
We will establish the following improvement of a result of B. Mazur [8].

THEOREM A

For every dimension n> 5, there exist (n —2)-dimensional spheres K, K, piecewise
linearly imbedded in the n-sphere S” such that there exists a (topological) homeo-
morphism of pairs

h:(S" K,)—(S",K;)

but no p.l. (= piecewise linear) homeomorphism of pairs (S", K,)—(S", K,). Further
h can be p.l. on K; and on S"—p where p is a point on K;.

Complement. Our construction will actually provide infinitely many such (n—2)-
spheres so that the resulting pairs are all homeomorphic but combinatorially (i.e.
piecewise linearly) distinct.

Remark 1. Inall our examples the (n—2)-sphere is locally knotted at two points,
and if 1| S"—p is p.l., one can show that p is one of these two points. We do not know
whether there exist locally flat p.l. manifold pairs that are homeomorphic but combi-
natorially distinct.

Remark 2. Fiveis the least dimension of combinatorially distinct polyhedra that
are known to be homeomorphic, i.e. of known counterexamples to the Hauptvermu-
tung (Stallings [16]). For n=4, Theorem A is undecided, and for n=3 it fails by Moise
[11].

B. Mazur gave similar examples in [8] for dimensions n>23, but the subpolyhedra
K; were not even manifolds. A version of Theorem A was initially established for n>6
by the second author in using Reidemeister representation torsions to distinguish
strongly h-cobordant knots [14][15]. Thus our purpose here is to point out a simple
proof of Theorem A that uses only Whitehead torsions in the spirit of Stallings [16]
and to give a device to accomplish the proof in dimension 5. This device (Construction
2.5 for invertible A-cobordisms of dimension >5) incidentally gives counterexamples
to the Hauptvermutung in dimension 5 by invoking the s-cobordism theorem of Mazur
rather than the engulfing technique of Stallings. Reference [16] explains why, as
should our proof of Theorem A.

1) The first author was supported by the National Research Counsil of Canada.
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As Mazur points out, Theorem A for dimension n disproves the hypothesis: B,)
Let f: R"— R" be a topological imbedding of euclidean n-space into itself that is p.l. on
a closed, possibly infinite polyhedron K< R", and let ¢(x)> 0 be a continuous function
on R". Then there is p.l. imbedding g: R"— R" such that f | K=g| K and | f (x)—g(x)| <
<é¢(x) for all x in R

Now, Homma studies a strictly equivalent hypothesis in [3]. It is easy to show that
B, implies (cf. proof of Theorem 1 in [3]) a strong version of the Hauptvermutung for
p-l. manifolds:

C,) If f:M{— M; is a homeomorphism of closed p.l. manifolds and K is a finite sub-
polyhedron in M, such that /| K is p.l. then f can be approximated by a p.l. homeo-
morphism g with g| K=f | K. '

As this flatly contradicts Theorem A, C, and B, are false for n>5. By Theorem 2
of [3], B, also implies:

D,) Every closed topological n-manifold can be triangulated as a p.l. manifold.

However, it would probably be wrong to accept Theorem A as evidence against
either the Hauptvermutung for manifolds (e.g. C, with K=0) or triangulability (e.g.
D,) because hypotheses weaker than B, imply both. For example, weaken B, to B,
by adding the assumption that fis p.l. on a neighborhood of K. The contradictions
vanish. Homma’s arguments are easily adapted to show that B, implies the case of C,
where f'is p.l. on a neighborhood of K, and implies D, without qualification. To deal
with separable n-manifolds with boundary, the appropriate hypothesis would be the
conjunction of B,_, and B,; noncompactness gives no difficulties.

In spite of Mazur’s remark [8, p. 289], B, is not a published theorem. However, it
is said that Bing et al. have a proof. Bj is the well known result - c.f. Bing [2,
Theorem 4].

Our examples are constructed from triangulated ‘strong’ A-cobordisms between
smooth knots (§ 2.1) by adding the cone over each end of the A-cobordism. The dia-
gram illustrates this for n=2 and (unfortunately) codimension 1.

<P

The Whitehead torsions of the A-cobordisms distinguish the examples combinatorially;
invertibility of the h-cobordisms proves the examples are all topologically the sus-
pension of one knot.

