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Sur ’ensemble des valeurs stationnaires d’une application differéntiable

par JEAN-CLAUDE HoLy

Introduction

Soit f une application d’un ouvert G de R™ dans R?, f(xy, ..., X,)=(¥; (X1, .- sXp)s
- ¥p(xy,...,x,)). Supposons p<m et f de classe C'.
Un point £ en lequel le rang de la matrice des dérivées premiéres

9;(8)
ox;
est <p est appelé un point critique de f, et son image f (&) est appelée une valeur

critique de f.
Lerangde A4 est par définition le rang du point critique & et de la valeur critique £ (£).
Si I’on a, r étant un nombre >1 non nécessairement entier,
i O =Sl _
m-———-—= =90,
nee |1E—nl
nous dirons que £ est un point stationnaire d’ordre r et f(£) une valeur stationnaire
d’ordre r de f. Un point critique de rang 0 est un point stationnaire d’ordre 1.

A. SARD[5] a établi les théorémes suivants:

1. Sifestde classe Clet g=m—p+1, la mesure de I’ensemble des valeurs critiques de f
est nulle.
2. Si g>m/p, la mesure de I’ensemble des valeurs critiques de rang 0 est nulle.

La notion de s-mesure, de HAUSDORFF [ 1] permet de généraliser [ 6] ces théorémes.
Rappelons-en la définition: Soit E une partie de R™, s et 0 deux nombres
positifs, 0 <s< + 00, 0< < +00; désignons par £ tout recouvrement dénombrable
{E,, E,,...} de E par des ensembles E; dont les diamétres J (E;) ne dépassent pas 9, et
soit m, (E, §)la borne inférieure des nombres ) ;2 ; [5 (E;)]* pour tous les recouvrements
2 5. La s-mesure de E est par définition:

m(E) = (151_{2 m,(E,9).

A= (G=12,..5p5i=1,...m)

On montre que si m,(E)=a>0, a# + oo, alors m,(E)=0 pour tout s'>s et
mg. (E)= + oo pour tout s"<s. La borne inférieure des nombres s pour lesquels
m,(E)=0 est appelée la dimension au sens de Hausdorff de ’ensemble E. En désignant
par | 4| la mesure extérieure de Lebesgue d’un ensemble 4 = R™, on démontre que [7]

m,(4) = C|Al,

C étant le volume de la sphére de diamétre unité dans R™.
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3. Si EcR™ est un ensemble de points critiques d’une application f de classe C9, de
s-mesure finie ou une réunion dénombrable de tels ensembles, et q>s—p+1 alors
my, f (E )=0.

4. Si Ec R™ est un ensemble de points critiques de rang 0 de f, de s-mesure finie, ou une
réunion dénombrable de tels ensembles, et q=s|p, alors mg, f(E)=0.

Les théorémes 2 et 4 peuvent étre encore précisés de la maniére suivante:

5. Si Ec R™ est un ensemble de points stationnaires d’ordre r de f, m,,, f(E)=0.

6. Si Ec R™ est un ensemble de points stationnaires d’ordre r de f, et si la s-mesure de
E est finie (ou si E est réunion dénombrable de tels ensembles), alors mg,, f(E)=0.
Desexemples de H. WHITNEY [8] et A. SARD [ 5, 6] montrent que, dans les énoncés

1 et 3, la limite donnée pour g ne peut pas étre abaissée:

Sigest un entier <s—p+1, il existe une application f: R"— RP, de classe C?, ayant
un ensemble E de points critiques, de s-mesure finie, telle que my;, f (E)>0.

Ainsi, les théorémes 1 et 3 ne peuvent étre améliorés. Nous montrerons ici qu’il en
est de méme pour les théorémes 2, 4, 5 et 6.

D’une maniére précise, pour tout £¢>0, nous construisons une application f d’un
parallélotope [J 2 m dimensions sur un parallélotope 4 i p dimensions, de classe C?
avec m/p—1<q<m/p, qui poss¢de un ensemble P de points stationnaires d’ordre
r=m/p—¢, telle que f(P)=A4.

Ainsi, les théorémes 2 et 5 ne peuvent étre améliorés. L’ensemble P est totalement
discontinu, mais on peut faire en sorte que P soit contenu dans un arc simple I', dont tous
les points sont stationnaires d’ordre r, et dont I’'image f (I"), est une courbe de Peano qui
remplit A.

