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Composition Functors and Spectral Sequences

by B. ECKMANN and P. J. HiLTON

1. Introduction

This paper constitutes an attempt at unification of the many spectral sequences
current in algebraic topology. The basic notion is that, given a factorization

f=“'jp+1jpjp—1'“ (11)

of a morphism fin a given category &, and given a connected sequence of functors
T,, defined on the morphisms of €, then under certain very general assumptions it
should be possible to obtain a spectral sequence relating T'(f) to the objects T(j,).
If € is the category consisting of based topological spaces and based continuous
maps, and if the factorization (1.1) consists of two factors,

f =hgs

then it is fairly well-known that there is an exact sequence for homotopy, homology
and cohomology functors which does relate T(g) and T(h) to T(f). We regard such
an exact sequence both as a special case of the result we aim at and as the axiomatic
jumping-off point for the abstract algebraic theory which is developed and applied
in this paper.

In a previous paper [10], to which this may be regarded as a sequel, we established
the machinery of exact couples and spectral sequences in an abelian category U. In
particular we studied the convergence problem in its fullest generality, and established
the exact sequence (Theorem 4.16 of [10]),

O—-»cokera’g;Emkkera"—*O, (1.2)

as a functor of the exact couple
D

2 5D
'X ﬁ (1.3)
E

where U=D/a"*(0)=D/\J,2""(0), I=a®*D=(),a"D, and «":U-U, a":I>1 are
induced by «. We obtained convergence theorems from (1.2), and used hypotheses
about the grading of the couple (1.3) to derive properties of o’ and a". These con-
vergence theorems naturally play a crucial role in the applications which appear in
this paper. We also defined and discussed in [10] a special diagram in % which we
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called a Rees system. This diagram also plays a key role in the present paper. Thus,
both for the content of the earlier paper and for the notations introduced there and
continued into the present paper, a certain familiarity with [10] must be assumed of
the reader. This is especially true of section 5.

The plan of the paper is as follows. In section 2 we introduce the general concept
of a connected sequence of functors defined on the morphisms of a category €. To
avoid confusion with the (very closely related) concept of an exact sequence
of functors defined on the objects of an abelian category!), we adopt the termi-
nology composition functor for the concept introduced here. Thus a composition
functor (7T, w) from @ to the abelian category U consists of graded functor
T=(T, —wo<g<wo), T,: €->A, together with a graded natural transformation
w=(w,, —00 < g <o), subject to the condition that, given f=hg in €, the sequence

L N e

o Ty ()22, 7 (1) T,

is exact. Properties of composition-functors are obtained; in particular, the case when
¢ is a pointed category is picked out and the familiar relation between the homotopy
sequences of a pair and a triple is generalized and the logical relation between the
two sequences is elucidated. In the course of this study a certain ‘rolling stone’ lemma
from homological algebra (Lemma 2.14) is formulated; this may have some interest
in its own right.

In section 3 we derive certain consequences from the associativity of composition
in €, when a composition functor is applied. The main result, in essence, is the com-
mutative diagram (3.3). This is really a special case of the exact couple which we obtain
from an arbitrary factorization (1.1); in fact, the special case of three factors,

f=wou.

Moreover, the various commutativity relations incorporated in (3.3) are crucial to
establishing the properties of the associated Rees system in the general case (1.1).
Thus we may say that we assume axiomatically the properties of the Rees system for
a factorization into two factors — this is just (1.4); we then deduce the required proper-
ties for a factorization into three factors — this is (3.3); and we may then jump to the
general case of an arbitrary infinite factorization.

In section 4 we digress from the programme outlined to enlarge the scope of

1) DoLp [5] introduced the notion of an exact sequence of functors. His notion and that of a
composition functor are distinct but have overlapping domains where they agree. The relation between
the two notions is studied by 1. Pressman in his doctoral thesis (Cornell University, 1965). DoLD [7]
has discussed half-exact functors. Again, there is overlap, but there is the crucial difference that Dold
always requires some excision property for his functors, whereas we do not.
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application of composition functors by introducing cut-off functors. Here we have
principally in mind the case of the homotopy groups =n,. It is well-known that, for a
map f, n,(f) is an abelian group if >3, a group if g=2, and a based set if g=1.
In order, then, to apply the theory of composition functors it is necessary to modify
the definition of n, for g < 3. Our main observation here is that there is a process which
does not require that 7, had been defined at all for g <3 (let alone that exactness is in
some sense preserved down to g=1). Thus we suppose that (T, w) is defined down to
dimension g. We then define T,_ and w, in such a way that, if we take T,=0,r<q—1,
we obtain a composition-functor. This process is quite natural and may, of course, be
applied to ‘cut-off’ any composition functor.

Section 5 contains our main theoretical results. In it we apply the theory of [10]
to the case when a composition functor (7, w) is applied to a factorization (1.1). The
factorizations we consider are ‘doubly-infinite’. We introduce this generality not
because such factorizations have so far turned up in naturel) (though they can easily
be synthesized in the laboratory), but because both left-finite, right-infinite factor-
izations (e.g., skeleton decompositions of infinite-dimensional polyhedra), and right-
finite, left-infinite factorizations (e.g., Postnikov decompositions) do certainly arise
and we wish to handle both simultaneously. We obtain (Theorem 5.5) a bigraded
Rees system and pass to the limit 5.11. In the latter the graded groups associated with
T(f), l_ir)nT(g,,), and lj;nT(g’,,), all suitably filtered, appear and we then apply the

convergence criteria, established in [10] and adapted to our situation, to relate these
graded groups to the E_, term of the spectral sequence arising from either exact
couple of the Rees system. Here g,=/, j,—1..., &=--.j,+1Jp; thus each is a familiar
morphism in any of the standard factorizations arising in algebraic topology. The
section closes with an explicit description of the objects ker a”, coker a’ which occur
in the crucial short exact sequence (1.2) and which measure, under suitable hypotheses,
the deviation of E_ from the graded group associated with 7(f). For we wish to
emphasize that we are not just concerned to give conditions under which E_ is
isomorphic to this graded group; we regard it as a justification of the lengthy alge-
braical preliminaries that we are able immediately to identify the deviation when
isomorphism does not hold.

In Section 6 we take up the contravariant case, that s, the case in which it is natural
to regard each T, as a contravariant functor into the abelian category U, say, rather
than as a covariant functor into A°PP. Of course, nothing new enters into the theory
as a result of this changed point of view, but, as the authors have themselves dis-
covered, there is a considerable pedagogical problem in effecting a smooth translation
of the previous results into contravariant terms. We adopt, for the purpose of achiev-

1) That is, in topology! A complete resolution can be interpreted as a doubly-infinite factorization
arising in homological algebra.
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ing such a smooth transition, the convention of relabelling the factorization (1.1) in
such a way that the results of Section 5 continue to hold in the contravariant case
without any substantial — and hence confusing — change of statement being required.
In particular, the Rees systems (5.6) and (6.6) have identical appearance and practi-
cally identical properties, the one difference being that the g-degrees of the morphisms
are changed into their negatives. Even this one difference could have been eliminated
had we not been so conservative as to wish to retain the convention that the co-
boundary raises degree by 1!

We stress that, up to this point, we have introduced no special categories €, al-
though our examples have been largely, but not entirely, drawn from topology. Thus
our results certainly contain no reference to homotopy axioms or excision axioms,
since these are naturally, though not exclusively, formulated in categories of topo-
logical spaces. Section 7, on the other hand, is devoted to a description of several
applications of the theory to algebraic topology. The spectral sequences are set up
then, using only the exactness axiom (1.4); but in computing with any given spectral
sequence (for example, in identifying the differentials d,) the homotopy and excision
axioms, where they hold, are plainly of vital importance. The first example given is
that of the Massey spectral sequence [19], here slightly generalized. This arises by
applying a covariant composition functor to a skeleton decomposition. The second
example is that of the Federer spectral sequence [14] and the treatment is similar;
here, however, the composition functor is contravariant so that the conventions of
section 6 are applied. These lead to some unusual degree conventions but no difficulty
ensues.l) The differential d, is identified and convergence conditions are discussed. In
particular, the point arises here of the completeness of the filtration of T'( f), referred
to above. We emphasize that the question of completeness (see [11, 13]) is quite
distinct from that of the relation of E, to ¥T( f), but it does, of course, affect the
extent to which the spectral sequence can provide information about T'( f).

In the third example the Federer spectral sequence is applied to a representable
cohomology theory; the result is an Atiyah-Hirzebruch spectral sequence relating
ordinary and extraordinary cohomology. Convergence questions are again taken up
and the completeness of the filtration is discussed. In particular, we sketch the proof
that a cohomology theory with dimension axiom on the category of CW-complexes
coincides with the cellular theory, provided it satisfies a certain wedge axiom (see
BROWN [4]). We also discuss abstract cohomology theories (i.e., those not necessarily
given by an Q-spectrum).

In the final example the covariant truncated composition factor I1,(4, ) is applied

1) We point out that we are not recommending these degree conventions when a single one of
the examples of Section 7 is under consideration. The conventions are designed solely to achieve a
unification of the general theoretical results.
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to a right-finite composition of fibrations. This case includes that of a Postnikov
decomposition of a space X and that of the Adams spectral sequence [1]; the latter
was discussed rather fully in [17], from the present point of view, and so has been
omitted from the present paper.