If an exposition of the s-cobordism theorem for p.l. manifolds were available we
could work entirely with p.l. manifolds. The reader willing to grant this theorem can
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afford to ignore the technicalities entailed in using smooth objects and then triangu-
lating.

A general reference for piecewise linear topology is [20]. S§” always denotes the
standard n-sphere {¥€ R"; |¥|=1} with its natural differentiable structure and with a
p.l. structure deriving from some Whitehead C! triangulation (cf. appendix).

§ 2. Strong Knot h-Cobordisms

DEFINITION 2.1

Let M"~! be a smoothly imbedded submanifold of W"*!=S"x [0,1] which is the
image of a smooth imbedding F:S" 2 x [0,1]— W and meets S" x i in a knot K;x i=
=F(S" % x i), transversely, i=0,1. Identify (S", K;) naturally with (S"x i, K;x i),
i=0,1. We say (W, M) gives a strong h-cobordism c={(W, M); (S", K,), (S", K1)}
from the knot (S”, K,) to the knot (S”, K,) if the inclusion (S"—K;) c (W — M)isa
homotopy equivalence, i=0,1. (S, K,) is called the left end of c, (S", K,) the right
end; and (W, M) may be written for ¢ when no confusion is likely.

Notice that ¢ has a well defined invariant, its torsion t(c) lying in the Whitehead
group Wh(mn,(S"—Ky)). It coincides with the torsion of the (relative) h-cobordism

d=(W ~-T;8"x0~1,8"x1-T1)

where T is the open 2-disk bundle of a tubular neighborhood 7 of M in W, and
Whr, (S"—K,) is naturally identified with Wh=, (S" x 0—7°). This means that t(c) is
the Whitehead torsion of the homotopy equivalence (S" x 0—7) (W—T), which in
turn can be calculated using any Whitehead C! triangulation of W—T. For details
concerning these invariants see Milnor [10].

Remark: When (as above) there exists, up to inner automorphism, a natural iso-
morphism of fundamental groups f:n; X— =, Y, one can identify Whn; X and Whn, Y
by fx = Wh(f) (which is unique). The reader is warned that we will repeatedly do this
without special apology.

By passing always from ¢ to the relative A-cobordism

d=(W-1T;8"x0-T,8"x1-T)

one readily derives the following facts from the usual theory of h-cobordisms. (Recall
that d qualifies as a “‘relative” h-cobordism because d gives a product cobordism from
the boundary of its left end to the boundary of its right end - viz

0d =(0T; S"x 0N IT, S" x 1 naT)

such that 0T=T-T7 is diffeomorphic to the product (S" x 0ndT) x [0,1].)
(i) The (relative) s-cobordism theorem of Mazur [7] (see Barden [1] and [17]
[21]) tells us that if 7(c)=0 for c={(W, M); (S", K,), (S", K,)}, and (n+1)=6, then
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(and only then) (W, M) is diffeomorphic to (S" x [0,1], K, x [0,1]),i.e. ¢ is a product
cobordism.

(i) The torsion of the dual of c,

¢ ={(W,M); (8", K,), (5", Ko)} ,
obtained by interchanging the ends of c, is
(&) =(—1)"7(c)
where the bar over 7(c) denotes the involution of Whr,(S"—K,) induced by the
involution g—»g~! of n,(S"—K,). See Milnor [10].

(iii) Suppose the right end of c is identified with the left end of another strong
h-cobordism ¢'={(W’, M'); (S", K;), (S", K{)} so that (WU W', MuUM’) gives a com-
posed strong h-cobordism cc’ from (S", K,) to (S”, K{). Then t(cc’)=1(c)+1(c’). See
Stallings [16], Milnor [10].

One says that c is invertible if there exist ¢’ and ¢” so that cc’ and ¢” ¢ exist and are
product cobordisms. Then observe that ¢"~c"(cc’)~(c"c)c’~c’' where ~ denotes
smooth equivalence.

(iv) For (n+1)>6 there exist strong h-cobordisms (W"*!, M) with prescribed
left end (S", K) and prescribed torsion (Stallings [16], also [10]). Hence, in view of
(i) and (iii), any strong h-cobordism (W"*!, M) is invertible provided n+1>6.