Par une construction analogue, pour tout s tel que 0 <s<m, pour tout r>1 et
pour tout ¢>0, nous obtenons une application f:[]—4, qui posséde un ensemble P
de points stationnaires d’ordre r tel que 0 <m (P)< + 0, et my 4+, f(P)>0, ce
qui montre que les théorémes 4 et 6 ne peuvent étre améliorés.

Les résultats ci-dessus généralisent un théoréme démontré par M. G. bE RHAM[2].

Dans le texte complet de cette thése qui n’est pas reproduit ici, nous donnons
certaines conditions suffisantes pour que la mesure | f(K)| de 'image f(K) d’un
compact K< R™ varie continiment avec f pour la C!-topologie.

Jexprime & M. G. de Rham, ma trés vive reconnaissance pour I’aide qu’il m’a
apportée.

1. Nous donnons ici une démonstration rapide du Théoréme 5, et du théoréme 6
avec une hypothése d’uniformité.

Théoréme 5: Démonstration:
On peut supposer E de m-mesure finie. Etant donnés £>0 et § >0, pour chaque point
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xe€E, on peut trouver un nombre g (x), satisfaisant & 0<g(x)<J, tel que, Z=%(x,0)
étant une boule fermée de centre x et de rayon ¢ <g(x), on ait:

S(f(B)<d et |f(x)—f(x)I<elx —xI,

pour tout x'e#. Cela entraine
5(f (D)) < 215\;p 1/ (x) = f(x)| <2eg" <28 (%)

d’ou 6™ ( f(B))< (2 &)™ 6™ (B).

Or, comme E est de m-mesure finie, on peut extraire [ 7] de la famille des boules
B=92%(x,0),(0<g<pg(x)), un recouvrement dénombrable de E, &, (i=1, 2,...), tel
que ©

" (#B)<M,M
=1

i

étant fini et ne dépendant que de la mesure de E. Alors

Q©

Y "(f(B) <(2e)"" M,
i=1
d’ou my,, (f(E), 8)< (2 &)™ M et m™" f(E)=0.
Pour le théoréme 6, nous nous bornerons a indiquer une démonstration dans le
cas ou les points de E sont uniformément stationnaires d’ordre r, c’est-a-dire si pour
tout £>0, il existe d tel que, si £eE et [n—£&| <4, on ait | f(&)—f(n)| <el&—n|".

Lemme 1. Si I’application f est holderienne d’exposant e>0 sur I’ensemble E,
c’est-a-dire s’il existe une constante C telle que

If(p)-f(@I<Clp—gql ¢y
pour tout couple de points p et q de E, alors pour tout s>0, on a
mf (E) < C*m,(E). 2)

Remarquons' tout de suite que f est uniformément continue sur E. Soient ¢>0, § >0,
fixes, arbitrairement petits; il existe un recouvrement # ; de E au moyen d’ensembles
E, (i=1,2,...,) tels que 6 (E;)<9, 6 (f(E)))<d et

a0

Y 0°(E)<a+e o=my(E); 3)

i=1

les ensembles f (E;)=F; constituent un recouvrement de f(E) et (1) implique

i F(F)<C i 0*(E) < C(x +¢) (4)

i=1

par suite, pour tout §>0, m,( f(E), §)< C*(x+¢), ce qui entraine m, f(E)=1lim,_,
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my(f(E), 6)< C*(a+¢). Comme ¢ est arbitraire on a:
m,f (E) < C°m,,(E).
Pour démontrer le théoréme 6, il suffit d’appliquer le lemme 1, il vient:
m,f(E)y< & my(E) etcomme s/r est >0,

et ¢ arbitraire, on a bien my;, f(E)=0.