The authors wish to acknowledge the important contribution of P. J. Huber to
the early development of the ideas in this paper; indeed, ECKMANN and HUBER, in a
more restricted and earlier approach to the problem, [12], developed much of the
material of [10] in the category of abelian groups and applied it in connection with
the functors IT,(4, ), I1,( , B). It should also be remarked that DoLp [6, 7] has al-
ready dealt with the case when we are working in the category of finite CW-complexes
and (1.1) is a skeleton decomposition. His results there go further in as much as he
has also elucidated the product structure in the spectral sequence associated with a
half-exact functor. It seems, however, that one should not always demand excision;
and that one should look at other filtrations of complexes (e.g., the Milnor filtration,
the James filtration of a reduced product complex); and that one should also have
available ‘cofiltrations’ of complexes (e.g., the Postnikov decomposition). Thus, even
if we confine attention to applications to algebraic topology, a case for generalization
does exist.

A preliminary report on the contents of the present paper appeared in [16].

2. Composition functors

Let € be an arbitrary category; let €2 be the category of diagrams in € based on

the model category R

and let €3 be the category of diagrams in € based on the model category
p iy
The objects of €2 are thus morphisms of €, and the objects of € are pairs of morph-
isms ( f, g) such that g f is defined. There are functors
L,R:€ > ¢?

given by L(f, g)=/, R(/, g)=¢

A composition functor, (T, ») from € to the abelian category U consists of

(i) a graded functor T=(T,, —o0< g <o), T,: €U
and

(i) a graded natural transformation w=(w,, —©<q <), w,;: T,R-T,_L:
> subject to the exactness condition:
for any (f, g)e @3, the sequence (in QI)

f

is exact.
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PRroPOSITION 2.2 If (T, w) is a composition functor from € to N and if f is an
equivalence in &, then T,(f)=0 for all q.
Proof. We apply (2.1) to the object ( f, 1) and obtain the exact sequence

I
o T ()W, g 1y O,y 2B e s

Now () and ({) are equivalences in €2. Thus T,(;) and T,({) are isomorphisms, so
that (2.3) is just the zero sequence.

Before proceeding further, we make explicit the naturally condition on w. We
suppose given the commutative diagrams

x, Ly 8z,
TR TRRY: (2.4)
x,%y,%2,

in €; then, for each g, the diagram

T(l)—"(f"g‘) T,_.(f)

7,0, Ty @3)
| i

T,(e)- 2228, 1 (1)

commutes.
Now let us suppose that € posseses a zero-object, 0. Then there are unique mor-
phisms 04:0— X, 0¥: X—o0, and we obtain in this way embeddings

Li:C»C¢%, jjE¢°
given by
1X)=0g, 1X)=0%, j(N)=Onf) Jjf)=(0), for fiX-o7Y.

We define graded functors z, 7 from € to A by

=T, 1=Ti, (2.6)
and graded natural transformation 9, d by

0=wj, 0=wj. 2.7
Thus

Qq(f)=wqj(f)=wq(ox’f):Tq(f)")Iq-—l(X)’ and
8,(f) = 0,0 (f) = 0, (£,0"): T, (Y) = T,-1 (/).

Let { be the graded transformation given by {,(X)=w,(0x, 0*). We prove
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THEOREM 2.8 (i) ( is a graded natural equivalence, {,:7,~1,_; (ii) in the diagram

)qﬂ(f) T (Y)———— REE) =i T f ) %) T (X) -

- T.(X
= qu+1(X) = l Ler(Y) = l s fq(X)
1,(X) —"?"—(1)—+ 7, (Y) ——— ““(f) T,(f) "(L)wq_l(x)ﬁ...

Where gq (f) = Tq ((1))}") ’ 5q(f) = Tq ((1)‘: 4
the squares commute and the rows are exact; (iii) for any

xL v& 2

in €3,
@, (f,8) = Ty-1 (33 °Le(Y)° T, (o) = g1 () 2 Lo (Y) 2 5,(g). 2.9

Proof (i) To see that { is natural, we apply (2.5) to the diagram

o—->X—-o

Lodrd

o—>Y>o
To see that { is an equivalence, we construct the sequence (2.1) for (Oy, 0¥) and

apply Proposition 2.2.
(ii) The rows are exact, being simply (2.1) for j( f), j(f) respectively. The first

square commutes because { is natural; for the second we apply (2.5) to the diagram

0o->Y>o

Vol
X £, Y-o;

and for the third we apply (2.5) to the diagram
o-XLy

Lol

o—->X—>o.

(iii) In the light of (ii) it suffices to show that
wq(fag) = —q—l(f)oaq(g)'
This, however, follows immediately by applying (2.5) to the diagram

0-Y52Z
[ T
xLysz

(2.10)
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Remarks (i) In most applications, the lower sequence of Theorem 2.8 (ii) is the
first to become familiar, especially when f is an inclusion; the upper sequence was
noticed (e.g. in [3]) when homology and homotopy functors were applied directly
to maps without the intervention of a “mapping-cylinder” to reduce them effectively
to inclusions.

(ii) Notice that (2.9) asserts that, for a pointed category, w is entirely known when
{ is known; so, a fortiori, are 0 and 0. Further we have

wq(fag)=—q—1(f)°@q(g)=Eq(f)oaq(g)- (2.11)

We now prove a converse of Theorem 2.8. Suppose given a graded functor
T: 829 and a graded natural transformation ¢, {4:Tq—T4-1: €U There are then
sequences, and a map of sequences,

_)’Eq+1(X) 9+1(f) —q+1(Y) q+l(f) ( ) q(X) .. (2123)
@ am - i l £a(X)
& e B oy B (&) e @i

for any f: X— Y in €, where &, g are defined as in Theorem 2.8 and 0, 0 are defined
to make the appropriate squares commute. Then we have

THEOREM 2.13 If (2.12a) or (2.12b) is exact (for all f), then
(1) { is an equivalence
(i) (2.12a) and (2.12b) are both exact (for all f)
(iii) if w is given by (2.11), then (T, w) is a composition functor and

0, (0x,0%) = {,(X)

Proof. (i) Let us suppose for definiteness that (2.12a) is exact. Setting Y=o, and
noting that then &,( f)=1, we deduce that 7,(0)=0 for all 4. But if we now set X=o0
and look at the centre square we have

fq+1l(Y) q+1(01’) (Y)
L@ =
1,(Y) —5—1,(Y).

1

Thus {,,(Y)is an isomorphism and so { is an equivalence. Similarly one deduces
the conclusion from the assumption that (2.12b) is exact.

(ii) follows immediately from (i).

(iii) We first show that w, is natural, that is, that (2.5) holds. We note that, in
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the notation of (2.4),

Gom1 (f2)oTgm1 () = —g=1(§)o0,—1 (f1), and
5q(gz)° Tq('é) = fq(”)"&q(gl)’

just because T,_,, T, are functors. Thus

@, (f2,82)0 T,() = a,-1(/f2)- {4(Y2)oa,(82)0 T(c)
=_q—1(fz)OCq(Y2)°Tq('l)°O'q(g1)
= 0,-1(f2)eT4-1 (M) {,(Y1)0G,(gy), since { 1s natural
s)OQ'q—l(f1)°cq(Y1)°5q(g1)
= Tq—1($)°wq(f1,g1)-

The relation w,(0x, 0¥)={,(X) is immediate from the definition of w,, so it
remains only to prove the exactness of (2.1). We invoke the following general lemma.
LEMMA 2.14 Let U be an abelian category and let

3

o
<o
<x

e
JE A

/f Wt

By

_4

SN

be a commutative diagram in W. We consider the four sequences of morphisms marked
1, 2, 3, 4 and assume

(1) three of the four sequences are exact;

(ii) the fourth sequence is differential where it appears vertically or horizontally.

Then the fourth sequence is exact.

Proof. We may suppose that U is the category of abelian groups. The argument
now proceeds by standard diagram-chasing and is left to the reader. (Note the
symmetry in the roles of the four sequences in the diagram; thus we may suppose that
the sequences 1, 2 and 3 are exact in the proof, without loss of generality).
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We apply Lemma 2.14 to the diagram

Tq+1(f) 0+ (f)
—r —

Tg+1(X) Tg+1(Y) T,+: (f)
a
Tq+l(gf) T,+1(8) b Tq+1(;) Og41(f)
c
tye1(2) 0q+1(gf) T.,H(gf) aq+1(gf) 7,(X)
d
0,+1(8) ;- ({) ¢ 1,(f) 7, (8f)
a
T~ @y oy —B@ g
f
Wg+1(f.8) o(f) b aq(gf)
() —2b) s 1)

where we have omitted the underlines from the sequences (2.12b). The commutativity
of a, b, and d follows from the functorial property of 7. The commutativity of ¢
follows by applying (2.5) to the diagram

0o-XLy
Ioole e

0o»Xx4%2z ;
the commutativity of e follows by applying (2.5) to the diagram

0-x%7z
U P A

0-Y52Z ;

and the commutativity of £ is just (2.10) — which followed from the naturality of w.
Thus, to apply Lemma 2.14 to prove the exactness of (2.1), it remains to show that (2.1)
is differential at T,(g f).