The result of this section is
PROPOSITION 2.2

Let K"~ 2 be a (n—2)-sphere smoothly imbedded in S", n>4, so that

1, (S"-K)=JxG
where J is infinite cyclic and G is the binary icosahedral group of order 120. Then there
exist infinitely many invertible strong A-cobordisms ¢,, c,, ¢, ... with left end (S”, K)
such that when i#j, there exists no automorphism 6 of =n,(S"—K) making
0,7(c;) equal to 1(c;) or ©(¢;).
OBSERVATION 2.3

Zeeman has constructed (S", K"~2) as above for n>4, by ‘twist-spinning’ a
trefoil knot [19] c.f. Kervaire [6].

For the proof of Proposition 2.2 we need:

LEMMA 2.4

Let ¢:Zs—Jx G be the inclusion of a 5-Sylow subgroup. Then ¢, Wh(Zs)<
«Wh(Jx G) is infinite cyclic and for any automorphism 6 of JxG, 6, maps
0 Wh(Z;) to itself.
Proof of Lemma:

Wh(Z;) is an infinite cyclic group and a generator « is represented by the unit
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(a+a~'—1) in the group ring of Z5={a; a’*=1}, cf. [10]. To prove that f=¢ ()
has infinite order, it will suffice to give a homomorphism h:Jx G—0(3) so that
B=h(b)+h(b~')—h(1), b=¢(a), is a 3 x 3 matrix with determinant det B# +1. For
by Milnor [10], 4 induces a homomorphism A, from Wh(J x G) to the multiplicative
group of positive real numbers such that

hy (B) = |det B]
The homomorphism we choose is a composition h=h;h,h,
JxG3G654,800)

where h, is projection, A, is a ‘2-fold covering’ homomorphism onto the group A5
of 60 orientation preserving rotations of the icosahedron [19], and A, is an inclusion
so chosen that 4(b) is a rotation of order 5 about the x,-axis in R, i.e.

cos¢ siné O

h(b)=| —siné cosé¢ O
0 0 1
where £ =k2n/5, k being 1, 2, 3, or 4.
Then
2cos ¢ —1 0 0
B= 0 2cos¢( -1 0
0 0 1

which has determinant # +1.

It remains to show that for any automorphism 0 of Jx G, 6, maps ¢, Wh(Z;)
onto itself. This is clear if @ maps @(Z5) onto itself. In the general case 0(¢(Z5)) is
another 5-Sylow subgroup; hence we can find an inner automorphism ¥ (x)=g~'xg
such that ¥  maps ¢(Z;) to itself. Since ¥, =1 the conclusion follows. This completes
the lemma.

Proof of Proposition 2.2 for n>5:
For k=0, 1, 2, ... let
a={(W,M); (5"K), (5" K}
be an invertible strong h-cobordism with torsion kf as provided by (iv) where
generates the subgroup ¢,Wh(Z;)cWhn(S"—K) of Lemma 2.4. Take distinct
i,j>0. Then 0,1(c;)= +ip is not equal to t(c;)=/p or t(¢;)= +jB= £ j(£p). This

completes the proof.
For the case n=4 we will use the following.
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CONSTRUCTION 2.5

Suppose A", n>4, is a smooth compact n-manifold, possibly with boundary and
« an element of Wh(n, 4). Now B=A x [0, 1] is a (n+ 1)-manifold (with corners along
BdAx0uBdAx1). We form a relative h-cobordism c=(V; B, B') with torsion a.

AX0Xx1 B' AX1X1
v
Tol
AX0 B A X1

For convenience let ¢ be constructed by attaching 2-handles and then 3-handles to
B x [0,1] along Int(B x 1), cf. [10], and identifying B with B x 0. Then observe that B’
gives a relative h-cobordism d from A x0x 1 to 4 x 1 x 1. Call ¢ the wedge over B with

torsion a and d the end of the wedge.
We assert that t(d)=a+(—1)"a. To see this consider the commutative diagram of

inclusions
AxO0x13vy
2 /i3
B'

By an addition theorem for Whitehead torsions of maps [10],
t(iy) = t(iy) + ©(i5) (*)
Now 1(i,)=1(d) by definition of t(d), and 7(i;)=(—1)"*'a& by the duality theorem
for h-cobordisms [10]. Further i, factorizes up to homotopy
Ax0x1-A4Ax05A4Ax[0,1]cV

whence 7(i;)=0+0+1(c)=a by the addition theorem cited above. Substituting in
(») we find t(d)=a+(—1)"a

