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Ein Differenzierbarkeitsbegriff in limitierten Vektorrâumen

Ernst Binz (Zurich)

Einleitung

In der vorliegenden Arbeit soll der Versuch unternommen werden, eine Differen-
zierbarkeit fur Abbildungen zwischen limitierten Vektorrâumen zu erklâren.

Im ersten Kapitel sind die notwendigen Begriffe der Filtertheorie (s. [2]) und der
Limesrâume (s. [3]) zusammengestellt.

Die limitierten Vektorrâume werden in (2.) eingefiihrt. Fur die Théorie der topo-
logischen Vektorrâume sei auf [5] verwiesen. In (2.1.) finden wir eine Verallgemeine-

rung eines Satzes von Tychonoff ùber endlichdimensionale limitierte Vektorrâume
(Satz (2.1.5.)). Von stetigen linearen und stetigen multilinearen Abbildungen zwischen

limitierten Vektorrâumen handelt (2.2.). In (2.3.) wird der induktive Limes limitierter
Vektorrâume betrachtet und die feinste fur einen gegebenen Vektorraum noch zu-
lâssige Limitierung bestimmt. Flir dièse Limitierung zeigen wir einige spezifische

Eigenschaften auf.
Die Définition eines Restgliedes zwischen limitierten Vektorrâumen wird in Kapitel

(3.) aufgestellt. Sie ist eine Verallgemeinerung der Définition eines Restgliedes zwischen

topologischen Vektorrâumen in [6]. Weiter werden Spezialfâlle untersucht, Beispiele

von Restgliedern angegeben und einige speziellere Eigenschaften der Restglieder

zusammengestellt, welche hernach in (4.) Anwendung finden.
Das Kapitel (4.) widmet sich einigen Sâtzen Uber differenzierbare Abbildungen

zwischen limitierten Vektorrâumen. So werden unter anderem die Kettenregel, der

Mittelwertsatz und der Hauptsatz der Integralrechnung bewiesen.

1. Limitierungen

1.1. VORBEMERKUNGEN

Sei E eine nicht leere Menge. Die Halbordnung der Filter auf E sei mit ^(E)
bezeichnet. Die untere Grenze von #, We^(E) wird durch <PaW dargestellt. Sie

besteht aus dem Mengensystem {MkjN\Me$, NbW}.

Définition 1.1.1. Ein Elément JausderPotenzmenge^^OE^von^^heisstein
a-Idéal in ^(E^fails mit &,We^(E) auch # aWb^(E) und mit #e«^(£) auch aile

seine Oberfilter auf E in / liegen.
/heisst ein A-Hauptideal in ^(E), wenn es aus allen Oberfiltern zu einem festen

besteht. Wir nennen dann / das von # erzeugte Hauptideal in
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Sei A eine nicht leere Teilmenge von E. Existiert die Spur eines Filters
auf A, wird dièse mit <PA bezeichnet.

Aile Filter aus einem a-Idéal in !W(E\ welche eine Spur auf A haben, erzeugen
inJ%4)ein a-Idéal (s. [3]).

Ist B ein Mengensystem auf E und existiert der von B erzeugte Filter in #"(£),
wird dieser mit \_B~]E bezeichnet. Sei xeE. Den vom Mengensystem {{x}}, bestehend

aus der einelementigen Menge {*}, erzeugte Ultrafilter in ^(E) nennen wird fortan x.

1.2. LlMITIERUNGEN

Sei E eine nicht leere Menge.

Définition 1.2.2. Eine Abbildung A:E >^{^(E)) heisst eine Limitierung
auf E, wenn sie folgende Eigenschaften hat:

(1.) Fur jedes xeE ist A{x) ein a -Idéal in ^(E).
(2.) Fur jedes xeE ist xeA(x).

Die Elemente in A(x) heissen bezuglich A gegen xeE konvergente Filter auf E.

Das Paar (E9 A), wofur wir oft EA setzen, heisst ein Limesraum. Die Gesamtheit aller
Limitierungen auf E sei mit y bezeichnet.