2. Construction d’applications différentiables non constantes dont toutes les valeurs
sont stationnaires.
Considérons un compact [J < R™ et A similitudes F;, (i=1,..., ) de méme rapport

@<1, qui changent [] en les h compacts F;[1=[];c [Of] deux-a-deux disjoints. Pour
tout entier k, les #* compacts F, F,,...F, [1=[,,4,..a (@;=1,...,h) sont deux-a-deux
disjoints. Soit [1*=\JO,,. . leur réunion; on a [O*>[**! et lintersection
P= (N> ,[* est un ensemble parfait, totalement discontinu. Pour toute suite infinie
aia,...a;....,(ay=10ou2ou...ouh)les Jaya,...aq (k=1,2,...,) forment une suite
décroissante ayant pour intersection un point de P, et I’on a ainsi une bijection b de
’ensemble de ces suites sur P. Posons encore Do=[]—', D,=0*-**'. On a

h h
Ot = UFjDk9 Dk+l=.U1FjDk'
J:

j=1

Les ensembles P et D, (k=0, 1, 2,...) sont deux-a-deux disjoints et ont pour réunion

0. Comme [];< [3, on a [j‘c:[i‘] et la distance d de (! & C[J est positive; la
distance de F,[]' 4 C[], est alors a=gd>0, indépendante de a.

Considérons encore un compact 4 = RP et h similitudes T; (i=1, ..., &) de rapport
o' <1 telles que T,Ac A, sans supposer les T;A deux-a-deux disjoints. Soit encore A*
la réunion des #* compacts T,, T,, ... T, Aet P’ I'intersection P'= (");; A*. On définit
comme ci-dessus une application s de I’ensemble des suites a;a,...q,... sur P’, qui
est surjective mais non injective lorsque les T;A ne sont pas deux-a-deux disjoints, et

P’ n’est en général pas totalement discontinu.

Théoréme (7):
a) Il existe une application f:[]—A, et une seule qui satisfait aux équations fonc-

tionnelles:
) T,of =f°F,, (a=1,2,...,h) (2.2)

et dont la restriction @ D, est une application donnée ¢ :Dy— A

b) La restriction fa P est f/[P=s°b™?, en sorte qu’elle ne dépend pas de ¢ et f (P)=P'.
c) Il est possible de choisir ¢ de maniére que f soit C* dans []—P.

d) Si q est le plus grand entier tel que o' < et si f est C? dans []—P, fest C? dans [,
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toutes ses dérivées d’ordre <q sont nulles sur P et elle est holderienne d’exposant

e=log ¢'/log ¢ aux points de P.

La derniére partie du théoréme entraine que tous les points de P sont des points
stationnaires d’ordre r de f pour tout r<e.

Tout d’abord, f étant donnée sur D, on peut la définir de proche en proche sur
les ensembles D, (k=1, 2,...) de maniére a satisfaire a (2,2); si en effet, (€D, ., on
a ¢eF,D, pour une valeur de a, (1<a<h), F, ' (£)eD, et I'on étend la définition de
fde D, a Dy, en posant:

(@)= T.of oF71(8)

L’application fest ainsi déterminée sur | J;~, D, =[] — P lorsque f/D,= ¢ est donnée.
Pour définir f sur P, remarquons que (2.2) entraine les équations plus générales,

T, T,,...T, °f =f°F, F, ...F,. 2.3)

Si au point éeP correspond la suite b~ ! (¢)=a, a, ... q,... on doit avoir d’aprés (2.3),
f(©eT, T,,...T, A pour tout k, donc f (£)=s°b~" (£). L’application ainsi définie sur
P satisfait effectivement a (2.2) et ’'on a f(P)=P’. On a ainsi établi a) et b).

Si ¢ est C® a I'intérieur de D,, il résulte de la définition ci-dessus que f sera C*
a lintérieur de D, pour tout entier k. Mais il y aura en général des discontinuités a
la frontiére des D,. Toutefois, comme la frontiére intérieure de D, (qui est en méme
temps la frontiére extérieure de D, ,, et la frontiére de [1**!) est la réunion des A*
images de la frontiére intérieure de D, par les #* applications F, F,,...F,, en vertu
de (2.2) il suffira que f soit C ® sur la frontiére intérieure de D, pour qu’elle le soit
en tous les points frontiére de tous les D,, et par suite dans []—P.

