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Sur l'ensemble des valeurs stationnaires d'une application differéntiable

par Jean-Claude Holy

Introduction

Soit/une application d'un ouvert G de Rm dans Rp,f(xu xm) (yl (xt, ,xm),

yp{xu ,*m)) Supposons p< m et/de classe C1

Un point £ en lequel le rang de la matrice des dérivées premières

-~— 0 l>29 ,p,ï 1, m)
dxt

est <p est appelé un point critique de /, et son image /(£) est appelée une valeur

critique de/
Le rang de A est par définition le rang du point critique £ et de la valeur critique/ (£)
Si l'on a, r étant un nombre > 1 non nécessairement entier,

nous dirons que Ç est un point statwnnaire d'ordre r et/(£) une valeur stationnaire
d'ordre r de/ Un point critique de rang 0 est un point stationnaire d'ordre 1

A Sard [5] a établi les théorèmes suivants
1 Sifest de classe Cq et q>m—p + l, la mesure de l'ensemble des valeurs critiques def

est nulle
2 Si q>m/p, la mesure de l'ensemble des \aleurs critiques de rang 0 est nulle

La notion de ^-mesure, de Hausdorff [1] permet de généraliser [6] ces théorèmes

Rappelons-en la définition Soit E une partie de Rm, s et ô deux nombres

positifs, 0<5<+oo, 0<<5<+oo, désignons par 01 ô tout recouvrement dénombrable

{Eu E2, } de E par des ensembles Et dont les diamètres ô (Et) ne dépassent pas ô, et

soit ms (E, ô) la borne inférieure des nombres £j*L t [5 (£,)]s Pour tous ^es recouvrements

0tô La ^-mesure de E est par définition

ms(E)= hm ms(£,(5)

On montre que si ms(E) a>0, a^ +oo, alors ms(E) 0 pour tout s'>s et

ms (E)=+ao pour tout s"<s La borne inférieure des nombres s pour lesquels

ms(E)~0 est appelée la dimension au sens de Hausdorff de l'ensemble E En désignant

par \A\ la mesure extérieure de Lebesgue d'un ensemble AcRm9 on démontre que[7]

mm(A) C\A\,

C étant le volume de la sphère de diamètre unité dans Rm
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3. Si EcRm est un ensemble de points critiques d'une application f de classe Cq, de

s-mesure finie ou une réunion dénombrable de tels ensembles, et q>s~-p + l alors

«,/(£)=<>.
4. Si EcRm est un ensemble de points critiques de rang 0 deff de s-mesure finie, ou une

réunion dénombrable de tels ensembles, et q^s/p, alors ms/qf(E) 0.
Les théorèmes 2 et 4 peuvent être encore précisés de la manière suivante:
5. Si EczRm est un ensemble de points stationnaires d'ordre r def, mm/rf(E) 0.

6. Si EcRm est un ensemble de points stationnaires d'ordre r def, et si la s-mesure de

E est finie (ou si E est réunion dénombrable de tels ensembles), alors msfrf(E) 0.

Des exemples de H. Whitney [8] et A. Sard [5, 6] montrent que, dans les énoncés
1 et 3, la limite donnée pour q ne peut pas être abaissée :

Si#est un entier <$—p + l9 il existe une application/: Rm->RP9 de classe Cq, ayant
un ensemble E de points critiques, de ^-mesure finie, telle que ms/qf(E)>0.

Ainsi, les théorèmes 1 et 3 ne peuvent être améliorés. Nous montrerons ici qu'il en

est de même pour les théorèmes 2, 4, 5 et 6.

D'une manière précise, pour tout e>0, nous construisons une application/ d'un
parallélotope Qàm dimensions sur un parallélotope A à p dimensions, de classe Cq

avec m/p — l<q<m/p9 qui possède un ensemble P de points stationnaires d'ordre
r=m/p—e9 telle que/(P)=A.

Ainsi, les théorèmes 2 et 5 ne peuvent être améliorés. L'ensemble P est totalement
discontinu, mais on peutfaire en sorte que P soit contenu dans un arc simple F, dont tous
les points sont stationnaires d'ordre r, et dont l'imagef (F), est une courbe de Peano qui
remplit A.

