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Eine Zuordnung von Operatoren zu Funktionen

VOIl BURCKART C. KlND

Ëinleitung

Es soll im Folgenden eine Zuordnung von Operatoren in einem Hilbertschen
Raume zu Funktionen zweier reeller Variablen x xrndp hergestellt werden. Dazu wird
fiir zwei Funktionen f(x,p) und g(x,p% die gewissen Klassen angehôren, eine nicht-
kommutative Multiplikation eingefuhrt, deren Produkt/-g wir als mechanisches Pro-
dukt bezeichnen. Fiir das iibliche kommutative Produkt schreiben wir fg. Die me-
chanische Multiplikation ist assoziativ und wird durch die Distributivgesetze mit der
Addition der Funktionen verkniipft. Durch die Relationen

f'g (la)
g-f (lb)

werden lineare Operatoren O(f) und O'{f) auf gewissen Funktionenklassen, insbe-
sondere auf einer dichten Teilmenge des Hilbertraumes l}xp der quadratisch integrier-
baren Funktionen, eingefuhrt. Die Linearitât dieser Operatoren ergibt sich unmittel-
bar aus den Distributivgesetzen, ebenso wie die Gleichung O(f+g) O(f) + O(g).

Dabei durchlàuft/in O(f) zunâchst nur die Klasse der Polynôme, und die zuge-
hôrigen O(f) bilden eine Algebra in L2xp. Die Reduktion dieser Algebra fiihrt schliess-

lich zu lauter âquivalenten Bestandteilen, die sich mit einer Algebra in L\ identifi-
zieren lassen, deren Operatoren wir mit #$(/) bezeichnen. L\ bedeutet hierbei den

Raum der quadratisch integrierbaren Funktionen einer reellen Variablen £.

Dies ist im Wesentlichen der Inhalt der ersten vier Abschnitte. Abschnitt 5 und 6

befassen sich mit Verallgemeinerungen der Définition von O(f) als Operatoren in
L2xp\ insbesondere wird die Voraussetzung,/sei ein Polynom, fallengelassen.

1. Définition des mechanischen Produktes von Polynomen

Die in diesem und dem nâchsten Abschnitt vorkommenden Funktionen sind aus-

schliesslich Polynôme in x und/?, deren Klasse wir mit ty bezeichnen. Die durch (la)
und (lb) definierten Operatoren O(f) und O'(f) haben also als Definitionsbereich
zunâchst die Klasse der Polynôme.

Das mechanische Produkt soll ausser den Assoziativ- und Distributiv-Gesetzen
noch folgende Rechenregeln erfûllen:

/•a a-/=a/, (2a)

falls a eine Konstante ist;
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X / + J 'X — ZXJ K^V)

x-i-t-x-i**- (2c)*J J x i ^ (2c)

(2d)

n.f /* n — i /">pA

Aus (2b) und (2c) folgt sofort

0(x) + O'(x) 2x und 0(x) - 0'(x) î -,dp
woraus sich ergibt :

u^x) — a > v yx} — x -f # ^j«t;2i dp 2 i dp
ebenso erhâlt man:

1 a le)0 (p) p H —, 0' (p) p (3b)
2 i dx 2 i dx

Daraus ergibt sich fur die m-fach wiederholte Anwendung von O(x) auf die Kon-
¦tante l: o-(x)l-x"; (4a)
entsprechend :

(4b)

Allgemein ist jeder Ausdruck der Form

/ 0mi(x)0m*(p)0m>(x)...0m*(x).,.OmN(p)g, (4c)

wo die mk positive ganze Zahlen und g ein Polynom ist, wieder ein Polynom» und es

gilt folgende Gradrelation:

grad(/) grad(g)+ % mk. (4d)

Dièse Behauptungen lassen sich unmittelbar verifizieren.

Umgekehrt lâsst sich jedes Basispolynom, d.h. jedes Polynom der Form

x-p", (4e)

und damit jedes Polynom, als Summe von Ausdriicken der Form (4c) mit g= 1 dar-
stellen. Fur die Konstante 1 ist das klar; hieraus ergibt sich die Giiltigkeit der Be-

hauptung fur aile Basispolynome durch Induktion nach dem Polynomgrade, denn aus

einer Zerlegung nach dem Muster

>p" x(xm-1/) O(x)(x'"-1p") + ^|-(x'"-1p")
21 ôp

(4f)
0(x)(xm-1pn) + ^xm-1p"-1
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folgt, dass die Behauptung fur aile Basispolynome vom Grade n gilt, falls sie schon
fur aile Basispolynome von einem Grade kleiner als n gilt. Mit Hilfe des Assoziativ-
gesetzes lâsst sich 0{f) nunmehr fur aile/bestimmen. Aus (f'g)'h=f'(g'h) folgt
O(O(f)g)h O(f)O(g)h als notwendige und hinreichende Bedingung fiir die Giil-
tigkeit des Assoziativgesetzes :

O(f)O(g); (5a)
hieraus folgt insbesondere

O(O(x)g) O(x)O(g) (5b)
und

O(O(p)g) O(p)O(g). (5c)

Wir zeigen jetzt, dass umgekehrt die Gleichungen (5b) und (5c) die Gleichung (5a)

zur Folge haben. Wegen der Linearitàt dieser Gleichungen genûgt es nach dem vorher
Gesagten, zu zeigen, dass (5a) fur f=O(x)k und f=O(p)k gilt, falls (5a) fiir/=A: er-
fullt ist. Wir tun dies fur den Fallf=O(x)k:

O(O(f)g) O{O(O(x)k)g) O(O(x)O(k)g) O(x)O(O(k)g)
O(x)O(k)O(g) O{O(x)k)O(g) O(f)O(g) q.e.d.

Die Gleichungen (5b) und (5c) sind Rekursionsformeln zur Bestimmung von O(f)
fiir aile Polynôme/. Die Lôsung (es kann offensichtlich hôchstens eine Lôsung geben)
dieser Formeln ist gegeben durch:

O(f)g= t t <WU-/V*g, (3c)
* 0 1 0

XX, (3d)
k l

wobei vk

fl"=(2irk!/!-d"-("ir'a" (3e)

Hierbei bezeichnet â die zu a konjugiert komplexe Zahl und ôkl den Differentiations-

operator dk dl ôl ôk

Ausserdem ist zu beachten, dass die Doppelsumme nach endlich vielen Termen ab-

bricht, weil/ein Polynom ist.