Pour réaliser cette condition, considérons un voisinage ouvert U de la frontiere
de [, tel que U, F, U, (a=1,..., h) soient deux-a-deux disjoints, et soit 1=y +; + -
.- 4, une partition de 'unité dans R™ en h+1 fonctions C* et >0, telles que
Yo=1dans U, y,=1 dans F,U. Si alors y est une application C* de R™ dans R,
telle que y([0)<A, par exemple une application constante de R™ sur un point de 4,
I’application

@ =VYox +¥i(Trox°Fi )+ +Yu(Thox°F )

est C®, égale 4 y dans U, & T,ex°F, ' dans F,U (a=1,2,..., h).
L’application f égale a4 ¢ dans D, qui satisfait a (2.2) est alors encore égale & ¢ dans
F,U,(a=1,2,..., h), elle est donc C sur les frontieres des [, (i=1, 2,..., h) c.a.d.
sur la frontiére intérieure de D, et par suite dans [J—P, ce qui prouve c).

Soit dx un vecteur unité dans R™ et f une variable réelle qu’on fera tendre vers 0;
comme f est C®, en tout point xe[]—P, on a un développement asymptotique

e
k

f(x+tdx)—f(x)= }:%‘ P, (x,dx) (2.4

k=1
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ou P, (x, dx), différentielle d’ordre k de f(x), est un polyndme homogene de degré k
en les composantes de dx, dont les coefficients sont les dérivées partielles d’ordre k
de fen x.

Si xe D,, il existe une suite a, a, ... a, et un point x,e D, telsque x=F, F,,... F, (x,).
Les similitudes F, (a=1, 2,...,h) agissent sur les vecteurs de R comme une rotation
F, suivie d’une homothétie de rapport ¢, par suite dx est I'image par F, F,,...F,
du vecteur ¢""F,"'F,"' ...F, ', ce qui entraine:

x+tdx=F,F, ..F, (x,+t "F,”'...F,” " dx) (2.5)

D’autre part, chaque transformation T, T5,..., T, agit sur les vecteurs de RP
comme une rotation T, (a=1,..., h) suivie d’'une homothétie de rapport ¢’, ce qui
entraine en tenant compte de (2.3) et (2.5)

fx+tdx)—f(x)=¢"T,, .. T, [f(x,+te "F, ' .. F, 7 dx) —f(x,)] (2.6)

En identifiant le développement (2.4) avec celui qu’on obtient en appliquant cette
méme formule (2.4) au second membre de (2.6) il vient:

P(x,dx)= (0™ T, ... T, P(x,, F,”'...F,” ! dx) 2.7

Comme x,, varie dans D,, ou chaque dérivée de f est bornée, et F,~ ' ... F, 'dx étant
comme dx un vecteur unité, |Py(x,, F, '...F, ' dx)| admet une borne supérieure
Ay, d’ou

|P.(x,dx)| < (0’ *)'A, pour xeD, et |dx|=1 (2.8)

Si k<gq, en vertu de (2.1;d), on a ¢’¢ " *<1. Si alors xe[]—P tend vers un point de
P, n tend vers linfini, par suite P,(x, dx)—0.

Nous avons prouvé que si xe[]J— P tend vers un point de P, les dérivées de f(x)
d’ordre <gq tendent vers 0.

Montrons encore que ces dérivées existent et sont nulles sur P. Soit xeP et
a,a,...a,... lasuite telle que xe[Ja,a,...a, pour tout n. Si x#x’, il existe un entier
déterminé n, tel que x’e[Ja,...a, et x'¢[Ja,...a,a,,. 1l existe alors deux points
x, et x, de [, tels que x=F, ...F, x,, x’=F, ...F, x,; et 'on a x,¢,,,,
X,€0a,, 1ans < Fa,., 1. La distance de x, & x, est par suite supérieure au nombre
positif o, |x,—x,|>a d’ou X' — x| > ag". ' (2.9)
D’autre part, si é est le diameétre de 4, on a:

If(x)=f(x)l <6 dou |f(x)=-f(x)<e"é
Cela entraine la continuité de f en x. De plus, on a

f &)= @I _3

|x" — x| a(Q’Q-I)n
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d’ou résulte si g>1, que la différentielle premiére de f existe et est nulle en x, car
0’0" 1 <1 en vertu de (2.1; d), et n—> 00 si x'—x.