Sei Ae^f. Bilden fur jedes xeEA die bezuglich A gegen x konvergenten Filter ein

a -Hauptideal in ^(E), heisst A eine Hauptideallimitierung auf E. Es bedeute Sfx
die Menge aller Hauptideallimitierungen auf E.

Eine Hauptideallimitierung Ae£fx ist eine Topologie auf E, wenn fur jedes

xeEA das grôbste Elément <P°(x)eA(x) zusâtzlich der folgenden Bedingung geniigt:
Zu jedem Ue<P°(x) existiert ein Ve$°(x), sodass fur aile j>eFfolgt Ue<P°(y).

Bezeichnet y0 das System aller Topologien auf E, so gilt &* ^ <? xzï £f0.
Nun sei Ae<9*. In ^(E) existiert fur jedes xeE die untere Grenze <P°(x) aller

Filter aus A(x). Das von <P°(x) erzeugte a-Hauptideal ij/ A(x) in tF{E) ist durch A
eindeutig bestimmt. Also wird durch xn >\J/A(x) eine Hauptideallimitierung
\j/ A auf E definiert. Durch A ° > \j/ A wird eine nattirliche Abbildung xj/ :

bestimmt, fur die \l/\&?l°il/ \l/ gilt.

Définition 1.2.3. Sei Ae£f. Eine Menge UcEA heisst A-offen, wenn aus xeU
folgt, dass Ue <P fur jedes <PeA(x).

Lemma 1.2.4. Sei EA ein Limesraum. Fur irgend ein x aus der /1-offenen Menge

UcEA sei <PeA(x). Dann existiert die Spur 0V auf U und es ist <P=[<Pv]iE>

Beweis: Aus Ue<P folgert man fiir jedes Afe#, dass Mn (7#0. Somit existiert
4>v. Es ist $^[<Pu]E. Umgekehrt gibt es zu jedem M'el^^g ein Me$9 so dass

M'^>MnU. Das beweist M'e$. Also gilt [##]£<# und wegen $^[$u]e resultiert
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Sei AsSf. Das System der /1-offenen Mengen in EA geniigt den Axiomen eines

topologischen Raumes. Daher hat man eine natiirliche Abbildung q> : £f > y0.
Weil eine Menge UczEA genau dann A-oiïen ist, wenn sie i/M-offen ist, folgt cp

(p\&?l°\\/. Wir nennen E^A den zu EA assoziierten topologischen Raum.

Définition 1.2.5. Sind auf einer Menge E die beiden Limitierungen A und A1

definiert, heisst Afeiner als A' (in Zeichen A'<Â)9 wenn fur jedes xeE gilt A (x) a A'(x).

Die auf <S^0 von < induzierte Ordnungsrelation stimmt mit der iiblichen An-
ordnung von Topologien iiberein (s. [3]).

Wir benôtigen noch folgenden Begriff :

Définition 1.2.6. Eine Limitierung A auf E heisst separiert, wenn fiir x, yeEA aus

folgt, dass A(x)nA(y) 0 ist.

1.3. Abbildungen zwischen Limesrâumen

Seien E und E zwei nicht leere Mengen. Eine Abbildung f:E > F fiihrt
einen Filter 0e^(E)in das Mengensystem B={f(M)\Me<P} iiber. Dièses ist eine

Filterbasis auf F. Der Filter/(#): [£]£ soll das Bild von 4> unter/heissen.
Nun seien EA und FA> zwei Limesrâume.

Définition 1.3.7. Eine Abbildung/:^ >FA, heisst an der Stelle xeEA
stetig, falls fur jedes <PeA(x) folgtf($)eA'(f(x)).

Ist/an jeder Stelle xeEA stetig, heisstf stetig in EA.

1.4. Produktlimitierung
Seien EA und FA> Limesrâume. Auf E x F fiïhren wir die grôbste Limitierung ein,

fur welche die Projektionen prE:ExF > EA und prF:ExF > FA>

stetig sind. Dièse Limitierung heisst Produktlimitierung AxA' auf Ex F.