Es bleibt zu verifizieren, dass dièse Définition von O(f) die Gleichungen (5b) und

(5c) erfiillt; wir tun dies wieder fiir den ersteren Fall. Wegen
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ist zuzeigen:

Es ist:
O(xg) Yéakl I Z

M *=o/=o

Setzt man: m=k — 1, so erhâlt man wegen

| Jaki kakl -ak-ul:

t t aml{dg) xO{g)+O{g);
m=o* o 2 op 2 dp

andererseits gilt:

Durch Vergleich ergibt sich die Richtigkeit der Behauptung. Fur O'(f) (siehe (lb))
findetman: ^ ^

Aus der Konstruktion der O(f) ergibt sich, dass aile O(f) Polynôme in O(x) und

O(p) sind; ebenso sind die O'(f) Polynôme in O'(x) und Of(p). Da nun jeder der

Operatoren O(x) und O(p) mit O'(x) und O'(/?) kommutiert, gilt auch allgemein

O(f)O'(g)-O'(g)O(f) O. (6)

Dies ist eine notwendige Folge der Assoziativitât des mechanischen Produktes:

Aus dem Vorangehenden folgt, dass die Polynôme in x und p auch eine Algebra
bilden, wenn als Kompositionen die Addition und das mechanische Produkt genom-
men werden. Die 0{f) bilden die sogenannte regulâre Darstellung dieser assoziativen

Algebra, Gleichung (5a) ist die Darstellungsrelation. Da O(f) ersichtlich nur gleich
dem Nulloperator ist, falls/gleich Null ist, ist dièse Darstellung treu.

2. Zwei Identitâten

Behauptung: Es gelten die beiden Identitâten fur O(f) (siehe (3c)):

* î t akldlkgôklf (7a)
fc=O/=O

00 00

fc O 1 0
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Zu beachten ist hier, dass der linke Differentiationsoperator auf den ganzen redits von
ihm stehenden Ausdruck wirkt. Wir beweisen (7a), d.h.

(Ôklf) (7c)
k,l k,l

Es gilt:

laklôlk(ôklf)= £ fklk,l fc O 1 0 q <r \<

Dabei lâuft die Summation iiber q und a ganzzahlig gemâss :

0 <q <l, 0<a<k.
Ordnen wir die Reihe nach den Indizes a und g, so wird sie gleich

00 00 00 00

wobei jetzt ûber k und / summiert wird gemâss k><r, 1>q. Wir fiihren als neuen
Summationsindex n k + l ein und setzen l=n—k. Es gilt:

i

und somit wird die obige Reihe gleich

00 00 00

y y yy(llyt(2 i)nQ\a\(k -
Dabei lâuft n ganzzahlig von q -h o bis oo, und fur k gilt :a<k<n — Q. Die Summanden
mit gleichen Indizes q, o und n sind Vielfache des Operators ^sn~e'n~afya. Wir fassen

sie zusammen, d.h. summieren iiber k bei festen g, a und n. Wir haben also im Wesent-
lichen die Summe

y (- o*

k

mit o<k<n-Q\ n>q + a\ q, <t>0 zu berechnen. Sei zunâchst n Q + a. Dann ist
k a9 die Summe besteht aus einem einzigen Summanden und ist gleich (-1)*. Sei

jetzt n>g + <r. Wir setzen n-Q-G t,k-(T=s, (t>0); dann ist n-Q-k=n~-Q-(r —

(k-a) t-s und wir erhalten fur die obige Summe (t>0, 0<s<t):

(-ir y (-
t! Ls!(t-s)! t! Ll JW M
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Im Ausdruck (8) erhalten wir also nur einen Beitrag fUr n q + ex, so dass (8) wird zu
oo oo

q 0 <7 0

was mit der Définition (3d) von O(f) identisch ist, q.e.d. Ebenso beweist man die

Identitât (7b).

3. O(f) als Operator in L2xp

Bisher haben wir nur Ausdriicke O{f)h betrachtet, falls/und h Polynôme waren.
Sei / weiterhin ein Polynom. Da O(f) eine endliche Summe von Produkten von
Differentiations- und Multiplikationsoperatoren ist, lâsst sich 0{f)h definieren fiir
jede Funktion h(x9p), die hinreichende analytische Eigenschaften hat. Man uberzeugt
sich leicht davon, dass O(f)h immer definiert ist, falls h partielle Ableitungen bis und
mit der n-ten Ordnung besitzt, wo n den Grad von/bedeutet. Wir definieren weiterhin :

f-h O(f)h, sobald die rechte Seite sich definieren lâsst. Ebenso setzen wir h-f=
O'(f)h, wenn die rechte Seite einen Sinn hat, d.h. wenn h geniigend oft differenzierbar
ist. Sind/und h beide Polynôme, so stimmen die beiden Definitionen h-f=O'(f)h
und A-/==0(/j)/miteinander und mit der friiher gegebenen Définition von /r/iiber-
ein. Die in den vorangehenden Nummern bewiesenen Eigenschaften von O(f) und

#'(/) gelten auch jetzt noch, da sie allesamt Identitâten zwischen den in O(f) resp.

£)'(/) vorkommenden Multiplikations- und Differentiationsoperatoren sind.