Par une construction analogue, pour tout s tel que 0<s<m, pour tout r>\ et

pour tout e>0, nous obtenons une application f:\3-*A, qui possède un ensemble P
de points stationnaires d'ordre r tel que 0<ms(P)< + oo, et ms/(P+£)/(P)>0, ce

qui montre que les théorèmes 4 et 6 ne peuvent être améliorés.
Les résultats ci-dessus généralisent un théorème démontré par M. G. de Rham [2].
Dans le texte complet de cette thèse qui n'est pas reproduit ici, nous donnons

certaines conditions suffisantes pour que la mesure \f(K)\ de l'image f(K) d'un

compact KcRm varie continûment avec /pour la C^-topologie.
J'exprime à M. G. de Rham, ma très vive reconnaissance pour l'aide qu'il m'a

apportée.

1. Nous donnons ici une démonstration rapide du Théorème 5, et du théorème 6

avec une hypothèse d'uniformité.

Théorème 5: Démonstration:
On peut supposer E de m-mesure finie. Etant donnés a>0 et <5>0, pour chaque point
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xeE, on peut trouver un nombre q(x), satisfaisant à 0<q(x)<Ô, tel que, &=&(x,q)
étant une boule fermée de centre x et de rayon q<q (x), on ait :

5 et |/(x')-/(x)|<e|x'-x
pour tout x'e&. Cela entraîne

2 sup |/(x') -/(x)| < 2eQr < 2eô'

d'où àmlr{f(£))<(! zf*lr6m{&).
Or, comme E est de m-mesure finie, on peut extraire [7] de la famille des boules

^=^(x, q)9(0<q<q(x)), un recouvrement dénombrable de E, Jj (i l, 2,...), tel

étant fini et ne dépendant que de la mesure de E. Alors

£ ôm/r(f(œi))<(2e)m/rM,

d'où mmIr(f(E), ô)<(2s)mIrM et mm/rf(E)=0.
Pour le théorème 6, nous nous bornerons à indiquer une démonstration dans le

cas où les points de E sont uniformément stationnaires d'ordre r, c'est-à-dire si pour
tout e>0, il existe <5 tel que, si ÇeE et fo-{|<5, on ait

Lemme 1. Si l'application f est hôlderienne d'exposant e>0 sur l'ensemble E,
c'est-à-dire s'il existe une constante C telle que

\f(p)~f(q)\<C\p-q\e (1)

pour tout couple de points p et q de E, alors pour tout s>0, on a

msf(E)<Cmes(E). (2)

Remarquons tout de suite que/est uniformément continue sur E. Soient e>0, <5>0,

fixes, arbitrairement petits; il existe un recouvrement 0tb de E au moyen d'ensembles

Eif (i l, 2,...,) tels que ô(Et)<ô, ô(f(Et))<ô et

£ «-(£,) < a + e, a mes(E); (3)

les ensembles/(£f) Ff constituent un recouvrement deZ(iE') et (1) implique

£ ô'(Ft) < Cs £ «-(£f) < Cs(a + e) (4)
ï=l i=l

par suite, pour tout <5>0, ms(f(E), 5)<Cs(a + e), ce qui entraîne msf(E)= lima_0



160 JEAN-CLAUDE HOLY

ms(f(E), ô)<Cs(ct+s). Comme s est arbitraire on a:

msf(E)<Csmes(E).

Pour démontrer le théorème 6, il suffit d'appliquer le lemme 1, il vient:

ms/rf (E) < ssfr ms(E) et comme s/r est > 0,

et s arbitraire, on a bien ms/rf(E)=0.

