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Eine Zuordnung von Operatoren zu Funktionen

von BURCKART C. KIND

Einleitung

Es soll im Folgenden eine Zuordnung von Operatoren in einem Hilbertschen
Raume zu Funktionen zweier reeller Variablen x und p hergestellt werden. Dazu wird
fiir zwei Funktionen f(x, p) und g(x, p), die gewissen Klassen angehoren, eine nicht-
kommutative Multiplikation eingefiihrt, deren Produkt f-g wir als mechanisches Pro-
dukt bezeichnen. Fiir das iibliche kommutative Produkt schreiben wir fg. Die me-
chanische Multiplikation ist assoziativ und wird durch die Distributivgesetze mit der
Addition der Funktionen verkniipft. Durch die Relationen

0(f)g=1g (1a)
O'(fle=¢ f (1b)
werden lineare Operatoren O(f) und O’(f) auf gewissen Funktionenklassen, insbe-
sondere auf einer dichten Teilmenge des Hilbertraumes L> p der quadratisch integrier-
baren Funktionen, eingefiihrt. Die Linearitdt dieser Operatoren ergibt sich unmittel-
bar aus den Distributivgesetzen, ebenso wie die Gleichung O(f+g)=0(f)+ O(g).
Dabei durchliduft fin O( f) zunéchst nur die Klasse der Polynome, und die zuge-
horigen O(f) bilden eine Algebra in L? ,. Die Reduktion dieser Algebra fiihrt schliess-
lich zu lauter d4quivalenten Bestandteilen, die sich mit einer Algebra in L§ identifi-
zieren lassen, deren Operatoren wir mit O,(f) bezeichnen. L} bedeutet hierbei den
Raum der quadratisch integrierbaren Funktionen einer reellen Variablen &.
Dies ist im Wesentlichen der Inhalt der ersten vier Abschnitte. Abschnitt 5 und 6
befassen sich mit Verallgemeinerungen der Definition von O(f) als Operatoren in
L? »> insbesondere wird die Voraussetzung, f sei ein Polynom, fallengelassen.

1. Definition des mechanischen Produktes von Polynomen

Die in diesem und dem nichsten Abschnitt vorkommenden Funktionen sind aus-
schliesslich Polynome in x und p, deren Klasse wir mit 8 bezeichnen. Die durch (1a)
und (1b) definierten Operatoren O(f) und O’(f) haben also als Definitionsbereich
zunidchst die Klasse der Polynome.

Das mechanische Produkt soll ausser den Assoziativ- und Distributiv-Gesetzen
noch folgende Rechenregeln erfiillen:

fra=af=af, (2a)

falls a eine Konstante ist;
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xf+fx=2xf (2b)
Of
xf—fx=i-— (20)
op
pf+fp=2pf (2d)
. Of
pf—fp=—i- 2¢)
X

Aus (2b) und (2c) folgt sofort
0
O0(x)+0'(x)=2x und O(x)-0'(x)=i—

a b4
woraus sich ergibt:
1 6 1 0
Ox)=x———, O(x)= — QA3
W=x=5i5. OW=x+5=; (3a)
ebenso erhélt man:
1 0 1 0
o ——, O - = — 3
P)=p+.5. O@=p-5. > (3b)
Daraus ergibt sich fiir die m-fach wiederholte Anwendung von O(x) auf die Kon-
stante 1: o™ (x)1 = x™; (4a)
entsprechend: ‘
O"(p)1=p". (4b)
Allgemein ist jeder Ausdruck der Form
f=0m"(x)0™(p)0™(x)...0™(x)...0""(p)g, (4¢)

wo die m, positive ganze Zahlen und g ein Polynom ist, wieder ein Polynom, und es
gilt folgende Gradrelation:

grad (f) = grad (g) + T m. - (4d)

Diese Behauptungen lassen sich unmittelbar verifizieren.
Umgekehrt ldsst sich jedes Basispolynom, d.h. jedes Polynom der Form
x™p", (de)
und damit jedes Polynom, als Summe von Ausdriicken der Form (4c) mit g=1 dar-
stellen. Fiir die Konstante 1 ist das klar; hieraus ergibt sich die Giiltigkeit der Be-
hauptung fiir alle Basispolynome durch Induktion nach dem Polynomgrade, denn aus
einer Zerlegung nach dem Muster

-xmpnzx(xm 1 n) O(x)(x"‘ 1 ")+~1....._( m-1 n)__
(4f)
— O(x)(xm—lpn) +ﬁ xm-—lpn—l
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folgt, dass die Behauptung fiir alle Basispolynome vom Grade n gilt, falls sie schon
fiir alle Basispolynome von einem Grade kleiner als n gilt. Mit Hilfe des Assoziativ-
gesetzes ldsst sich O(f) nunmehr fiir alle f bestimmen. Aus (f-g)-h=f-(g-h) folgt

O(0(f)g)h=0(f)0(g)h als notwendige und hinreichende Bedingung fiir die Giil-
tigkeit des Assoziativgesetzes:

0(0(f)g)=0(f)0(g); (5a)
hieraus folgt insbesondere

0(0(x)g) =0(x)0(g) (5b)
und

0(0(p)g)=0(p)0(g). (5¢)

Wir zeigen jetzt, dass umgekehrt die Gleichungen (5b) und (5c) die Gleichung (5a)
zur Folge haben. Wegen der Linearitit dieser Gleichungen geniigt es nach dem vorher
Gesagten, zu zeigen, dass (5a) fiir f=0(x)k und f=0(p)k gilt, falls (5a) fiir f=k er-
fiillt ist. Wir tun dies fiir den Fall f=0(x)k:

0(0(f)g) =0(0(0(x)k)g) = 0(0(x)O(k)g) = 0(x)0(0(k)g) =
= 0(x)0(k)0(g) = 0(0(x)k)0(g) = 0(f)0() qeed.
Die Gleichungen (5b) und (5¢) sind Rekursionsformeln zur Bestimmung von O( f)

fiir alle Polynome f. Die Losung (es kann offensichtlich héchstens eine Losung geben)
dieser Formeln ist gegeben durch:

O(f)g=k§=:0 1;0 a“(asz)atkg’ (3¢)

& 0(f) =¥ L an(@ 1", (3d)
wobei k

(=1) {(~— l)kﬂauc (3e)

W @iyt T

Hierbei bezeichnet 4 die zu a konjugiert komplexe Zahl und ¢*' den Differentiations-
operator

—— e

Ausserdem ist zu beachten, dass die Doppelsumme nach endlich vielen Termen ab-
bricht, weil f ein Polynom ist.