Um 0(f) in l}xp zu definieren, machen wir von einer orthonormierten Basis in
L2xp Gebrauch, die wir in Abschnitt 5 nâher bestimmen werden. Wir bezeichnen ihre
Elemente mit hkl(x,p); sie sind von der Form hkl(x,p) — Pkl(x,p) exp( — x2 — p2), wo

Pkl(x,p) ein Polynom in x und/? ist. Die lineare Huile der hkl bezeichnen wir mit fi.
Es ist klar, dass die Funktionen O(f)\j/ und <9'(/)^ wieder zu L2xp gehôren fiir jedes

ij/eQ und/e^î; sie gehôren sogar zu fi, da O(x)hkl und O(p)hkl Linearkombinationen

von hk+ll und hk^lh O'{x)hkl und 0'{p)hkl solche von hkl+l und /**,!-! sind; dies

wird sich spâter sofort aus von der Quantenmechanik her bekannten Resultaten er-

geben. Der Definitionsbereich von O(f) in l}xp ist also zunâchst fi; in Abschnitt 6

werden wir ihn erweitern. Seien nun/und g aus ty, ij/ aus fi gegeben. Es gilt dann:

gjety; i/<efi. (9a)

.Die Intégration erstreckt sich hierbei iiber die ganze (x,/?)-Ebene. Der Beweis folgt
aus der Identitât (7a) mit Hilfe von partieller Intégration :

fjgO(f)*dxdp
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Wegen (-l)k+lakl alk (siehe (3e)) ist dies gleich

f(f)g)^dxdp9 q.e.d.

Wir vermerken noch die Relation

(f'g)=9'f, (10)

die man leicht nachpriift (siehe (3e)).
Weiter definieren wir fiir zwei beliebige messbare Funktionen / und g, sobald die
rechte Seite existiert:

+ a +a

<g,/> lim i- [ \g(x,p)f(x,p)dxdp. (lia)
a->oo 2.71 J J

— a —a

Nehmen wir fiir/und g zwei Funktionen \j/ und $ aus L2xp, so ist (lia) identisch mit
ihrem Skalarprodukt in LlP, welches wir auch in runden Klammern schreiben:

j (llb)

Wir schreiben, wenn \j/ zu L2xp gehôrt:

Nunmehr lâsst sich (9a) in der Form schreiben:

<gJ-<A> </-g,<A> (9b)

Offenbar bleibt (9a) auch giiltig, falls gety durch eine Funktion <j>e& ersetzt wird;
also hat man auch:

(*,O(/)*) (*,/•*) (/•<!>,*) {0{f)4,f) (9c)

Hierbei sind gemâss den Ausfûhrungen zu Anfang dièses Abschnittes/-^ als O{f)\jf
und 0-/als O'(f)<f> definiert. Ganz analog beweist man unter Beniitzung von (7b)

fur/und g aus ty, \j/ aus fi:

<gJ-^> <g-^/>. (9d)

Mit Hilfe von (10) lâsst sich leicht zeigen, dass die Gleichungen (9) giiltig bleiben,

wenn man auf beiden Seiten die Faktoren des mechanischen Produktes miteinander
vertauscht.

Wir machen nun Gebrauch vom Begriff der Adjungierten A* eines linearen Ope-

rators A in einem beliebigen Hilbertraum § ; vorausgesetzt wird, dass der Definitions-
bereich von A dicht in $ ist. Sei ein Elément $e£) gegeben; genau dann wird A(j>
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definiert, falls ein Elément <t>'e$) existiert, sodass die Relation

fiir aile Elemente \j/ des Definitionsbereiches von A besteht. Da dieser Bereich dicht
in § ist, bestimmt $ eindeutig das Elément $', welches gleich A*<f> gesetzt wird. A*
ist wieder ein linearer Operator in §, dessen Definitionsbereich aber nicht dicht in §
zu sein braucht. (siehe [1], Seite 284).

Nehmen wir fiir A speziell den Operator O(f) (/e^P), dessen Definitionsbereich
gleich fi und folglich dicht im Hilbertraum î}xp ist, so folgt aus (9c) unmittelbar, dass

fi zum Definitionsbereich von O*(f) gehôrt, und dass in fi O*(f) O(f), mithin
alSOgilt: O*(/) (9e)

Insbesondere ist O(f) symmetrisch, falls/reell ist.

4. Transformation von O(x) und O'{x) auf Diagonalform

Im Folgenden werde O(f) als Operator in î}xp betrachtet. Da O(x) und O'(x)
kommutieren, kann man versuchen, sie gleichzeitig auf Diagonalform zu bringen.
Wir suchen also eine unitâre Transformation des Raumes L2xp auf einen Raum L\n,
derart, dass die Opérâtoren O(x) und O'{x) in die Multiplikationsoperatoren ^ und

i\ transformiert werden. Das Skalarprodukt in L\n wird wie iiblich definiert :

(12)

Wir bezeichnen die gesuchte Transformation mit U und schreiben :

p) ^(x,p) (13a)

{ -^o'tf) (i3b)

Transfofmieren wir zunâchst :

(14a)

so gehen die Operatoren O(x), O(p), O'(x), O'(p) uber in:

Die Transformation (14a) ist fiir jedes x die sogenannte Fouriertransformation :

i exp —j" J
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Sie hat die Inverse :

-/
Sie ist eine (bei geeigneter Définition der Skalarprodukte unitàre) Transformation des
Raumes L2P auf den Raum L2a. Wenn die Intégrale auch nicht immer im ublichen Sinne
konvergieren, so konvergieren sie doch fur aile Elemente der Râume L2P und L2a in
dem Sinn, dass :

fur co^oo ([1], Seite 277f)

Ausserdem gilt fiir aile g (nicht nur bis auf eine Menge vom Mass Null) :

+ a

X(<y)=lim— MxWexp(/pT)(iTjexp(- ipa)dp, (14b)

— a

falls x{a) stetig, absolut integrierbar und in jedem endlichen Intervall von beschrânk-
ter Variation ist. Entsprechendes gilt fiir \l/{p). Setzen wir weiter:

x +
2 Ç,x- - rj, also * x i(£ + ri), a t, - r\, (14c)

(14d)

'^ L f * (rT''p)

x,p)= (f> (x + ^, x - H exp (- i pa)da.

so erhalten wir schliesslich:

1 T A* 4- ft

-, p exp (i(£ — rj)p)dp9 (15a)

(15b)

0n {x) r\\ O'n (p) i— (13d)

Nach (14b) gilt fur aile Ç und rj:

(14e)

falls 4> (x+(ff/2), a:- (er/2))fiirjedes feste x als Funktionvon a stetig, absolut integrierbar
und in jedem endlichen Intervall von beschrânkter Variation ist. Aus den Gleichungen
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(13c) folgt, dass Oç(f) (/ein Polynom) nur auf die Variable { wirkt, denn O^(f) ist
ein Polynom in Oç(x) und O^p). Betrachten wir nun die Gesamtheit der Elemente
x(Ç)a(ri)eL\ny wo a(rj) jeweils fest gewâhlt ist und x(0 ganz L| durchlâuft. Sie bildet
einen Unterraum, der nach dem Vorangehenden von den O^(f) in sich transformiert
wird und offenbar auch nicht weiter in gegeniiber allen O^(f) invariante Unterrâume
zerlegt werden kann. Der Raum L\n lâsst sich somit in eine orthogonale Summe von
invarianten Teilrâumen zerlegen, die mit L\ identifiziert werden kônnen, und auf
denen O^(f) zu ein und demselben Operator in L\ reduziert wird, den wir der Einfach-
heit halber auch mit O^(f) bezeichnen. (Dièse Zerlegung ist natiirlich nicht eindeutig,
obwohl Oç(f) es ist.) Vermôge der Transformation U ubertrâgt sich dièse Zerlegung

auf L\p und die Operatoren O{f). Entsprechendes gilt fur die O'n{f) und #'(/)•

5. Définition von O(^) fttr \j/ aus L2xp

Definieren wir:

^ (16a)
k,l

so gilt :

(16b)

Bezeichnen wir die antiunitâre Transformation, die jedem ^eL2xp die Funktion ip zu-
ordnet, mit J (J2 ist gleich der Identitât). Es gilt:

O(f) JÔ(f)J; O(f) JO(f)J. (16c)

Somit kônnen wir schliesslich schreiben :

O'(f) JO(f)J (16d)

Wir definieren weiter die antiunitâre Transformation In in L\n durch

(/n*)({,i,) $(ij,{), *(«,i»)eL^. (17a)

Man priift anhand der Formeln (15) leicht nach, dass

UJU"i=-In (17b)

Mit H bezeichnen wir die Funktion H{x, p)=%{x2 +p2). Die Operatoren

<18a)

sind aus der Quantenmechanik vom Problem des Oscillators her bekannt. Sie haben,

aufgefasst als Operatoren in L\ resp. L2n, ein diskretes, einfaches Spektrum mit den

Eigenwerten
Afc fc + i, fc 0,1,2,... (18b)
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Die zugehôrigen orthonormierten Eigenfunktionen sind die Hermiteschen Funktionen,

die wir mit Hk bezeichnen:

e-*"2Pl(fi)9 Hk Hk (18c)

Dabei sind die pk(Ç) Polynôme in £ vom Grade k. Das Skalarprodukt in L\ sei:

J X»XieL\; (18d)

analog fiir rj. Die Funktionen :

Hkl(Z9fi) iUOH^rj), InHkl Hlk, (18e)

bilden ein vollstândiges Orthonormalsystem in L\n. Die Funktionen

hkl=U-lHkleL2xp (18f)

wurden in Abschnitt 3 zur Définition von O{f) als Operator in L2n verwendet und
dort auch mit hkl bezeichnet; sie erzeugen die Mannigfaltigkeit fi. Wegen In Hkl Hlk
gilt auch:

hkl~Jhkl hlk (18g)

Wie in Anhang V gezeigt wird, haben die hkl die Form:

hkl r|n| exp (- in<p)Pki(r2) exp (- r2); Pkl Plk. (18h)

Dabei ist:

und Pki(r2)ist ein Polynom in r2 vom Grade (k + l— \k — l\)/2 mit reellen Koeffizienten.
Die Gleichungen

O(H)hkl kkhkl, Of(H)hkl - kthkl (19a)

sind nach Définition gleichbedeutend mit

H-hkl Xkhkl (19b)
und

hu-H^Wu; (19c)
insbesondere ist (hk^hkk):

H.hk==zhk.H Xkhk (19d)

Friiher haben wir schon den Ausdruck O'(f)hkl(f€ty) definieren kônnen, der nach

(lb) gleich dem Produkt hkl-/ist. Nach (la) ist er dann auch gleich O(hkl)f. Mithin
bestand der Definitionsbereich von O(hkl) bisher aus allen Polynomen.

Nun soll versucht werden, den Definitionsbereich von O(hkl) auf L2xp auszudehnen,
wobei O(hkl) weiterhin als Operator aufgefasst werden soll, der aus der regulâren Dar-
stellung einer gewissen Produktbildung (eben des mechanischen Produktes) resultiert.
Dies soll nach Môglichkeit so geschehen, dass reellen Funktionen weiterhin sym-
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metrische Operatoren entsprechen, dass die Gleichung (6) gilltig bleibt und dass in
den Gleichungen (9) statt der Polynome/undg auch die hkl eingesetzt werden kônnen.
Wir werden gleich sehen, dass O(hkl) durch dièse Forderungen eindeutig bestimmt ist
als Operator in l}xp. Daraus ergibt sich unmittelbar und eindeutig die Définition von
O((j)) fiir beliebiges <f> aus l}xr Anschliessend wird umgekehrt gezeigt, dass die so
gefundenen Operatoren die oben formulierten Forderungen erfûllen.

Aus(19d)folgt:
(19e)

da ja allgemein O(f-g) O(f)O(g) sein muss. Weiter ist nach (6):

(19f)

Die Gleichungen (19e) und (19f) bedeuten, dass O(hk) jeden Unterraum von L2xp,

der zu einem Eigenwert Xk von O(H) und zu einem Eigenwert Xl von O'(H) gehôrt,
in sich transformiert; dièse Unterrâume sind aber gerade die von den hkl gebildeten
eindimensionalen Râume. Es gilt also insbesondere O(hk)hk fihk, und wie wir sehen

werden, ist /x 1, d.h. man hat:

hk hk-hk hk (19g)

und daraus folgt wie nach (19d):

O(hk)O(hk) O(hk). (19h)

Nun ist hk reell (siehe (18g)), also muss sein:

O* {hk) 2 O (hk). (vgl. dazu (9e)) (19i)

Aus den Gleichungen (19h) und (19i) folgt, dass O(hk) ein Projektionsoperator ist
([1], Seite 252ff).
Aus (19d) folgt weiter: O(H)O(hk)=XkO(hk) und somit auch

O4(tf)O4(M WO- (19k)

Da Oç(hk) mit 0^{H) kommutiert, und zu Xk nur die Funktion Hk(Ç) als Eigenelement
gehôrt, ist Oç(hk) der auf Hk projizierende Operator (siehe Anhang I).