Si g>1, raisonnant par récurrence, supposons que pour k <g—1, la différentielle
d’ordre k, P,(x, dx), existe et est nulle en x et montrons qu’il en est de méme de la
différentielle d’ordre k+ 1. En tenant compte alors de (2.8) et de (2.9), on a:

IPk(x’,dx)-—Pk(x,dx)l [P (x', dx)l <00 1)

ce qui tend bien vers 0 pour x"—x, ou n— o0, car, Q’Q”"’lsg’g“1<1.
Enfin, si e=log ¢'/log g, on a Q'Q_e=1, d’ou en tenant compte de (2.9)
If &) —f G

[x" — x|° ( e =

ce qui montre que f(x) est hélderienne d’exposant e aux points de P. On voit de méme
que pour k<g, les dérivées d’ordre k de f(x) sont holderiennes d’exposant e—k aux
points de P.

Nous allons maintenant examiner quelques cas particuliers du précédent Théo-
réme.

Prenons pour ] le parallélotope défini dans R™ par

0<x, <279 (j=1,2,....,m)

|x" — x| [x" — x|

Le plan x, =1/2 partage [] en deux parallélotopes égaux entre eux et semblables a
[ dans le rapport 27 1/™, Les applications

X, =2 m s
TO:{ , m (j=1,...,m—1)
xj+1=2 Y X
et , —1/m
xl =2 xm+% 3
TI:{ ’ —1/m (]=1,...,m—1)
xJ'+1=2 xJ-

sont des similitudes de rapport 27 1/™

T, O.

Soit H une homothétie ayant pour centre le centre de [], de rapport <1. Les
similitudes F,=Ty° H et F, =T, H de rapport g <2~ !/™ changent [] en deux paral-
1élotopes F, [1=[1, et F, [1=[1, contenus dans [] et disjoints.

Prenons pour 4 le parallélotope défini de la méme maniére dans RP et pour
T, et T, les applications analogues a celles définies ci-dessus; ce sont des similitudes
de rapport ¢'=2"1/?, T, A et T, A ont pour réunion 4 mais ne sont pas disjoints. Les
2* parallélotopes T,, T,,... T, 4 ont pour réunion 4, quel que soit k.

Les applications F, et F, sont des similitudes de rapport ¢ <2~1/™ qu’on pourra
supposer aussi voisin que 1’on veut de 27!/™, Soit g le plus grand entier strictement

qui changent [] en ses deux moitiés T[] et
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inférieur & m/p, mfp>q>m/p—1. Alors 1/pg>1/m et
p-1ira . p=1/m
Nous choisirons ¢ de maniere que ’on ait:

271 < g <27 M
en sorte que
o =2"1P < ot

Le Théoréme (7) s’applique dans ce cas, on a h=2, ¢’ =2"'/? et dans les formules
(2.5), (2.6), (2.7) on peut remplacer T,, F, respectivement par les rotations uniques
T et F. L’ensemble P’ devient le parallélotope 4. Les points de P sont ainsi des points
stationnaires d’ordre r aussi voisin qu’on veut de e, et cependant f(P)=4. D’aprés
(2.1; d), on a g<r<e<m/p, en choisissant g assez voisin de 27 !/™ e sera aussi voisin
qu’on veut de m/p et q le plus grand entier inférieur & m/p.

Lemme (1): Soit EcR™ alors m (E)=0 si s>m. Démonstration: Il suffit de
supposer que E soit le cube unité dans R™. E est donc défini par 0<x;<1, (i=1, 2,...,
...,m). On peut partager E en h™ cubes E; de cotés 1/h donnés par les inégalités:
m;_i[h<x;<mh,i=1,2,..., h. Les ensembles E; recouvrent E, et le diamétre d’un
cube E; vaut (\/m/h). Soit >0, fixe, arbitrairement petit, et §>0; il existe  tel que
h"~*<eg et (/m/h)<$. On a:

hm 5
Z (SS(EJ) — hm(\/(hm)) — ms/2 pmos < 8ms/2
j=1

alors m,(E, 6)<e pour tout §, et par suite m,(E)<¢ et comme ¢ est arbitraire, on a
m,(E)=0.
Des lemmes (1, § 1 et 1 § 2) il découle que m, f (E)=0 pour s>m/e. En particulier
m, f(E)=0 si p>m/e c’est-a-dire e>m/p.
Or, dans I’exemple,
log o’ log2~1"

e = e
log ¢ log ¢

m,f(E)>0 et
est aussi voisin qu’on veut de log 2~ 1/?/log 2~ /™
I’exemple, ni le Théoreme 2 de A. Sard.