Sind 0eJ^(E) und We^(F\ so versteht man unter dem Produktfilter $ xW den

von der Filterbasis B={MxN\M€<P, NeW} auf E x F erzeugten Filter. Sind B und
B' Filterbasen auf E bezw. auf F, so heisst B x B' {M x N\MeB, NeB'} die Produktfilter

basis auf Ex F von B und B'. Es gilt der

Satz 1.4.8. Seien EA und FA, zwei Limesrâume. Ein Filter Xe^{E x F) konvergiert
bezuglich AxA' genau dann gegen (x,y)eE x F, wenn prE(X)eA(x) und pTF(X)eA'(y).

Die Produktlimitierung A x A' ist genau dann separiert, wenn A und A' separiert
sind.

1.5. Spurlimitierung

Définition 1.5.9. Seien EA ein Limesraum und A eine nicht leere Teilmenge von E.

Jedem xeA wird das von A(x) 'm^{A) induzierte a -Idéal AA{x) in^{A) zugeordnet.
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Dann ist AA:A >0*{1F{A)) eine Limitierung auf A und heisst die von A auf
A induzierte Limitierung oder Spurlimitierung auf A.

Fischer beweist in [3] den

Satz 1.5.10. Fur ^re^{A) ist $'€ AA(x) genau dann, wenn [<P']Ee A(x).

2. Limitierte Vektorràume

2.1. ElNFUHRUNG DER LIMITIERTEN VEKTORRAUME

Wir betrachten im folgenden Vektorràume iiber dem Kôrper der reellen Zahlen R.

Statt reeller Vektorraum schreiben wir kurz Vektorraum.
Sei E ein Vektorraum. Der Kôrper R trage die natiirliche Topologie T.

Définition 2.1.1. Eine Limitierung A auf E heisst mit der Vektorraumstruktur von

E vertrâglich oder auch zulâssig fur E, wenn die Abbildungen (x, y) n >x+y
und (A, x) ° > kx von (ExE, A xA) bezw. von (R xE, TxA) nach EA stetig
sind.

Ist A eine fur den Vektorraum E zulâssige Limitierung, so heisst das Paar (E, A),
wofiïr wir oft EA setzen, limitierter Vektorraum. Wenn E endlichdimensional ist und A
die natiirliche Topologie auf E bedeutet, schreiben wir statt (E, A) oder EA oft nur E.

Die Gesamtheit aller fur den Vektorraum E zulâssigen Limitierungen sei mit ¥E
bezeichnet. Zur Formulierung eines notwendigen und hinreichenden Kriteriums
(Satz 2.1.3.) fur AeS?E, benôtigen wir noch folgende Begriffe.

Seien 4>, We^(E). Unter &+W verstehen wir den von der Filterbasis {M+N\
M€<P,NeV} auf E erzeugten Filter. A(x)+A(y) bezeichnet die Menge {$+W\
$eA(x)9yeA(y)}A$tX-<P: [{X-M\Me$}]Eîurkste$XeR, so bedeutet X-A(x) die

Menge {A*#|$e;l(jt)}. Sei $2 der Nullumgebungsfilter in R. Wir denken ihn uns

erzeugt vom System der abgeschlossenen symmetrischen Intervalle {[—e, e]|e>0}.
FtofestesxeJ?steht4£-xfifr[^
Me #}]£. H&t<Pe^(E) die Filterbasis B, erkennt man, dass <P% • <P schon von der Filterbasis

{[-a, s]*Af|£>0, MeB} erzeugt wird. Statt {<Pk*<P\<P€A(x)} schreiben wir

In diesem Zusammenhang sei noch erwâhnt:

Lemma 2.1.2. Sei 0e^(E). Das Mengensystem {Mu[-e9 e]-M|e>0, Me<P} ist
eine Filterbasis von $ #a$£-# und es ist $ ^

Beweis: Den ersten Teil des Lemmas beweist man leicht. Den zweiten Teil sieht

man wie folgt ein. Seien #, &<-&(£). Fiir # a #' folgt #S'(^ a ^/)=^S#^ a #£'#'•
Daserhâltman aus der Beziehung R(MuM')=*R*MvRM' fur i*e#2> M€® und



Ein Differenzierbarkeitsbegriff in limitierten Vektorrâumen 141

M'e&f. Da weiter #2 (#2&) $*'$ ë^U resultiert <Pa<S>2 $ ($a#2*#)a
a<(0a^2 #) <êa<J>2 '^A^2 <2>a#2 'K # oder also # a<2>2# # a<î>2$.