Bestimmen wir noch n (siehe unmittelbar vor (19g)).
Wegen der Normierung der hk und wegen (2a) muss gelten :

Um dies weiter umzuformen, beniitzen wir die Gleichung (9d), wobei aber jetzt fiir
g ein Elément aus fi (nâmlich hk) gewâhlt wird; dass (9d) auch in diesem Falle giiltig
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sei, ist ja eine unserer Forderungen. Wegen hk-hk=fihk findet man also:

l =(l-hk,hk) (Uhk-hky ii(Uhky mit (20a)

Der Ausdruck

ist nach (15a) gleich Hkk(x, x), denn man iiberzeugt sich auf Grund von (18c) davon,
dass Hkk die fur die Gultigkeit von (14e) hinreichenden Voraussetzungen erfiillt. Wegen

der Normierung der Hk erhâlt man folglich fiir (20b) :

<l,/ik> f Hkk(x,x)dx f Hk2(x)dx 1 (20c)

Zusammen mit (20a) ergibt sich somit: /x l, q.e.d.
Es bleibt noch O(hkl) zu bestimmen. Sei/ein Polynom; mit Hilfe der schon in (20a)
benûtzten Verallgemeinerung von (9d) ergibt sich:

<*«•*«./> (KhO(f)hkl) (HkhO,(f)Hkl)
HbH^ (Hk9O,(f)Hk),. (21a)

Die Ausdriicke in (21a) hângen also garnicht von / ab, und folglich findet man, indem

man l=k setzt:
<hkl-hkljy <hk-hkjy (hkjy (2ib)

Da/ein beliebiges Polynom sein kann, so folgt:

Krki hk (22a)

Mit Hilfe von ,T rK n

beweist man entsprechend : L

Schliesslich findet man:

(4 (**i, hr ht) (hkr hkh h,) {hu hd U (22c)

wobei von (22b) Gebrauch gemacht wurde. Wegen (9e) folgt aus den Gleichungen

(22), dass Oz(hkl) in L\ gegeben ist durch

Os(hùHm~ôlmHk, (23a)

woraus sich ergibt:

O(hkl)hmn hkl-hmn ôlmhkn 0'{hmn)hkl (23b)
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ôlm ist das bekannte Kroneckersche Symbol. Die Herleitung von (23a) aus den Glei-
chungen (22) ist im Anhang II gegeben.

Seien nun zwei Funktionen \pt und ^2 aus L2xp gegeben. Wir entwickeln sie in
Reihen nach den hkl:

X> Yhi (24a)

mit
I\akl\2 li^ill2 < oo, Bhi\2 < oo ; (24b)
ki kj

die Zahlenreihen

Zbmi (24c)

konvergieren wegen (24b) absolut. Weiter ist

aI2=H^II2ll^2ll2. (24d)
kj k,l m k,l m

Daher definiert die Reihe

eine Funktion \j/3 in L%p, und wir setzen fest:

*r*2 *3 (24f)

Man erhâlt \j/3 formai durch gliedweises Ausmultiplizieren der Reihen (24a) fur ij/l
und ^2; nach (24d) gilt zudem:

ii^r<hli<HW ll^li (24g)

Auf Grund dieser Gleichung ist die Définition von ^t -^2 unabhângig von der Wahl
einer Basis in l?xv und eindeutig fiir jedes Paar ^u \l/2eLlp gegeben.

Dem mechanischen Produkt in L2xp entspricht vermoge U eine Produktbildung in
L\n: Fiir <j>u faeLtn 'eêen wif fest:

<l>i^2 U((U-l<l>iy(U-1cl>2)) (24h)

Mit Hilfe der Gleichung (23a) ergibt sich:

(25a)
- j

und daraus

<p,<p^€2J*,., (2jD)

wobei U$**4>i gesetzt wurde. Hieraus folgt unmittelbar:

(*i-*2)«.v)-J*i(«»0*2(C.if)« mit U^^W ^ Mû UiW (25c)
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Wegen ||<^||<oo ist der in (25b) gegebene Intégraloperator vom Hilbert-Schmidt-
schen Typ und die Intégrale in (25b) existieren fur fast aile £, d.h. fur aile £, mit Aus-
nahme eventuell einer Nullmenge, sofern </>(£, rj) bei festem y\ zu L\ gehôrt, d.h. sofern
J|0|£, ri\2dÇ<ao. Das ist fur fast aile rj der Fall, wegen ||0|| <oo ([1], Seite 135ff).

Nachdem wir durch eine Reihe von Forderungen die Operatoren O (\/j), i//eLlpi ein-
deutig festgelegt haben, miissen wir noch zeigen, dass dièse Forderungen tatsâchlich
von den O(i^) erfiillt werden.

Man ûberzeugt sich anhand der Gleichungen (24h), (25b), (25c) von der Giïltigkeit
der Relation :

W(); il/uil/2eL2xp. (26a)

Ebenso findet man, da #$(/) nur auf die Variable Ç wirkt:

O(O(f)ijj) O(f)O(ilf); fe%4,e&. (26b)

Ausserdem ist unmittelbar klar, dass fiir/e^3, ij/l9 \^1eL1xp,

[OGfrO.O'Wa)] [O(«h),O' (/)] [OC/XO'^O] =0, (26c)

und dass

Der zu (j>^ in Gleichung (25b) adjungierte Kern ist bekanntlich gegeben durch

*î(& n)> #*(*?> 0- Wegen (17) gilt <^ 0|, also hat man:

O*(^) O(^) (26d)

Dièse Gleichung entspricht den Gleichungen (9) fur den Fall, dass aile drei beteiligten
Funktionen zuL^ gehôren; die Giiltigkeit dieser Relation ergibt sich auch direkt aus
der folgenden Gleichung (hkl hlk):

(hmnJikrhQ(T) ômkôlQôn(r (hlk-hmnjiea) (26e)