Secondly, we assert that theend d’ of the wedge over A4 x [1,2] with torsion —a is an
inverse for d, even when n=4. To see this paste the wedges together along 4 x 1 x [0,1]
and behold a wedge over C=4 x [0, 2] with torsion a+(—a)=0. As (n+2)=>6, this
wedge is a product, and so its end dd' is also. Indeed the relative form of the s-cobord-
ism theorem says that there exists a diffeomorphism

Cx[0,1]->V UV =C x [0,1] U {2-and 3-handles}

that extends the identity map on C x OUBdC x [0,1]. This proves the sharper assertion,
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used implicitly below, that the natural product structure for d(dd’) given by Bd A x

x [0,2] x 1, extends to a product structure for dd’. Similarly (a copy of) d’ is a left
inverse for d.

Proof of Proposition 2.2. for n=4:

Apply the above construction with 4 =(S*—Int N), where N is a tubular neighbor-
hood of K?<S*, and with a=kf, where B is again a generator of ¢,Wh(Zs)c
cWh(Jx G), and k>0 is an integer fixed for the moment. Now the end

d=(B;Ax0x1,Ax1x1)
of the wedge over A x [0,1] with torsion a gives the product cobordism
(BdA x[0,1] x1; BdAx0x1,BdAx1x1)
between the boundaries of the ends of d. Since BdA=BdN we can form
W =B uUN x [0,1]

identifying Bd A x [0,1]x 1 with BdN x [0,1]. Then W gives an h-cobordism between
two copies of S*. Hence W is a smooth homotopy 5-sphere X with the interiors of two
disjoint smooth 5-disks removed. Since one knows X7 is S°[11], W is diffeomorphic
to S*x [0,1]. We conclude that the pair (W, M), where M was Kx [0,1]c N x [0,1],
gives a strong h-cobordism ¢, from the knot (S*, K) to (a copy of) itself.
One easily checks that the inverse given above for d provides an inverse for c;.
Next consider the torsion

t(c,) =« + & = k(B + B)e Whr,(S* — K)

Since B comes from the unit (b+5~' —1) which is invariant under b—b"", we have
B=p and t(c,)=2k . So, when k takes distinct values i, j>0, we can show

Oyt(c)) #1(c;) or 1(c)

just as when n > 5. This completes Proposition 2.2.

§ 3. Proof of Theorem A

1) THE CONSTRUCTION

Let ¢y, ¢y, €y, ... be an infinite sequence of strong h-cobordisms provided by
Proposition 2.2 and Observation 2.3.
We write
= {(W" M); (8" ,L'7%), (5", L)}

making a notational shift from n ton—1 and K to L. Thus (S"~*, L) is a fixed smooth
knot with n>5 and group =, (S" ! - L)=JxG.
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Now give (W, M,) a Whitehead C!-triangulation such that a smooth product
neighborhood T, of M, becomes a p.l. product neighborhood. To do this one can
spread the triangulation from M, to T, to W, using Whitehead [18] or Munkres [13].
Thus W, becomes a p.l. manifold, and M, becomes a p.l. submanifold with regular
neighborhood T,. Think of W, as a topological manifold with both a smoothness
structure and a p.l. structure. Then from the definition of torsions (c.f. § 2.1) and the
uniqueness theorem for regular neighborhoods (Hudson and Zeeman [4], also [20])

we conclude that if
f :(VVB Mi) - (W]’ Mj)

were a p.l. homeomorphism and 6 the automorphism of #,(S" ! —L) induced by
f18" 1 —L, then 0,7(c;) would be either t(c;) or t(¢;) according as f maps the left
end (S"~*, L) of c; either to the left end or to the right end of ¢;. Thus Proposition 2.2
shows that no such fexists when i#j.

Next note that by Whitehead’s C!-triangulation uniqueness theorem, W, is p.l.
homeomorphic to $"~! x [0,1], and M, is p.l. homeomorphic to $"~3x [0,1]. Thus
adding the cone over each end of the triangulated cobordism (W,, M,) we produce a
p.l. pair (S", K;) where K, is a (n—2)-sphere p.l. imbedded in S™ and locally knotted
at the two cone points. These pairs (S, K;), k=0, 1, 2, ..., form our infinite collection
of examples for dimension .