“Now () B)=() =) () But T,({,): T,(f)~T,(1y), and the exactness of (2.12)
immediately implies that T,(1,)=0. Thus T,({)T,(;)=0, and the lemma may be
applied to complete the proof of the theorem.

We have therefore established that, in a pointed category €, a composition
functor (T, w) may be specified by (T, (), or, indeed, by (T, ) or (T, 0). We will
permit ourselves in the sequel to use whichever specification is convenient.
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Examples. (i) €=Z, the category of topological spaces, and T,=H,, the g™
singular homology group (with integer coefficients, say). Here U is the category of
abelian groups. We apply H, directly to the singular chain complex of f itself. The
existence of w and the exactness of (2.1) then follow from standard homological
algebra. We may also consider cohomology (essentially, by considering the category
dual to the category of abelian groups). We obtain a pointed category by replacing T
by the category I, of based spaces and based maps and may then apply Theorems
2.8, 2.13.

(i) €=category of A-modules, T,=Ext;? (4, ), ¢<0, T,=xn,(4, ), g=0. Here
n, stands for the projective homotopy group of [8, 15]. The category U is the category
of abelian groups. We note that our formulation requires that the functors Ext} (4, )
and n,(A4, ) be applied to morphisms of €. This may be achieved, by defining Ext}
(4, ¢) to be Ext} (4, C,), where C, is the injective mapping cone of ¢, ¢>0, and
defining 7,(A, @) to be m,_, (4, K,,), where K,, is defined in a manner dual to C,, ¢>0.
A special definition of n,(4, ¢), and a natural definition of w, may then be given to
make (T,, w) a composition functor. For details see [18].

3. Associativity of composition

Of course, the associativity of composition in € is essential to the definition of
composition in €2 and €3 (since, otherwise, the juxtaposition of commutative squares
would not lead to a commutative square). In this section we draw some further ele-
mentary consequences from associativity under the application of a composition
functor.

We consider the diagram

L (3.1)

in €, so that wou=w(vu)=(wv)u. We expand the diagram (3.1) to the commutative
diagram

. u . v .
Pu e b
b Lo L (3.2)
bu Li L

—_———>

Now let (T, w) be a composition functor from € to A. We apply (T, w) to the
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diagram (3.2) and obtain the commutative diagram

- Tq(u)l‘*;(.'l T(vu) %) —5 T, (v) M To-1(u) -

K TG T |1
¥ v
oo T, () 2200) T, (o) T56n) 1 (wouy—ai) T, () L), 7 oy Lale?) w, (u, wo) T, () =
1T() e [Tea() G
o T o) 2 L) T(w u)Lal) ) T,(w) (v, W) T, (vu) -
() Tq() ll iTq*l(r)
e 7}(0) Q(W) T(W U] o () T,(w )w T,_1(v) -

Here the rows are, of course, exact: the commutativity of the squares on the right
will be invoked in section 5, when we discuss the Rees system obtained by applying
a composition functor to a morphism in €. Indeed, (2.1) and (3.3) may be regarded
as the special cases of the Rees system, when the factorization involves two and three
factors respectively.

We may apply the Barratt-Whitehead procedure [3] to (3.3) to obtain three
“Mayer-Vietoris” sequences. However, it turns out that the first and third essentially
coincide; thus we obtain the following result.

THEOREM 3.4 Suppose given the diagram (3.1) in € and a composition functor
(T, w) from € to . Then there are exact sequences

oo Ty (W) n(i)w“+‘(“’wv)Tq(uu) T ). T"(‘l”)}Tq(v)@Tq(Wvu)
(Tow) = TGP, D, T, (W)= (3.5)
and
o Tlou) T, 7 () 2D T D) o
Tyms () = W) 0 (3.6)

(Notice that the sequence obtained from the last two rows of (3.3) coincides with
(3.5) in the light of the commutativity of the right-hand centre square of (3.3).)

Examples (i) Consider a nested sequence of complexes NceMcL<K. Then
applying the homology functor we obtain an exact sequence

«+~>H ,(K,M)-> H(L,N)- H(L,M)® H,(K,N) - H(K,M) >
and an exact sequence

++—> H,(L,N)-> H,(K,M)-»H,_,(M,N)® H,(K,L)-> H,_, (L,N) >
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(i) Let K" be the n-skeleton of the complex K. Then applying the homotopy
functor we obtain an exact sequence

"'—’TIq+1(K",Kn_2)—’TCq(Kn-l,Kn_?’)

- nq(K"—l,K"—z)@ﬂq(K",K"—3)—-* ﬂq(Kn,Kn~2)—*"'
and an exact sequence

-~-—+nq(K"“l,K"—3)—+nq(K",K""Z)
_}nq_l(Kn-—Z, K"_S)@ﬂ:q(K",K"—l)“’ nq_l(K"_l,K"_3)—>---

Remarks (i) (3.5) and (3.6), which were deduced from (2.1) are, in fact, each
equivalent to (2.1); for we recover (2.1) from (3.5) or (3.6) by setting v=1 or u=1
(or w=1) respectively.

(i) It might be interesting to study the interrelations of (3.5) and (3.6).

4. Cut-off functors

In the second example in section 3 we implicitly invoked the homotopy groups as
a composition functor. Plainly this is not valid without some modification as =,
is not a functor to abelian groups but to groups?'), x, is a functor to sets, and = is
not defined for g<1. Now Massey described in [19] a procedure whereby one may
adapt the functor =z so that its values are always abelian groups. We will simply describe
this procedure in the setting in which we are developing the theory.

Let € be a category and U an abelian category. We will suppose throughout this
section that € is pointed. Then a truncated composition functor from € to U is a
triple (7, w, t) where teZ, T=(T,, qg>t) is a graded functor from €? to A, and
o=(w,g=t+1),w,: T,R>T,_, L: €* -, is a graded natural transformation. More-
over, the triple is subject to the exactness condition: the sequence

2 T (f) = Ty(8f) = Ty(8) > To- 1 (f) >~ T(f) > T(ef) » Tu(e) (41

is exact for all ( f, g)e €>. We may for further precision say that (T, w, f)is truncated
below at t; one may deal similarly with composition functors truncated above, but
there is no necessity to deal with them separately since they may be brought within
the compass of the case considered by considering composition functors from
E°PP to NA°PP and applying the sign-reversing trick. If a composition functor is trun-
cated above and below then we may apply the technique described below first to the
lower and then to the upper end of its domain of definition.

Our object, then, is to take a composition functor truncated below at 7, and to
construct from it a composition functor, over the whole range — oo < g < oo, which

1) Recall that, here, m,: €2 — b, ¢ > 2; that is, we are considering the homotopy groups of maps.
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coincides with the given functor where the latter is defined. We do this in a canonical
way and, as is to be expected, it turns out that it is only necessary to find suitable
definitions of T,_,, w,.

Let, then, (7, , t) be a truncated composition functor from € to A. Then 7, 7,
are defined for ¢>1¢, and (,:7,—1,_,, given by

{,(X) = w,(04,0%), 4.2)

is defined for g>¢+1, and it follows, just as in section 2, that {, is a natural equiv-
alence. For the analogue of Proposition 2.2 plainly holds if we replace (T, w) by
(T, w, t) and only ask for the conclusion for g>1.
We now proceed to extend T so that it is defined for each gq. Specifically we set,
for fe G2,
T,-1 () = coker %(f),

T,(f)=0, q<i—1 (43

Since 17, is a functor it is plain that T,_, is indeed a functor €2—>%. Moreover
since (as was observed above) 7,(0)=T,(1,)=0, it follows that

7—1 (X) = T,_{ (04) = coker 7,(04) = coker (0 - 7,(X)) = 7,(X),

ft(X) = It—l(X); (4.4)
and 7,1 (X) = T,_, (0%) = coker 7,(0%) = coker (%,(X) - 0) =0,
i (X)=0. (4.5)

We further extend {,:7,~1,_, from (4.2), to the whole range by setting

{Ct =1:7T, -1,
(=1(=0), g<t.

Definition (4.6) is valid in the light of (4.4), (4.5).

(4.6)

THEOREM 4.7. The pair (T, {) satisfies the hypothesis of Theorem 2.13. Moreover,
the associated composition functor extends the original truncated composition functor
over the whole range.

Proof. We must verify the exactness of one of the sequences

- f,(f?( )ft(f) ‘(f?( RN I () 1(f) f (X)) =0
(X (Y) =
o ()2 Te—-1(f) o, ()2 g:- 1(f) T, (f)—=A 0, 1(f) 1,_,(X) = 0.

Let (f):7,(Y)—» coker 7,( f)=T,-,(f) be the natural projection. It then suffices
to show that x(f)=g,-;(f)="T,-1(}¥). We have, however, the commutative dia-



Composition Functors and Spectral Sequences 201
gram 0 —— %,(X)
LA
L (Y) ——— 7(Y)
=1 Lx(f)
Ir—1(Y) g,-le_'_)) Tt—l(f)

and this establishes the result. The second assertion is quite evident in view of (4.2).
Note that

w,(f,8) = x(f)06.(g): T,(g) » T,—1 (f).