2. Construction d'applications différentiables non constantes dont toutes les valeurs

sont stationnaires.
Considérons un compact cRm et h similitudes Fi9 (i 1,..., h) de même rapport

q<1, qui changent en les h compacts F/n Dic:n deux-à-deux disjoints. Pour
tout entier k, les hk compacts Fai Fai... FakO Oai û2... ak (ai 1

> • • • > *) sont deux-à-deux

disjoints. Soit n*=UE]ai...ak leur réunion; on a n^D*"1"1 et l'intersection
P— nr=in* est un ensemble parfait, totalement discontinu. Pour toute suite infinie

ala2..-ak...,(ak l ou 2 ou ou h), les at a2... ak (k 1, 2,...,) forment une suite

décroissante ayant pour intersection un point de P, et l'on a ainsi une bijection b de

l'ensemble de ces suites sur P. Posons encore Z>0 D-n1, A nk —Dk+1. On a

Ù

Les ensembles P et Dk(k 0, 1, 2,...) sont deux-à-deux disjoints et ont pour réunion
o o

?• Comme Di^D, on a D^n et la distance d de D1 à CD est positive; la
distance de FaD1 à CD* est alors oc Qd>O, indépendante de a.

Considérons encore un compact A cRp et h similitudes Tt (/= 1, h) de rapport
q' <1 telles que T^AcA, sans supposer les TfA deux-à-deux disjoints. Soit encore Ak

la réunion des hk compacts Tai Ta2... Tak A et P' l'intersection P' Hk°= î A*. On définit

comme ci-dessus une application s de l'ensemble des suites a<ia1...ak... sur P', qui
est surjective mais non injective lorsque les T(A ne sont pas deux-à-deux disjoints, et

P' n'est en général pas totalement discontinu.

Théorème (7):
a) // existe une application f: ?-+A, et une seule qui satisfait aux équations fonc¬

tionnelles:

Ta°f=f°Fa, (a 1,2,...,/!) (2.2)

et dont la restriction à Do est une application donnée (p:D0->A
b) La restrictionfà P estf/P=s°b~i, en sorte qu'elle ne dépendpas de (p etf(P)=P'-
c) // est possible de choisir (p de manière que f soit C00 dans ?— P.

d) Si q est le plus grand entier tel que q' <Qq et sifest Cq dans —P,fest Cq dans D.
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toutes ses dérivées d'ordre < q sont nulles sur P et elle est hôlderienne d'exposant
e=log g'/log g aux points de P.

La dernière partie du théorème entraîne que tous les points de P sont des points
stationnaires d'ordre r de/pour tout r<e.

Tout d'abord, / étant donnée sur Do, on peut la définir de proche en proche sur
les ensembles Dk (fc l, 2,...) de manière à satisfaire à (2,2); si en effet, ÇeDk+l, on
a ÇeFaDk pour une valeur de a, (1 <a<h), F"1 (Ç)eDk et l'on étend la définition de

/de Dk à Dk+l en posant:

L'application/est ainsi déterminée sur \Jk= 1Dk=O-P lorsque//Do ç est donnée.

Pour définir/sur P, remarquons que (2.2) entraîne les équations plus générales,

T T T °f f°F F F (2 3)

Si au point ÇeP correspond la suite b'1 {Ç) a1a2...ak... on doit avoir d'après (2.3),

f(Ç)eTai Ta2... TflkÀ pour tout k, doncf(Ç) s°b~1(Ç). L'application ainsi définie sur
P satisfait effectivement à (2.2) et l'on a/(P)=Jpr. On a ainsi établi a) et b).

Si 9 est C00 à l'intérieur de Z>0, il résulte de la définition ci-dessus que/sera C00

à l'intérieur de Dk pour tout entier k. Mais il y aura en général des discontinuités à

la frontière des Dk. Toutefois, comme la frontière intérieure de Dk (qui est en même

temps la frontière extérieure de Dk+1, et la frontière de Dfc+1) est la réunion des hk

images de la frontière intérieure de Do par les hk applications FaiFa2...Fûk, en vertu
de (2.2) il suffira que / soit C °° sur la frontière intérieure de Do pour qu'elle le soit

en tous les points frontière de tous les Dk9 et par suite dans —P.

Pour réaliser cette condition, considérons un voisinage ouvert U de la frontière
de tel que Û, Fa Û, (a= 1,..., h) soient deux-à-deux disjoints, et soit 1 ^0 + ^1 H—

—h*K une partition de l'unité dans Rm en h + 1 fonctions C00 et >0, telles que
\j/0 1 dans U,\j/a l dans Fa U. Si alors x est une application C °° de jRm dans Rp9

telle que x(D)cA, par exemple une application constante de Rm sur un point de A,

l'application
^ ^ox + ^i(^iozo^r1)+-+^(^ox°^1)

est C00, égale à x dans U9 à T^x^F;1 dans FaU(a=l, 2,..., h).