Es bleibt zu verifizieren, dass diese Definition von O( f) die Gleichungen (5b) und
(5¢) erfiillt; wir tun dies wieder fiir den ersteren Fall. Wegen
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ist zu zeigen: ; o
O(xg)+ 2~0 (a—) =0(x)0(g).
P
Es ist: ®
2

k=01

0(x8) = Lau@x0)* = x0@) + £ % au(}) @ )",

Setzt man: m=k—1, so erhilt man wegen

k i
1 a = kay, =“2“ak-1,t3

[+ ¢] e o] l a l a
O(xg)=x0(g) + am (0™g) ——=x0(g) += 0(g) —;
()= x0()+ ¥ 3 am(@'6) 25 =x0() +3 0(e) 1

andererseits gilt:
og

0)0()=( #5500 =50()+0 () #5060 1

Durch Vergleich ergibt sich die Richtigkeit der Behauptung. Fiir O'(f) (siehe (1b))
findet man:

0'(f)= % X au(@'f)a* (30)

Aus der Konstruktion der O(f) ergibt sich, dass alle O(f) Polynome in O(x) und
O(p) sind; ebenso sind die O’(f) Polynome in O’(x) und O’(p). Da nun jeder der
Operatoren O(x) und O(p) mit O’(x) und O’(p) kommutiert, gilt auch allgemein

0(f)0'(g) - 0' () 0(f) = 0. ©)
Dies ist eine notwendige Folge der Assoziativitit des mechanischen Produktes:
0(f)0'(g)h=f-(h-g)=(f"h)-g=0'(g)O(f)h.

Aus dem Vorangehenden folgt, dass die Polynome in x und p auch eine Algebra
bilden, wenn als Kompositionen die Addition und das mechanische Produkt genom-
men werden. Die O(f) bilden die sogenannte reguldre Darstellung dieser assoziativen
Algebra, Gleichung (5a) ist die Darstellungsrelation. Da O( f) ersichtlich nur gleich
dem Nulloperator ist, falls f gleich Null ist, ist diese Darstellung treu.

2. Zwei Identititen

Behauptung: Es gelten die beiden Identitéten fiir O(f) (siehe (3c)):

a,,0'* g "' f (7a)

k

o0(f)g= Y

k

0(f)g = )f i
cjo z;io

a, 0" fo'*g (7b)
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Zu beachten ist hier, dass der linke Differentiationsoperator auf den ganzen rechts von
ihm stehenden Ausdruck wirkt. Wir beweisen (7a), d.h.

kzlakl(aklf)alk=:Z.laklalk(a”f) (79
Es gilt: ’

Lo 0= 5 § 53 a(t) ()@

k=01=0
Dabei lduft die Summation iiber ¢ und ¢ ganzzahlig gemiss:
0<¢<l, 0<o<k.
Ordnen wir die Reihe nach den Indizes ¢ und g, so wird sie gleich
Z Z Z Zak, (l) (k) (ak+t—g,k+l-—af)aaa ,
k 1 2/ \O

wobei jetzt liber k und / summiert wird gemiss k>a, />9. Wir fiihren als neuen
Summationsindex n=k +/ ein und setzen /=n—k. Es gilt:

T A

_ (- 1)
(2i)'e'ol(k —o)!(n — o — k)!

und somit wird die obige Reihe gleich

© © o (___ l)k
Z ,,zo n ;(2 iy'elo!(k — o)!(n — o — k)!
Dabei lduft n ganzzahlig von g + ¢ bis oo, und fiir &k gilt: 6 <k <n—p. Die Summanden
mit gleichen Indizes g, o und 7 sind Vielfache des Operators (0"~ "~°f)%°. Wir fassen
sie zusammen, d.h. summieren iiber k bei festen g, 6 und n. Wir haben also im Wesent-

lichen die Summe
— 1)*
(k—ff) (n—eo—k)!

mit c<k<n—g;n=9+0; o, 020 zu berechnen. Sei zundchst n=g¢+o. Dann ist
k=0, die Summe besteht aus einem einzigen Summanden und ist gleich (—1)°. Sei
jetzt n>o+o. Wir setzen n—g—o=t, k—o=s, (t>0); dann ist n—g—k=n—g—0—
(k—06)=t~—s und wir erhalten fiir die obige Summe (>0, 0<s5<1):

(- _(=1y (—1)%!___(—”1)*'2(_1)3(:) CY iy

(" " f)oee ®

si(t — s)! t! si(t—s)!

s s
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Im Ausdruck (8) erhalten wir also nur einen Beitrag fiir n=g + 0, so dass (8) wird zu

i Z (2%‘51} (@),

e=0e¢=0
was mit der Definition (3d) von O(f) identisch ist, g.e.d. Ebenso beweist man die
Identitit (7b).

3. O(f) als Operator in L2,

Bisher haben wir nur Ausdriicke O( f)h betrachtet, falls fund h Polynome waren.
Sei f weiterhin ein Polynom. Da O(f) eine endliche Summe von Produkten von
Differentiations- und Multiplikationsoperatoren ist, ldsst sich O(f)h definieren fiir
jede Funktion h(x, p), die hinreichende analytische Eigenschaften hat. Man iiberzeugt
sich leicht davon, dass O(f)h immer definiert ist, falls 4 partielle Ableitungen bis und
mit der n-ten Ordnung besitzt, wo n den Grad von fbedeutet. Wir definieren weiterhin:
f-h=0(f)h, sobald die rechte Seite sich definieren lasst. Ebenso setzen wir h-f=
O’ (f)h, wenn die rechte Seite einen Sinn hat, d.h. wenn 4 geniigend oft differenzierbar
ist. Sind f und 4 beide Polynome, so stimmen die beiden Definitionen h-f=0'(f)h
und A-f=O(h) f miteinander und mit der frither gegebenen Definition von A-f iiber-
ein. Die in den vorangehenden Nummern bewiesenen Eigenschaften von O(f) und
O'(f) gelten auch jetzt noch, da sie allesamt Identititen zwischen den in O(f) resp.
O'(f) vorkommenden Multiplikations- und Differentiationsoperatoren sind.

Um O(f) in L, zu definieren, machen wir von einer orthonormierten Basis in
L2, Gebrauch, die wir in Abschnitt 5 ndher bestimmen werden. Wir bezeichnen ihre
Elemente mit 4, ,(x, p); sie sind von der Form A,,(x, p)= P,,(x, p) exp(—x*—p?), wo
P, (x, p) ein Polynom in x und p ist. Die lineare Hiille der A, bezeichnen wir mit £.
Es ist klar, dass die Funktionen O(f)y und O’(f)y wieder zu L2, gehdren fiir jedes
Y €L und fe P; sie gehoren sogar zu L, da O(x)h,, und O(p)h,, Linearkombinationen
von h,, ,und by, ;, O'(x)h; und O’(p)hy, solche von hy ;.4 und h, ,_, sind; dies
wird sich spiter sofort aus von der Quantenmechanik her bekannten Resultaten er-
geben. Der Definitionsbereich von O(f)in L, ist also zunichst €; in Abschnitt 6
werden wir ihn erweitern. Seien nun fund g aus 3, y aus £ gegeben. Es gilt dann:

[[e-waxdp=[[@nvixp; esePs ve.  ow

.Die Integration erstreckt sich hierbei iiber die ganze (x, p)-Ebene. Der Beweis folgt
aus der Identitdt (7a) mit Hilfe von partieller Integration:

”.go(f)lﬁdxdp=ffgglaua”‘(ﬁ“f)tl/=
- [ [T van@o@ny.
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Wegen (—1)**'a,,=a,, (siche (3¢)) ist dies gleich

[[enewasar, aca

Wir vermerken noch die Relation

(f-e)=3gf, (10)
die man leicht nachpriift (siehe (3e)).