Remark In[19], MAsSEY modifies the homotopy group functor by replacing 7, ( f)
by the subgroup Im 7,(Y)cn,(f). This procedure is essentially equivalent to ours,
but in our formulation it is superfluous to suppose that n,( f) is already defined in
a larger category than b, namely in the category ® of groups. We now proceed to
describe this example in detail.

Example 4.8 Let T, be the category of based spaces and based maps. We take
A€, and we then have a truncated composition functor (7, w, 3), where T,=1I (4, ),
and w, is the natural boundary homomorphism in the homotopy sequence of a triple.
Then 73(X)=11;(A4, 0¥)=11,(4, X) and 75(f)=f4:11,(4, X)—>II,(4, Y). Thus the
procedure we have described leads to the definition T,(f)=coker f,. In fact, of
course, coker f,=Im I1,(A, Y)<II,(A4, f); but it was not necessary to our purpose
that IT,(4, f) had already been defined as a group. Indeed it was not even necessary
that IT,(A4, X) had already been defined as an abelian group. For, given the functor
I1;(A, ), we could have defined T, as in the general theory and we would then have
had 1,(X)=1,(X) (=1I1,(4, X)).

This example serves to underline a general question. We plainly lose information
in passing from IT,(4, ) to T,. We should therefore investigate the question to what
extent we need the structure of an abelian category for the range category of 7. This
question has been considered (from a slightly different viewpoint) by Dold; and we
ourselves hope to return to it in a subsequent paper. Meanwhile we think it worth
mentioning that we cannot apply the procedure described in this section when, for
example, we replace U by the category of groups. For

nl(X)&nl(Y)acokerf*qo
. *
18 not always exact in ®.

We should point out how the general argument we have given would proceed if
we began with a truncated system (7, (, #). That is, we might have assumed the
functors T, defined for g>1, the natural transformation {:7,~z,_, for g>7+1 and
then that (2.12a) or (2.12b) is exact so far as it is defined. However there is then a
difference of an essential nature between these two sequences since (2.12b) terminates
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at - T,(f), whereas (2.12a) goes on for two more terms. If we assume (2.12a) exact
then we infer (setting X'=Y=o0) that 7,(0)=0, ¢>¢, and hence, as in the proof of
Theorem 2.13(i), that {, is an equivalence, g>7+1. Thus we may proceed to define
T.-1, {, as in (4.3), (4.6) and so extend (T, , #) to a full system (T, {). If on the other
hand we assumed (2.12b) exact, we would then have no reason to assume the exactness
of 7,(Y)- T,( f)—7.(X) or, equivalently, to suppose {,,, an equivalence. Thus, the
hypothesis of the exactness of (2.12b) would need to be supplemented by a condition
equivalent to that of supposing {,,, to be a natural equivalence in order that the
truncated system could be completed.

5. Factorizations of morphisms

Let € be a category (not necessarily pointed) and let f be a morphism in €. A finite
factorization of f is then an expression for f as

f=jPo"'jp+1jpjp——1'“ij (51)

where each j,, Py <p <P,, is a morphism in €. The length of the factorization is
Py—P,+1.

We wish to consider infinite factorizations of f. By an infinite factorization of f
we understand a triple of sequences of morphisms in C,(j,, g,, §,, — 0 <p <),
satisfying the relations

f=gpgp-—19 jpgp—1=gp’ g-p+1jp=gp9 —CD<p<OO (52)

Formally we may write
f= "'.jp-l'-ljpjp-l sy
gp =jpjp+l ceey
g-p ="°jp+ljp’
and regard f as factorized as an (infinite) product of the morphisms j,. The case (5.1)
of the finite factorization of f is then subsumed under the definition of an infinite
factorization by taking
g, =1, p<P, (5.3)
g&,=1, p>PF,. (5.4)

Notice that (5.3) implies j,=1, p<P;, and (5.4) implies j,=1, p>P,. If (5.3) holds
we say that the factorization of fis left-finite, and if (5.4) holds we say that the factor-
ization of fis right-finite.

Examples (i) The skeleton decomposition of a simplicial complex is a left-finite
factorization by inclusions. It is finite if the complex is finite-dimensional.

(ii) The Postnikov decomposition of a 1-connected space is a right-finite factor-
ization of fibrations.



Composition Functors and Spectral Sequences 203

(iii) An injective resolution of a module gives rise to a left-finite factorization; a
projective resolution of a module to a right-finite factorization.

Now let (7, w) be a composition-functor from € to U and let (5.2) be an infinite
factorization of f. We then utilize the exactness axiom (2.1) to prove

THEOREM 5.5 There is a diagram in W%*%

D * > D
JV/A\Y\ Z&/ﬁ\%g
F ¢ E & F (5.6)

wNA WA
D z > D
in which

() D=(D"")=(T(g,)); D=(D")=(T,(&); E=(E"")=(T,(,);
F=(F"*) = (T,(f));

() & =T, = T P =0y @ = T
qu-wq(-lp l’gp)’ .},Pq T(gp+l) éPQ_wq(gp 1’gp) q)Pq T(8p+1)’
7 = T,(1);

(iii) deg a=dega=(1,0); deg f=deg7=(0, 0); degy=deg f=deg é=(—1, —1);
deg, p=deg, p=0; deg, po=1;

(iv) (o, B,7y) and (&, B, 7) are exact couples;

) (& o, @) is an exact triangle;

(vi) the commutativity relations o =Ea, BE=P, y=¢7 hold;

(vii) @P* ' aP=@P, & @P=q@"*! for all p, q;

(viii) @”@P=7"B* for all p, q;

(ix) the spectral sequences associated with (a, B, y), (&, B, 7) coincide and

4" = 0, (j,-1,,): E"9— EP" 1071, (5.7)

Proof Statements (i)—(v) are immediate consequences of the exactness axiom (2.1).

Statement (vi) ist just the commutativity of the three right-hand squares in (3.3),
where u=g,_,, v=j, w=g,,;.
Statements (vii) and (viii) follow from the functorial nature of T,. Now statements
(iv)-(vi) assert that (5.6) is a Rees system [10]; thus Theorem 7.10 of [10] may be
applied to show that the spectral sequences associated with (a, B, y), (&, B, 7) coincide.
Finally (5.7) follows from the commutativity of the right-hand bottom square in (3.3),
where

u= gp~—2’ v =jp—1’ w =jp'
(Recall that gP9=pgr~ 14" 1yp9)
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Let ®eAZ be given by @*=T,(f). Then
F=4%
where 4 : 8- 27 is the functor, defined for any category €, given by
(4B =B, (forall peZ).
Let 0 : £2- 2% be the functor given by
(OM)Y = M"~', MeQ%.
04=4. (5.8)

Let 3:1—-6 be the natural transformation given by: 3,,: M—0 M is the morphism of
degree 1 which is the identity on each component. Then, in particular,

9,5:4B— AB

is an automorphism; we write it simply as 9.

With this convention, we note that Fin (5.6) admits the automorphism 9 and that,
in terms of this automorphism, statements (vii) and (viii) of Theorem 5.5 may be
reexpressed as

Then

¢a=9¢,&¢_=(ﬁ‘99 (pgwl(pz?ﬁa (59)

where we regard ¢, ¢ as having some fixed, but arbitrary, p-degree, subject only to
the condition that the sum of their p-degrees is 1 (see Theorem 5.5(iii)). The degree
of 9is (1, 0).

Comparing with (7.9) of [10], we conclude

THEOREM 5.10 The diagram (5.6) is a special Rees system, where 3: F=F is given

by 9P = | P9, FPtLa

The general theory of special Rees systems thus applies to (5.6). We may, in
particular, pass to the limit and obtain the diagram (see Theorem 7.32 and subsequent

remarks in [10]) gp=

ﬁ/a ;S
coker &’ >————§——> coker o’ ————-» GF \
Y v g9
= B " gD~

(5.11)
B y 7s \ o4

P

coker & >————> E, ——>» kera

NN
&
KN

ker ¥ — > kera’
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where
(i) commutativity holds in all squares and triangles;
(i1) the horizontal and vertical sequences are exact;
(iti) ¢’ and & are induced by & and have degree (—1, —1);
(iv) Bs> Vx> Bx» 7« are induced by B, y, B, 7 and have their respective degrees;
(v) o', " are induced by ¢, ¢ and have degrees (0, 0);
(vi) 9 F is the p-graded object associated with the filtration

e P T (g N9’ T(g") <...c T(f)
which coincides with the filtration

—p+1

...c ker @ ckerp® c...a T(f);
(vil) 4 D™ is the p-graded object associated with the filtration

e’ I T ) en’T(g) <...clim(T (g,), «");
_)
p
(viii) 4D~ is the p-graded object associated with the filtration

...< ker n? < ker #*! < ...clim(T (g,),&");
.

Y p

(ix) a,, @, are of degree (0, 0);

(x) 79, 9~ 9 are induced by ¢, @ and have degree (0, 0).
Here (D%, n*)=1im(T(g,), o®), (D™=, #?) =lim(T(g,), &").

7 B2

REMARKS (i) The interpretation of & F is simply taken from (6.18) in [10]; we
have here written % F rather than F* in order to stress that it is a graded object
associated with a filtration.

(i) When we identify F~ with F* (Theorem 7.26 of [10]), we do so via an auto-
morphism induced by 3 which has degree (1,0). This explains why @” ¢’ has p-degree 0
while @ ¢ has p-degree 1. This remark is also brought out in the two descriptions above
of the filtration of T(f).

