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L’élimination des points doubles dans le cas combinatoire

Par C. WEBER

Introduction

Dans [7] WHITNEY donne un procédé pour I’élimination de certaines paires de
points d’intersection. Ce procédé est devenu un outil essentiel en topologie différen-
tielle, en particulier dans la théorie de SMALE. Voir, par exemple, [5] chap. 6. C’est
I’opinion unanime des topologues que ’on peut aussi faire la théorie de SMALE dans
le cas combinatoire et que les théorémes analogues au cas différentiable sont vrais.
Cependant, il semble qu’aucune démonstration compléte de ce fait n’a été donnée
jusqu’a ce jour. Il est clair que certains procédés techniques ne peuvent se traduire
immédiatement du différentiable au combinatoire. Il en va ainsi, par exemple, du
procédé de WHITNEY. L’absence d’une théorie convenable des fibrés normaux dans
le cas combinatoire empéche de réaliser le modéle abstrait pour la séparation des
points d’intersection.

Bien siir, une fagon expéditive de régler le probléme est de lisser toute la situation
(locale), d’appliquer WHITNEY différentiable, puis de retrianguler. C’est, en somme, le
parti choisi par SHAPIRO dans [6] et par Wu dans [9]

On propose ici une version purement combinatoire du procédé de WHITNEY. Le
pas essentiel de la démonstration, qui en quelque sorte «remplace» les fibrés normaux
défaillants, consiste a utiliser un théoréme d’IRwIN (voir [2] et [3]), qui donne, sous
certaines conditions homotopiques, une généralisation du lemme de DEHN.

La terminologie et les notations utilisées ici sont celles de [11]. On a traduit « poly»
par «semi-linéaire».

Je remercie chaleureusement M. le Professeur A. HAEFLIGER de m’avoir suggéré
cette rédaction.

Enoncé du lemme de Whitney

Empruntons & KERVAIRE cet énoncé commode du lemme de WHITNEY. Voir [4].
6" désignera le simplexe standard de dimension r.

LEMME. Soit V™ une variété semi-linéaire, sans bord, compacte ou non. Soit
m=p+q. Soient @:6'-V et Y:06°—V deux plongements semi-linéaires, tels que
@ (0?) et Y (a®) se coupent en position générale en exactement 2 points A et B, situés
dans ¢ (67) et Y(6*). On suppose que:

1. p=>3, q=>3 ou p=2, g=>3 et ¢ est un plongement localement non-noué.

2. Il existe un chemin c dans (&%) reliant A @ B et un chemin ¢’ dans  (6®) reliant
A a B, tels que ¢ ~-c’ est homotope & zéro (librement) dans V.
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3. Par rapport a une orientation (choisie arbitrairement) d’un voisinage de
(69 vy (o®) dans V, les points d’intersection A et B sont de signes opposés, ou, ce qui
revient au méme, le nombre d’intersection ¢(0%)-y(o?)=0.

Alors, il existe une isotopie ambiante H, de V', dont le support est une boule combi-
natoire de dimension m, laissant en particulier ¢(0c?) et Y(do®) fixes, telle que:

H (Y (6")ne(c)=0
Il est clair que, dans le cas différentiable, ce lemme est équivalent au procédé de
WHITNEY. Voir [6] et [7].

Ce lemme admet des généralisations au cas p+g>m. Pour le cas différentiable,
voir [1] et pour le cas combinatoire, voir [8].

Preuve du lemme dans le cas p > 3

Par position générale, on peut supposer que c¢ et ¢’ sont des plongements semi-
linéaires, de sorte que ¢~ !-¢’ fournit un plongement de do? dans V.

D’aprés I’hypothése 2, ce plongement s’étend en une application continue F: 62— V.

Encore une fois par position générale (voir [11], chap. 6) on peut s’arranger pour
que F soit un plongement tel que:

F(@)ne(@)=c(l) F(o*)ny(d")=c'(I)

Triangulons un voisinage de ¢(c?) Uy (c?)uU F(o?) dans V, de telle fagon que
¢(a9), Y (c*), F(c?) soient des sous-complexes. Soit B™ un voisinage de F(a?) dans
V qui soit un deuxiéme dérivé. Voir [11], chap. 3, p. 14. D’aprés WHITEHEAD, B"
est une boule semi-linéaire de dimension m. Par construction on a:

B"ne(e")=B'c¢(é") B"ny(c")=B" =y (s

B? et B?sont des boules semi-linéaires de dim. p et q.

Par position générale, on voit facilement que B™—B? est (m—q—2)-connexe
(homotopiquement).

