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Actions of R” on manifolds

by HAROLD ROSENBERG

We shall be concerned with smooth manifolds ¥”, compact and without boundary,
and actions of R"~! on ¥ all of whose orbits are n—1 dimensional. The rank of V is
the largest k such that there is an action of R* on ¥ with k dimensional orbits; this is
the same as the maximal number of linearly independent vector fields on ¥ which
pairwise commute. Elon Lima has proved the rank of S3 is one [1], and the author
proved the rank of $2 x S! is one [4]. One of our results is a generalization of Lima’s
theorem: the rank of a simply connected closed » manifold is less than n—1. Un-
fortunately, the author knows of no n-dimensional sphere whose rank is greater than
one.

We also consider M x S where M is a closed two-dimensional manifold of genus
greater than one. Our results are not complete; we do not know the rank of this space.
We do prove, however, that if there is a locally free action of R?> on M x S, then
it must have a torus orbit, embedded in a nontrivial way.1)

Definitions and Notation

An action @ of a Lie Group G on V'is a differentiable map ¢: G x V- V such that
(i) ?(gh, x)=P(g, P(h, x)) for all g, he G and xe V, and (ii) P(e, x)=x for xeV, e the
identity of G. Given xeV, the isotropy subgroup of x is H,={geG/®,(x)=x}, it is
a closed subgroup of V. The orbit or leaf of x is {®,(x)/ge G}. The action ¢ induces a
1 —1 continuous map of G/H, onto L,, the orbit of x.

If Xy,..., Xi are vector fields on V, we say they pairwise commute if [X;, X;]1=0
for alli and j. Let ¥ be a closed manifold and £, ..., & the integral curves of X, ..., X;
respectively. We know [X,, X;]1=0 is equivalent to £}¢&/=¢&/¢] for all real numbers
s and ¢.

When G=RX, an action of G on V is equivalent to K commuting vector field (we
assume V is closed); the relation is

¢(t,x) = (étll oftzzo °€fk)(x)’ 1= (tl! ooy tk)ERk-
We call @ a locally free action if all the orbits are K-dimensional.

Suppose n=3 and k=2. The orbits of x are classified by their isotropy subgroups
H, and we have the following possibilities. If the dimension of H, is two, then
H,=R?and L= X. When H, has dimension one we have H, =L +nuv, L a line through
the origin and ve R?, n=0, +1, +2,... L, is then a line or circle (i.e., 1 —1 continuous

1) Conversations with Elon Lima and André Haefliger were very useful in the preparation of this paper.
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image of) depending on the direction of v. The case dimension H,=0 gives three
possible orbits. When H,=Z,, Z the group of integers, ue R?, we have L,=R? or a

cylinder depending on whether u=0 or u#0. If H.=Zu+ Zv with u and v inde-
pendent, then H, is a torus.

1. The Existence of Compact Leaves

THEOREM 1.1. (Reeb [2]). Let V be a closed Riemannian manifold and w a closed
one form on V satisfying |w| =1. Let F be the foliation of V defined by w=0. Then the
leaves of F are homeomorphic and if L is one leaf, there is a covering map p:Rx L—V.

Proof. Since ||w| =1, the foliation is oriented, and we may choose a unit vector
field on V orthogonal to the foliation.

The orthogonal trajectories to a leaf F are geodesics [3]. Let ¥ (x) be a parametriza-
tion by arc length of the orthogonal trajectory through x. For each x, there is a
neighborhood U of x, where we may define a smooth function s(y) by s(y) = the
distance of the point y from the leaf containing x. Our assumptions imply w=ds
locally.

If L is a leaf of F and s a real number, w vanishes on ¥ (L). Thus ¥, carries
leaves into leaves. The set {¥,(L)|se R} is open and closed in V, hence all of V. This
proves the first assertion.

Let xo€ ¥V, and H be the subgroup of 7, (¥, x,) of homotopy classes representable
by closed curves 4 at x, such that

fw=0

h
Here we use the hypothesis dw=0.

Let W be the connected covering space of V" over H. On W we have the one form
w*=p*w and a foliation F, defined by w*=0. W inherits a Riemannian metric such
that ||w*||=1; w* is never zero, and dw*=0.

Let a be a closed curve in W based at some point in p~*(x,). Since

fw*=fw
a pa

and pa represents an element of H, we have

Jw*=0.

a

It follows easily that the integral of w* about any closed curve in W is zero. Thus
w* =df for some smooth function f on W. The level surfaces of f are precisely the
leaves of F,. Each orthogonal trajectory to F, is an embedding of R in W and each
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leaf meets an orthogonal trajectory in precisely one point. Hence W is homeomor-
phic to Rx Ly, where LyeF,, and for each ¢, tx L, corresponds to a leaf of F,.