(iii) The diagram (5.11) has been supplemented by the objects ¥D®, D~ ®
and their associated morphisms in order to emphasize that it is impossible to obtain
from the spectral sequence information about F not relevant to D® or D™,

(iv) Consider the morphism y, ,.: D’— D", given by

Wp, p’ = (ﬁp (Pp, .
Then &” ¢, , =y, ,+, and ¥, ,o? " '=y,_; ... Thus the family y, , determine a
morphism :D®— D~ * with #? Y nP=y, ,. Moreover ¥ is filtration preserving; for

—p+1 P _ _ mptl _p __
n lIITC "‘/’p,p+1"(p Q _Oa

so that y induces yP:n? DP—ker 77*!. The morphisms y? induce a morphism
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GY.:9D*>->% D™ of the associated graded objects which is just the composite
(¢~ 9)(¢*9)in (5.11).

We now draw the evident conclusions from (5.11). We first state the formal
conclusions and then interpret them in terms of the factorization (5.2) and the
composition functor (7, w).

THEOREM 5.12 (i) If E,=0, then all objects in (5.11) are zero,; in particular
GF=0.
(ii) If coker &' =0, then cokerd’ 29 D*=GF, E =ker &", and there is an exact
Sequence
G F»E_ -»ker o, (5.13)

(iii) If ker a”" =0, then $ F~% D~ ~ker &", coker o' = E,, and there is an exact
Sequence
coker &> E_ —»9YF. (5.14)

(iv) If coker &' =ker a"=0, then all other objects in (5.11) are isomorphic; in
particular
E,~9F. (5.15)

It should be noted that we are concerned here with morphisms of bigraded
objects; thus the isomorphisms of this theorem are not necessarily of degree (0, 0).
Indeed, the degrees of the morphisms above may be readily inferred from the state-
ments following (5.11); in particular, when (5.15) holds the isomorphism in question
has degree (0, 0).

We now discuss conditions under which the hypotheses of Theorem 5.12 are
verified. Let us say that the factorization (5.2) is left-T-finite if, for each g, there is a
P;(g) such that

T,(g,) =0, p<P.

Thus (5.2) is left-T-finite if and only if, in (5.6), D is positively graded in the sense of
[10]; and plainly (5.2) is left-T-finite if it is left-finite. We also introduced in [10]
the concept of D being ultimately positively graded; by this we understood that D, is
positively graded for some n. There is a more general —and, in a sense, more natural -
definition of this concept, in which the index # is itself allowed to depend on?) g. We
are led, then, to make the following definition. The factorization (5.2) is wltimately
left-T-finite if, for each g, there exist n(q), P, (g) such that

a”'];(gp_n)=0, p <Py,

where o” is the n™ power of the morphism «.

1) This generalization was suggested by R. Greenblatt.
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There is evidently the corresponding notion of an ultimately right-T-finite factor-
ization. We then have

COROLLARY 5.16 (i) If the factorization (5.2) is ultimately right-T-finite then there
is an exact sequence

YF»—E_-»kera”.
(ii) If the factorization (5.2) is ultimately left-T-finite then there is an exact sequence
coker ¥ —»E_ —»YF.
(iii) If the factorization (5.2) is ultimately T-finite then
E.x9F.

We recall that ¢ F is the bigraded object explained in (5.111); E is the limit of
the spectral sequence associated with each of the couples («, 8, y), (&, B, 7) of Theorem
5.5; a":1-1I is the endomorphism induced by a:D—D, where I=("),a"D; and
&:0U-U is the endomorphism!) induced by &:D—D, where U=D/|J, ker &".
We also remark that the condition on (5.2) imposed in Corollary 5.16(i) implies not
simply that coker & =0 but even that U=0; it is therefore very far from a necessary
condition for the validity of (5.13); similar remarks hold for (ii) and (iii) above.

In [10] we also introduced the notion of stationarity for the endomorphism
a:D—D. Generalizing as for positive and negative grading, we say that « is ultimately
positively stationary if, given any g, there exist n(g), po(q) such that «*?is an iso-
morphism for p>p,. Similarly we define ultimate negative stationarity; and we say
that the factorization (5.2) is witimately right-T-stationary if o:T(g)—T(g) is ulti-
mately positively stationary; and that it is ultimately left-T-stationary if a:T(g)—T(g)
is ultimately negatively stationary. We have the following implications.

ProposITION 5.17 (i) If (5.2) is ultimately right-T-finite it is ultimately right-T-
Stationary,

(i) if (5.2) is ultimately left-T-finite it is ultimately left-T-stationary;

(iii) if (5.2) is ultimately right-T-stationary then coker o’ =% D>;

(iv) if (5.2) is ultimately left-T-stationary then YD~ ® ~Kker &";

(V) o is ultimately positively (negatively) stationary if and only if & is ultimately
positively (negatively) stationary.

Proof. (i) and (ii) are trivial; (iii) and (iv) are translations of Theorem 6.10 of 2)
[10]. To prove (v), we consider the Rees system (5.6). First we remark that if

1) In the notation 6f EIO], we have a® = vp i : D = Dn > D, and I = lim(Dyp, va), U = li_rE
(D ny TTn). %=

2) The slight generalization of the concept ‘ultimate’, compared with [10], complicates the proof
imperceptibly.
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a2 D2~ DP9 p>p,, and if n>m, then a?*?: D9~ DP* 14 p>p 4+ n—m. Let us
then suppose that a is ultimately positively stationary. If we fix g, then 3n,, n,, po, p,
such that
am®  is an isomorphism, p > p,,
ak?" ! is an isomorphism, p=>p,.

Let n=max (ny, n,), P=max (py+n—ng, p; +n—n,). Then
a?? and o !  are isomorphisms, p > P.

We study the n™ derived system of (5.6). Adopting the convention that D?? is a sub-
object of DP9, we have the exact sequence

ptn—1,q p—1,9-1

ptn—1,q %n +n, 3 ~1,4-1 %y »q—1
- D, 12 D™ S EM ST 2 DR

This shows that EF’9=0 for p>P+ 1. Here n and P are functions of ¢q. Let N=max
(n(q), n(g—1)) and consider the following exact sequence extracted from the lower
couple of the n™ derived system of (5.6):

Ey?— Dy D"“" Ey

Then E59=0 if p>P+1, EE™9 ' =0 if p>P+N+1. Thus if p>P+N+1, a§*?
is an isomorphism, so & is ultimately positively stationary. The converse is proved
by the same argument and the case of negative stationarity similarly.

REMARKS (i) We may suppress the word ‘ultimately’ from any of the statements
of Proposition 5.17.

(ii) Proposition 5.17(v) shows that we could have defined right- and left-station-
arity for (5.2) in terms of a or & We chose the definitions given because the stated
hypotheses seem to arise naturally in applications.

THEOREM 5.18 If o (or &) is ultimately stationary, then the spectral sequence of
(5.6) converges finitely. That is, given p, q, there exists N, such that Ex=E}], =
..=ER

Proof. This was proved in [10], Theorem 6.13, under more general assumptions
on the degrees of § and y, but with a more restricted definition of ultimate stationarity.
However the essential observation in the proof is that, for each g, there exist P’, P’,
n such that

EP?=(0  except perhaps if P"<p<P’;

and the arguinent for this was given in the proof of Proposition 5.17(v) above.
We then conclude that
ER = Exiy, (5.19)

provided N>{P'(q+1)—p—1,p+1—-P"(q—1), n(g+1), n(g—1)}.
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Plainly (5.19) implies that, with such a value of N,
EfT = ER, = - = ELY.

Proposition 5.17 and Theorem 5.18 enable us to strengthen Corollary 5.16 in the
following way.

THEOREM 5.20 (i) If the factorization (5.2) is ultimately right-T-finite then
ker ">~ % D™ and there is an exact sequence

GF>E, »9D™ ™

(ii) If the factorization (5.2) is ultimately left-T-finite then coker &’ =% D® and
there is an exact sequence
YD*—E_ »%F

(iti) If the factorization (5.2) is ultimately T-finite then the spectral sequence of
(5.6) converges finitely and
E, x2%F.

Proof. We prove (i) and (i) by invoking Proposition 5.17(v), and Theorem 6.10
of [10]. (iii) just restates Theorem 5.18 and Corollary 5.16 (iii).

REMARKS (i) In Theorem 5.10 (i, ii) we may replace ¥ F by ¥ D®, ¥ D™ “respec-
tively. However the real interest of this theorem is likely to be precisely that D™,
% D™ measure the deviation of E,, (which is ‘too big’) from #F.

(11) It is evident, when the argument of Theorem 5.18 is analysed, that if (5.2) is
ultimately right-7-stationary, then, given (p, q), there is an N; such that

p.q p.a .o EP4.
Ey! > Ex'y =2 EZS;

and that, if (5.2) is ultimately left-T-stationary, then, given (p, g), there is an N,
such that

P q P, q .. p.q
ER—» ER/yy > > EZ".

(iii) If A is a category of modules then coker &' =~ % D™ without further hypothesis
on the factorization; but one cannot infer the short exact sequence of Theorem 5.20
(ii).