Weiter definieren wir fiir zwei beliebige messbare Funktionen f und g, sobald die

rechte Seite existiert:
+a +a
o1 _
g f>=1lim — | | g(x,p)f (x,p)dxdp. (11a)

At &
-a —a

Nehmen wir fiir f und g zwei Funktionen  und ¢ aus L2, so ist (11a) identisch mit

ihrem Skalarprodukt in L2 »» welches wir auch in runden Klammern schreiben:

@0 =5-[[scowepasds, sveL, (11b)
Wir schreiben, wenn y zu L, gehort:
Wi =¥t (11c)
Nunmehr ldsst sich (9a) in der Form schreiben:
g.f 4> =<8 (9b)

Offenbar bleibt (9a) auch giiltig, falls ge P durch eine Funktion ¢ & ersetzt wird;
also hat man auch:

(6,0 )W) = (.1 ¥)=(f0,¥) =(0(f) $,¥) (9¢)

Hierbei sind ge:méiss den Ausfiihrungen zu Anfang dieses Abschnittes /-y als O(f)y
und ¢-f als O'(f)¢ definiert. Ganz analog beweist man unter Beniitzung von (7b)
fir fund g aus P, Y aus L:

8. f¥>=LgV.f>. (9d)

Mit Hilfe von (10) ldsst sich leicht zeigen, dass die Gleichungen (9) giiltig bleiben,
wenn man auf beiden Seiten die Faktoren des mechanischen Produktes miteinander
vertauscht.

Wir machen nun Gebrauch vom Begriff der Adjungierten 4* eines linearen Ope-
rators A4 in einem beliebigen Hilbertraum §); vorausgesetzt wird, dass der Definitions-
bereich von A4 dicht in § ist. Sei ein Element ¢€e$) gegeben; genau dann wird 4¢
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definiert, falls ein Element ¢'e $) existiert, sodass die Relation

(¢, 4¢) =(¢'.¥)

fiir alle Elemente y des Definitionsbereiches von A besteht. Da dieser Bereich dicht
in § ist, bestimmt ¢ eindeutig das Element ¢’, welches gleich A* ¢ gesetzt wird. A*
ist wieder ein linearer Operator in $), dessen Definitionsbereich aber nicht dicht in $
zu sein braucht. (siehe [1], Seite 284).

Nehmen wir fiir 4 speziell den Operator O(f) (f €B), dessen Definitionsbereich
gleich € und folglich dicht im Hilbertraum L2 » ist, so folgt aus (9c) unmittelbar, dass
£ zum Definitionsbereich von O*(f) gehért, und dass in & O*(f)=0(f), mithin

also gilt: .
& 0*(f) 2 0(). %)
Insbesondere ist O(f) symmetrisch, falls freell ist.

4. Transformation von O(x) und O’(x) auf Diagonalform

Im Folgenden werde O(f) als Operator in L2, betrachtet. Da O(x) und O'(x)
kommutieren, kann man versuchen, sie gleichzeitig auf Diagonalform zu bringen.
Wir suchen also eine unitire Transformation des Raumes L2, auf einen Raum L,
derart, dass die Operatoren O(x) und O’(x) in die Multiplikationsoperatoren ¢ und
n transformiert werden. Das Skalarprodukt in L}, wird wie iiblich definiert:

@1 = [ [Bicnoacmdcan (12

Wir bezeichnen die gesuchte Transformation mit U und schreiben:
UG =6&n; (U ¢)(x,p)=¥(x,p) (13a)
UO()U™ =0,(f); UO'(f)U™* = 0,() (13b)

Transformieren wir zunéchst:

1 ) )
x(x,a)=ﬂf|/1(x,p)e"""dp, \//(x,p)=fx(x,a)e’”da, (14a)

so gehen die Operatoren O(x), O(p), O’(x), O’ (p) iiber in:

o o 1/0 10 1/0 10
0 =, 0(X)»x—=, O(p)»-|\—+:-=—), O)-=[—-==)
()>x+5, 0'(x)->x—2, 0(p) i(60+ 2ax) (p)— ( )

Die Transformation (14a) ist fiir jedes x die sogenannte Fouriertransformation:

20)=5- [V exo (= ipa)dp
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Sie hat die Inverse:

¥ (p) = f x (o) exp (ipo)do

Sie ist eine (bei geeigneter Definition der Skalarprodukte unitire) Transformation des
Raumes L, auf den Raum L?. Wenn die Integrale auch nicht immer im iiblichen Sinne

konvergieren, so konvergieren sie doch fiir alle Elemente der Rdume Lf, und L2 in
dem Sinn, dass:

1 +w
le(a)—ﬁf¢(p) exp (= ipo)dp] >0, fir w-oo  ([1], Seite 277f)

Ausserdem gilt fiir alle ¢ (nicht nur bis auf eine Menge vom Mass Null):

+a

x(0) = lim 2—11; (J'X(‘t) e;(p (ipr)dt) exp (—ipo)dp, (14b)

falls x (o) stetig, absolut integrierbar und in jedem endlichen Intervall von beschrink-
ter Variation ist. Entsprechendes gilt fiir y/(p). Setzen wir weiter:
o o
x+i=¢,x—-i=rz, alsor x=4(¢+n),0=¢—1, (14c)

¢(€,n)=x(€-:—",é—n); x(x,0)=¢<x+g,x—§), (14d)

so erhalten wir schliesslich:

¢(§,n)=;—J\I/(éﬂ',p)exp(i(é—n)p)dp, (15a)
i 2
w(x,p)=J¢(x+g,x—g)exp(—ipa)da. (15b)
10
Oi(x)=¢, dh  0x)d(&m)=¢d(Em); Og(P)=?é—€ (13¢c)
’ _a
0,(x)=n; 0"(P)_'5,; (13d)

