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Sur les fonctions propres des membranes vibrantes couvrant un secteur

symétrique de polygone régulier ou de domaine périodique

par JosepH HerscH (E.P.F., Zurich)

§ 1. Introduction

1.1. Ce travail a pour but de mettre en lumiére des propriétés simples dont jouis-
sent les fonctions propres de domaines d’un type particulier («secteurs symétriques de
domaines périodiques»). Ces propriétés sont différentes (mais voisines) de celles in-
diquées dans [1]: elles sont valables pour une classe plus restreinte de domaines que
[1]; mais, pour cette classe, elles donnent des renseignements bien plus considérables.
Si, dans les résultats des paragraphes 2 et 3, on pose N=3, on retrouve un cas parti-
culier de [1].

1.2. Nous allons voir que les fonctions propres des «secteurs symétriques de do-
maines périodiques» (cas particulier: secteur de polygone régulier) jouissent de quel-
ques propriétés des fonctions propres des rectangles et des secteurs de couronnes
circulaires (cas particulier: secteur de cercle). Le probléme étudié et les résultats obte-
nus présentent des aspects communs avec la théorie de Floquet sur les équations
différentielles ordinaires a coefficients périodiques.

1.3. Le raisonnement utilisé ici est différent de celui de [1], mais de nouveau trés
simple. Il nous permettra aussi (§§ 4 et 6) de montrer ’équivalence de problémes aux
valeurs propres pour plusieurs membranes de formes différentes.

§ 2. Secteurs symétriques de domaines périodiques

2.1. Un domaine G est «périodique selon la direction Ox» s’il reste inchangé par
une translation (x, y)—(x+Q, y); c’est-a-dire que son translaté (G),, se confond avec
G. De plus, nous supposons donnée une fonction réelle k(s) sur le contour 9G de G,
iouissant de la méme périodicité (par exemple k =const.).

Un «N-secteur» Sy d’'un domaine G de période £ selon la direction Ox, est I'inter-
section de G avec une bande x, <x <x,+ N Q (N entier). Un tel secteur est dit «symé-
trique» s’il posséde un axe de symétrie perpendiculaire a O x.

" Nous supposerons toujours qu'il existe un 1-secteur ou «cellule» symétrique S, de
G [un autre est alors la «cellule complémentaire» S, =(S,)qg/,]; nous supposerons la
méme symétrie pour k(s); nous ne considérerons que des N-secteurs symétriques eux
aussi: ils sont formés de N cellules symétriques (fig. 1).

2.2. Soit Sy (dans x,<x<x,+N ) un N-secteur d’'un domaine périodique G
(fig. 1); soient (Sy)q son translaté a droite et (Sy)_g son translaté & gauche. Dans Sy,
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Légende pour toutes les figures (1 a 11):

..

arcs-frontiére fixés.

——————— arcs-frontiére libres.

——+—+—+—+—-— arcs-fronti¢re élastiquement liés de fagon périodique et symétrique [par exemple
k(s) = const; cas particuliers admis: k = oo arc fixé; k = O arc libre].
............. lignes auxiliaires pour la clarté de la figure.
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w@) = (V2 + Du); #@) = V2i(b);

Fig.l,2et3:?u1(c)=\/Zm(d) s () = (V2 + Din(d);

et &1 = A1

nous considérons le probléme de la membrane vibrante homogeéne a contour élastique-
ment lié:

Au+Au=0 dans Sy,

u=0 sur les arcs-frontiére rectilignes x=x, et x=x,+ N,

Ou/on+ k(s)u=0 sur le reste d SyndG du contour de Sy (9/0n=dérivation selon la
normale extérieure).

(Si k(s)= o0, tout le contour de Sy est fixé.)

Soit u, (x, y) la premiére fonction propre, elle a signe constant dans Sy. De plus, Sy

étant symétrique et A, non-dégénérée, u, est symétrique: u, (x,y)=u,(2x,+ NQ—x,y).
Nous prolongeonsu, dans tout G par des symétries successives: u,(x, y)= —u,(2x,—Xx,
), etc. Nous obtenons ainsi une function propre dans tout G, de période 2 N Q.