Avant de prouver que I’on ne peut améliorer le théoréme 4 de A. Sard, nous
allons étudier la s-mesure de ’ensemble P. Nous montrerons que la dimension de P
au sens de Hausdorff est égale a so= —log 2/log ¢ et que m,, (P) est positive, non
infinie.

=m/p, on ne peut donc améliorer ni

Lemme 2: Soit s, = —log 2/log ¢ alors m,,(P)>0, # co. Démonstration: Dans le
cas ol f est la fonction prenant ses valeurs dans R*, nous avons d’aprés le théoréme
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(i If(p) —f (@) <Alp—gq|

le nombre e vaut précisément —log 2/log ¢ car ¢’=1/2. D’apreés le lemme (1, § 1),
m,(P) ne peut étre nulle car m, f(P)=1 et en posant s=1 dans le lemme (1, § 1), on
am, f(P)<Am,(P). D’autre part m,(P) n’est pas infinie, car a tout >0 on peut
faire correspondre un indice #, tel que @"d (P) < et comme ’ensemble P est contenu
dans la réunion des 2" ensembles [],, _,, deux-a-deux disjoints, semblables & [] dans
le rapport ", et que 29°=1, on aura:

2 6°(ay..ar) = 2"¢"6°(00) = 6°(0O),

(i=1,...n),a=0,1
d’ot il résulte que m, (P, 6)<6°([J) et comme & est aussi petit que ’on veut on a:
m,(P) < 6°(0J)

On peut ainsi remarquer qu’a chaque valeur de e, comprise entre 0 et m, 0 <e<m, il
correspond un nombre ¢ tel que 2¢°=1 et un ensemble P< R™, tels que m,(P)>0,
# + 0.

En nous basant sur les théorémes (6, § 1) et (1, § 2), et le lemme (2, § 2), nous
allons montrer que pour tout ¢>0, 1>¢>0, fixe, et tout couple d’entiers m et p,
m>1, p>1, il existe pour tout nombre r>1, et pour tout nombre e,, 0 <e, <m, une
application f, d’un ouvert G de R™ dans R?, de classe C?%, g=[r] et un ensemble P
de points stationnaires d’ordre r de f,, m, (P)#0, tels que

me;/r+afs(P) ;é 0

Nous nous plagons dans le cas ou 'on a deux similitudes F, et F, de rapport
0,=h,;271™ et deux similitudes T, et T; de rapport ¢, =h,2” /7. D’aprés le théo-
reme (7), si xeP on a:

fx)—f () _4 (,2_2—1_/p>n

Ix' — x| T o \K} 27"
et cette derniére quantité tendra vers 0 pour n— o0, c.a.d. lorsque x'—x, si
h, < k2" "m+1r
de sorte que I’on peut écrire:
hy,=(1—¢)h 277m*1P ¢ >0,

Du théoré¢me (7), il découle que I’application f, que 'on obtient est de classe
C?% g=[r] dans [J et les points de P sont des points stationnaires d’ordre r de f,.
L’application f, vérifie les hypothéses du théoréme (6, § 1), sur P et il vient:

mellrfa(P) =0.
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En vertu du lemme (2, § 2), & tout nombre e,;, 0<e; <m, il correspond un nombre
0 et un ensemble P, tels que

m, (P)>0, m,(P)# o
Cela implique
—log?2 — log 2

= Toge, logh, — 1/mlog2

Pour les mémes raisons, au nombre /4, il correspond

— log 2
log ¢,

e, = et m,(P)>0,#0w

Nous avons

= <
log(1—¢)h} —r/mlog2 r

€3

et ’'on peut poser e, =e,/(r+¢), €>0.

On peut rendre e, aussi voisin que I’on veut de e, /r, il suffit pour cela de choisir
¢’ suffisamment petit. Comme m,,(P’)>0, on a bien m, ., f.(P)#0. On ne peut
donc améliorer ni les théoremes 5 et 6 § 1, ni le théoreme 4 de Sard.

3. En nous basant sur le cas particulier du paragraphe 2, nous allons construire
une courbe simple C passant par P et une application f:[]—4 telle que f(P)=4
dont tous les points de C sont stationnaires d’ordre r=m/p—c¢.