In [3] beweist Fischer den

Satz 2.1.3. Eine Limitierung A ist genau dannfûr den Vektorraum E zulâssig, falls
gilt
1.) A(0) + A(0)cA(0)
2.) X-A(0)œA(0) furjedesÀeR
3.) *2-yl(0)c:^(0) und

4.) <f>2 • x e A (0) /wr yerfw xeE.

Lemma 2.1.4. Sei E ein endlichdimensionaler Vektorraum. Die natiirliche Topo-
logie T auf E ist die feinste zulâssige Limitierung fiir E.

Beweis: Sei el,...,en eine Basis von E. Fiir irgend ein Ae éfE folgern wir aus Satz

(2.1.3.), dass <P $2'^iH ^^n'en gegen OeE konvergiert. Ein Elément Me$
umfasst eine Menge der Form [-e, e] -ex + ••• + [-e, s] -en {£}=„Xe\ |^| <e}> wobei
e>0. Das beweist, dass 4> grober als der Nullumgebungsfilter in T(0) ist, was aber
A < T nach sich zieht.

Wir betrachten wieder einen beliebigen limitierten Yektorraum EA. Die beziiglich
A stetigen Seminormen definieren die feinste lokalkonvexe Topologie, welche noch

grober als A ist. Dièse Topologie bezeichnet Fischer in [3] mit ij/0 A und nennt sie die

zu A assoziierte lokalkonvexe Topologie. Nun gilt der

Satz 2.1.5. Sei EA ein endlichdimensionaler limitierter Vektorraum. Weiter sei

\j/°A als separiert vorausgesetzt. Dann ist A identisch mit der natùrlichen Topologie T
auf E.

Beweis: Weil \j/0A separiert ist, muss T=\I/°A gelten, weshalb T<A folgt. Aus
Lemma (2.1.4.) resultiert nun unmittelbar die Behauptung.

Wir wenden uns noch kurz den yl-offenen Mengen in einem limitierten Vektorraum

EA zu. Mit EyA sei der zu EA assoziierte topologische Raum bezeichnet (s. (1.2.)).

Définition 2.1.6. Ein Limesraum ZA heisst zusammenhângend, wenn der zu ZA
assoziierte topologische Raum ZvA zusammenhângend ist.

Eine Teilmenge AaZA heisst zusammenhângend, wenn (A, AA) zusammenhângend

ist.

Man zeigt leicht: ZA ist zusammenhângend, wenn irgend zwei Elemente x und x'
aus ZA in einer zusammenhângenden Teilmenge von ZA liegen.

In einem limitierten Vektorraum EA liegen zwei Elemente x, x'eEA in

g={x+T-(x~jc')|-oo<t<oo}. Die Abbildung i:R >g, welche durch
Tn >X+T.(X_X') definiert ist, ist bezuglich cpAg stetig. Deshalb ist (g,Ag)
zusammenhângend, woraus man folgern kann:
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Satz 2.1.7. Jeder limitierte Vektorraum EA ist zusammenhângend.

Lemma 2.1.8. Sei U eine yl-offene Teilmenge eines limitierten Vektorraumes EA.
Fur aeEA ist U+a ebenfalls ,4-offen.

Beweis: U ist /1-offen bedeutet: fur jedes xell und jedes <PeA(x) ist Ue&. Fur
aeEA kann man zu jedem <P'eA(x+a) ein $eA(x) derart finden, dass <&' $ +a gilt.
Aus Ue<P ergibt sich dann U+ae$+a. Demnach ist also (7+a yt-offen.