Alors u,(x—£, y) est la premiére fonction propre du secteur translaté (Sy),

u (x+9, y) celle de (Sy)-q-

Je dis que, si N>3, la somme f(x, y)=u,(x—, y)+u,(x+, y) est fonction

propre de Sy. En effet:

Af+2,f=0; f=0pour x=x,etx=x,+NE2;
df /on+k(s) f=0 sur le reste du contour de Sy;
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comme N>2, f(xo+R, y)=u;(xq, ¥)+u; (xo+22, y)=u,(xo+2Q, y)#0, donc
f#0.

De plus, la valeur propre correspondante est 1, non-dégénérée; donc f=c-u,(x, y).
La premiére fonction propre u, (x, y) de Sy satisfait donc a I’équation aux diffé-
rences:

u (x —Q,y) —cuy(x,y) +u; (x +Q2,y)=0. )
2.3. Pour déterminer la constante ¢, nous €crivons cette équation avec x=x,+£2,

Xo+2Q, ..., xo+(N—1)Q, et nous savons que u, (xq, ¥y)=u,(x,+ N 2, y)=0:

—cug(xo+ Q,y) +u;(xo+22,5) =0
uUi(xo+Q,y)—cu(xg+22,y)+u(xo+32,y)=0

u(xo+(N-2)Q,p)—cu(xg+(N-1)Q,y) =

Comme u, ne s’annule pas en ces N — 1 points, le déterminant de ce systéme homo-
géne doit s’annuler:

—c 0O 0 ... O
1 - 1 0 0 .. O
0 1 - 1 O 01=0
0O 0 0 0..01 —c¢
Appelons Ay_, lamatrice(0 1 0 0 0 ..0)
1 0 1 0 0..0
1 0 1 0..04
0 0 0 0.1 o

on obtient immédiatement tous les vecteurs propres d, et les valeurs propres ¢, de
Ay_,: Ay_,d,=c, d,, en remarquant que tout notre raisonnement s’applique aux
membranes homogeénes rectangulaires, et méme, plus simplement, aux cordes vibrantes
homogénes; la corde homogéne sur x,<x<x,+ N 2 a les fonctions propres u,(x)=
sin [n n(x—x,)/N 2], n=1,2, 3, ...; le vecteur propre d, de Ay_, est donc

sin nt/N

g, =| Sm2nmN , n=1,2..N-1; @)

sin (N — 1)nn/N
la valeur propre correspondante ¢, de Ay_, est:
sin nn(X + Q)YNQ+sinnn(X — Q)/NQ

=2 co N. 3
x sin nt X/N Q cos nf )
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La premiére fonction propre u, de Sy y a signe constant, elle induit donc le vecteur
propre d; de Ay_, et correspond a la valeur propre

¢, =2cos /N (3"
de cette matrice:
uy(x —Q,y)—2cos nfN-uy(x,y) +u; (x + 2,y)=0 1)
et notamment par (2):
ui(xo +vQ2,y)=g,(y)sinva/N, v=12,...N—1. @)

2.4, Ecrivons maintenant (1) pour x=x,+92/2, x,+3Q/2, ..., xo+(N—%)Q2 et
utilisons le fait que
uy(xo — Q/2,y) = —uy(xo + Q/2,y) et
u(Xo +(N+HQy)=—u(xo +(N—-3)2,);

nous obtenons un systéme de N équations linéaires & N inconnues, de la forme
By b=cb avec la matrice

-1 1 0 0..0)

1 0 1 0 0..0

1 1 0..0

BN= ........................ ]
0 0 0..1 0 1

_ 0 0 0..0 1 -1}

On en obtient les vecteurs propres (comme ci-dessus pour la matrice A):
sinnm/2N
B, = sin 3nn/2N @)

sin (2N —1)nn/2N
avec de nouveau

c,=2cosnn/N; (3)
uy correspondant a n=1, (2') nous donne
u(xo+(v+4)2,y)=8,(y)sin(v+4)=n/N, v=0,1,..,N—1. 4"
2.5. Plus généralement, appliquons (1) en des points