Pour construire C, considérons les applications ¢, (z)=(1+z)/5 et ¢, (z2)=(3+2)/5
de I'intervalle I=(0<z<1). Le théoréme (7), montre qu’il existe une application
g:I-[] et une seule, qui satisfait aux équations

get,=F,°g a=0,1, 3.1

et dont les restrictions aux intervalles 0<z<1/5, 2/5<z<3/5, et 4/5<z<1 sont
données. Dans ce cas, r=0 et g est continue.

Désignons par Q le sommet de [] opposé a O, et supposons que les restrictions de
g A ces trois intervalles définissent trois arcs simples a, B et y, joignant respectivement
OAF,0,F,QaF Oet F,QaQ, ces arcs étant deux-a-deux disjoints et contenus
dans D, a ’exception des extrémités qui sont sur D,. Alors I’application g définit un
arc simple C, joignant O & Q, égal a la réunion de P et des arcs a, f§, y et de toutes
leurs images pour toutes les applications F, F,. ... F,, (a;=0,1; k=1,2,...). Supposons
p=1. Les transformations T, et T, se réduisent alors & Toy=y/2 et T,y=(1+Y)/2,
de sorte que T,0=0, T,1=T,0=1/2, T,1=1. Si la solution f des équations (2.2)
satisfait 4 £ (0)=0 et £ (Q)=1, on aura par suite f (F, (0))=0, f(F, (Q))=f (F, (0))=
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=1/2 et f(F,(Q))=1 c.a.d. que f prend la méme valeur aux deux extrémités de
chacun des arcs a, f et y. Il en résulte qu’on peut choisir la restriction ¢ de fa D,
de maniére que f soit constante égale 2 O dans un voisinage W, de «, constante égale
a '/, dans un voisinage W, de B et constante égale 4 1 dans un voisinage W, de y et
C = dans [J—P. La fonction f est alors stationnaire d’ordre oo aux points de a, f, y
et en leurs images par toutes les transformations F, F,,...F, (a;=0,1; k=1,2,...).
Comme elle est stationnaire d’ordre r=m—¢ aux points de P, elle est stationnaire
d’ordre r en tous les points de la courbe C et f(C)=f(P)=1.

Cas de p>1.

* A partir de la construction précédente et du cas particulier du théoréme (7), nous
allons obtenir une application f d’un ouvert G de R™ dans R, de classe C%, m/p>qg>
>mfp—1 stationnaire d’ordre r=m/p—e, m/p—1<qg<r<e<m/p, sur un arc de
courbe I', telle que f(I')=A4. Nous pouvons prendre pour B un arc de courbe con-
tenant un exemplaire de I’arc de courbe C construit ci-dessus, et disposer C de maniére
que seules son origine et son extrémité rencontrent respectivement les ensembles
FoW; et F; W, et I’on raccordera C aux points F,Q et F, O au moyen d’arcs de
courbe C’, C’, rectifiables, entiérement contenus dans W,.

Soient P, et P, deux sommets de 4 dont nous supposerons qu’ils vérifient la con-
dition Ty Py=P, et T, P, =P,, et a le segment de droite qui joint Ty P, & T, P,. Nous
pouvons maintenant choisir ¢ de maniére que ¢(x)=P, dans W,, ¢(x)=P, dans
W, et que @ soit stationnaire d’ordre m—¢ sur C avec ¢ (C)=a, ¢(C')=P,, ¢ (C")=
=P,. Le segment g, image de f par ¢ est donc entiérement constitué de valeurs
stationnaires d’ordre m—¢ de o.

Soit I" I’arc de courbe formé de la réunion de a, B, y, de toutes leurs images par les
applications F, F,,...F, , (a;=0,1; n=1, 2,...) et de P. L’application f qu’on déduit
de ¢ est stationnaire d’ordre r=m/p—¢ sur I' et C® en dehors de I'. En effet, f est
stationnaire d’ordre m—¢ sur tous les ensembles F, F,, ... F, (C), cela découle de la

fi :
ormule fo Fa1 Faz Fa“(x) == T:“ T:'2 T;n Of(X)a

car si x est critique pour f'il 'est aussi pour I'application T, T,,...T, °f (x) car les T,
sont des difféomorphismes C*, et comme il en va de méme pour les F,, le point
F, F,,...F, (x) est aussi critique pour f. En vertu de ces équations, si x est station-
naire d’ordre r pour f, alors F, F,, ... F, (x) est également stationnaire d’ordre r pour
f. Comme on peut choisir ¢ de telle sorte que m—e&>m/p>r, f est bien stationnaire
d’ordre r sur I et f(I')= 4.