Définition 2.1.9. Eine Teilmenge M eines Vektorraumes E heisst absorbierend,

wenn zu jedem xeE eine réelle Zahl e>0 existiert, so dass XxeM fur aile AeR mit

Lemma 2.1.10. Jede den Nullvektor enthaltende yl-offene Menge U in einem
limitierten Vektorraum EA ist absorbierend.

Beweis: Fiir irgend ein xeEA ist #2'*e^(())- Weil U den Nullvektor enthâlt, ist
Ue ^2 *x- Daraus folgt l/z* [—e, e] • x fiir ein gewisses e >0, d.h. es ist A • xe C/ fur aile
AeRmit |A|^e.

Aus dem Lemma (2.1.10.) ergibt sich, dass jede den Nullvektor enthaltende
4-offene Menge eines limitierten Vektorraumes EA den Vektorraum E erzeugt.

2.2. Stetige lineare und stetige multilineaue
Abbildungen zwischen limitierten Vektorrâumen

Seien (Eh At), wo i l, 2, «, EA und FA, limitierte Vektorrâume. Es bedeuten

L(E; F) und L(El9 E2, En; F) die Vektorrâume der linearen Abbildungen von
E nach F resp. der «-linearen Abbildungen von E1xE2X"XEn nach F. Mit
&(EA;FA») bezeichnen wir den Vektorraum der stetigen linearen Abbildungen
von EA nach FA*. Unter £P{jJSuA^)9 {E2,A2)> (En9 An); FA) verstehen wir den

Vektorraum der stetigen n-linearen Abbildungen von dem mit der Produktlimitierung
versehenen Vektorraum ElxE2X'^xEn nach FA..

Satz 2.2.11. Seien EA ein limitierter und F ein beliebiger Vektorraum. Eine lineare

Abbildung £eL(E;F), welche aufeiner A-offenen Menge U<zEA identisch verschwindet,

ist die Nullabbildung.

Beweis: Dieser Satz folgt unmittelbar daraus, dass fur jedes aeU die Menge

U~ a den Vektorraum E erzeugt.
Als Korollare von Lemma (2.1.4.) ergeben sich die beiden folgenden Sâtze.

Satz 2.2.12 Trâgt R" die natùrliche Topologie, so ist &(&n\FA) L{Rn;F)fur
jeden limitierten Vektorraum FA>.

Beweis: Sei <feL(Rn;F). Wir bezeichnen die natiirliche Topologie auf/(Rw) mit
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T. Die Abbildung *f:Rn > ^(Rn)r ist stetig. Aus Lemma (2.1.4.) folgt daher die
Stetigkeit von tf:Rn > FA,.

Satz 2.2.13. Seien Eh /=1,2, ...,n endlichdimensionale Vektorrâume, versehen

mit der natûrlichen Topologie. Fur jeden limitierten Vektorraum Ffolgt

Dieser Satz wird analog bewiesen wie Satz (2.2.12.). In [3] beweist Fischer den

Satz 2.2.14. Fur einen limitierten Vektorraum EA ist
Wenn \j/ °A separiert ist, dann existiert zu jedem x^O aus

mit /(x)=l. Daraus folgert man:

Satz 2.2.15. Sei EA ein limitierter Vektorraum. Ist die zu A assoziierte lokal-
konvexe Topologie \jj° A separiert, folgt C)/>e&(EA;R) Kern / {0}.

Aisnâchstesfiihren wir auf &{EA\ F^und 3?({El9 Ai),(E2, A2),..., (En9 An); FA)
je eine zulâssige Limitierung ein. Zu diesem Zwecke betrachten wir fur zwei Limes-
râume YA und ZA> die Menge ^(YA, ZA) der stetigen Abbildungen von YA nach ZA>.