Nach (14b) gilt fiir alle ¢ und #:
(UU™ o)) (& m) = ¢ (), (14e)

falls ¢ (x +(¢/2), x — (a/2))fiir jedes feste x als Funktionvon o stetig, absolut integrierbar
und in jedem endlichen Intervall von beschriankter Variation ist. Aus den Gleichungen
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(13c) folgt, dass O,(f) (fein Polynom) nur auf die Variable ¢ wirkt, denn O,(f) ist
ein Polynom in O,(x) und O,(p). Betrachten wir nun die Gesamtheit der Elemente
x(é)a(n)eLg,,, wo a(n) jeweils fest gewahlt ist und y (&) ganz L} durchlduft. Sie bildet
einen Unterraum, der nach dem Vorangehenden von den O,( f) in sich transformiert
wird und offenbar auch nicht weiter in gegeniiber allen O,( f) invariante Unterrdume
zerlegt werden kann. Der Raum L, ldsst sich somit in eine orthogonale Summe von
invarianten Teilrdumen zerlegen, die mit L§ identifiziert werden kdnnen, und auf
denen O,(f) zu ein und demselben Operator in L] reduziert wird, den wir der Einfach-
heit halber auch mit O,( f) bezeichnen. (Diese Zerlegung ist natiirlich nicht eindeutig,
obwohl O,(f) es ist.) Vermoge der Transformation U iibertrigt sich diese Zerle-
gung auf L2, und die Operatoren O(f). Entsprechendes gilt fiir die 0,(f)und O'(f).

5. Definition von O(y) fiir y aus L7,
Definieren wir:
O(f) =Y dy, ("' f)o", (16a)
i1

so gilt:
0'(f)=0(f). (16b)

Bezeichnen wir die antiunitire Transformation, die jedem e L2 , die Funktion ¢ zu-
ordnet, mit J (J2 ist gleich der Identitit). Es gilt:

0(f)=J0(f)J; O(f)=JO(f)J. (16¢)
Somit kénnen wir schliesslich schreiben:
0'(f)=J0(f)J (16d)
Wir definieren weiter die antiunitidre Transformation In in L§,, durch
(In 9)(&n) =6(n,8), (& mely,. (17a)
Man priift anhand der Formeln (15) leicht nach, dass
UJU '=1In (17b)

Mit H bezeichnen wir die Funktion H(x, p)=4(x?+p?). Die Operatoren
1 i 1 0
O,(H)==|~-—3), O,H)==|n"-— 18a

sind aus der Quantenmechanik vom Problem des Oscillators her bekannt. Sie haben,

aufgefasst als Operatoren in L§ resp. Li, ein diskretes, einfaches Spektrum mit den

Eigenwerten ’ ‘
A=k+4%, k=0,1,2,.. (18b)
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Die zugehorigen orthonormierten Eigenfunktionen sind die Hermiteschen Funktio-
nen, die wir mit H, bezeichnen:

H,($) = e_HZPk(é)’ H(n) = e p(n), Hi=H, (18c)
Dabei sind die p,(£) Polynome in ¢ vom Grade k. Das Skalarprodukt in Lg sei:

(Xx,Xz)<= f&(é)%z(f)d'f; ‘Xl,XZEng; (18d)
analog fiir n. Die Funktionen:
He (&) = H(§H(n), InH,=Hy, (18e)

bilden ein vollstdndiges Orthonormalsystem in Lg,,. Die Funktionen
hkl=U—1Hkl€L.2xp (18f)

wurden in Abschnitt 3 zur Definition von O(f) als Operator in L2, verwendet und

dort auch mit A, bezeichnet; sie erzeugen die Mannigfaltigkeit &. Wegen In H,,= Hj;
gilt auch:

By = J by = hy, (18g)

Wie in Anhang V gezeigt wird, haben die 4, die Form:
hy = r'" exp (—in@)Pa(r*)exp (= r?); Py=Py. (18h)
Dabei ist: rexp(io)=x+ip, n=k—1 (18i)

und P, ,(r?)ist ein Polynom in r? vom Grade (k +/— |k —[|)/2 mit reellen K oeffizienten.
Die Gleichungen

O(H)hklz;{khkla 0'(H)hkt=1zhu (19a)
sind nach Definition gleichbedeutend mit
H:hy = 2 hy, (19b)
und
he"H = Ahyy; (19¢)
insbesondere ist (h, =hy,):
) H.hk':hk'H=Akhk (19d)

Frither haben wir schon den Ausdruck O'(f)h,(feB) definieren konnen, der nach
(1b) gleich dem Produkt A, ,-f ist. Nach (1a) ist er dann auch gleich O(h,,) /. Mithin
bestand der Definitionsbereich von O(h,,;) bisher aus allen Polynomen.

Nun soll versucht werden, den Definitionsbereich von O (k) auf L2, auszudehnen,
wobei O(h,;) weiterhin als Operator aufgefasst werden soll, der aus der regulidren Dar-
stellung einer gewissen Produktbildung (eben des mechanischen Produktes) resultiert.
Dies soll nach Méglichkeit so geschehen, dass reellen Funktionen weiterhin sym-
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metrische Operatoren entsprechen, dass die Gleichung (6) giiltig bleibt und dass in
den Gleichungen (9) statt der Polynome fund g auch die 4, eingesetzt werden konnen.
Wir werden gleich sehen, dass O(h;) durch diese Forderungen eindeutig bestimmt ist
als Operator in L? - Daraus ergibt sich unmittelbar und eindeutig die Definition von
O(¢) fiir beliebiges ¢ aus L2,. Anschliessend wird umgekehrt gezeigt, dass die so
gefundenen Operatoren die oben formulierten Forderungen erfiillen. )
Aus (19d) folgt:
O(H)O(hy) = O (h) O (H), (19¢)

da ja allgemein O(f-g)=0(f)O0(g) sein muss. Weiter ist nach (6):
0'(H)O (k) = 0(h,) O’ (H). (19f)

Die Gleichungen (19¢) und (19f) bedeuten, dass O(k,) jeden Unterraum von L2

X p>

der zu einem Eigenwert 4, von O(H) und zu einem Eigenwert 4, von O’(H) gehort,
in sich transformiert; diese Unterrdume sind aber gerade die von den h,, gebildeten
eindimensionalen Rdume. Es gilt also insbesondere O (h,)h, = ph,, und wie wir sehen
werden, ist u=1, d.h. man hat:

O(h)hy = hy-h, = h, (19g)
und daraus folgt wie nach (19d):
O(h)O(hy) =0(h,). (19h)
Nun ist 4, reell (siehe (18g)), also muss sein:
0*(h)20(h). (vgl. dazu (%)) (191)

Aus den Gleichungen (19h) und (19i) folgt, dass O(h,) ein Projektionsoperator ist
([11, Seite 252ff).
Aus (19d) folgt weiter: O(H)O(h,)= 4, O(h,) und somit auch

0, (H)04(h) = 40, (hy). (19k)

Da O,(h;) mit O,(H) kommutiert, und zu A, nur die Funktion H,(¢) als Eigenelement
gehort, ist O,(h,) der auf H, projizierende Operator (siche Anhang I).

_ Bestimmen wir noch p (sieche unmittelbar vor (19g)).