On peut encore remarquer que I'image de I" est une courbe de Peano qui remplit
le pavé 4, et le graphe de I’application f dans R™*? est une variété 3 m dimensions
de classe C?. Le m-plan tangent n & cette variété, varie continiment le dng d’une
courbe I'’ qui est I'image de I' par ’application Q(x)=(x, f(x)), et en chaque point
de I'', m est parallele 3 R™. La projection de I'’ sur RP est 4.
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4. Voici une autre construction d’une application du parallélotope & m dimensions
[0 dans un cube a p dimensions 4 de classe C4, m/p—1<q<r<m/p, et stationnaire
d’ordre r=m/p—¢ en tous les points d’une courbe C, dont I'image f(C) remplit
néanmoins 4.

Désignons par 4 le cube unité de R?, 0<x;<1 (i=1,2,..., p). Ordonnons ses
sommets S; (i=1, 2,..., 2?) de maniére que S;_; et S; (i=2, 3,..., 2?) ainsi que S,,
et S; soient les extrémités d’une méme aréte. On peut déterminer cet ordre par ré-
currence, de maniére que S; (i=1, 2,..., 2?~ 1) soient les sommets de la face de 4
contenue dans le plan x,=0 rangés dans un ordre satisfaisant a la condition ci-dessus,
et prenant pour S; si j>27"' le sommet de la face contenue dans le plan x,=1 qui
se projette sur Sy,.;-; On peut supposer que S;=(0,0,...,0)=0, alors S,,=
=(0,0,..., 0, 1).

Partageons 4 en 27 cubes égaux, par les plans x;,=1/2, (k=1, 2, ...,p) et désignons
par 4, celui qui contient le sommet S;. Choissisons dans chaque 4; une aréte orientée
A;, de maniére que ’extrémité de A; coincide avec I'origine de 4;,, (i=1,...,27—1)
et que S, soit l'origine de 4, et S,, 'extrémité de 4,,. On peut faire ce choix par
récurrence: si B; (i=1,2,...,2°"!) sont des arétes des bases des 4; dans le plan
x,=0, on prendra 4;=B; (les B, satisfaisant par hypothése a la condition énoncée
pour p—1) pour i<2?~ 1 A4,,., = aréte paralléle 2 O,, ayant pour origine Pextrémité
de Byp-1_y, et sij>2P"1, A; sera 'ar€te de 4; qui se projette sur A,,,,_;, avec
I’orientation opposée.

Si alors T est une similitude (de rapport 4) qui change A4 en 4, et ’aréte S,.5,,
de 4 en 4, (i=1,2,...,27), on a:

T; S0 = T4y Sla(i =1,... 27 — D, TS, =S, T,, S0 = Sz (4-1)

Considérons alors les 27 similitudes F,, ... F, (a;=0, 1) les F, étant les similitudes
(de rapport @) définies au § 2 et désignons-les par ¢; (i=1, 2,..., 27). Le Théoréme
(7), fournit alors une application f qui satisfait aux équations fonctionnelles

Toof=fod, (i=1,2,..,2°) (4.2)

Soient a;, (i=0,1,...,2P), 2P+1 arcs simples, deux-a-deux disjoints contenus
(sauf les extrémités) dans D,, o, joignant O a ¢, 0, a; joignant ¢;Q a ¢;,,0,
(i=1,...,27—1) et a,, joignant ¢,,Q a Q. La réunion de P avec les arcs «; et toutes
leurs images par toutes les applications ¢;,...¢,,, (i;=1,...,27; k=1,2,...) est un
arc simple C, joignant O a Q.

Si la solution f des équations (2.2) satisfait & f(0)=S,, f(Q)=S,», en vertu de
(4.1) elle prend la méme valeur T;S,,=T;, S, aux deux extrémités de I’arc ;. On en
déduit que I’on peut choisir la restriction ¢ de f 3 D, de maniére que f soit C® dans
[0 —P et constante égale a T,S,,=T;,;S; dans un voisinage de «;. C’est alors une
application stationnaire d’ordre r en tous les points de C, telle que f(C)=4.
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