L'application/égale à q> dans Do qui satisfait à (2.2) est alors encore égale à cp dans

FaU,(a l9 2,..., h), elle est donc C00 sur les frontières des D,- 0 1, 2,...,/i) c.à.d.

sur la frontière intérieure de Do et par suite dans -P, ce qui prouve c).

Soit dx un vecteur unité dans Rm et t une variable réelle qu'on fera tendre vers 0;
comme /est C00, en tout point xeQ-^onaun développement asymptotique

00

f(x + t dx) -/(x) s ^Pk(x,dx) (2.4)
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où Pk(x, dx), différentielle d'ordre k de/(x), est un polynôme homogène de degré k
en les composantes de dx, dont les coefficients sont les dérivées partielles d'ordre k
de/en x.

Si xeDw, il existe une suite aia2-^an et un point xneD0 tels que x=Fai Fa2... Fan (xn).
Les similitudes Fa (a=1, 2, ...,/*) agissent sur les vecteurs de iîm comme une rotation
F'a suivie d'une homothétie de rapport #, par suite dx est l'image par FfllFfl2...Ffln
du vecteur Q~n F'a~x F'a~\ -..F'a~l9 ce qui entraîne:

x + * rfx FaiFO2...Fan{xn + ^--Fj;1...^;1 dx) (2.5)

D'autre part, chaque transformation 7\, T2,..., T/, agit sur les vecteurs de Rp

comme une rotation Ta (a=l,..., h) suivie d'une homothétie de rapport q\ ce qui
entraîne en tenant compte de (2.3) et (2.5)

f(x + t dx) -f (x) em t;, r;n [/ (*„ +1 e~' f- l... f;; ldx)-f (xB)] (2.6)

En identifiant le développement (2.4) avec celui qu'on obtient en appliquant cette
même formule (2.4) au second membre de (2.6) il vient :

Pk(x,dx) (q'q-'TT;, T;nPk(xn,F^1... F;"1 dx) (2.7)

Comme xn varie dans Do, où chaque dérivée de / est bornée, et F'a~1... F'a~l dx étant

comme dx un vecteur unité, \Pk(xn, F'a~x ...Ffa~x dx)\ admet une borne supérieure
Ak9 d'où

\Pk(x,dx)\ < {QfQ-k)nAk pour xeDn et \dx\ 1 (2.8)

Si k<q, en vertu de (2.1 ;d), on a g'g~*<l. Si alors xe[J~P tend vers un point de

P, n tend vers l'infini, par suite Pk(x, rfx)-»0.
Nous avons prouvé que si xeQ — P tend vers un point de P, les dérivées de/(x)

d'ordre <q tendent vers 0.

Montrons encore que ces dérivées existent et sont nulles sur P. Soit xeP et

a1a2.-.an... la suite telle que xeOa1a2 ...aBpour tout n. Si x#x\ il existe un entier
déterminé n, tel que x'E\3ai...an et x'$Oal...anan+î. Il existe alors deux points

xn et x'n de tels que x=Fai...Fanxn9 x'=Fai...Fanx'n'> et l'on a x'H$nan+t,

xneQan+tan+2c:Fan+lC]l. La distance de xn à x'n est par suite supérieure au nombre
i-xJ^adoù |x'_x,^ae". (2.9)

D'autre part, si ô est le diamètre de A, on a:

I/(O-/(OI<<5 d'où \f(x')-f(x)\<e'nô
Cela entraîne la continuité de/en x. De plus, on a



Sur l'ensemble des valeurs stationnaires d'une application différentiable 163

d'où résulte si q>l, que la différentielle première de/existe et est nulle en x, car
q'q"1 <1 en vertu de (2 1, d), et «-»oo si x'-+x

Si #>1, raisonnant par récurrence, supposons que pour k<q— 1, la différentielle
d'ordre k, Pk(x, dx), existe et est nulle en x et montrons qu'il en est de même de la
différentielle d'ordre k+1 En tenant compte alors de (2 8) et de (2 9), on a