Wegen der Normierung der A, und wegen (2a) muss gelten:

1= (hk’ hk) = (1 ! hks hk)

Um dies weiter umzuformen, beniitzen wir die Gleichung (9d), wobei aber jetzt fiir
g ein Element aus £ (ndmlich A,) gewihlt wird; dass (9d) auch in diesem Falle giiltig
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sei, ist ja eine unserer Forderungen. Wegen A, -h, =puh, findet man also:

L= (1 hy, b)) =<1 by by = p (L, by mit (20a)

1
{1,k =5 ffhk(x,p)dxdp (20b)
T
Der Ausdruck

1
i;[ f hk(xa p) dp

ist nach (15a) gleich H,,(x, x), denn man iiberzeugt sich auf Grund von (18c) davon,
dass H,, die fiir die Giiltigkeit von (14¢) hinreichenden Voraussetzungen erfiillt. We-
gen der Normierung der H, erhilt man folglich fiir (20b):

d,h) = JHkk(x,x)dx = fH,f (x)dx =1 (20¢)

Zusammen mit (20a) ergibt sich somit: u=1, g.e.d.
Es bleibt noch O(h,,) zu bestimmen. Sei f ein Polynom; mit Hilfe der schon in (20a)
beniitzten Verallgemeinerung von (9d) ergibt sich:

<hkt'hk1’f> = (hkho(f)hkl) = (Hkuog(f)Hkl) =
= (H,, 0:(f) Hy);(H, H), = (H, 0;(f)Hy);.  (21a)

Die Ausdriicke in (21a) hdngen also garnicht von / ab, und folglich findet man, indem
man /=k setzt:

iy ban £ = Ko f 5 = Chyo f ) (21b)

Da f ein beliebiges Polynom sein kann, so folgt:

by = by (22a)
Mit Hilfi ,
R vor iy i £ = (Bt O (f ) )

beweist man entsprechend: Fy by, = hy. (22b)

Schliesslich findet man:

(Hks Og (hkl) Ht)g = (Hkb 04: (hkl) Hz z) = (hkb o (hk l) hl) =
= (hkb hu'hz) = (hkl'hkb hl) = (hl’ hl) =1, (22¢)

wobei von (22b) Gebrauch gemacht wurde. Wegen (9¢) folgt aus den Gleichungen
(22), dass O(h,,) in L7 gegeben ist durch

O¢(hg) Hn = 61 Hy (23a)
woraus sich ergibt:

O(hkl) hmn = hkl'hmn = 5lmhku = Ol(hmn) hkl (23b)
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0, ist das bekannte Kroneckersche Symbol. Die Herleitung von (23a) aus den Glei-
chungen (22) ist im Anhang II gegeben.

Seien nun zwei Funktionen ¢, und v, aus L2 » gegeben. Wir entwickeln sie in
Reihen nach den A,,:

Yy = ;auhhn Y, = l;lbklhkl (24a)
mit
%,Iaml2 = y.l% < oo,’§|bk,lz <00, (24b)
die Zahlenreihen
yy = gakmbm, (24¢)

konvergieren wegen (24b) absolut. Weiter ist

kzllckzlz = kzl 1> am boil? < ZZlakm‘ZZIbnllz = ||y, 1% Y] 2. (24d)

k,I m n

Daher definiert die Reihe
?_;c“hu =Y (24e)

eine Funktion 5 in L2,, und wir setzen fest:

Y'Y=V, (24f)

Man erhilt 5 formal durch gliedweises Ausmultiplizieren der Reihen (24a) fiir y,
und ¢, ; nach (24d) gilt zudem:

vl < Il 12l (242)

Auf Grund dieser Gleichung ist die Definition von y, -y, unabhéngig von der Wahl
einer Basis in L2, und eindeutig fiir jedes Paar y,, l//zeLf”, gegeben.

Dem mechanischen Produkt in 1.2 p entspricht vermoge U eine Produktbildung in
L},: Fiir ¢,, ¢,€L?, legen wir fest:

¢1°¢2=U((U™" 1) (U " ¢,)) (24h)
Mit Hilfe der Gleichung (23a) ergibt sich:

(04 () H,) (8) = f Hy (&, m) Hy (n) di (259)

und daraus
(0¢(¢)¢)(€,n)=f¢¢(é,C)¢(C,n)dC; velZ,; ¢,¢,el%,, (25b)

wobei Uy = ¢, gesetzt wurde. Hieraus folgt unmittelbar:

(¢1'¢2)(fs'7) = f‘ﬁl(éa@')‘ﬁz(c,'l)d‘: mit @y @2l <@l I o2l (25¢)
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Wegen |¢,|l <o ist der in (25b) gegebene Integraloperator vom Hilbert-Schmidt-
schen Typ und die Integrale in (25b) existieren fiir fast alle £, d.h. fiir alle £ mit Aus-
nahme eventuell einer Nullmenge, sofern ¢ (&, n) bei festem 5 zu L§ gehort, d.h. sofern
flpl€, n|>dE < oo. Das ist fiir fast alle  der Fall, wegen ||¢|| <oo ([1], Seite 135fF).

Nachdem wir durch eine Reihe von Forderungen die Operatoren O (), e L? p €iN-
deutig festgelegt haben, miissen wir noch zeigen, dass diese Forderungen tatsichlich
von den O(y) erfiillt werden.

Man iiberzeugt sich anhand der Gleichungen (24h), (25b), (25¢) von der Giiltigkeit
der Relation:

OW1¥2)=0)0W2); VYi.¥rels,. (26a)

Ebenso findet man, da O,(f) nur auf die Variable ¢ wirkt:
00N )Y)=0(f)o(W); feB,yel. (26b)

Ausserdem ist unmittelbar klar, dass fiir feB, y,, y,eL? »
[0(¥1),0"(¥2)] = [0(¥1), 0" (f)] =[0(/), 0’ (¥ )] =0, (26¢)

und dass
O'(Yy)=JOoW)J,(WeL,,).
Der zu ¢, in Gleichung (25b) adjungierte Kern ist bekanntlich gegeben durch
oy (&, m)=,(n, £). Wegen (17) gilt ¢y =¢7, also hat man:
0*(Y)=0() | (26d)

Diese Gleichung entspricht den Gleichungen (9) fiir den Fall, dass alle drei beteiligten
Funktionen zu .2 » gehoren; die Giiltigkeit dieser Relation ergibt sich auch direkt aus
der folgenden Gleichung (h,,=h,,):

(hmn’ hkl. hao) = émkalgéna = (hlk' hmn’ hea) (266)
Es bleibt die Relation
(0,0(N)Y)=<DV.f>; feB, o, yel (26f)

zu beweisen; wir konnen uns auf die 4,; beschrianken. Es ist also zu zeigen, dass

(hkbf 'hmn) = <hk1'hnm’f> = 6ln<hkm9f> .