Gy (E+2,9), (E+2Q,p) .., (E+(N —1)Q,y) (xo<¢é<x0+ Q)
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et utilisons le fait que
U, (E+NQyY)=—u,2xq+ NQ—-&y)=—u,(,y) (5)

(période=2 N Q); nous obtenons un systéme de N équations linéaires & N inconnues
de la forme Cy ¢=c¢ avec la matrice

0 1 0..0 -1
1 01 0..0 O

Cy=| rorevrrein, :
0 0 O0..1 1

-1 0 0 .. 1 0

nous obtenons ses vecteurs propres ¢, et valeurs propres c, en considérant les vibra-
tions symétriques d’une corde homogéne:

(‘sin « )
sin(nn/N + a)
é,=| sin(2nn/N + «) 2"
\sin((N—=1)nn/N + a) )

avec de nouveau
c,=2cosnn/N, maisavec n impair seulement; (3"

o étant quelconque, toutes les valeurs propres ¢, avec n<N sont de multiplicité 2:
Si N est pair: ¢,, ¢, ..., Cy_,, donc N/2 valeurs propres de multiplicité 2.
Si N est impair: ¢, c3, ..., Cy-,, donc (N—1)/2 valeurs propres de multiplicité 2;
et une valeur propre non-dégénérée cy= —2, correspondant au seu!/ vecteur propre

ev=(1, =1,1, =1, ..., —1, 1)*.

(L étoile désigne la matrice transposée.)

La premiére fonction propre u, ayant signe constant (p. ex. positif), elle correspond
a ¢, avec 0<a,; <7/N; nous obtenons ainsi:

u, (E+vQ,y)=h(&y)sin [va/N +a,(&,y)], v=0,1,2,..,.N—-1. (49

Les fonctions «locales» h, (&, y) et a, (&, ) sont définies dans la cellule S;.

La relation (4”) permet de déterminer u, dans tout Sy si on la connait dans une seule
cellule Sy, notamment la premiére: x, <x <x,+£. En effet, par symétrie on la connait
aussi dans la derniére cellule xo +(N—1)2 < x <xo+ N 2; nous avons alors deux rela-
tions pour déterminer, dans (4”), h, (&, y) et o, (¢, y).— Ou plus simplement: on connait
alors u, aussi dans (S;)_q(xo —R2<x<x,), d’out par (1’) dans (S,)g, (S})2q, etc.
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Prolongeons h, (x, y) dans tout Sy par périodicité: h, (£ +v R, y)=h, (¢, y), et po-
sons B, (¢, y)=a, (& y)—n&/NQet B,(E+vQ, y)=B,(& y) (périodique), nous obte-
nons u, (x, y)=h,(x,) sin (n x/N Q + B,(x,)), soit, avec H; (x, y) = b, (x, y)e? 1"
(périodique aussi, de période Q),

ug(x,y)=Im Uy (x,y), out Ui(x,y)=Hi(x,y)-exp (inx/NQ). (6)

Cette forme de U, (x, y)=produit d’une fonction périodique H, par une exponen-
tielle, est a rapprocher de la théorie de Floquet sur les équations a coefficients pério-
diques.

On peut considérer le probléme comme décomposé en un aspect global et un aspect
local: ’aspect global est caractérisé par le nombre N et se réfléte, dans (6), par I’expo-
nentielle; 'aspect local y est représenté par la fonction H, (x, ).

Cas particulier £E=x4: 0=u,(xq, y)=h;(x,, y) sin &, (xo, ¥), donc a,(x,, y)=0,
B1(x0, )= —nxo/N Q et 'on retrouve (4).