Es bleibt die Relation

(*,0(/)*) <*-fc/>; fe%<f>^e$l (26f)

zu beweisen; wir kônnen uns auf die hkl beschrânken. Es ist also zu zeigen, dass

Da wir bereits wissen, dass aile Terme in der obigen Gleichung verschwinden fur
«, kônnen wir von vornherein l—n annehmen, d.h. wir zeigen: (hkhf-hml)

/>. Sei zunâchst/=l. Dann ist zu zeigen ((hkh hml) ôkm):

+ a +a

a-*oo J J
hkmdxdp.
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Hierbei ist :

h

mit

Xkm(x> a) *st fur jedes x absolut integrierbar:

t au

,P)= J l"7Lk

2\\Hk\\
Betrachten wir die Funktionen

+ 6

(27a)

-b

(xkmist kurzmit x bezeichnet). x&(0") ist offenbar fur jedes a stetig und in jedem end-

lichen Intervall von beschrânkter Variation; die Absolutwert-Integrale konvergieren
gleichmâssig in b:

N2 +b N2 +oo

Ni

J

fur

denn es ist

+ 00+00

J

Ni -b

T 00 T 00

Ni -oo

oder Nx < N2 < - Nei NB > 0,

<00,

da fur aile A: (siehe (18c)). Folglich ist:

+oo

J( J fur fl>a (27b)

Nun sind die %b{a) im Punkte a=0 gleichmâssig fur aile b stetig (Anhang III); daraus

ergibt sich nach der Théorie der Fourier-Integrale, dass (27b) gleichmâssig in b kon-
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vergiert. Man hat also insbesondere fiir b—a\

+ a +00 +a +a

J el" (j X(x, a)dx\ daldp^ï X(x,0)dx fur a -> 00 ; (27c)

a — oo

weiter gilt
+ oo +a +a + oo

J «"" (J z(*,ff)«fr) dff / J
— oo — a —a — oo

wegen

J la < oo

(siehe oben).
Setzt man fiir /(x, a) ein und lâsst a iiber aile Grenzen wachsen, so folgt:

+a

J J hkmdxdp-+ J Hk(x)Hm(x)dx^ôkm q.e.d.

— a —a —a

Wir haben also (<£, 1 #^) <0-i?, 1> fiir aile 0 und ^ aus £. Daraus ergibt sich (26f)
fiir alle/aus ^5 durch Rekursion; wirzeigen nâmlich, dass (26f) fiir/=g-x xxndf=g-p
gilt, falls (26f) fiir f=g gilt: Nach Voraussetzung ist (0, g*x-^) <0-^-x,g>, da

x-^zufi gehôrt. Da auch 0-ij? wieder zu fi gehôrt, so erhâlt man mittels partieller
Intégration <^*^#x,^> <<^-^,g-;c>, woraus sich die Behauptung ergibt. Mit/? an-
stelle von x verfâhrt man entsprechend. Damit ist (26f) bewiesen.

Betrachten wir schliesslich eine Zerlegung von ^eL^ von der Art:

Ï I), (28a)

wo die afc(>|) ein vollstândiges Orthonormalsystem in L* bilden, und die Funktionen
(pk(Ç) zu L\ gehôren. Wie oben sei In<j) mit 0* bezeichnet. Auf Grund von (25c) findet

man:

(^•^)(U) E(<K*-^)(^) I<pi*(O<P2*00; (28b)
k k

Setzt man fiir
il/eL2xp:<l> Uil,9 *lfk U-l<t>k> ^ 1^,

so gilt analog:

(*rfo) ï>i*-fo*; *ik'$2i 0 fur kïl. (28c)

Hierbei gilt:
<?2* -^2i ist- (28d)
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6. Définition von 0(f) fiir messbare Funktionen

Ist Gleichung (26f) erfiillt, so bedeutet das, dass man, ohne zu der ursprùnglich
in Abschnitt 3 gegebenen Définition in Widerspruch zu geraten, O(/)^ (/e^J, \peS)
durch die rechte Seite von (26f) definieren kann. Dièses Verfahren soll jetzt auf all-
gemeinere Funktionenklassen ausgedehnt werden.

Mit La bezeichnen wir in Folgenden den Unterraum von L2xpy dessen Elemente \j/

die Eigenschaft haben, dass

((/«(^^^(Oa^^aeL^WeL2,, i|a|| 1, (29a)

mit einem festen a(rj)eL2n. Fiir jedes vollstândige orthonormierte System {<xk} in L2

ist die (orthogonale) Summe der zugehôrigen Lak gleich dem ganzen Raum l}xr Hier-
aus schliesst man mit Hilfe der Gleichung (28c), dass jeder durch die Bilinearform
</>$•<?> gemâss Gleichung (26f) definierte Operator notwendig den Raum La fur
beliebiges oceL2 in sich transformiert. Wir setzen also zunâchst voraus, dass die be-

trachteten Funktionen \f/eLlpzu einem festen La gehôren.
Bezeichnen wir weiter mit 3R die lineare Huile der Hk(Ç) in L2*, mit 50la die Gesamt-

heit der Funktionen ^eLa, fiir die r(£,) in Gleichung (29a) zu 501 gehôrt.
Sei im Folgenden/eine messbare Funktion in jc und p.
Fur festes ^e50la definiert die Bilinearform

F(« </,f?>, ^e9Jla, i/rfest, (29b)

in 9Pta ein lineares Funktional von $e50îa. Wir definieren nun O(f)\l/ fiir ^e30îa genau
dann, wenn

a) (29b) fur aile 0e50la existiert
b) |F(0)|<C||0|| fur aile <£e$0la mit einer von <t> unabhangigen Zahl C>0.