We observe that L, is homeomorphic to p(Ly)=L, a leaf of F. There is a map
L— L defined as follows: fix xoeL and Xe L, such that px=x,. For xeL, let h be a
path in L from x, to x. Lift h to a path a in L, starting at x. We map L—L, by
sending x to a(1), the endpoint of a. This map does not depend on the path A, since
closed paths in L lift to closed paths in L,. Thus ¥ may be covered by Rx L.

THEOREM 1.2 (Sacksteder [5]). Let @ be a locally free action of R"~! on a closed
n manifold V, such that no orbit is compact. There is a Riemannian metric on V and a
closed non-vanishing one form w of norm one, such that the foliation defined by w=0
is the same as the foliation defined by ®. This foliation admits a simple closed curve as
an orthogonal trajectory.

COROLLARY 1.3: Let V be a closed n manifold with non- Abelian fundamental group.
Then each locally free action of R"~* on V has a non-simply connected leaf.

Proof. Suppose the orbits of @ are simply connected. Then theorems 1.1 and 1.2
imply V is covered by R" and H={[a]len,(V)|f,0=0} is isomorphic to n,(R") hence
trivial. But H contains the commutator subgroup of V, hence =, (V) is abelian.

COROLLARY 1.4: Let @ be a locally free action of R*> on M x S where M is a
closed 2-dimensional manifold of genus greater than one. Then ® has a compact orbit
(a torus).

Proof. Since n; (M x S') is not abelian we know all the orbits of @ cannot be R>.
If @ has no compact orbit, all of the orbits are the one to one continuous image of
Rx S!, and each orbit is dense in M x S'. Let X and Y be linearly independent
commuting vector fields on M x S' such that X and Y span the orbits of &. Let
xo€V =M x S'. Theisotropy subgroup of R? at x, is a discrete group on one generator;
hence, we may find real numbers a, b, ¢, d such that the vector fields X' =aX+b7,
Y'=cX+dY are linearly independent and the X' orbit through x, is a simple closed
curve . Let £¢ and 7, be the integral curves of X’ and Y’. Because X' and Y’ commute,
we have &n,=n,¢&, for all ¢ and . Thus #,(y) is also a simple closed curve for all 7.
Since the @ orbit of x, is dense in ¥, it follows from continuity that all the integral
curves of X’ are simple closed curves. Moreover, the foliation of ¥ induced by @
may be assumed oriented which implies the integral curves of X’ have the same period.
Consider the quotient space Y of ¥ obtained by identifying each integral curve of X"
to a point. Y is a closed two-dimensional orientable manifold. By choosing a non-
zero normal vector field to the orbits of @ we obtain a non-zero vector field on Y;
hence Y must be a two-dimensional torus. But this means M x S is a circle bundle
over a two torus which is easily seen to be a contradiction. Simply consider the
homotopy exact sequence of this fibre bundle. Thus some orbit of & is compact.
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THEOREM 1.4. Let ® be a locally free action of R*~! on a closed n manifold V and
assume ® has no compact orbits. There is a covering map p:R* ™1 x S1 V.

Proof. We may apply 1.2 to obtain a metric on V and closed non-vanishing one
form w of norm one which defines the foliation induced by ®. Let j:/— ¥V be a para-
metrization by arc length of the closed orthogonal trajectory through x,; i.e.,
J(0)=j(1)=x,, j(t,)#j(t;) if t,#1,,0<t,, t,<1 and j(I) is orthogonal to &. It is
no loss of generality to assume this orbit has length one.

Let L be the @ orbit of x,,. By 1.1 we know Vis covered by R x L. If L is not simply
connected, then L=R""'x T'~! where T°~! is the i—1 dimensional torus and i>1.
In this case Rx L is covered by R""!x S'. So we may assume L is the one to one
continuous image of R"~! which implies each orbit of @ is of the same type. We state
in [4] that these assumptions imply ¥ is covered by R"! x S'. Since this was stated
without proof, we give the proof here.

Let H be the subgroup of =, (V, x,) generated by the homotopy class of j. Let W
be the connected covering space of ¥V over H with covering map p. We will prove W
is homeomorphic to R*" ! x S1.

We may think of W as the quotient space of the space of paths h:7—V starting at
xo where h, is identified with h, if h,(1)=h,(1) and h, h; ' represents an element of H.
Parametrize j by arc length so that the distance of j(¢) to x, is .