Da wir bereits wissen, dass alle Terme in der obigen Gleichung verschwinden fiir
I#n, kénnen wir von vornherein /=n annehmen, d.h. wir zeigen: (h,, f-h,)=
(s £. Sei zunichst f=1. Dann ist zu zeigen (A, Hpp) =i m):

+a +a

g = {Hpme 1> = lim f fhkmdxdp.

a-—* o0
—-a —a
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Hierbei ist: +oo
hkm(xS P) = f idpka(x 0) da

-

(x,0)= Hx + | H, ?
X,0) = ~VH, [x—- -}
Xkm ki X 2 X 2

Xim(X, 0) ist fiir jedes x absolut integrierbar:
do\* o\|* do\}
Hlx-") =) =
2 2/ 2

H 7\ = Nao<2(|lH 7\’
Jlmle 5) fralx=3) do=2([u(x+3)
=2 ||H|l |Hpll = 2.

Betrachten wir die Funktionen

mit

xs(0) = f x(x,0)dx (27a)

(Xxmist kurz mit y bezeichnet). y, (o) ist offenbar fiir jedes o stetig und in jedem end-
lichen Intervall von beschrankter Variation; die Absolutwert-Integrale konvergieren
gleichméssig in b:

N2 +b Nz + o0

flxb(d)lda— U (x,0)dx da<f f lx(x,0)ldxdo <&

fﬁr N,<N15N2 odler N, <N, <—-N,N,>0,

denn es ist
+00 +o . to +w
J jlx(x,a)ldxda= J J- Hk(x+ )} (x-—-g) dxdo =

- [ 11z [ 1Ha @ an < o,

da [|H,(&)|d¢ < oo fiir alle k (siehe (18c)). Folglich ist:
+a +oo
U ianb(G')dG) dp - x,,(O)l <e, fir a>a(ebh). (27b)

-4 - o

Nun sind die x,(¢) im Punkte ¢ =0 gleichmissig fiir alle b stetig (Anhang III); daraus
ergibt sich nach der Theorie der Fourier-Integrale, dass (27b) gleichméssig in b kon-
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vergiert. Man hat also insbesondere fiir b=a:

+a +ow +a +a
f%fei”“ (f x(x,a)dx) da%dp—»fx(x,O)dx fir a-o; (27c)
weiter gilt
+ o +a +a +wo©
f e’ (f x(x,a)dx) do = f (f e“’"x(x,a)da) dx

wegen

+ oo
f lx(x,0)lda < o0

(siche oben).
Setzt man fiir x(x, o) ein und ldsst a iiber alle Grenzen wachsen, so folgt:

+a +a +a

f f hy,dxdp— f H,(x)H,(x)dx - é;,, q.ed.

-a-—a —a

Wir haben also (¢, 1-y)={¢" ¥, 1) fiir alle ¢ und ¢ aus L. Daraus ergibt sich (26f)
fiir alle faus P durch Rekursion; wir zeigen ndmlich, dass (26f) fiir f=g-xund f=g-p
gilt, falls (26f) fiir f=g gilt: Nach Voraussetzung ist (¢, g'x ¥)=<{¢ ¥ x, g), da
x+y zu L gehort. Da auch ¢ - wieder zu € gehort, so erhilt man mittels partieller

Integration (¢ x, g> ={¢ ¥, g+ x), woraus sich die Behauptung ergibt. Mit p an-
stelle von x verfdhrt man entsprechend. Damit ist (26f) bewiesen.
Betrachten wir schliesslich eine Zerlegung von ¢e Lg,, von der Art:

R ES ;rﬁk(é,n) = gtpk (& (n), (28a)

wo die a,(n) ein vollstindiges Orthonormalsystem in L,f bilden, und die Funktionen
@r(é) zu Lg gehdren. Wie oben sei In ¢ mit ¢* bezeichnet. Auf Grund von (25c) findet
man:

(¢1 ’ ;)(f,'l) = ;(‘blk'd’:k)(&,”) = ;(plk(é) (_sz(ﬂ); (28b)
Setzt man fiir
wEszp:¢=U'l/9 ‘/’k=U—l¢k’ ¢=;¢k’
so gilt analog:
(Wt"pz)=;¢1k";zk§ YW =0 fiir k#I. (28¢)
Hierbei gilt:
Vi U=V V¥ falls ou=9, und @y =0, ist. (28d)
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6. Definition von O(f) fiir messbare Funktionen

Ist Gleichung (26f) erfiillt, so bedeutet das, dass man, ohne zu der urspriinglich
in Abschnitt 3 gegebenen Definition in Widerspruch zu geraten, O(f)y (feP, yef)
durch die rechte Seite von (26f) definieren kann. Dieses Verfahren soll jetzt auf all-
gemeinere Funktionenklassen ausgedehnt werden.

Mit L, bezeichnen wir in Folgenden den Unterraum von L2 » dessen Elemente y
die Eigenschaft haben, dass

(U (En) =t(©)an), Y (E)elt a(m)ell, ol =1, (29a)

mit einem festen a(n)e L. Fiir jedes vollstindige orthonormierte System {e,} in L2
ist die (orthogonale) Summe der zugehorigen L,, gleich dem ganzen Raum Lﬁ,. Hier-
aus schliesst man mit Hilfe der Gleichung (28c), dass jeder durch die Bilinearform
{f, d- ) gemiss Gleichung (26f) definierte Operator notwendig den Raum L, fiir
beliebiges aeL‘,", in sich transformiert. Wir setzen also zunédchst voraus, dass die be-
trachteten Funktionen n//eLip zu einem festen L, gehoren.

Bezeichnen wir weiter mit It die lineare Hiille der H (&) in L2, mit M, die Gesamt-
heit der Funktionen y e L,, fiir die t(¢) in Gleichung (29a) zu IRt gehort.

Sei im Folgenden f eine messbare Funktion in x und p.

Fiir festes y €eIR, definiert die Bilinearform

F(¢)=<f.¢¥>, veM, yfest, (29b)

in IR, ein lineares Funktional von ¢ eIR,. Wir definieren nun O(f)y fiir Yy €M, genau
dann, wenn

a) (29b) fiir alle peIN, existiert
b) |F(¢)|<C| | fiir alle $€IN, mit einer von ¢ unabhdngigen Zahl C>0.