Die Bedingung b) ist notwendig und hinreichend dafiir, dass sich das zunâchst auf
50ta definierte Funktional (29b) zu einem beschrânkten Funktional in La ausdehnen

lâsst, d.h. zu einem Funktional, das fiir jedes (j)eLa existiert (Wir erinnern daran, dass

ein Funktional i7^) in La beschrânkt heisst, wenn F((p)<C\\(t>\\ fiir aile <j>eLa mit
festem C). Man setzt nâmlich einfach:

F ((j>) lim F ((/>„), falls <j> lim <£„, <f>n e S0la
n-»oo n-*oo

Nach dem Satze von Fréchet-Riesz ([1], Seite 55) existiert dann ein eindeutig be-

stimmtes Elément \//'eLa, fur welches gilt: F($)=(^', <f>) fiir aile <£eZ,a, und wir legen

fest:
(29c)
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Dies bedeutet insbesondere

(29g)

Bezeichnen wir den so erhaltenen Operator mit oa(f) Sem Definitionsbereich da(f)
besteht aus einer Teilmenge von 9Jla, ist er dicht in La, so lasst sich der zu oa(f) ad-

jungierte Operator o*(/) bilden Man setzt

(29d)

fur festes ^, falls die hnke Seite fur aile ^e^a(/)^50îa existiert und sich zu emem be-
schrankten Funktional in La fortsetzen lasst Gehort \J/ zu 2Ra, so gilt

') </,*A $> </,<£ ^> ((j)eda(f)) (29e)

Gehort ^ zu rfa(/), so existiert der rechte Ausdruck in (29e) fur aile 0e9Jta (und damit
fur aile $eda{f)) und lasst sich auf La zu emem beschrank'en Funktional fortsetzen

Esglltalso *:a)2o.(/) c»o

und
(u<l>')(i,t,) (l o.in^mn) <«)«(»;)

Die Zuordnung t'(£) 6^(/)t(<!;) definiert einen hnearen Operator o^(f) in L^, der
nach Gleichung (28d) nicht von der Wahl von a(rj) und damit nicht von La abhangt
Wir schranken nunmehr die Klasse der Funktionen/ so ein, dass die Definitionsbe-
reiche d(f) und d(f) von o^(f) und o^(f)dicht sindin h\ Dann ist nach(29f) auch der
Bereich von o* (/) dicht in L|, und o^(f) besitzt eme eindeutig bestimmte minimale Ab-
schhessung (die fur symmetnsche Operatoren wieder symmetrisch ist), namlich

o**(/) Diesen abgeschiossenen Operator bezeichnen wir mit 0$(/), seinen Defim-
tionsbereich mit D(f) (Wir ennnern daran, dass ein Operator A abgeschlossen

heisst, falls aus dem Bestehen der Relationen ^n->^ und A\l/n^>\l/' folgt, dass A\j/
existiert und gleich \j/f ist) Fur den Beweis des eben benutzten Satzes verweisen wir
auf [1], Seiten 290 und 293

Um 0${f) auf L\n auszudehnen, verfahren wir folgendermassen Wir wahlen eine

orthonormierte Basis {ak} in L\ und setzen fur 4>eL\n

*(6»l) I%tf)a*fo)> **(c)eL2€, k 1,2,3, (30a)
k

Existiert (p'k O^{f)(pk fur jedes (pk, und ist £|| O^(f)(pk\\2< oo, so setzen wir

,(«))«*(»») Ifl»i(«)«*W (30b)
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Es bleibt zu zeigen, dass dièse Définition nicht von der Wahl der ak(rj) abhângt. Sei

also fur eine zweite orthonormierte Basis {/2J in L* :

0 (30c)

A 0») (30d)

I«*iA0») (30e)
l

Setzt man (30e) in (30a) ein und vergleicht mit (30c), so erhâlt man

(30f)
*

Dièse Reihe konvergiert (stark) in L\ (siehe Anhang IV). Ebenso gilt:

Xi(0 Zcklcp'k(O lckl0,(f)cpk(0 (30g)
k k

Durch Vergleich der beiden letzten Gleichungen ergibt sich wegen der Abgeschlossen-
heit von O?(/): *,(£) O«(/M(«) Q-e.d.

Schliesslich definiert man den Operator O(f) in L2xp gemâss:

O(f) U-1Os(f)U (31)

Dieser Operator kann ohne Umweg ûber L\n direkt erhalten werden, indem man l}xv
beispielsweise in die Râume LHk zerlegt; 2ft#k wird dann von den hlk mit festem k er-

zeugt. LHk reduziert den Operator (31) zu OHk(f), die Abschliessung des zu Anfang
des Abschnittes eingefuhrten Opérâtors oHk(f).

Wir bemerken noch, dass O^(x) gleich dem Multiplikationsoperator <^, O^{p)
gleich dem DiflFerentiationsoperator —id/dt; ist.

Die soeben gegebene Définition von 0% (/) ist insofern willkiirlich, als sie sich auf die

Mannigfaltigkeit SOI stiitzt, was voraussetzt, dass immer die Grôssen (hkhf} exi-

stieren.
Es ist klar, dass man statt von 50? von irgendeiner in L\ dichten Menge von Funk-

tionen ausgehen kann; man kann auch zwei Mannigfaltigkeiten 93 und 2B wâhlen

und in Gleichung (29b) ^e93a, $e$Ba voraussetzen. Will man dabei die Giiltigkeit
von (29f) beibehalten, so muss dann mit/anstelle von/in (29b) i^e2Ba und

gewâhlt werden. Oç(f) hângt im Allgemeinen von der Wahl von 93 und 9P3 ab.

SeinunderEinfachheithalber/reell. In diesem Falle ist 93 gleich 9GB, und 6^(/
symmetrisch. Gilt

^6 93, (32)

so lâsst sich nach Définition (cp9 O^{f)\l/) darstellen durch das Intégral

a a

litn i- f f fy(x, (33)
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mit

vgl. Gleichungen (29g), (lia), (10) und (28). Ist insbesondere ç> ^, so stellt e^ ^den auf i/zeL^ projizierenden Operator dar. e^ ist reell, kann aber in der Regel auch
négative Werte annehmen, sodass eine Interprétation von \\2ne^{x,p) als Wahr-
scheinlichkeitsdichte im (x,/?)-Raum nicht gut môglich ist. Falls i^(£) gewisse Regu-
laritâtsbedingungen erfiillt (siehe (14)), gilt jedoch

jet(x,p)dp \ilj(x)\. (34)

Dies ist die Wahrscheinlichkeitsdichte im Ortsraum. Ebenso erhâlt man fiir

271

die Wahrscheinlichkeitsdichte im Impulsraum. Ist (32) nicht mehr erfullt, d.h. gilt
lediglich xf/eD(f), so gilt i.A. auch die Darstellung (33) nicht mehr, da das Intégral
auf der linken Seite von (33) nur stetig in ifr und cp ist, falls U\ f {x, p)\2 dxdp <co,

Anhang I
Wir wâhlen in L\ als Basis einer Matrixdarstellung die Hk(Ç). Man erhâlt:

Oç(H) {ômnXm} (40a)

Oç(hk) {Smnam} mit am 0 oder am 1 (40b)

als Matrixdarstellungen der Operatoren O^(H) und Oç(hk).

