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L'élimination des points doubles dans le cas combinatoire

Par C. Weber

Introduction

Dans [7] Whitney donne un procédé pour l'élimination de certaines paires de

points d'intersection. Ce procédé est devenu un outil essentiel en topologie différentielle,

en particulier dans la théorie de Smale. Voir, par exemple, [5] chap. 6. C'est
l'opinion unanime des topologues que l'on peut aussi faire la théorie de Smale dans
le cas combinatoire et que les théorèmes analogues au cas différentiable sont vrais.
Cependant, il semble qu'aucune démonstration complète de ce fait n'a été donnée

jusqu'à ce jour. Il est clair que certains procédés techniques ne peuvent se traduire
immédiatement du différentiable au combinatoire. Il en va ainsi, par exemple, du
procédé de Whitney. L'absence d'une théorie convenable des fibres normaux dans
le cas combinatoire empêche de réaliser le modèle abstrait pour la séparation des

points d'intersection.
Bien sûr, une façon expéditive de régler le problème est de lisser toute la situation

(locale), d'appliquer Whitney différentiable, puis de retrianguler. C'est, en somme, le

parti choisi par Shapiro dans [6] et par Wu dans [9]
On propose ici une version purement combinatoire du procédé de Whitney. Le

pas essentiel de la démonstration, qui en quelque sorte «remplace» les fibres normaux
défaillants, consiste à utiliser un théorème d'iRWiN (voir [2] et [3]), qui donne, sous
certaines conditions homotopiques, une généralisation du lemme de Dehn.

La terminologie et les notations utilisées ici sont celles de [11]. On a traduit «poly»
par «semi-linéaire».

Je remercie chaleureusement M. le Professeur A. Haefliger de m'avoir suggéré
cette rédaction.

Enoncé du lemme de Whitney

Empruntons à Kervaire cet énoncé commode du lemme de Whitney. Voir [4].
or désignera le simplexe standard de dimension r.

Lemme. Soit Vm une variété semi-linéaire, sans bord, compacte ou non. Soit

m=p + q. Soient (p\Gq-+V et \\/\op-+V deux plongements semi-linéaires, tels que

(p(oq) et \j/{ap) se coupent en position générale en exactement 2 points A et B, situés
dans $>(<}*) et ij/(àp). On suppose que:

1. p^3, q^3 oup — 2, q>3 et q> est un plongement localement non-noué.

2. // existe un chemin c dans (p{àq) reliant A à B et un chemin c1 dans \j/(ôp) reliant
A à B, tels que c -1 -c' est homotope à zéro (librement) dans V.
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3. Par rapport à une orientation (choisie arbitrairement) d'un voisinage de

(p(<Tq)uil/(<ip) dans V, les points d'intersection A et B sont de signes opposés, ou, ce qui
revient au même, le nombre d'intersection (p(aq)'\l/(op) 0.

Alors, il existe une isotopie ambiante Hx de V, dont le support est une boule combi-

natoire de dimension m, laissant en particulier (p(daq) et il/(dap) fixes, telle que:

II est clair que, dans le cas différentiable, ce lemme est équivalent au procédé de

Whitney. Voir [6] et [7].
Ce lemme admet des généralisations au cas p + q>m. Pour le cas différentiable,

voir [1] et pour le cas combinatoire, voir [8].

Preuve du lemme dans le cas p > 3

Par position générale, on peut supposer que c et c' sont des plongements semi-

linéaires, de sorte que c"1-^' fournit un plongement de da2 dans V.

D'après l'hypothèse 2, ce plongement s'étend en une application continue F: o2-+V.

Encore une fois par position générale (voir [11], chap. 6) on peut s'arranger pour
que F soit un plongement tel que:

F (a2) n q> (aq) c (/) F (a2) n $ (ap) c' (/)

Triangulons un voisinage de <p(a*)u^(<7p)uF((72) dans F, de telle façon que
(p(<rq), ^(o"p), ^X0"2) soient des sous-complexes. Soit Bm un voisinage de F(a2) dans

V qui soit un deuxième dérivé. Voir [11], chap. 3, p. 14. D'après Whïtehead, Bm

est une boule semi-linéaire de dimension m. Par construction on a:

Bmn<f>{aq) Bqa q>{àq) Bmn^{op) Bp c xj,(âp)

Bp et Bq sont des boules semi-linéaires de dim. p et q.

Par position générale, on voit facilement que Bm — Bq est {m — q—2)-connexe

(homotopiquement).
D'après l'hypothèse 3), dBp est homologue à zéro dans Bm-Bq. Comme p>3,

par Hurewicz l'inclusion dBpaBm — Bq est homotope à zéro dans Bm — Bq.