Cas particulier E=xo+Q/2: u (&, y)=u,(2x,+NQ—E,y) (symétrie), donc
sin a; =sin [(1-1/N)n+a,]; n—a;=(1—=1/N)n+o,; a;=n/2N, B;=—7 xo/ N2 de
nouveau, et ’on retrouve (4').

§ 3. Fonctions propres supérieures

Nous allons d’abord distinguer les valeurs propres simples des valeurs propres
multiples (ou dégénérées). '

3.1. Valeur propre simple 4;, fonction propre correspondante u;.

Le raisonnement du § 2.2 reste valable ici: il existe une constante ¢ (dépendant de
J) telle que

u;(x —Q,y)—cuj(x,y)+u;(x+Q2,y)=0. 1"

Deux cas peuvent se présenter:

Premier cas: u; s’annulle sur tous les segments verticaux x=x,+vQ, v=1, 2, 3,
..., N—1. C’est alors déja une fonction propre de la cellule S;(x, <x<x,+Q), et 4;
est valeur propre de S;. Alors c=+2.

Second cas: u;(xo+ R, y)#0; écrivons alors (comme au § 2.3) ’équation aux diffé-
rences (1”) pour les N—1 points

(xO + Q’y)s (xO + 2Q9y),'“5(x0 + (N - I)st)a

nous obtenons un systéme de N—1 équations linéaires homogeénes & N—1 inconnues:
Ay_,d=cd (avec la méme matrice 4y_, qu'au § 2.3), admettant une solution non-
triviale. De nouveau, on a pour un certain entier n;(1<n;<N-1),
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c=c,,=2 cos n;n/N, et d=d,, est donné par (2):
uj(x—8, y)—2cos (n; n/N)-u;(x, y) +u;(x+2, y)=0, (1)
uj(xo+vQ, y)=g;(y)sinvan;n/N, v=1,2,3,..,N—1. (4”)

L’entier n; (inconnu a priori) dépend de l'indice j; mais en général une infinité de
fonctions propres u; , u;,, ... correspondront au méme entier n; =n;, =--- (considérer
par exemple pour Sy un rectangle!). — Nous obtenons aussi

u;(xo +(v+ 1R, y)=g;(»)sin(v+ Pa;xiN, v=0,1,2,..,.N-1. @)

Le § 2.5 se laisse aussi étendre aux fonctions propres supérieures. Remarquons
d’abord qu’il existe toujours un systéme complet formé par des fonctions propres les
unes symétriques, les autres antisymétriques relativement a la droite x =xy,+(N 2/2):
en effet, soit u une fonction propre, alors chacune des deux fonctions

u(x, ))+uxo+NQ—x,5), u(x,y)—u(2xq+NQ-x,y)

est soit identiquement nulle, soit fonction propre (symétrique ou antisymétrique) cor-
respondant a la méme valeur propre 4.

(a) Les fonctions propres u; symétriques satisfont, comme u,, a la relation (5),
d’ot la méme matrice Cy, et (1) avec un entier n; impair, 1 <n;<N.~ Utilisant de
nouveau les vecteurs propres ¢, de Cy donnés par (2”), nous obtenons

u;(E+vQ,y)=h;(&,y)sin[vn;na/N +«;(&,y)], v=0,1,2,...,N—1; 4Y)
soit, de fagon équivalente,
ui(x,y)=Im U;(x,y) ou U;(x,y)=H;(x, y)exp(in; nx/NQ), (6"

avec B;(& y)=a;(&, y)—n;n E/NQ, h; et B; prolongés par périodicité (période Q) et
H;(x, y)=h;(x, y) exp (iB;(x, )).

L’entier n; dépend de la fonction propre u; considérée, il ne dépend pas de ¢ ni de
y: en effet, u; étant continue, on aura «(£, y) continue avec n;=constante.

Cas particulier E=x,: on retrouve (4”) avec g;(¥)=h;(x, ), ®;(x0,¥)=0,
Bj(x0, y)=—n;m xo/N Q. Si n;=N, u; est fonction propre de la cellule S; («premier
cas»).