\Pk(x\dx) - Pk(x,dx)\ \Pk(x\dx)\ _k_t A
\x'-x\ |x'-x| ~KQQ }

oc

ce qui tend bien vers 0 pour x'-^x, ou w-»oo, car, g'g"*"1 <£'£-*< 1

Enfin, si e=\ogQ'l\ogQy on a g'Q~e=l9 d'où en tenant compte de (2 9)

|x'-jc|e <xeU?? ; ac

ce qui montre que/(x) est holdenenne d'exposant e aux points de P On voit de même

que pour k<q, les dérivées d'ordre k àef(x) sont holdenennes d'exposant e — k aux
points de P

Nous allons maintenant examiner quelques cas particuliers du précédent Théorème

Prenons pour le parallélotope défini dans Rm par

0<x,<2(1~')/m 0 1,2, ,m)

Le plan xt 1/2 partage en deux parallélotopes égaux entre eux et semblables à

dans le rapport 2~i/m Les applications

sont des similitudes de rapport 2~1/m qui changent en ses deux moitiés T0D et

T,D
Soit if une homothétie ayant pour centre le centre de D, de rapport <1 Les

similitudes F0 T0°H et Fi Ti°Hde rapport q<2"1/m, changent D en deux
parallélotopes Fo Do et ^i Di contenus dans et disjoints

Prenons pour A le parallélotope défini de la même manière dans Rp et pour
To et 7\ les applications analogues à celles définies ci-dessus, ce sont des similitudes
de rapport q' 2~~1/p, ToA et TtA ont pour réunion A mais ne sont pas disjoints. Les
2* parallélotopes TaiTa2 TakA ont pour réunion A, quel que soit k

Les applications Fo et F! sont des similitudes de rapport g<2~i/m, qu'on pourra
supposer aussi voisin que l'on veut de 2"1/m Soit q le plus grand entier strictement
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inférieur à m/p, m/p>q>:m/p — l. Alors \/pq>\/m et

2~1/m < 2~lfm

Nous choisirons q de manière que l'on ait:

2-1}pq<g<2-l/m
en sorte que

Q' 2"llp<Qq.

Le Théorème (7) s'applique dans ce cas, on a h 2, q' 2~1/p et dans les formules
(2.5), (2.6), (2.7) on peut remplacer T'a, F'a respectivement par les rotations uniques
Tet F. L'ensemble P' devient le parallélotope A. Les points de P sont ainsi des points
stationnaires d'ordre r aussi voisin qu'on veut de e, et cependant f(P) A. D'après
(2.1; d), on a q<r<e<m/p9 en choisissant q assez voisin de 2~1/m, e sera aussi voisin
qu'on veut de m/p et q le plus grand entier inférieur à m/p.

Lemme(l): Soit EczRm alors ms(E) 0 si s>m. Démonstration: II suffit de

supposer que E soit le cube unité dans Rm. E est donc défini par 0 < x t < 1, (i 1, 2,...,
m). On peut partager E en hm cubes Ej de côtés \/h donnés par les inégalités:

mi^1/h<xj<mi/h, i=l, 2,..., h. Les ensembles Ej recouvrent E9 et le diamètre d'un
cube Ej vaut (y/m/h). Soit e>0, fixe, arbitrairement petit, et <5>0; il existe h tel que
Aw"$<e et (y]m/h)<ô. On a:

(^^)t ms/2 hm~s < sms/2

alors ms(E9 S)<e pour tout <5, et par suite ms(E)<e et comme e est arbitraire, on a

m.(*)=o.
Des lemmes (1, § 1 et 1 § 2) il découle que m$/ (E) 0 pour s>m/e. En particulier

mpf(E)=z0 $ip>m/e c'est-à-dire e>m/p.
Or, dans l'exemple,

p log ^ log ^

est aussi voisin qu'on veut de Iog2~1/p/log2~1/m w/p, on ne peut donc améliorer ni
Vexemple, ni le Théorème 2 de A. Sard.