2) DISTINGUISHING THE PAIRS COMBINATORIALLY
Suppose for the sake of argument that
g:(S”sKi)_’(S”’Kj)’ i :/:j’

is a p.l. homeomorphism and choose subdivisions so that g is simplicial. The two
locally knotted points of K; must be carried in some order to those of K;. Excise the
open stars of all locally knotted points. One proves with the help of the relative regular
neighborhood uniqueness theorem of Hudson and Zeeman [4, Theorem 3]! and the
isotopy extension theorem [5] that what remains is a p.l. equivalence of a copy of
(W;, M;) with a copy of (W;, M;), which, as we have observed, is impossible. For a way
of avoiding the regular neighborhood argument see [9, p. 58].

3) FINDING THE HOMEOMORPHISMS
Finally we show that there exists a homeomorphism of pairs
(8", K) - (5", K))

1) The definition of relative regular neighborhood in [4, p. 722] requires the extra condition, which
with the notation used there, would read ““(5). There exists a simplicial subdivision of (N, Xy, Yy)
with respect to which 1k (4, N) collapses to 1k (4, X)) for each simplex 4 in Y. A counterexample
of Ralph Tindell will appear in Bull. Amer. Math. Soc.; for corrected proofs see the thesis of Lawrence
S. Hush, Florida State University.
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that is p.l. on K; and on S"—p; where p;eK; is one of the two points at which K; is
locally knotted in S™.

Let i, j>0 be thought of as fixed and k>0 as generic. Introduce the symbols ~
and = for diffecomorphism and p.l. homeomorphism respectively. Form (W;, M;)
from (W,, M,) by attaching a collar (S"~ !, L,) x [0,1) naturally at the right end and
give (W;, M;) a smoothness structure using a smooth collar of (S"~1, L,) in (W, M,)
as in composing cobordisms. Since all the cobordisms ¢, are invertible and have
(8", L) as left end, the formal infinite product argument in [16] yields:

LemMmA 3.1

For any k>0, (W,, My) is diffeomorphic to (S"~*, L) x [0,1).
Proof: Let e=(S""!, L)x [0,1] and ¢,=(S""%, L,) x [0,1]. Then

(W', M) = cepey - = cien e) (e er) ...
X (cer Vaer V...~ ee...
~ (58" ',L) x [0,1) as required.

Let ¢(S"™ !, L)=(cS"" ', cL)=(S", K;) denote the cone on the left end of ¢, let
c(S"™1, L)=(S", K,) denote the cone on the right end, and let p, be the vertex of the
cone c(S""1, L,). Let (W', My') be (S", K,) with Int ¢(S"™*, L) and (p,, p) deleted,
or equivalently (W,, M) with [¢(S"*, L)~ (pw p)1=(S" "1, L) x [0,1) added.

Now observe that (W;, M;)=(W,, M)u(S""*, L,) x [0,1) receives a well defined
p.l. structure from (W,, M,) and that this p.1. structure clearly gives a C'-triangulation
of (W,, My) as a smooth pair. Further there is a natural identification of (W, M;) with
(Wy, M) that is a p.l. homeomorphism. Since (W;, M;)~ (W}, M;) by Lemma 3.1, the
uniqueness theorem for C' -triangulations of pairs (see Appendix) shows that
(Wi, M{)=(W;, M;). Hence (W}, M;)=(W/, M}),i.e. there exists a p.l. homeomorphism

G: (W), M)~ (W, Mj).
Extend G to a homeomorphism
H:(S"K)- (5" K))

by setting H(p;)=p; and setting H | c(S"~1, L) equal to the cone on the restriction of G
to (S"~1, L). Then H is p.1. on the complement of p; and it remains to show that H may
be chosen so that H|K; is p.l.
Choose any extension of H|cL to a p.l. homeomorphism of (n— 3)-spheres
h : Ki - KJ .
We claim H can be improved so that H|K;=h. This will certainly be the case if we can
always replace G by a p.l. homeomorphism

G': (W7, M) (W, M)
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that gives any prescribed p.l. homeomorphism M;—M; coinciding with G on
BdM; =L.Since (W, My)=(Wy, Mg)=(S""", L) x [0,1), the problem reduces to the
ad hoc

LEMMA 3.2

Suppose (S"1, L) is a C*-triangulated smooth knot. Any p.l. homeomorphism F of
L x [0,1) onto itself extends to a p.l. homeomorphism F of (S"*, L) x [0,1) onto itself.