Cas particulier ¢=x, + £/2: on retrouve (4") avec g;(y)=h;(xo+2/2, y),
o;(xo+82/2, y)=n; n/2N, B;(xo+Q/2, y)= —n; n xo/ NQ de nouveau, et fi;=n;.

(b) Les fonctions propres u; antisymétriques ont la période NQ:

wW(E+NQ,y)=—u;(2xo + NQ =&, y)=u;(,y); (5"

I’application de (1”) en des points (£, y), (E+2, p), ..., (E+(N—=1)2, y) (xo < E<x+£)
donne un systtme de N équations linéaires homogénes 4 N inconnues de la
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forme Cy¢=cé avec la matrice

>

nous obtenons ses vecteurs propres ¢, et ses valeurs propres c, en considérant les
vibrations antisym étrigues d’une corde homogéne: les ¢, sont de nouveau donnés par
(2"), mais avec n=n; pair seulement,

w=2cosnn/N, npair,0<n<N; 3"

a étant quelconque dans (2”), toutes les valeurs propres ¢, avec 0 <n < N sont de mul-
tiplicité 2:

Si N est pair: c,, ¢4, Cg, --.. Cy—,, donc (N —2)/2 valeurs propres de multiplicité 2;
et deux valeurs propres non-dégénérées c,=2 et cy= —2, correspondant respective-
ment aux vecteurs propres

Go=(L1,1,..,1,1)* et &y=(1, 1,1, =1, .., 1, —1)*.

Si N est impair: c,, ¢4, Cg, ..., Cy -1, donc (N—1)/2 valeurs propres de multiplicité
2; et une valeur propre non-dégénérée c,=2, correspondant au vecteur propre ¢,
(comme ci-dessus).

Comme dans le cas (a) (fonctions propres symétriques), nous obtenons pour u; la
forme (4") ou (6'), mais avec n ; pair; et 'on retrouve comme cas particuliers (4”) et
(4") avec n;=h;.

Si n;=N, u; est fonction propre de la cellule S,.

Si n;=0, u; est méme fonction propre de la demi-cellule xy <x <x,+(£2/2).

Dans le cas (a) comme dans le cas (b), la fonction propre u; est complétement déter-
minée (grace A (4")), si on la connait dans S, et si I'on connait I'entier n ;-

3.2. Valeur propre dégénérée (multiplicit¢ d+1) A,,=4,,,1=...=14,,4+4 d>1; fonc-
tions propres indépendantes correspondantes u,,, U,y 15 ---s Upmsa-

Soit i entier, 0<i<d; fi(x, y) =ty (x—Q, y) + U, +:(x+Q, y) est soit identique-
ment nulle, soit (comme au § 2.2) fonction propre de Sy, correspondant aussi a la
valeur propre 4,,; donc

d
f,-(x,y)= Z Cijum+j(x,y); i=0,1,2,...,d. (7)
j=0

De fagon analogue au § 2.3, nous écrivons chacune de ces d+1 équations pour
X=xo+8,x0+2Q, ..., xg+(N—1)Q; mais, comme au § 3.1, nous devons distinguer
plusieurs cas:
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Premier cas: Chacune des fonctions u,, ..., 4, ., S’annule sur tous les segments
verticaux x=x,+v 2, v=1, 2, ..., N—1: elles sont alors déja des fonctions propres
de la cellule S, (4,,= «valeur propre purement locale»).

Deuxiéme cas: A, n’est pas valeur propre de S,, aucune des fonctions u,,, ..., 4,4+,
ne s’annule identiquement sur les segments x =x,+v Q. («Valeur propre purement
globale».)—Ecrivons alors (7) pour N—1 points (x,+92,»), (xo+22,¥), ...,
(x0+(N—=1)2,} ), nous obtenons un systéme de (d+1)(N—1) équations linéaires
homogenes & autant d’inconnues.