Avant de prouver que l'on ne peut améliorer le théorème 4 de A. Sard, nous
allons étudier la s-mesure de l'ensemble P. Nous montrerons que la dimension de P

au sens de Hausdorff est égale à so= -Iog2/log£ et que mS0(P) est positive, non
infinie.

Lemme 2: Soit so= -log 2/logq alors mSo(P)>0, #oo. Démonstration: Dans le

cas où /est la fonction prenant ses valeurs dans R1, nous avons d'après le théorème



Sur l'ensemble des valeurs stationnaires d'une application différentiable 165

(?):
\f{p)-f(q)\<A\p-q\e

le nombre e vaut précisément — Iog2/log£ car g'= 1/2. D'après le lemme (1, § 1),

me(P) ne peut être nulle car mlf(P)=l et en posant ^=1 dans le lemme (1, § 1), on
a mlf(P)<Ame(P). D'autre part me(P) n'est pas infinie, car à tout <5>0 on peut
faire correspondre un indice n9 tel que gnô(P)<ô et comme l'ensemble P est contenu
dans la réunion des T ensembles Dai an deux-à-deux disjoints, semblables à dans
le rapport gn, et que 2ge=l, on aura:

(1=1, ,n),flf O,l

d'où il résulte que me(P9 ô)<Ôe({2) et comme ô est aussi petit que l'on veut on a:

me(P)<ôe(n)

On peut ainsi remarquer qu'à chaque valeur de e, comprise entre 0 et m, 0<e<m9 il
correspond un nombre g tel que 2ge=l et un ensemble PcRm9 tels que me(P)>0,

En nous basant sur les théorèmes (6, § 1) et (1, § 2), et le lemme (2, § 2), nous
allons montrer que pour tout e>0, l>e>0, fixe, et tout couple d'entiers m et p,
m> 1, p> 1, il existe pour tout nombre r> 1, et pour tout nombre el9 0<et <m, une

application fE d'un ouvert G de Rm dans Rp9 de classe Cq, q= [r] et un ensemble P
de points stationnaires d'ordre r de/g, mei(P)^0, tels que

meilr+Efe(P) ¥= 0

Nous nous plaçons dans le cas où l'on a deux similitudes Fo et Fx de rapport
gl=hl2~llm\ et deux similitudes To et T± de rapport g2=h22'ifp. D'après le théorème

(7), si xeP on a:

\f(x')-f(x)\ A

\x> -x\r ~ <t

et cette dernière quantité tendra vers 0 pour n-*oo, c.à.d. lorsque x'->x9 si

h2<h\2-r/m+1/p

de sorte que l'on peut écrire:

h2 (l-e)hri2-r/m+1/p, e'>0.

Du théorème (7), il découle que l'application fB que l'on obtient est de classe

Cq9 #=[r] dans et les points de P sont des points stationnaires d'ordre r de/e.
L'application/e vérifie les hypothèses du théorème (6, § 1), sur P et il vient:
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En vertu du lemme (2, § 2), à tout nombre eu 0<et <m, il correspond un nombre
Qi et un ensemble P, tels que

mCl(P)>0, mei(P)ï oo

Cela implique

- log 2 - log 2

log qx log ht — 1/m log 2

Pour les mêmes raisons, au nombre h2 il correspond

-log 2
e2 — et mc_(P > 0, #oo

log g2
Nous avons

-log 2 e±
62 ""

log (1 - 8')*; - r/m log 2
< r"

et l'on peut poser e2 e1/(r+e)i e>0.
On peut rendre e2 aussi voisin que l'on veut de el/r, il suffit pour cela de choisir

e' suffisamment petit. Comme me2(P')>0, on a bien mei/r+efe(P)^O. On ne peut
donc améliorer ni les théorèmes 5 et 6 § 1, ni le théorème 4 de Sard.

3. En nous basant sur le cas particulier du paragraphe 2, nous allons construire

une courbe simple C passant par P et une application/:D~>zl telle que/(P) J
dont tous les points de C sont stationnaires d'ordre r m/p — e.