D’aprés ’hypothése 3), dB” est homologue & zéro dans B™— B? Comme p=>3,
par HURewicZ l'inclusion 0B? = B™ — B? est homotope & zéro dans B™— B9,

D’aprés le théoréme d’IRWIN énoncé ci-dessous, dB? bordera un disque plongé
B'? dans B"— B?si:

) m-q—222p—-m+1 (%)

Comme p + g=m, cette derniére condition est équivalente 4 g>3, ce qui est tou-
jours vrai d’aprés ’hypothése 1.

C’est maintenant une conséquence immédiate du unknotting balls de ZEEMAN et
du truc d’ALEXANDER que B? et B’? sont isotopes dans B™, par une isotope fixe sur
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le bord. (Voir [11] chap. 4). Etendant cette isotopie par I’identité en dehors de B™, on
obtient I’isotopie cherchée.

THEOREME D’IRWIN: Soient X* et Y” deux variétés semi-linéaires, X étant supposée
compacte. Soit a: X— Y une application semi-linéaire telle que a|0X soit un plongement
de 0X dans 0Y. Alors si les 3 conditions suivantes sont remplies, a est homotope a un
plongement f3, rel. 0X :

(i) y—x=3
(i) X est (2x—y)-connexe (homotopiquement).
(iii) Y est (2x—y+ 1)-connexe (homotopiquement).

Ce théoréme est démontré dans [3].

On applique le théoréme d’IRWIN en choisissant pour X la boule B?, pour Y la
variété B™— B? et pour a n’importe quelle application de B? dans B™— B9, qui soit
I’identité sur 0BP”.

On posera B”=f(BP).

REMARQUE: Si une condition supplémentaire sur les dimensions est satisfaite, la
démonstration du théoréme d’IRwIN dans la situation qui nous intéresse est parti-
culiérement simple. Par exemple:

a) p<gq. On obtient  en mettant o« en position générale dans B™ — B.
b) p<2(g—1). En mettant a en position générale dans B™ — B?, (modulo le bord),

on aura Sing (¢)< lc}” de dimension <2p—m. B? étant collapsible, on peut facilement

trouver un polyédre collapsible K dans 13", de dimension <2p-—m+1, contenant
Sing (a).

D’aprés I'inégalité (#), a(K) est homotope & zéro dans B™—B?. L’inclusion de
«(K) dans B™— B? s’étend en une application du cone Ca(K) sur a(K). Par position
générale, si p<2(g—1), on peut plonger Ca(K) dans B"— B?, de telle fagon que:

Ca(K)na(B?) = a(K)

Tout est prét maintenant pour utiliser I'argument de PENROSE-WHITEHEAD-
ZEEMAN. On triangule B? et B™ de telle fagon que o soit simpliciale et que Ca(K) soit
un sous-complexe. En prenant les voisinages de K dans B? et de Ca(K) dans B™ qui

sont des deuxiémes barycentriques on obtient des boules 67  B? et 6™ = B™ — B telles
que « est une application de triples: a: B?, B?—§?, 0(6?)— B™— B4, B" — B?— 6", 0(0™)
et alB"-—%” est un plongement. On obtient le plongement f charché en posant:

a) B|BP— & =a|BP—&°
b) B|6?—6™ une extension conique de a|0(87)—3(6™).
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Preuve du lemme dans la cas p = 2

La preuve est la méme que dans le cas précédent, a I’exception de la démonstration
du fait que I’inclusion d B = B™ — B? est homotope 4 zéro dans B™ — BY.

D’aprés ’hypothése 3, on sait que dB? est homologue 3 zéro dans B™— B?. On ne
peut utiliser HUREWICZ, car la position générale nous donne seulement que B™— B4
est O-connexe. Cependant, si I’on montre que la paire de codimension 2 (B™, BY) est
non nouée, il est clair que I'inclusion dB?< B™— B? sera homotope a zéro dans
B™— B,

Comme ¢ est un plongement localement plat, d’aprés [12] corollaire 10, il suffit
de montrer que B™ est un voisinage régulier de B? dans B™, c’est-a-dire que B™\ B4,

o
LEMME: Soient V< W deux variétés semi-linéaires. Soit K< W un sous-polyédre

[¢]
KnV=LcV. Supposons que V, K, L, soient des sous-complexes pour une certaine
triangulation de W. Soit M un 2° voisinage dérivé de K dans W. Alors:

1. M V=N est un 2° voisinage dérivé de L dans V.

2. M\(NUK).
Ce lemme se démontre facilement en utilisant les méthodes de [11], chap. 3.
D’aprés ce lemme et par construction, on a donc:

B™"\(B*UF(c%))\ B*.
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