Die Bedingung b) ist notwendig und hinreichend dafiir, dass sich das zunédchst auf
M, definierte Funktional (29b) zu einem beschrinkten Funktional in L, ausdehnen
ldsst, d.h. zu einem Funktional, das fiir jedes ¢ € L, existiert (Wir erinnern daran, dass
ein Funktional F(¢) in L, beschriankt heisst, wenn F(¢)<C|¢|| fiir alle ¢ €L, mit
festem C). Man setzt ndmlich einfach:

F(¢)= lim F(¢,), falls ¢ =Ilim ¢,, ¢,eIN,

Nach dem Satze von Fréchet-Riesz ([1], Seite 55) existiert dann ein eindeutig be-

stimmtes Element ¥/’ € L,, fiir welches gilt: F(¢)=(y’', @) fiir alle g€ L,, und wir legen
fest:

V'=0(f)Y =0,(f)¥. (29¢)
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Dies bedeutet insbesondere:

(0. (f)¥. ) =(0(f)¥.8) =<f.¢-¥>; (Pe,). (29¢)

Bezeichnen wir den so erhaltenen Operator mit o0,(f). Sein Definitionsbereich d,( f)
besteht aus einer Teilmenge von I, ; ist er dicht in L, so ldsst sich der zu o,(f) ad-
jungierte Operator o) (f) bilden: Man setzt:

(0.(F) $,0) = (03 (f) ¥, 9) (29d)

fiir festes y, falls die linke Seite fiir alle ¢ ed,(f) =M, existiert und sich zu einem be-
schrinkten Funktional in L, fortsetzen lasst. Gehért ¥ zu M, so gilt:

(0(f)d.¥) =S¥ d>=<f,0¥> (Peda(f)) (29¢)

Gehort Y zu d, ( f), so existiert der rechte Ausdruck in (29e) fiir alle ¢ eI, (und damit
fir alle ¢ed,(f)) und ldsst sich auf L, zu einem beschrink:en Funktional fortsetzen.

Es gilt also oF () 2 0,(f). (29f)
(U¥)(&n) =t(&)aln)
(U )(Em) =Uo (N)Y)(&n) =1 (&)aln)

Die Zuordnung 7' (&)= 0,(f)r(¢) definiert einen linearen Operator o,(f) in L, der
nach Gleichung (28d) nicht von der Wahl von a(#) und damit nicht von L, abhéingt.
Wir schrinken nunmehr die Klasse der Funktionen f so ein, dass die Definitionsbe-
reiche d(f) und d(f) von o,(f) und o,(f)dicht sindin L}. Dannist nach(29f) auch der
Bereich von o} () dichtin L, und o,( f) besitzt eine eindeutig bestimmte minimale Ab-
schliessung (die fiir symmetrische Operatoren wieder symmetrisch ist), ndmlich
0:*(f). Diesen abgeschlossenen Operator bezeichnen wir mit O,(f), seinen Defini-
tionsbereich mit D(f). (Wir erinnern daran, dass ein Operator A abgeschlossen
heisst, falls aus dem Bestehen der Relationen y,—y und Ay,—y’ folgt, dass Ay
existiert und gleich ' ist). Fiir den Beweis des eben beniitzten Satzes verweisen wir
auf [1], Seiten 290 und 293.

Um O,(f) auf L, auszudehnen, verfahren wir folgendermassen: Wir wihlen eine
orthonormierte Basis {o,} in L7 und setzen fiir peli,:

(b(é*rl):;(pk(é)ak(q)’ (Pk(é)ELz’ k= 132,3,--. (30&)

Sei

und

Existiert @, = O,(f) @, fir jedes ¢, und ist Y. [ O¢(f) x|l 2 < o0, SO setzen wir:
k

O:(f) (&) = ;(04 IALAUES ;wi (&) (m) (30b)
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Es bleibt zu zeigen, dass diese Definition nicht von der Wahl der a,(n) abhingt. Sei
also fiir eine zweite orthonormierte Basis {#,} in L2:

¢(&n) = El:‘/’t (&) Bi(m) (30c)
O:(f)p(&n) = };x: (&) Bi(m) (30d)
und o (1) = eui fu(n) (30¢)
Setzt man (30e) in (30a) ein und vergleicht mit (30c), so erhdlt man
(&) = ;ckzq’k (9] (30f)
Diese Reihe konvergiert (stark) in L§ (siche Anhang IV). Ebenso gilt:
xu(®= ;ckl @ (&) = Ek:ckl O:(f) ox($) (30g)

Durch Vergleich der beiden letzten Gleichungen ergibt sich wegen der Abgeschlossen-

heit von 0,(f): 1:(&)=0s(/)i(&) a.ed.

Schliesslich definiert man den Operator O(f) in L? p gemdss:

0(f)=U""0f)U (1)
Dieser Operator kann ohne Umweg iiber L}, direkt erhalten werden, indem man L2 »
beispielsweise in die Rdume Ly, zerlegt; M, wird dann von den A, mit festem k er-
zeugt. Ly, reduziert den Operator (31) zu Oy, (f), die Abschliessung des zu Anfang
des Abschnittes eingefiihrten Operators oy, ( f).

Wir bemerken noch, dass O,(x) gleich dem Multiplikationsoperator &£, O(p)
gleich dem Differentiationsoperator —id/d¢ ist.

Die soeben gegebene Definition von O,( f)ist insofern willkiirlich, als sie sich auf die
Mannigfaltigkeit )t stiitzt, was voraussetzt, dass immer die Grossen (A, f> exi-
stieren.

Es ist klar, dass man statt von IR von irgendeiner in L§ dichten Menge von Funk-
tionen ausgehen kann; man kann auch zwei Mannigfaltigkeiten B und 9B wihlen
und in Gleichung (29b) yeB,, p W, voraussetzen. Will man dabei die Giiltigkeit
von (29f) beibehalten, so muss dann mit f anstelle von fin (29b) Y e2B, und ¢eB,
gewihlt werden. O,(f) hingt im Allgemeinen von der Wahl von B und 2B ab.

Sei nun der Einfachheit halber f reell. In diesem Falle ist B gleich W, und O,( f)ist

symmetrisch. Gilt ved(f), ¢eB, (32)

so ldsst sich nach Definition (¢, O.(f)V) darstellen durch das Integral

1 a a
i - [ [ venx0) s dxdo = 0.0401)9) (3

a—sin 2T
-a—a
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mit
-1 _ 2
oy =U"(W(©OoMm)eL;,,

vgl. Gleichungen (29g), (11a), (10) und (28). Ist insbesondere ¢ =V, so stellt e, = e,
den auf |//eL§ projizierenden Operator dar. e, ist reell, kann aber in der Regel auch
negative Werte annehmen, sodass eine Interpretation von 1/2me,(x, p) als Wahr-
scheinlichkeitsdichte im (x, p)-Raum nicht gut moglich ist. Falls (&) gewisse Regu-
laritdtsbedingungen erfiillt (siehe (14)), gilt jedoch

1
o et =@, (49

Dies ist die Wahrscheinlichkeitsdichte im Ortsraum. Ebenso erhilt man fiir

1
> fev, (x,p)dx

die Wahrscheinlichkeitsdichte im Impulsraum. Ist (32) nicht mehr erfiillt, d.h. gilt
lediglich yeD(f), so gilt i.A. auch die Darstellung (33) nicht mehr, da das Integral
auf der linken Seite von (33) nur stetig in { und ¢ ist, falls {{| f(x, p)|*dxdp < co.