Diagram (5.11) demonstrates the crucial role played by coker & and ker a” in
studying the relation between E_, and ¢ F. It is therefore worthwhile giving alter-
native characterizations of these objects which may be better adapted to our appli-
cations (see section 7). We study the case of ker a” in detail and appeal to the duality
principle for the interpretation of coker &'.

Referring back to the factorization (5.1), let us set

jp,n=jpjp~1"'jp—mn20- (521)
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Then plainl .

p y .’p+1,ngp—n=gp+l’
and, more generally, )
g d Jp+k,n+k-18p-n = 8p+k (5.22)

We now apply the centre part of the diagram (3.2) with u=g,_,, v=j, .-,
w=j,4+1, to obtain the commutative diagram

Tq(gp-n) g\("QTq(g?+1)'B(E>) TQ(-{P*’I,n) —5 e

[T 1) (@ = L) 623)

. Y .
g q+1(.’p+l) —> Tq(gp) —“*T‘q(gp+l)_—_)' n(]p-i»l) e

) 1

I PR (.Ip+ 1) ~

where the rows are exact, a” is the n™ iterate of a, the dimension symbols on the
morphisms have been suppressed, and a(n), f(n), y(n) are merely ad hoc notations
for the morphisms of the exact sequence obtained by applying (7, w) to the object
(p+1,m 8p—n) Of €. Of course, a(n)=o"*".

THEOREM 5.24 (ker o) 2=, Im a"y(n).
Proof. This theorem holds in any abelian category 2 when we interpret the right
hand side as li_rg M, Where a”y(n) splits as u,¢,. However, since this theorem is quoted

mainly with a view to certain specific applications, we will be content to give a proof
when U is a category of modules.

Now xe(ker a”)”? if and only if xeyT,,(j,+,) and xea"T,(g,-,) for every n.
Moreover, it follows from the exactness of the rows of (5.23) that xey T, (j,+{) N
Na" T (g,-,) if and only if xea”y(n) T+ 1(j,+1,,)- This proves the theorem if U is
a category of modules.

We note that, for x to be a non-zero element of (ker «”)?9, it is necessary and
sufficient that x should be in the image of every T, (j,+,,) Without being in the
image of T,,,(g,+1), or, as we may write g, for this purpose as j,,,,, without
being in the image of T, ;(j,+1,4) This formulation expresses most clearly the
situation under which we will arrive at a non-zero object ker o”.

We now pass briefly to a discussion of coker &’'. We consider the diagram

o TUpd) o Ty Tyg) —> Tyosliper) -

|
) in(jp-l'n}l,n—i) iz l&n J/Tq—l(jp"‘n}l.n-l) (5.25)
BEIES Tq(jp+n.—1,n)ﬂ_;) Tq(gp—l)'&_(';;)Tq(gp-i-l)m T,-, (jp+n-1,n) - v

This diagram may be brought into closer relation to (5.23) by writing
jp,nsz+n,u=jp+n"‘jpa n 20 (526)
(It would thus be reasonable to write j, for j, also). Then if B(n)a" splits as [, &,, We
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have (compare the interpretation of Theorem 5.24)
(coker &')”"? =lim§,. (5.27)
’ —

Assuming 9 to be a category of modules, we may say that xe DP 7= T,(g,) represents
a non-zero element of (coker &')?*7 if and only if it has non-zero image under every
morphism B(n)&", n>0.

6. The contravariant case

Since all our results have been obtained for composition functors into arbitrary
abelian categories there has been no logical necessity to deal separately with covariant
and contravariant functors. However, in the applications we make in the next section
we are concerned with categories of modules and it will therefore be convenient to
reformulate our results for contravariant functors. All that is involved, then, is the
mechanical process of interpreting our results, obtained for composition functors
from € to A, in A°PP. However it will be convenient to reformulate some of our
definitions, too: for it is realistic to suppose given a factorization of a morphismin ¢,
together with a composition functor, as defined in section 2, from € to A°PP, with
the interest residing in the interpretation in 9.

DEFINITION 6.1 A contravariant composition functor from € to U is a composition
functor from € to A°PP,

REMARK Itis perfectly acceptable to regard a composition functor from E°PP to
U as a contravariant composition functor from € to 9, since we may identify (€°PP)2
with (€2)°P? in an obvious way. However, this point of view leads to the convention
that the ‘connecting homomorphism’ w reduces degree by 1. Since in our applications
it is natural (or customary, according to viewpoint) to have w raise degree by 1 in
the contravariant case, we prefer to adopt Definition 6.1 rather than that indicated in
this remark; of course the latter could be brought into line by changing the sign of
the degree index on the graded functor T.

Let (T, w) be a contravariant composition functor from € to W throughout this
section. Our notational conventions are sufficiently indicated by the following pro-
position,

PROPOSITION 6.2 Corresponding to each object ( f, g) of € there is an exact sequence

q(f g) Tq+1(g)_’

i T e TG
S T()——>T'(@gf)—>T (f)——
in W, which is natural in the evident sense.

We will not stop to describe explicitly the contravariant forms of the theorems
of sections 2, 3, 4 since these are obtained immediately. Our real concern in this

section is to translate the principal results of section 5.
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We will find it convenient to reindex the factors in a factorization (5.2) as follows.
We set

-p+1 p+1=-p —1.p
’

f=88"", j%g g’ g’ jf=g, —o<p<w. (6.3)

Formally we may write
f= P
g’ = J" 't
gf= J*J
and we may identify (6.3) with (5.2) by the rule

p+1 .

jp::j—pa gp=g—p9 g_p=g—p' (64)
This rule is important since, in practice, we often wish to consider a single factoriza-
tion and apply to it various functors, covariant and contravariant. However, the
advantage of the adoption of (6.3) is that it assigns to j, g, g, and the index p, under
the contravariant composition functor (7, w), the same roles as they played originally
under a (covariant) composition functor. In other words, (6.3) could be interpreted
as expressing (5.2) in the category C°P? (see the Remark above).
Now let the contravariant composition-functor from € to U be applied to the
factorization (6.3). We obtain the basic theorem:

THEOREM 6.5 There is a diagram in AZ*Z

D > D
F/; \ / \é\ F (6.6)
XD/V ND/

in which
@) D=(D")=(T"("): D= (D" = (T*(&"): E = (%) = (T*(/);
F = (F79) = (T(£);
(i) oP?= Tq(ﬂ’“) B = Tq(é _1) a4 — 1 (j?, gP” 1);
- T"(J,,) Bp 4 coq(g N 1) FPa = Tq(g"“);
&P = (8P, gp~1) (ppq Tq(gp+l) =P Tq(gpfl);
(iii) deg o = deg & = (1,0); deg f = deg 7 = (0,0);
degy =deg B =deg & =(— 1,1); deg, ¢ = deg,  =0; deg, ¢ ¢ = 1;
(iv) (a, B, y) and (&, B, 7) are exact couples;
V) (& o, @) is an exact triangle;
(vi) the commutativity relations aé=Eq, BE=B, y=EF hold;
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p+1

(vi)) @*" aP=¢? &P =" for all p, q;

(viil) @F@P=7B" for all p, q;

iX) the spectral sequences associated with (a, B, y), (&, B, 7) coincide an

(ix) th l d with di d
d”"’=w"(j”,j”"l):E”"’eE”"""“. (6.7)

Note that the only formal difference between diagrams (5.6) and (6.6) is that the
g-degrees of the morphisms have been changed into their negatives. The other
difference is one of interpretation, based on the device (6.4) of renaming the factors
in the factorization of f. Since all our subsequent theorems in section 5 are based on
Theorem 5.5, they therefore remain valid (with the replacement only of ¢ by —¢
where appropriate) in the new interpretation. In particular

THEOREM 6.8 Let (T, w) be a contravariant composition functor from € to W and
let (6.3) be a factorization of f in &. Then the limit diagram (5.11) holds with the sole
change that the morphisms &', £" have degrees (—1,1). The interpretation of the morph-
isms of (5.11) is made through Theorem 6.5. Theorem 5.12 remains valid.

We say that the factorization (6.3) is left-T-finite if D is positively graded in (6.6)
with the evident generalization to ultimate left-T-finiteness. Similarly we say that
(6.3) is (ultimately) right-T-stationary if o:7(g)—T(g) is (ultimately) positively
stationary. Then Corollary 5.16, Proposition 5.17, Theorems 5.18 and 5.20 all
continue to hold, without any change of wording. However it is particularly necessary
at this stage to stress the difference of interpretation. It would be absurd to change the
notion of a left-finite or right-finite factorization according to whether we anticipated
the application of a covariant or a contravariant functor. Thus we must remember
that, if (7, w) is a covariant composition-functor then a left-finite factorization is
left-T-finite; but if (T, w) is a contravariant composition functor then a left-finite
factorization is right-T-finite.