Si, par un nouveau choix des fonctions de base: #,, ..., #, .4 on décompose la
matrice (c;;) en d+1 matrices du type considéré au § 3.1, on obtiendra (1) et (4”)
pour #,, ..., i#,.4; prenons garde cependant que le nombre »n n’est en général pas le
méme pour ces d+ 1 fonctions: c’est pourquoi une fonction propre quelconque u,,, cor-
respondant d une valeur propre dégénérée, ne satisfera en général a aucune relation de la
forme (1”) ni (4™).

Troisiéme cas: A, est valeur propre de la cellule S;, mais avec une multiplicité
u<d+1.—On peut alors choisir, comme base de 1’espace propre correspondant, u
fonctions propres («locales») de S, et d+1—pu fonctions propres «globales»: pour
ces derniéres, on se retrouve dans la situation du deuxiéme cas.

§ 4. Un domaine périodique symétrique G étant donné, un N-secteur Sy et le N-secteur
complémentaire S, posent, si N>2, des problémes aux valeurs propres «globaux»
équivalents

4.1. Soit(Fig.1) Sy le secteur de G dans x, <x <x,+ N 2; le secteur «complémen-
taire» Sy =G {x,+(2/2) < x <xo+(2/2)+ NQ} est formé de N cellules §; «complé-
mentaires» a S,.

Soit u(x, y) une fonction propre de Sy: 4u+ A u=0; alors la translatée u(x—£, y)
est fonction propre du N-secteur translaté (Sy)q; si la fonction

i(x, y)=u(x—£, y)+u(x, y) ®)

n’est pas identiquement nulle [alors u serait fonction propre («locale») de la cellule
S,], elle est fonction propre de Sy, car

Ad+Aii=0

fi(xo+92/2, y)=u(xo—9/2, y)+u(xo+£2/2, y)=0 (cf. 2.2);
i(xo+NQ+2/2, y)=u(xe+NQ—-2/2, y)+u(xo+NQ+2/2, y)=0;
0ii/on+k(s)@i=0 sur le reste du contour de Sy.

(Les fonctions propres ne sont définies qu’a un multiple constant prés; dans les
figures 4 4 7, ou N=2, nous introduisons un facteur 4/2 pour obtenir des relations
symétriques entre u et i.)
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Toute valeur propre de Sy, qui n’est pas valeur propre de S, est valeur propre de Sy.
Plus précisément:

Si I’on laisse de cdté les fonctions propres («locales») de S, et de S, il y a une
correspondance, donnée par (8) et sa réciproque (permuter les roles de Sy et Sy),
entre les fonctions propres («globales») u de Sy et celles i de Sy.

Si A est valeur propre de Sy de multiplicité uy et de S, de multiplicité u,, alors elle
est valeur propre de Sy de multiplicité jiy> uy— p, ; et la différence entre le membre de
gauche et celui de droite est la multiplicité fi, de A comme valeur propre de S, :

Uy — My = fiy — fiy. ©)

(u, =0 signifie: A n’est pas valeur propre de S,.)

Cette relation est triviale si N=1; elle a un sens pour tous les N>2.

(a) La relation (9) s’établit tout d’abord pour les nombres A qui ne sont pas valeurs
propres multiples de Sy ni de Sy: uy=0 ou 1 et jiy=0 ou 1.

(al) Si A est valeur propre simple et globale de Sy, uy=1 et u, =0; la fonction
propre correspondante u satisfait alors a (1”) avec (cf. 3.1) c# +2; nous définissons #
par (8); je dis que @ n’est pas fonction propre de S;. En effet:

d(x—Q,y)—d(x+Q, y)=u(x—2Q, y)+u(x—Q, y)—u(x, y)—u(x+2, y)
=[u(x—29Q, y)+2u(x—Q, y)+u(x, y)]—[u(x—Q, y)+2u(x, y)+u(x+£, y)]
=(2+¢) [u(x—Q, y)—u(x, y)1;

A étant globale pour Sy, c# —2 et u n’a pas la période £2; donc notre expression ne
s’annule pas identiquement, i n’a pas la période 2, elle n’est pas fonction propre de
S.; donc A est aussi valeur propre globale de Sy, jiy—fi;>1, d’ou jiy=1 et ji, =0.