Anhang 1
Wir wihlen in L} als Basis einer Matrixdarstellung die H,(£). Man erhilt:
Oé(H) = {5mn)‘m} (403)
O:(h) = {0pna,y mit a,=0 oder a,=1 (40Db)

als Matrixdarstellungen der Operatoren O.(H) und O,(hy).
Gleichung (19k)

O H)O(hy) = 2, 04(hy)
wird jetzt zu:

{5mnam Am} = {5mn am )'k} (40C)
Daraus folgt a, =0 fiir 1, # 4, (d.h. fir m#k, da jeder Eigenwert nur einfach vor-
kommt). Da O,(h,)+#0 ist, so folgt noch =1, und es ergibt sich O;(#,)={6mnOmu}
g.e.d.

Anhang I
Bezeichnen wir fiir feste k und / den Operator O,(h;,) mit 4. Die Gleichungen (22a)
und (22b) bedeuten, dass

Oy (hy 1) O (her) = oF (h) und O¢(h1) O (hyy) = Og(hy).

Da Of (h;)= O;(hy,) und da die O,(h)in ganz L% definiert sind, gelten die eben no-
tierten Relationen erst recht mit O} (k) an stelle von Og(h,;). Zusammen mit Glei-
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chung (22c) hat man also:

AA*=E, (E,=0.(h) (41a)
A*A=E, (41b)
(H, AH), =1 (41c)

Aus (41b) folgt fiir jedes Element y des Definitionsbereiches von A4, dass

1AYI? = (AY, AY) = (Y, A* AY) = (¥, E) < Yl IEVI < IW1*.
Hieraus ergibt sich, dass 4 notwendig beschrinkt ist. Wir wihlen wieder die H, (&)
als Basis einer Matrixdarstellung und setzen 4 ={4,,,}. Weiter hat man E, = {0,,;0,},
E;={0,,,0,:}- Setzen wir dies in die Gleichungen (41a) und (41b) ein, so erhalten wir:

Y Ami Ani = 8puiOns (41d)
iA-,-,,,A,.,, = 0pn10m (41e)
Insbesondere fiir m=n: i
LNAmil* =Y Ami Ami = O (410)
EIAMJZ = Oy (41g)

Daraus folgt sofort, dass nur 4, nicht verschwindet. Nach (41c) ist iiberdies 4,,=1,
sodass man schliesslich hat:

A={A,.} ={0m0,} qed.

Anhang 111

Die Funktion ¢, (x)=¢(x+ a/2) konvergiert fiir jedes pe L’ gegen o, falls o gegen
0 strebt: ||@,(x)— ¢ (x)||—0 falls |¢|»0. Insbesondere ldsst sich ein 6 >0 finden, sodass

Yo —¥ll<e und |ig_,— ¢l <e, (42)

sobald |o| <9, fiir zwei beliebige Funktionen ¢ und ye L2

Bezeichnen wir mit E, den Projektionsoperator, der auf den Unterraum von L}
projiziert, welchen die Funktionen bilden, die fiir x>b und —x< —b verschwinden
(6>0). x,(o) lésst sich dann schreiben:

%(0) = (Ey -0, Es¥,) = (¢-0s EnY,) (42b)
mit Hi(x)=y(x) und H,(x)=¢(x) (siche (27a)). Hieraus folgt (Y,—y =0y,
$_,—P=0¢):

xs(0) — X (O = [(P—0s Ey V) — (&, EpY)| =
=1(¢ + 06, Ep¥ + E,6Y) — (6, Es¥)| <
< gl IE,0¥1 + 10l IE Y1l + 10l E, 09 <
<e(2+¢),
sobald |o| < ¢ ist (fiir beliebiges ¥ ist |E ¥/ < liyl).
Diese Abschitzung ist unabhédngig von b, g.e.d.
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Anhang 1V
Wir zeigen zunichst, dass die auf der rechten Seite von (30f) stehende Reihe kon-
vergiert. Dazu bemerken wir, dass die c¢,, die Matrixelemente einer unitiren Trans-
formation in L} sind. Daraus ergibt sich insbesondere, dass ¥ |¢;,|>=1 und somit:
k

N>

> lceid* <&, sobald N, N,>t, (I fest). (43a)

k=N1

Aus (30a) folgt ) || ¢, |I> < oo und daher auch:
k

N>
Y lleul> <e, sobald Ny, N,>s,. (43b)
k=N|
Setzen wir
On = Z Cri1 Pk -
k=1
Man findet:
N2 N> 3 N> 3
“QNz - QN,“ < Z ‘Ckll ”(Pk“ g( z [C“|2> < Z “(Pknz> <e,
k=N, k=N k=N;
falls

Nl’ N2 > max (te, Se).

Das beweist die Konvergenz der genannten Reihe; um zu zeigen, dass sie gleich y,
ist, bilden wir mit y(¢)e L? die Funktion

L&) =y(&)Bi(n)eLy,.
Nach (30c) erhalten wir

(T @) = (0, ¥1)¢5 (43c)

nach (30a) erhdlt man

(F I 4’) = ;(% (Pk)a,‘ (ﬁu ka)q = ;ckl(ya §0k)§- (43d)
Da ye L} beliebig ist, folgt .
Y, = %Cufpk q.e.d.

Anhang V
Die h,, geniigen den Gleichungen (siehe (18) und (19)):

O(H)hy =(k+1/2)hy, O (he)=(+1/2)hy,. (44a)

Nach einfachen Rechnungen ergibt sich (vgl. (18i)):

O(H)— 0'(H) =i a% (44b)
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und daher
G,
i_hkl;:nhkl’ n=k*‘1. (440)
de
Wegen
_ —-f(E2 2
hy=U"'H, wund Hg,(&n)=e C*2p (&)pi(n)
ist
+ o0
hyi(x, p) = f e CFAI==a N2 p (% + 6/2) py(x — 6/2)e P do =
- + o0

= exp (— x? — p?) f e 12 b (x + 6/2) p(x — 6/2)do =

=2exp (—r?) f e U p(re”? + ) p(re® —t)dt

=exp (—r?) Y c,, e " *Veprt (45a)
n,v
Hierbei wurde o/2 +i p =t gesetzt. Die c,, sind Konstanten, die nach (44c) fiir uy—v#n
verschwinden. Da folglich u+v in (45a) entweder gleich |n|+2u oder gleich |n|+2v
ist, folgt aus (45a):
hei(r ) = ™" 1" By (r?) exp (= 1) (45b)

Fiir h,;, ergibt sich derselbe Ausdruck, lediglich mit — ¢ anstelle von ¢; dies erkennt
man leicht, wenn man in (45a) k£ und / vertauscht und ¢ durch —¢ ersetzt. Also ist
P,,=P,, und wegen h,,=h,, folgt hieraus weiter, dass P,, reell ist. Auch der Grad von
P,, ist aus den Gleichungen (45) leicht zu bestimmen.
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