Pour construire C, considérons les applications to(z) (l+z)/5 et r1(z) (3 + z)/5
de l'intervalle /=(0^z<l). Le théorème (7), montre qu'il existe une application
g:I-+\3 et une seule, qui satisfait aux équations

g°ta Fa°g a =0,1, (3.1)

et dont les restrictions aux intervalles 0<z<l/5, 2/5<z<3/5, et 4/5<z<l sont

données. Dans ce cas, r=0 et g est continue.

Désignons par Q le sommet de opposé à O, et supposons que les restrictions de

g à ces trois intervalles définissent trois arcs simples a, j8 et y, joignant respectivement
O h F0O, F0Q à FtO et FtQk Q, ces arcs étant deux-à-deux disjoints et contenus
dans Do à l'exception des extrémités qui sont sur Dt. Alors l'application g définit un

arc simple C, joignant O h Q, égal à la réunion de P et des arcs a, p, y et de toutes

leurs images pour toutes les applications Fai Fai... Fak (at=0,1 ; k=1,2,...). Supposons

/? 1. Les transformations To et Tt se réduisent alors à Toy=y/2 et T1^=(l+^)/2,
de sorte que T0O=O, To 1 ^0=1/2, 7^1 1. Si la solution/des équations (2.2)

satisfait à/(0)=O et/(Ô)=l, on aura par suite/(Fo(O))=O,/(Fo(0)=/(F1 (0))=
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1/2 et/(Fj(0)=l c.à.d. que / prend la même valeur aux deux extrémités de
chacun des arcs a, p et y. Il en résulte qu'on peut choisir la restriction <p de/à Z)o
de manière que /soit constante égale à O dans un voisinage Wx de a, constante égale
à 1/2 dans un voisinage W2 de fi et constante égale à 1 dans un voisinage W3 de y et
C00 dans ?— P. La fonction/est alors stationnaire d'ordre oo aux points de a, /?, y
et en leurs images par toutes les transformations FaiFa2...Fak (af 0,1; fc l,2,...)•
Comme elle est stationnaire d'ordre r=m — e aux points de P, elle est stationnaire
d'ordre r en tous les points de la courbe C et /(C)=/(P) /.

Cas de/?>l.
A partir de la construction précédente et du cas particulier du théorème (7), nous

allons obtenir une application/d'un ouvert G de Rm dans Rp9 de classe Cq, m/p>q^:
>m/p — 1 stationnaire d'ordre r m/p — e, m/p —\<q<r<e<m/p, sur un arc de
courbe F, telle que f(F) A. Nous pouvons prendre pour fi un arc de courbe
contenant un exemplaire de l'arc de courbe C construit ci-dessus, et disposer C de manière

que seules son origine et son extrémité rencontrent respectivement les ensembles
Fo W3 et Ft Wo et l'on raccordera C aux points Fo Q et Fx O au moyen d'arcs de
courbe C", C", rectifiables, entièrement contenus dans W2.

Soient Po et Pt deux sommets de A dont nous supposerons qu'ils vérifient la
condition T0P0 P0 et TlPl Pu et a le segment de droite qui joint T0Pi à T^. Nous
pouvons maintenant choisir q> de manière que (p(x) P0 dans Wu(p{x) P1 dans
W3 et que 9 soit stationnaire d'ordre m —a sur C avec (p(C)~a, (p(C') P0, <p(C")

Pt. Le segment a, image de /? par cp est donc entièrement constitué de valeurs
stationnaires d'ordre m— s de cp.

Soit F l'arc de courbe formé de la réunion de a, fi, y, de toutes leurs images par les

applications FaiFa2...Fan9 (a,. 0,1; « 1, 2,...) et de P. L'application/qu'on déduit
de (p est stationnaire d'ordre r m/p-e sur T et C00 en dehors de F. En effet,/est
stationnaire d'ordre m — s sur tous les ensembles FaiFa2...Fan(C), cela découle de la
formule:

y rai rai... rfln\^ — iai 1 a2 j fln 7 ^a;

car si x est critique pour/il l'est aussi pour l'application TaiTa2...Tan°f(x) car les Ta

sont des difféomorphismes C00, et comme il en va de même pour les Fa9 le point
FaiFa2...Ffln(x) est aussi critique pour/. En vertu de ces équations, si x est stationnaire

d'ordre r pour/, alors F01Ffl2...Ffln(;c) est également stationnaire d'ordre r pour
/. Comme on peut choisir e de telle sorte que m—e>m/p>r,f est bien stationnaire
d'ordre r sur F et/(F) A.