(a2) De méme, si A est valeur propre simple et globale de Sy, fiy=1 et ji, =0, et
I’on obtient uy—pu,>1, donc uy=1 et u, =0, 1 étant aussi valeur propre simple et
globale de Sy.

Si I’on exclut toute dégénérescence de A (dans Sy et dans Sy), uy—p, et fy—ji,
ont donc la méme valeur 0 ou 1.

(b) Par un argument de continuité, on étend la validité de (9) aux valeurs propres
multiples A: une légére déformation périodique de G en G’ décompose la valeur propre
A=ly=Apy1=...=Ns,y—1 €0 p, valeurs propres simples de la cellule déformée S;
et uy—p, valeurs propres simples «globales» de Sy; cette méme déformation pério-
dique décompose A=/, =1, =...=2,+5,~1 €0 fi; valeurs propres simples de S|
et jiy— i, valeurs propres simples «globales» de Sy; par (a) nous savons que ces va-
leurs propres globales simples sont les mémes et en méme nombre: uy — p, = fiy —fiy,
c’est notre relation (9).

En particulier, la fonction propre fondamentale u; a signe constant dans Sy, elle

ne peut (pour N> 2) étre fonction propre de S, donc (#,) est fonction propre de N
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c’est la premicere, car (cf. 2.3) elle correspond a n=1:
Al (SN) = Il (gN) Si N 2 2. (10)

On prendra garde, cependant, qu’une valeur propre supérieure «globale» 1;,=1 i
commune & Sy et Sy, aura en général des indices différents i+ j, car les valeurs propres
de S, sont différentes de celles de S,.

D’autre part, on remarquera que les valeurs propres et fonctions propres de la
demi-cellule x, < x < x,+ /2 sont communes a S, et S,, donc a Sy et Sy.

4.2. Repassons de Sy & Sy: Si ii(x, y) est fonction propre «globale» de Sy, alors
i(x, y)+i(x+Q, y) est fonction propre de Sy, donc, si la valeur propre correspon-
dante A est simple dans Sy et dans Sy (par exemple si 4 =4,),

d(x,y)+d(x+Q,y) =vu(x,p);

par (8), nous avons donc
u(x-2,y)+ 2-y)u(x,y) + u(x+ 2,y)=0;

c’est notre relation (1”) avec 2—y= —c.

§ 5. Extension & des périodes angulaires

5.1. Un domaine G, périodique relativement a un point O, est en général situé sur
une surface de recouvrement logarithmique, infiniment ramifiée au point O; il reste
inchangé par une rotation d’angle Q (la « période») autour de O.

Le domaine G ne pourrait étre considéré dans le plan que si 2 =2n/q avec g entier
(«domaine symétrique d’ordre ¢» [2]); mais, méme dans ce cas, nous le considérerons
sur la surface de recouvrement logarithmique.

Nous supposerons que la fonction k(s), définie sur la frontiére de G, jouisse de la
méme périodicité.

Un «N-secteur» sera Sy =Gn{0, <0<0,+ NQ}. Nous considérons seulement des
secteurs symétriques et des fonctions k(s) symétriques. — Toutes les «cellules» S, sont
séparées entre elles par des droites passant par O.

5.2. L’extension des §§ 2, 3 et 4 est immédiate. Notamment:

u,(r,0p +vQ)=g,(r)sinva/N, v=12,...,N-1; 4%)
u (r;6p+(v+34)Q)=g,(r)sin(v+4)n/N, v=0,1,2,..,N-1. (4%

Quelques exemples de secteurs Sy et Sy sont indiqués par les figures 2 & 7. — Une
catégorie particuliére est formée par les secteurs symétriques de polygones réguliers
(Fig.8betc,9betc,10cetd, 11 cetd).
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Fig. 4, 5 et 6: domaine initial symétrique relativement aux axes Ox et Oy; prenons u; > 0:

or o [u1(x, y) — wa(—x, y)| poury = 0;
2%, ¥) = ) ui(x, y) + ui(—x, y) pour y < 0;
et A1 = X1.
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Fig. 7: domaine initial symétrique relativement a I'axe Ox;

ui(x,y) — mi(x, —y) poury > 0;