Also we must change the interpretations given at the close of section 5 of the
objects ker a”, coker &', which play so crucial a role in the passage from E_ to ¢ F.
The diagram corresponding to (5.23) is

TN Tq—-i (jp+ l,n)_y._(i)Tq(gp—n)i“_(iQ Tq(gp+ I)MTq(jp+l,n) et
[ i (- % } = LT(jom-1) (6.9)

o T L T ity o -
where
jpPr=jhn20. (6.10)
Then Theorem 5.24 holds:
(ker «")?? = M Ima"y(n); (6.11)

and, as in the covariant case, we find that (ker «”")?’? is non-zero if and only if there
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is an element?) in 77( g?) which lies in the image of every 77~ ! (j** ") without being
in the image of 77" !(g?*!).
The diagram corresponding to (5.25) is
q7-p—1 f’ 9;=p—1 a 4/ =p B q+1,.-p—1
o T 1@ ) T D T e
=p,n—1 | - sp.n-1
T ) = Ik \LT‘I“ ("17)  (6.12)
( -qu 1, n) 'Y( )Tq( -p— 1) a(n)Tq(gp+n) B(n) Tq+ l(jp-—l,n)_*

where jPr=jr...j""" n>0,
Jp+n n

(and jP=jP). Then (5.27) remains true with the same formal definition of &,; and,
when U is a category of modules, we conclude that xe D™?=T9(g") represents a
non-zero element of (coker &')”7 if and only if B(n)&"x#0eT?*'(j*»~!:") for all n.

7. Applications to algebraic topology

We confine ourselves to applications of the general theory to various spectral
sequences of algebraic topology, all obtained from suitable factorizations of maps by
applying homotopy or cohomology functors. In establishing the existence of the
spectral sequences under consideration, only the axioms for composition functors are
used, and excision and homotopy play no role. However they are essential in obtaining
properties of the spectral sequences; e.g., in computing the first terms and in discussing
convergence. The factorizations are either skeleton decompositions of CW-complexes
or successive fibrations. Some of the examples are only sketched ; complete arguments
and further developments will be or have been given elsewhere.

ExaMmpLE 7.1. Let € be the category of based CW-complexes; for XeC, X, will

denote the p-skeleton of X, for p>0, X,=base-point o for p<0, j,=j~? the embedding

X,-1<=X,, f=..jp+1Jpip-1..- the embedding oeX. If X is finite-dimensional, of
dimension N, j,=1 for p> N. The maps g,, £, of the former sections are

g, =& P = inclusion 0 > X,,,
g, =g " =inclusion X,_; - X.

The factorization is left-finite, and finite if X is finite-dimensional.

Further let T be the truncated composition functor of Example 4.8: T, is the
homotopy group functor IT (4, )=II1(Z74, ) for g=3, T,=0 for ¢g<1, and T,(f)
for f: X— Y in @ is the cokernel of f,.: IT,(4, X)—-1I,(4, Y) The “lower end” of the

1) We assume here that W is a category of modules, so that we may talk of elements.
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exact triple sequence for the triple g fis

-v~—»H3(A,gf)—+H3(A,g)—> T,(f)- T,(gf) > T,(g) = 0—--

Applying this functor to the skeleton factorization of f:0— X, we obtain a Rees
system and, the factorization being left-7-finite, a spectral sequence (E,, d,) whose
limit E, is related to the F,=1II (A4, X) by the exact sequence (cf. Theorem 5.20)

ngHEw—»gF.

Here F is the graded Abelian group whose g-component F, is I (4, X) for g>2,
0 for g <2, filtered by the images of the IT (4, X,). The spectral sequence starts with
E,=(E}?), EV?=I1,(4,j,) for g>3, EZ?=0 for g<2, and E?? is the cokernel of
the map I1,(4, X,_,)—I1,(A, X,) induced by the embedding. The differential 42
is the boundary homomorphism I1,(4, j,)-11,- (4, j,-,) in the triple sequence for
JpJp-1(q>3);itis the homomorphism IT;(4, j,)—Coker (IT,(4, X, _,)>11,(4, X, _,))
for g=3. This is a mild generalization of the Massey spectral sequence [19] which we
obtain by putting 4=3S,,.

The groups D”?=11,(4, g,) for g>3,=Coker (I1,(4, X,-,)—11,(4, X)) for
g=2, and 0 for g <2. If X is finite-dimensional, we know that ¥ D* is 0. For general
X, if we assume A to be a finite-dimensional CW-complex, we have I1 (4, g,)=0 for
p>P depending on g and the dimension of A; thus again ¥D®=0: If A or X are
finite-dimensional, E, is related to the Il (A, X) by

ERt'=9"1(4,X), q=2,
= 0 , q<2.

EXAMPLE 7.2. Here we apply the truncated contravariant homotopy group
functor IT ( , B) to the skeleton factorization of Ex. 7.1; i.e., T,=II,( , B) for
g = 3, T,=0 for g<2 and T,(f)=cokernel of f*:I1,(Y, B)—»II,(X, B) for f: X—7Y.
The functor being contravariant, the index p in the bigrading of E, D etc. will
refer to the notation j?, g? and g* of the factorization, according to the conventions
laid down in section 6 (note that the g-index in the triple sequence for T, is decreasing,
which is not customary for contravariant functors; this, however, does not affect the
general arguments of section 6).

In the Rees system and the spectral sequence obtained here, the relevant terms
can be described as follows (we do not insist here on the small values of ¢, but simply
note that for g <2 everything is 0): E,=(E?'?) with!) E, »4=1I1,(j~?, B)=11,(j, B); by
excision this is naturally isomorphic to IT,_;(X,/X,-,, B)=I1(X,/X,_,, 2" ' B),

1) We could translate our statements about E; into the usual statements by replacing —p by p.
But this would force us also to change the statements of Section 6. A similar remark also applies
to the subsequent examples.
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which is equal, under an obvious identification, to the cellular cochain group
C?(X; n,.,-1(B)). The differential d, ??: E, »9>E~?~14*! can be computed
explicitely: it is the combinatorial coboundary

CP(X; Mpsg-1(B)>CP 1 (X;my s g 1(B))

of the CW-complex X. Without giving the proof in detail, we simply remark that
the only non-trivial argument to be used is the homotopy addition theorem, when X
is assumed to be a simplicial complex. Thus E; ”*? is equal to the cellular cohomology
group H?(X;n,,,-,(B)). For the groups D=(D"'9), D=(D"9) and F=(F?) we have

D™ =1,(g"", B)=I1,(2,, B)= I1(X/X,_,, Q""" B),
D™"1=1,8"% B)=M,(g, B)~ (X, 2" 'B),
F* =I,(f,B) =0I(X,2""'B),

and the filtration (F?)™? of F? is by the images of the groups I1(X/X,_,, 2" ' B)
under the maps X—X/X,_,. The (—p)-component of & F? is

GPF = (F)7P(F)™" ' =Im I(X/X,-, Q" ' B)/Im 1 (X/X,, Q""" B).

Since D™77=0 for p<0, i.e. for —p>0, the factorization is right-T-finite, and
hence there is the exact sequence

GF—>E, ,»9D * =kera".

Furthermore, if X is finite-dimensional, D™ ?77=0 for large p, i.e., for small —p, and
thus the factorization is also left-7-finite, which yields ¥ F~ E_. The same conclusion
holds for arbitrary X, if B has only a finite number of homotopy groups n,#0; for
there is, in that case, for each ¢ an integer P(q) such that D™»1=11(X/X,_,, Q"' B)
=0 for p> P(q), in other terms, for —p < —P(q).

In conclusion we have a spectral sequence starting with E; 7= H?(X;7,,,_(B))
and converging to

E»"=97"[1(X,Q" ' (B))

if X has finite dimension or if B has only a finite number of 7, #0; in the general case
Y~PII(X, 27! B) is isomorphic to a subgroup of E_P4, the factor group being iso-
morphic to (ker «”)"#? as described in 5.24. — The spectral sequence above is due to
FEDERER [14].

" It should be noted that in general the filtration of F?=II(X, Q%" ' B) is not com-
plete [13]. The direct limit (—p—o0, i.e. p—>—o0) is, of course, equal to
Fi=I1(X,Q2° ' B); the inverse limit (p—o0) of the corresponding cofiltration
Fi(F1)"P=I1(X, Q2 ! B)/Im [I(X/X,-, 27! B)is = F9/F4, where F1=11(X, Q"' B)
is the subgroup consisting of .those homotopy classes X—£%~' B which vanish on all
skeleta X 1, and this subgroup need not be 0. Since we are not interested here in the
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comparison theorem for spectral sequences, completeness is not of main importance.
However, the subgroup F“ is relevant to the information on F? obtained from the
spectral sequence. Since ¥ F7=%(F?/F9), the information, given by the spectral
sequence and ker «”, can only help us in reconstructing IT(X, Q' B)/[1 (X, 2" B).
In the two special cases above which yield £, =~ % F (X finite-dimensional or B having
a finite number of n,#0), the group (X, 27! B) is 0.

ExAMPLE 7.3. The Federer spectral sequence can be applied to representable
cohomology theories, as follows. Let {B,, ¢,} be an Q-spectrum; i.e., B,, meZ, is
a sequence of based topological spaces and the o, are homotopy equivalences
B,—2B, .. Then, for f:X—-Y the groups II (f, B,.,-) are defined and abelian
for all g>1 and independent of g (up to natural isomorphisms); they can thus be
identified with each other and denoted by A"( f). If f:0— X, the group A™(f) is,
according to usual conventions, written A™(X). The functor A™ is a (reduced)
cohomology functor fulfilling the exactness, excision and homotopy axioms, but
in general not the dimension axiom 4™(S,)=0 for m#0. The dimension axiom is
fulfilled if and only if the spectrum is the Eilenberg-Maclane spectrum B,,=K(G, m)
for a fixed abelian group G, m>0, B,,=o0 for m<0.