On peut encore remarquer que l'image de F est une courbe de Peano qui remplit
le pavé A, et le graphe de l'application / dans Rm+P est une variété à m dimensions
de classe Cq. Le w-plan tangent n à cette variété, varie continûment le ï*>ng d'une
courbe F' qui est l'image de F par l'application 0(x) (x,/(x)), et en chaque point
de F', n est parallèle à ^m. La projection de F' sur Rp est A.
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4. Voici une autre construction d'une application du parallélotope à m dimensions
dans un cube à p dimensions A de classe Cq9 m/p—l<q<r<m/p, et stationnaire

d'ordre r=m/p — e en tous les points d'une courbe C, dont l'image /(C) remplit
néanmoins A.

Désignons par A le cube unité de Rp9 0<Xi<l (i l, 2,...,/?). Ordonnons ses

sommets St (i'=l, 2,..., 2P) de manière que Si-l et S,- 0 2, 3,..., 2P) ainsi que S2P

et 5j soient les extrémités d'une même arête. On peut déterminer cet ordre par
récurrence, de manière que St (i l, 2,..., 2P~1) soient les sommets de la face de A

contenue dans le plan xp=0 rangés dans un ordre satisfaisant à la condition ci-dessus,
et prenant pour Sj siy>2p~1 le sommet de la face contenue dans le plan xp=l qui
se projette sur S2P+i-j. On peut supposer que St=(Q, 0,...,0) 0, alors S2P

(0,0,..., 0,1).
Partageons A en 2P cubes égaux, par les plans xk 1/2, (k= 1, 2, ...,/?) et désignons

par Jf celui qui contient le sommet St. Choissisons dans chaque Ax une arête orientée

Ah de manière que l'extrémité de At coïncide avec l'origine de Ai + 1 (/=1,...,2P—1)
et que St soit l'origine de At et S2P l'extrémité de A2P. On peut faire ce choix par
récurrence: si Bt (î=l, 2,..., 2P~*) sont des arêtes des bases des At dans le plan
xp 0, on prendra A^Bi (les 2?f satisfaisant par hypothèse à la condition énoncée

pour p — 1) pour i<2p~1, A2P-i arête parallèle à OXp ayant pour origine l'extrémité
de B2P-i-i, et sij>2p"1, Aj sera l'arête de As qui se projette sur A2P+1-P avec
l'orientation opposée.

Si alors Tt est une similitude (de rapport |) qui change A en At et l'arête *S152P

de A en 4,, (/=1, 2,..., 2P), on a:

7;.52P=7]+1S1,(i l,...2P-l),T1S1 51,T2i,521, 52P (4.1)

Considérons alors les 2P similitudes Fai ...Fa (û;=0, 1) les Fa étant les similitudes
(de rapport q) définies au § 2 et désignons-les par $f (i l, 2,..., 2P). Le Théorème

(7), fournit alors une application / qui satisfait aux équations fonctionnelles

Ti°/=/°0i 0=1,2 20 (4.2)

Soient af, (î=0, 1,..., 2P)9 2P4-1 arcs simples, deux-à-deux disjoints contenus

(sauf les extrémités) dans Do, <x0 joignant O à <l>1O,0Li joignant (ptQ à (t)i+1O,

(/= 1,..., 2P — 1) et a2P joignant (j>2PQ à g. La réunion de P avec les arcs at et toutes
leurs images par toutes les applications 0fl...$fk, (//=1, 2P; fc l, 2,...) est un

aro simple C, joignant O h Q.
Si la solution/des équations (2.2) satisfait à/(O)=51,/(0=5f2P, en vertu de

(4.1) elle prend la même valeur TiS2P Ti+iS1 aux deux extrémités de l'arc af. On en

déduit que l'on peut choisir la restriction q> de/à Do de manière que/soit C00 dans

Q-P et constante égale à TiS2P-Ti+1Si dans un voisinage de af. C'est alors une

application stationnaire d'ordre r en tous les points de C, telle que/(C) id.
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