V2in(x,y) = u1(x, y) + ui1(x, —y) pour y < 0;

et A1 = A

§ 6. Exemples de problémes globaux équivalents

Chacune des figures 8 a 11 indique une famille de membranes qui ont, par (10), méme
premiére valeur propre A, et, de plus, des fonctions propres fondamentales en relation
simple, cf. (8).

Les problémes aux valeurs propres dans Sy et dans Sy ne différent qu’en ce qui
concerne les valeurs propres et fonctions propres «locales», c’est-a-dire celles des
cellules S, et S, ; on prendra garde cependant que, par exemple, les fonctions propres
supérieures de la figure 8b ne sont pas toutes fonctions propres de 8a, etc.
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Les figures 8(b, c) et 9(b, c) étendent I’égalité bien connue entre les valeurs propres
fondamentales du demi-carré rectangulaire et du demi-carré triangulaire.
On remarque une certaine «complémentarité» entre les figures 10 et les figures 11.

§ 7. Equations de Sturm-Liouville a coefficients périodiques

Les §§ 2, 3 et 4 s’appliquent également aux équations de Sturm-Liouville a coeffi-
cients périodiques (période Q) et «symétriques», si les conditions aux limites sont
u(xo)=u(xy+ N Q)=0.—On pourrait utiliser ici la théorie de Floquet, qui repose sur
une discussion de la solution générale de I’équation différentielle (combinaison linéaire
de deux solutions indépendantes); cette théorie ne s’applique pas directement aux
problémes a plusieurs dimensions, la solution générale étant trop vaste.

Il est particuliérement facile d’illustrer les §§ 2, 3 et 4 par I’exemple simple d’une
corde vibrante a2 masses ponctuelles égales et équidistantes:

u"+Ao(x)u=0,
masse «spécifique» @=0,+0q+0_g+0,0+... (somme de mesures deDirac).

On vérifie que certaines des relations valables pour la corde homogéne, restent
valables pour la corde inhomogéne de masse spécifique périodique.

Illustrons ici le § 4 par le cas N=2.:
intervalle S,: 0<x<2Q contenant une seule masse; u(0)=u(2Q)=0;

| x our 0<x<Q
“1(x)=~ P

(2@ —x pour Q<x<2Q et A=2f

intervalle complémentaire S,: ©/2<x<5Q/2 contenant deux masses; #(2/2)=
#(5Q/2)=0;

iy (x) =uy(x — Q) + u, (x) =
(x—Q)+x=2x—-Q pour Q2<x<Q;
x—+(2Q2—-x)=Q pour Q<x<2Q;
BR-x)+(2Q—-x)=5Q—-2x pour 2Q<x<5Q/2;
et 1, =2/Q=1,.

Nous remarquons qu’ici A, est infini, mais non pas 1, ; cela est dd (cf. 4.1) au fait que
i, est déja fonction propre de la cellule S,.
§ 8. Remarques finales

(a) Les relations obtenues aux §§ 2 et 3 permettent de réduire de fagon essentielle
le nombre des inconnues, donc ’ordre du déterminant séculaire, dans un calcul numé-
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rique a I'aide de différences finies (un raisonnement analogue s’applique): seules de-
meurent les inconnues situées dans une cellule!

Contrairement aux relations (valables pour une classe plus étendue de domaines)
obtenues dans [1], nos présentes relations seront d’autant plus utiles que le nombre N
de cellules sera plus grand.

(b) Des raisonnements analogues peuvent s’appliquer a I’étude des fonctions
propres d’une équation de Schrodinger a coefficients périodiques dans un domaine
fini; & certains problémes aux limites; ainsi qu’a des problémes globaux discrets pré-
sentant un caractére périodique.
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