Define a path A(t) at x, by h(t)(f)=j(¢7), 0<t<1. Let U(r)=(h(r))=equivalence
class of h(t) in W. We have U(0)=U(1) since h(1)=j, h(0)=C,, =constant path at
xo, and h(1)h(0)"' =/ represents an element of H. Also U(t,)# U(r,) for 7, #1,,
0<1,,1t,<1,since i(t,)#h(t,). Hence Uis asimple closed curvein Wsuch that p U=j.

Let @, be a lifting of the action @ to an action on W; that is, p®,=®(1 x p),
1 =the identity map of R"~!. The orbits of ®, cover the orbits of ® hence they are
also the one to one continuous image of R"~*. To complete the proof we will show
each orbit of @, intersects the image of U is pre precisely one point.

Suppose some orbits 4 of &, meets U in two points (h(t,)) and (h(t,)). Let
p:1— A be a path joining (h(t,)) to (h(z,)); pu=4 is a path from j(z,) to j(r,) con-
tained in the orbit p 4.

For 0 <t <1, define n(r): -V by
j@tr)t<3

(D) = {ﬁ(r(Zz —1))t>%
Then 7(0)=h(t,)° C e,y 1(1)=h(t,)°B so that nh(z,)™" is homotopic to C,,. Let f
be the path in 7, /(s)=(n(t)). We have pf(x)=n(z)(1)=B(z) and £(0)=(n(0))=
(h(z,)).Since pu=p and p(0)=(h(r,)), we have p=f; in particular u(1)=f£(1),
(h(z,))=(n(1))=(h(z,) B) so that h(zy)Bh(t,)” " represents an element of H. Hence

w

h(r1)B h(r2)~ !
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is an integer multiple of |;w. However,

[w = [wm [wefwri-s

h(zy)p h(rx) ! h(ty) h(z2) B

i.e., [gw=0 since B lies in one leaf. Consequently, T, =1, or 1, =1, 7,=0. In any case
(h(ty))=(h(1,)) and A meets U in at most one point.

Now we will show 4 meets U in at least one point. Let () be a point of 4. We
shall construct a map G:Ix I-V satisfying: G(1, £)=h(t), G(0, t)=h(a)(?) for some
real number a, G(s, 0)=x, and G(s, 1) is in the orbit through h(1) for 0<s<1. The
map s—(G(s, )) is then a path in 4 joining (k) to (h(a)); where G(s, ) means the
map G(s, )(#)=G(s, t). Since (ha) is a point of ¥ this will complete the proof.
Observe that a curve 4 in ¥ is homotopic to a curve consisting of segments such that
each segment is an arc of an orthogonal trajectory or is entirely contained in one leaf.
Therefore we may assume there exists numbers 0=17,<t, <-.-<#,=1 such that for
each i, the arc h[t,, ¢;, ] is either a segment of an orthogonal trajectory or is con-
tained in one leaf.

Let L be a leaf of @ and xeL; C(f) a curve in L starting at x. The orthogonal
trajectories are infinitely extendable, hence for any positive number sy, the orthogonal
trajectories of length s, along C define a map F: I x [0, so]— V such that for fixed ¢,
F(t, s) is an orthogonal trajectory with F(z, 0)= C(¢), and F(z, s) is the point a distance
s from C(¢) along the orthogonal trajectory through C(). Moreover, the metric on V
guarantees the points F(t, s), for fixed s, are contained in the leaf through F(O, s).

Now G is defined as follows. We may assume h[¢,, ¢,] is contained in the leaf L
through x,, and A[t,, ¢,] is an orthogonal arc. Let C be the path k[z,, ¢,] and s, the
length of Az, t,]. Apply the last paragraph to obtain a map F,;:Ix [0, so]— V such
that F,(0, s)=j(s), F,(1, s)=h(t,+s) and F,(t, s,) is in the orbit through j(s,) for
0<t<1. Repeat this construction with C the curve F,(t, s,) followed by h[t,, t3].
Induction on k yields the desired map G. This completes the proof of 1.4.

COROLLARY 1.5. Let V be a closed n manifold which cannot be covered by R~ ' x S*.
Then a locally free action of R"™! on V has a compact orbit.

LEMMA 1.6. Let D={(x, x,,0,..., 0)eR"|x3 +x5<1}, {e;,...,€,—,} the n—1
frame on 0D defined as follows: e, (x;, X, 0, ..., 0)=(—x,, x;, 0,---, 0), e,=(0, 0,1, 0,
ey 0)y0nny - 1=(0,0,...,0, 1). Then {e,..., e,_} does not extend to an n—1 frame
on D.