D'après le théorème d'ÏRwiN énoncé ci-dessous, dBp bordera un disque plongé

-^si:
m-q~2>2p-m + l (*)

=m, cette dernière condition est équivalente à q^39 ce qui est

toujours vrai d'après l'hypothèse 1.

C'est maintenant une conséquence immédiate du unknotting balls de Zeeman et

du truc d'ALEXANDER que Bp et B/p sont isotopes dans Bm, par une isotope fixe sur
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le bord. (Voir [11] chap. 4). Etendant cette isotopie par l'identité en dehors de Bm, on
obtient l'isotopie cherchée.

Théorème d'Irwin : Soient Xx et Yy deux variétés semi-linéaires, X étant supposée

compacte. Soit a:X-+ Y une application semi-linéaire telle que a\dX soit un plongement
de ÔX dans BY. Alors si les 3 conditions suivantes sont remplies, a est homotope à un

plongement /?, rel. dX:
(i) y~x>3
(ii) X est (2x—y)-connexe (homotopiquement).
(iii) Y est (2x ~y+ l)-connexe (homotopiquement).

Ce théorème est démontré dans [3].
On applique le théorème d'iRWiN en choisissant pour X la boule Bp, pour Y la

variété Bm — Bq et pour a n'importe quelle application de Bp dans Bm — Bq, qui soit
l'identité sur dBp.

On posera B'P=P(BP).

Remarque: Si une condition supplémentaire sur les dimensions est satisfaite, la
démonstration du théorème d'iRWiN dans la situation qui nous intéresse est
particulièrement simple. Par exemple:

a) p<q. On obtient /? en mettant a en position générale dans Bm — Bq.

b) p<2(q— 1). En mettant a en position générale dans Bm — Bq, (modulo le bord),
o

on aura Sing (a)czi?p de dimension <2p — m. Bp étant collapsible, on peut facilement
o

trouver un polyèdre collapsible K dans Bp, de dimension <2p-m + l, contenant

Sing (a).
D'après l'inégalité (*), (x(K) est homotope à zéro dans Bm-Bq. L'inclusion de

ol(K) dans Bm-Bq s'étend en une application du cône Ccc(K) sur <x(K). Par position
générale, si p<2(q-i), on peut plonger C(x(K) dans Bm-Bq, de telle façon que:

Tout est prêt maintenant pour utiliser l'argument de Penrose-Whitehead-
Zeeman. On triangule Bp et Bm de telle façon que a soit simpliciale et que Ca(K) soit

un sous-complexe. En prenant les voisinages de K dans Bp et de Ca{K) dans Bm qui
o

sont des deuxièmes barycentriques on obtient des boules ôpc:Bp et ômc:Bm-Bq telles

que a est une application de triples: a: Bp9 Bp-°ôp, d(ôp)->Bm-Bq, Bm-Bq-Ôm9 ô(Ôm)

et <x\Bp-ôp est un plongement. On obtient le plongement p charché en posant:

a) p\Bp-ôp=a\Bp-ôp
b) j8|<5p-»(5m une extension conique de a\d(ôp)-+d(ôm).
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Preuve du lemme dans la cas p 2

La preuve est la même que dans le cas précédent, à l'exception de la démonstration
du fait que l'inclusion dBpcBm — Bq est homotope à zéro dans Bm — Bq.

D'après l'hypothèse 3, on sait que dBp est homologue à zéro dans Bm—Bq. On ne

peut utiliser Hurewicz, car la position générale nous donne seulement que Bm — Bq

est 0-connexe. Cependant, si l'on montre que la paire de codimension 2 (2?m, Bq) est

non nouée, il est clair que l'inclusion dBpczBm — Bq sera homotope à zéro dans
Bm-Bq.

Comme cp est un plongement localement plat, d'après [12] corollaire 10, il suffit
de montrer que Bm est un voisinage régulier de Bq dans Bm, c'est-à-dire que Bm\ Bq.

o
Lemme : Soient Fez W deux variétés semi-linéaires. Soit Kc W un sous-polyèdre

o

KnV=LcV. Supposons que V, K, L, soient des sous-complexes pour une certaine

triangulation de W. Soit M un 2e voisinage dérivé de K dans W. Alors:
o

1. Mn V=N est un 2e voisinage dérivé de L dans V.

2. M\(NvK).
Ce lemme se démontre facilement en utilisant les méthodes de [11], chap. 3.

D'après ce lemme et par construction, on a donc :

Bm\(BquF(a2))\Bq.
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