Gleichung (19k)

wird jetzt zu:
{SmnaM {ômHamXh} (40c)

Daraus folgt am 0 fiir Xm^Xk (d.h. fiir m^k, da jeder Eigenwert nur einfach vor-
kommt). Da O^(hk)^0 ist, so folgt noch ak=l, und es ergibt sich Oç(hk) {ômnômk}

q.e.d.

Anhang II
Bezeichnen wir fiir feste k und / den Operator O^(hkl) mit A. Die Gleichungen (22a)

und (22b) bedeuten, dass

Oç(hkl)Oç(hkl) Ot(hh) und Oi(hkl)Ot(hkl) Ofa).
Da O*(hkl)^O4(hkl) und da die O^(hk)in gmzLç definiert sind, gelten die eben no-
tierten Relationen erst recht mit O*(hkl) an stelle von Oç(hkl). Zusammen mit Glei-
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chung (22c) hat man also :

A A* -Ek (Ek Ot(hk)) (41a)

A*A Et (41b)

(Hk9AHÙ=l (41c)

Aus (41b) folgt fur jedes Elément ij/ des Definitionsbereiches von A, dass

Hieraus ergibt sich, dass A notwendig beschrânkt ist. Wir wâhlen wieder die Hk(Ç)
als Basis einer Matrixdarstellung und setzen A {Amn}. Weiter hat man Ek — {àmkènk},

Ei — iàmiàni}' Setzen wir dies in die Gleichungen (41a) und (41b) ein, so erhalten wir:

ZÂni ômkônk (41d)

% mlônl (41e)
i

Insbesondere fur m—n:

I2Âml^ômk (41f)

(41g)
t

Daraus folgt sofort, dass nur Akl nicht verschwindet. Nach (41c) ist iiberdies Akl l,
sodass man schliesslich hat :

A {Amm} {ôkm6tH} q.e.d.

Anhang III
Die Funktion <pa(x) <p{x+al2) konvergiert fiir jedes cpeL2x gegen <p, falls a gegen

0 strebt : \\<pa(x) — (p(x)\\ ->>0 falls |cr| —>0. Insbesondere lâsst sich ein ô > 0 finden, sodass

IWr,-iH<e und H^-^1^6, (42)

sobald |cr|<5, fiir zwei beliebige Funktionen 0 und ij/eLl.
Bezeichnen wir mit Eb den Projektionsoperator, der auf den Unterraum von L2X

projiziert, welchen die Funktionen bilden, die fur x>b und — x< — b verschwinden

(6>0). xb{a) lâsst sich dann schreiben:

Xb(a) (E^^EM (t^Erf.) (42b)

mit Hk(x) \l/(x) und Hm{x)=<j>{x) (siehe (27a)). Hieraus folgt (^-^ ô^,

\\ô<t>\\

sobald |<r| < 5 ist (fur beliebiges ^ ist ||£fe^|| <
Dièse Abschâtzung ist unabhângig von 6, q.e.d
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Anhang IV
Wir zeigen zunâchst, dass die auf der rechten Seite von (30f stehende Reihe kon-

vergiert. Dazu bemerken wir, dass die ckl die Matrixelemente einer unitâren
Transformation in L2 sind. Daraus ergibt sich insbesondere, dass ]£kfc/|2 l und somit:

k

X k,|2<£, sobald Ni9N2>tt9 (/fest). (43a)
k Ni

Aus (30a) folgt Y, II <Pk II2<°° und daher auch:
k

£ \\<pk\\2<s, sobald NuN2>se. (43b)
k Nt

Setzen wir
n

Qn= Z Ckl<Pk-
k=l

Man findet :

\\QN2-QNl\\< î \ckl\\\cpk\\<(£ \ckl\2) (t \\cpk\\2) <€,
k iVi \k Ni / \k Nl /

falls

Nt,N2> max (te,sE).

Das beweist die Konvergenz der genannten Reihe; um zu zeigen, dass sie gleich \\f{

ist, bilden wir mit y(Ç)eL2 die Funktion

rl(i,r,) y

Nach (30c) erhalten wir
(r,,4>)

nach (30a) erhâlt man

(r,,*) I(y, ?*)«(/»!,«*), Ict,(y,ç»*)«- (43d)

Da yeL^ beliebig ist, folgt
^i l,ckl(pk q.e.d.

Anhang V
Die Aw geniigen den Gleichungen (siehe (18) und (19)):

O(H)hkl (k + l/2)hkl, O'(hkl) (/ + l/2)fckl. (44a)

Nach einfachen Rechnungen ergibt sich (vgl. (18i)):

i^-~ (44b)
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und daher

î— hkl nhkî9 n k-l. (44c)

Wegen

K^V-'H^ und
ist

+ 00

J

exp (- x2 - p2) J e-("2+i^pk(x + al2)Pl(x - all)da
— oo

+ 00

2 exp (- r2) J <r'2p*(re-> + 0/»i(re" - «)d«

exp(-r2)XcMïe-'<"-v>'>r''+v (45a)

Hierbei wurde or/2 + ip t gesetzt. Die cMV sind Konstanten, die nach (44c) fur y — v # n

verschwinden. Da folglich /* + v in (45a) entweder gleich \n\-\-2fi oder gleich |«| + 2v

ist, folgt aus(45a):

hki(r,<p) e-^r^Pkl{r2) exp (- r2) (45b)

Fur hlk ergibt sich derselbe Ausdruck, lediglich mit — <p anstelle von <p; dies erkennt

man leicht, wenn man in (45a) k und / vertauscht und t durch — / ersetzt. Also ist

plk=pkl und wegen hkl=hlk folgt hieraus weiter, dass Pkl reell ist. Auch der Grad von
Pkl ist aus den Gleichungen (45) leicht zu bestimmen.
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