The frame {e,,..., e,_,} represents the nonzero element of n,(S0(n)). This is
proved in Chevalley’s book on Lie Groups.

THEOREM 1.7. Let V be a simply connected closed n manifold. The rank of V is
less than n—1.
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Proof. The case n=3 has been proved by Lima [1], and n=4 is trivial since a
simply connected 4 manifold does not admit a foliation of codimension one; it does
not admit a nonzero vector field. So we assume n>5.

Let & be a locally free action of R"~! on V. According to 1.5, ¢ has a torus orbit T..
Since V is simply connected, i:T< V, induces the zero homomorphism. Thus there is
a simple closed curve C on T which bounds an embedded two-dimensional disk D
in V such that D is transverse to T, (here we use n>5). But this contradicts 1.6, (cf.

[1D).

2. Locally Free Actions of R on M x S*

(2.1) Let D be a two-dimensional disk with k contours in the interior of D. Let
V=DxI and S be an embedded sphere in V. Then S bounds an embedded ball.

Proof. For k=0 this is Schoenflies Theorem. We consider the case k=1. Let C
be an embedding of [0,1] in D with one endpoint on dD, the other on the contour, and
interior C cinterior D. If SmA# &, A=C x I, then we may cut ¥ along 4 to obtain a
3 ball; this is the case k=0. Assume then, that SN 4# ® and the intersection is
transverse. This is no loss of generality since S may be approximated by an embedded
sphere which is transverse to 4 and then there is a difftfomorphism of ¥ sending one
sphere onto the other. Let a, ..., g, be the simple closed curves in S A. Choose
a; so that a; bounds a disk E on S and E contains no g; in its interior. 4 is homeo-
morphic to Ix 1 so a; bounds a disk F on 4. Consider the sphere EU F. For our
purposes this sphere is disjoint from A4, i.e., Eu F bounds a ball Bin V. Now by an
isotopy of B across 4 we obtain a sphere S, which intersects 4 in the curves a; U...U
d;u...uaq (cf. [4] for details). Continuing we see S is isotopic to a sphere which does
not intersect 4, hence bounds a ball. The general case is just as easy.

Suppose there are k contours with k> 1. Let C be an embedding of 7in D with both
endpoints on distinct contours and interior Ccinterior D. If SnA=®, A=Cx1,
then by cutting ¥ along 4 we reduce the problem to k—1 contours. Otherwise we
take the intersection to be transverse and displace S off 4 as above.

(2.2) Let M be a closed two-dimensional orientable manifold of connectivity h>1.
Let S be a sphere embedded in M x S*. Then S bounds an embedded ball in M x S*.

Proof. Let ay,..., a,, k=(h+1)/2 be simple closed curves on M as indicated in
figure 1.

Fig. 1
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Denote by A;=a;xS*, and A=4,uU---UA4,. A separates V into two connected
components F, and E,; E,=W; x S,, E,=W, xS,, where W,, W, are the connected
components of M —(a, u...uq,). W, and W, are disks with k—1 contours. We may
think of M x S! as the quotient space of M x I where (x, 0) is identified with (x, 1),
and we identify M with M x0eM x S!.

Suppose S is embedded in ¥ so that S is disjoint from M. If S is also disjoint from
A then S is contained in E; or E,. Assume Sc E,. We have E;, =W, x I where W, x0
is identified with W, x 1. Since SN M =@, S is really contained in a subspace of V'
homeomorphic to W; x I and by (2.1), S bounds a ball in this subspace, hence in V.
Otherwise we may assume S meets A transversally. Let b be a simple closed curve
in S A such that b bounds a disk E on S whose interior is disjoint from A. Since
SN M=®, b bounds a disk F contained in a; x I for some i. Then FuU E is a spheric
contained in W, x I or W, x I hence Fu E bounds a ball. Now by displacing E across
this ball we see that S is isotopic to a sphere having one less circle of intersection
with 4. Continuing in this way, we obtain a sphere isotopic to S whose intersection
with 4 n M is void hence this sphere bounds a ball and S also bounds a ball.

It remains to consider the case SN M# ®. Let S meet M transversally, and b be a
simple closed curve in SN M which bounds a disk E on S whose interior is disjoint
from M. Since the inclusion of M in ¥V induces a monomorphism of n,(M) into
7, (¥), b must be null homotopic on M hence b bounds a disk F on M. The sphere
E u Fis (for all practical purposes) disjoint from M hence bounds a ball in V. Then S
may be displaced in V to a sphere having one less intersection curve with M and iter-
ating the process removes S from M entirely. This completes the proof of 2.2.