In order to apply the Federer sequence, we can fix the value of ¢, e.g. by taking
g=3, and choose B=8B,,, ,; then h™( )=1II;( , B,,) is a contravariant composition
functor, where now m plays the role of g in the general theory. The various groups in
the Rees system and the spectral sequence for the skeleton decomposition of x are:

E;"" = C*(X;7p12(Bus2)) = C7 (X5, (Bu-p)) = C"(X;H7"77(S,)),
d, P'™ being the cellular coboundary C?(X; h™~?(S,))->C?* ' (X; h"~*(S,));

E;"™=H"(X;h""?(S,));
D7PM = h"(X[X,_,),

(obtained as I1(X/X,_,, 2*B,,,,)=I1(X/X,_,, B,)),

D™P™=h"(X,),
F"=h"(X), filteredby (F")""=1Imh"(X/X,_,).

The factorization is always right-h-finite. 1t is also left-h-finite (a) if X is finite
dimensional or (b) if h™(S,)=0 for m<M, for some MeZ. The proof of (a) is
immediate, since D~ ?™=0 for p>dim X. In the case (b), we have n,(B,)=h"""(S,)=
=0 for m—r<M, i.e. for r>m~— M, in other words, there is an integer P(m) such
that I7(X/X,_,, B,)=0 for p>P(m), hence D~7™=0 for —p< —P(m).

We thus obtain a spectral sequence, generalizing the Atiyah-Hirzebruch spectral
sequence [2], relating ordinary and extraordinary cohomology on CW-complexes:
E P™ is the cellular cohomology group H?(X; h"~?(S,)); and E_P™ the graded
group ¥ “Ph™(X) associated with the fibration (4™(X))”P=subgroup of A™(X)



218 B. ECKMANN and P. J. HILTON

consisting of those elements which vanish on X,,_, if (a) X is finite-dimensional or if
(b) h™(S,)=0 for small m. In the general case, not assuming (a) or (b), ¥ Ph™(X) is
a subgroup of E_P™, the factor group being =(ker a”)”?™. This group, measuring
the “deviation from convergence” of the spectral sequence, has been described in
(6.11): it consists of those elements of D™ ™=h"(X/X,_,) which are images under
ap(n): BN (X,— 1 +n/X,-2)>h™(X/X,-4) for all n (note that for the index p in
(6.9)-(6.11) we have taken here —p). A non-zero element of (ker «”)"”™ is thus an
xeh™(X/X,-,) such that there is, for each n, an element y,eh™ '(X,_;,./X,-,)
mapped under the “coboundary” a"y(n) to x, but where no y, can be chosen so as to
come from a yeh™ ' (X/X,_,) under the restriction from X to X,_, ,,.

As before in 7.2, the filtration of F™=A"(X) is not complete; the information
given by the spectral sequence will refer to the factor group A™(X)/h™(X) only,
h™(X) being the subgroup consisting of elements of 4™(X) which vanish on all skeleta
X,. The filtration of #™(X)/h™(X) is then complete, and every element of A™(X)/h™(X)
is actually represented in E_ (but £, may be “too big”). In the two convergence
cases (a) and (b) above, where E ,7*™ =%~ ? h™(X), the group h™(X) is automatically 0;
this is obvious in case (a), and follows, in case (b), from the relation =,(B,)=0 for
r>m—M: an element xe h™(X) is represented by a map g,: X— B,, which is null-
homotopic on all skeleta, and it is possible to choose the nullhomotopies such that
they are coherent, and hence yield a nullhomotopy of g,.

If, in particular, a representable cohomology theory h™ with dimension axiom is
considered, condition (b) is fulfilled. We thus have E_P"~%~Ph™(X), the filtration
being complete. Moreover E;”™=H?(X; "~ ?(S,))=0 for m#p,=H?(X; G) for
m=p, and thus all differentials d,, n>1, vanish; thus E_?™= H?(X;G) for m=p,
and =0 for m#p, which yields

(X))~ H"(X;G);

Thus a representable cohomology theory with dimension axiom coincides with cellular
cohomology on the category of all CW-complexes.

REMARK 7.4. Example 7.3 (representable cohomology functors) can, of course,
be dealt with directly, without passing through the Federer spectral sequence 7.2.
The arguments are then exactly the same, except that the general theory is applied to
the (non-truncated) composition functor A", with A™(f)=I,(f, B,), ""(X)=
=II(X, B,,), for the given Q-spectrum {B,, ¢,,}. In particular, the identification of
E;P™=11(X,/X,-,, B,) with the cochain group C?(X; n,(B,))=C?(X; " ?(S,))
uses the fact that the homotopy functor II( , B,) transforms an arbitrary wedge into
a product; and the computation of d, ”™=cellular coboundary is based on the
homotopy addition theorem.

REMARK 7.5. In the case of an abstract cohomology theory A™ (not given by an
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Q-spectrum), fulfilling the exactness, excision and homotopy axioms, the spectral
sequence can be set up for an arbitrary CW-complex X exactly as in 7.4. However, in
order to identify E, ”™ with the cochain group C?(X; h™"?(S,)), we need an extra
axiom saying that A™ of an arbitrary wedge of spheres of the same dimension is
the product of the 4™ of the spheres!). The identification of d, P*™ with the cellular
coboundary cannot be based on homotopy addition, but would use the degrees of the
attaching maps of the cells of X.

Thus all the previous results hold for a cohomology theory with the ““special wedge
axiom” above on the category of all based CW-complexes, with the exception that
nothing can be said about A™(X) and it is not always true that the filtration of
h™(X)/h"(X) is complete. It should, however, be remarked that according to
Brown [4], a cohomology theory with a general wedge axiom is representable; thus
in the latter case we can recover all the above results via the representation theorem.
However, it is clear from examples that the special wedge axiom does not imply
representability.?)

ExaMpLE 7.6. Let € be the category of based topological spaces, and
f=..jp+1Jp-1...» Where f: X—o is a composition of fibrations j,: X,_;—X,, with
X,=o for p>0. The factorization is right-finite. We have

P=iop Xy X,
=g, X->X_,,
gf=8_,:X_,_;—o0.

We take 7' to be the covariant truncated composition functor IT (A, ) of Example
4.8 and Example 7.1; we will not describe here explicitly the modifications for low
values of g. We obtain a spectral sequence with

YF»—E_-»kera”.

The groups in the Rees system are

E, P = Tq(j~p) = Hq(A’j*-p) = Hq-l (A’ YP)’
Y, being the fibre of j_,: X_(,+ 1)~ X_,;

D—P!q — T’q(g__p) = Hq(A,g_p) — Hq—l(A’Zp)
Z, being the fibre of g_ 1 X—>X_,;

P=T,(8-,) = m,(4,8-,) = M1 (A, X_pe1))-

The differential d, ”? is the boundary homomorphism I1,(4, j_ ) H,_ (A4, j-p+1))

1) No extra axiom is needed if X is finite in each dimension.
2) (Added in proof) We discuss this question in detail in Example 7.28 of [11].
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of the triple sequence for j,j,-; we can regard d, »*: II1,_,(A4, Y,)>11,_,(4, Y, )
as the ordinary homotopy boundary homomorphism of the fibration ¥,~ Y, with
fibre Y,,, (¥, =fiberof j_, j_,_{).

Furthermore F,=1I1,(4,f)=1I1,-,(4, X), filtered by the images (F,)™? of
I,_,(A, Z,). The spectral sequence converges to £~ % F (a) if the factorization is
left-finite, i.e., if g_ ,: X— X_ , is the identity for large p; (b) if A is a finite-dimensional
CW-complex and the connectivity of Z, tends to infinity with p. The case (a) is
obvious. In the case (b) there is, for a given ¢, an integer P(q) such that D™ 7%=
=I1(A4,2°Z,)=0 for —p< —P(q); hence the factorization is left-T-finite.

We thus obtain a spectral sequence starting with E;”=11,_,(4, Y,), Y, being
the fibre of j_,: X_,, 1y~ X_,, and converging to E_"?=%"PII, _,(A, X), either

(a) in the case of a finite composition X=X_y—...»X_, =0 of fibrations, or

(b) in the case of an infinite composition of fibrations, provided A4 is a finite-
dimensional CW-complex and the connectivity of the fibres Z, of X—X_, tends to
infinity with p.

The connectivity condition in (b) is fulfilled, e.g., if the composition of fiberings is
the Postnikov decomposition of X (assumed, for simplicity, 1-connected), with

Y, = fiber of j_, = K(r,(X),p).
Then
E;P'=10, (A, K(n,(X),p) = H(A,Qq_1 K (n,(X), p))
= I1(4,K(n,(X),p — q + 1) = H"™*"(4; 7, (X)),

and the d, 7? are easily deducible from the Postnikov invariants of X. For a finite-
dimensional CW-complex, E_ P19 Pl _,(A4, X).

As another application of the present example one may also obtain the Adams
spectral sequence [1], as described in [17]. In this case we again have ker a”"=0
although neither condition (@) nor () is, in general, fulfilled.
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