Proof of Lemma:

Lx[0,1) admits a p.l. product neighborhood T'=M x D*> where M abbreviates
L x[0,1) and D? is the p.l. 2-disk. (Since L has a smooth product neighborhood, this
is clear for a suitably constructed C' triangulation. By the uniqueness theorem of the
appendix it holds for any C' triangulation.) We put F|T=fx 1,.. Now there exists
a p.l. isotopy of fto the identity, e.g. by Alexander’s device [5, p. 70]. On a p.l. collar
neighborhood of 0T =M x Bd D? in the complement of 7= M x Int D? set F equal to
the product of this isotopy with 1,,:. On the rest of S"~! x [0,1], F can be the identity.
The proof of Theorem A is now complete.

§ 4. Appendix: On C" Triangulation of Pairs

Let (W, M) be a smooth manifold pair where M is a smooth, properly imbedded
submanifold of W such that M meets BdW in Bd M, transversely. A C" triangulation
of (W, M), r>1 an integer or oo, is a homeomorphism

h:(K,L)— (W, M)

of a simplicial pair (K, L) onto (W, M), such that the restriction of 4 to each closed
simplex of K is a non-singular C" imbedding. Whitehead’s uniqueness theorem [18]
applied to local charts shows that the p.1. structure that A gives to Wor to M is a p.l.
manifold structure.

Although Whitehead’s existence and uniqueness theorems [18] are usually stated
only for individual manifolds, they actually hold for pairs. Thus any smooth pair
admits a C" triangulation, r>1, and secondly if 4;:(K,, L,)~(W, M), i=1,2, are two
C" triangulations, r>1, there exists a simplicial subdivision

(K{,L;) of (K,L), i=12,
and a simplicial homeomorphism
h':(K{, L)) - (K3, L,).

Since we made use of the latter fact in § 3 to deduce the existence of a p.l. homeo-
morphism from the existence of a difffomorphism, we indicate how one can derive
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these theorems by following the argument in Munkres [13]). Considering the proofs

of [13, § 10.5, § 10.6] one sees that it suffices to complement the basic approximation
theorem in [13] as follows:

THEOREM: Munkres [13, § 10.4]

Let M be a nonbounded C" submanifold of R", r>1. Let f: K—M and g:L—-M
be C" imbeddings whose images are closed in M. Given §(x)>0, continuous on the
disjoint union of K and L, there are j-approximations f':K'->M and g':L'->M to f
and g respectively, which intersect in a full subcomplex such that their union is a C*
imbedding.

Explanations: C" imbeddings are defined in [13, p. 76]; K’, L’ denote subdivisions
of the simplicial complexes K, L; approximation is in the strong C! topology [13,
p. 78]; for intersection in a full subcomplex see [13, p. 95].

We add

COMPLEMENT

The theorem remains true if M has a boundary. Also, suppose N"is a C", properly
imbedded n-submanifold of M that meets Bd M in Bd N, transversely. Then f’ can be
chosen so that, when a simplex of K is mapped by finto Bd M, respectively into N,
it will also be mapped there by f'. A parallel statement holds for g’.

The complement is proved by approximating f and g using only C" co-ordinate
charts (U, h) on M™ such that h: U— R™ maps U into R} ={XeR,,; x">0}, UnBdM
into R"~!={%eR"; x,,=0}, and UnN" into Rj={XeR™; x,=--=x,,_,=0}, then
observing that the necessary extension holds for the basic local approximation lemmas
[13, 8§ 9.7, 9.8], cf. [13, Exercise (b), p. 101]. Roughly stated, all the little adjustments
to f and g, as specified in local charts by these lemmas, will never move a simplex out
of R, R"~! or R}, hence will yield maps to M respecting Bd M and N as the comple-
ment asserts.

Remark: In a similar way one can treat manifolds with corners.
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