(2.3) Let T be a torus embedded in the interior of M x I where M is a closed orient-
able two-dimensional manifold of genus greater than one. Then T separates M x I into
two connected components. Moreover M x0 and M x I are contained in the same
connected component.

Proof. Let i be the inclusion map of T into M x I. The map i, : Hy(T)—H,(M xI)
is zero since M x I may be retracted onto M x0=M, and M has genus greater than
one so any map of T to M has degree zero. We must compute Hy(M x [—-T) (all
homology and cohomology groups are with Z, coefficients). By Lefshetz Duality
Hy(M x I-T) is isomorphic to H*(M xI;T). Consider the exact sequence in co-
homology:

H?>(M x I) > H*(T)» H*(M x I, T)- H*(M x I)» H*(T)
The first map is zero since it is the transpose of i, and the last group is zero. The
second and fourth groups are Z,, hence H*(M xI;T)=2Z,+ Z,. This proves the
first part of 2.3.

Now we will prove M x0 and M x 1 are in the same component. Let a, and a,
be simple closed curves on M x 0, as in 2.2.
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Let T intersect a, x I and a, x I transversally. If T is disjoint from a, x I or a, x I
then we may find a curve from M x0 to M x1 not meeting T. Assume then that
Tn(ayxI)=byu...ub, Tn(a;xI)=c,u...uc, where the b’s and c,’s are pair-
wise disjoint simple closed curves.

If each b;, or each c;, is null homotopic in M x I, then we can join a, x0 to
a,; x1(ora, x0toa,x1)byarcsina, x I—-T (or a, x I—T). So we may suppose there
is a b; and c; such that b; and c; are not homotopically trivial. Clearly b, is homotopic
to a, and c; to a,. Now b; and c; are disjoint simple closed curves on the torus 7 and
both represent generators of 7, (T), hence b; and c; are the boundary circles of a
cylinder on T This implies a, is homotopic to a, in M which is a contradiction. Thus
M x0 and M x1 are in the same connected component of M x I—T.

(2.4) Let T be a torus embedded in M x S* where M is a closed orientable two
manifold of genus greater than one. If Tn(M x xo)=® for some x,€S*, then T
separates M x S! into two connected components A and B. If h and g are the inclusion
maps of T into A and B respectively, then hy:n,(T)—>n,(A4) or gy:n,(T)—n,(B) has
a nonzero kernel.

It remains to establish the latter assertion of 2.4. First we need an algebraic fact
whose proof may be found in Kurosh, volume two.

(2.5) Let G,, G, and H be groups such that there are subgroups H, and H, of
Gy, G, respectively each isomorphic to H. Denote by G,*HG, the free product of G,
and G, with H amalgamated. Every element of G,*HG, can be written uniquely in
the form

where he H, n>0, a, is a coset representative, other than the unit element, of a right

coset of H; in G,, i=1,2, and adjacent representatives a;, a;,,, i=1,...,n—1, lie in
distinct G;’s.

From this it follows easily that the center of G,*HG, is contained in H.

Proof of 2.4. Suppose that A, and g, are both monomorphisms. Let G, ==, (4),
Hy=hyn,(T), Gy=n,(B), H,=g47,(T) and H=m,(T). According to Van Kampen’s
Theorem and (2.3) we have

(M x S')=G,*HG,.
Since 7, (S'!) is contained in the center of n, (M x S') and the center of G, *HG,
is contained in H, we have =, (S') contained in 7, (T"). But T is disjoint from M x x,

for some x,eS*, hence no curve on T can represent a generator of n,;(S'). Thus A,
or g, is not a monomorphism.

(3.1) Let & be a locally free action of R* on M x S* with M a closed two manifold
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of genus greater than one. Then ® has a compact orbit, and each compact orbit of ®
intersects M.
This follows immediately from 1.4, 2.4 and [1].

(3.2) If T is a compact orbit of ®, then T n M contains a curve which is a generator
of ni (T).

Proof. Assume T is transverse to M and each curve in T'n M is trivial in =, (7).
Let b be such a curve. Then b bounds a disk E on T, hence also bounds a disk F on
M and the sphere E U F bounds a ball in M x S! by 2.2. Thus the intersection curve b
may be removed from m by an isotopy of M x S' and all intersection curves may be
so removed. This gives rise to a new action which is locally free and has a compact
orbit disjoint from M. But 3.1. contradicts this.
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