Fiir ge<^(YA, ZA) und yeYA wird durch die Zuordnung (g,y) n >ë(y) eine

Abbildung œ:<é>(YA, ZA) x Y >Z definiert. Nach [1] existiert unter allen

Limitierungen A auf <tf(YA, ZA), fur die a):(V(YA, ZA,)xY, ÂxA) >ZA.
stetig ist, eine grôbste. Dièse sei mit Ac bezeichnet. Ein Filter 0 auf ^{YA, ZA)
konvergiert beziiglich Ac genau dann gegen ge^(YA, ZA>), wenn fur jedes

yeYA und jedes $€A{y) folgt œ(& x<P)eA'(g(y)). In [1] wird Ac die Limitierung

der stetigen Konvergenz genannt. Fiir eine Menge S und eine Abbildung
/: s > ^(YA, ZA) sei /:=co°(/ x idy). Es gelten die beiden nachstehenden in
[1] bewiesenen Sâtze.

Satz 2.2.16. Sei SA» ein Limesraum. Eine Abbildung f:SA,, ^^(YAi ZA)Ac
ist genau dann stetig, wenn f:(S x Y, A" x A) ZA, stetig ist.

Als Folgerung davon ergibt sich:

Lemma 2.2.17. Die von Ac auf einer Teilmenge J^c:^{YA,ZA) induzierte

Limitierung ist unter allen Limitierungen A auf 3tf, fiir welche

a)\3fr xY:(3fxY, ÂxA) > ZA, stetig ist, die grôbste.

Die von Ac auf Jf induzierte Limitierung nennen wir ebenfalls Limitierung der

stetigen Konvergenz auf Jf und bezeichnen sie auch mit Ac. Statt co\jf x Y schreiben

wir kûnftig nur œ. Es folgt unmittelbar:

Lemma 2.2.18. Seien S^< ein Limesraum und/:SA>> >3#\c eine Abbildung.

Genau dann ist / stetig, wenn f=co°(f x idY):(Jf x Y, AcxA) -> ZjV
stetig ist.
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Auf X(EA9FA)<z<if(EA9FA) und
••• xEni Ax xA2 x ••• xAn), FA) fiihren wir nun die Limitierung der stetigen Konver-
genz ein. Dièse ist fiir beide Vektorrâume zulâssig und ist separiert, wenn A' separiert
ist (s. [1]).

Sate 2.2.19. Auf X(EA\FA) resp. auf X((El9A1)9(E29A2)9...9(En9Am);FA) ist
\j/° Ac separiert, wenn xjj° A' separiert ist.

Beweis: Wir nehmen ij/0Af als separiert an und zeigen, dass auch \j/° Ac separiert
ist. Ist/0€ &(EA\FjJ) nicht die Nullabbildung, so existiert ein xoeEA9 fiir welches

/0(^0)#0 gilt. Weil \j/° Af separiert ist, finden wir in J?(FA;R) ein g mit g(£o(xo)) 9e 0-

Fiir ^e^{EA;FA) definiert die Zuordnung S n > g(f(x0)) eine stetige lineare

Abbildung von &{EA;FA)Ac nach R, welche auf *f0 nicht verschwindet. Weil Jq^O
beliebig war, resultiert die Separiertheit von \j/° Ac. Den zweiten Teil des Lemmas
beweist man analog.

Nun soll fiir limitierte Vektorrâume EA9 FA> und GA., gezeigt werden, dass

&{EA\ J?(FA;GA»)Ac)Ac und &{EA9 FA.\ GA>l)Ac natiirlich homôomorph sind.

Die bilineare Abbildung

co.(J?(FA,;GA,,)xF,AcxA') >GA,,

ist stetig. Daher ist fiir jedes ve &(EA\ J?(FA,;GA»)Ac) die bilineare Abbildung
v œ ° (v x idF) stetig. Die Abbildung/: &{EA \&(FA, ; GA»)Ae) >^{EA, FA> ; GA.)9

definiert durch v n > v, ist ein Monomorphismus.

Lemma 2.2.20. / ist ein Isomorphismus.

Beweis: Es genûgt zu zeigen, dass / epimorph ist. Sei ueJ£(EA, FA>; GA>). Fiir
ein festes xeEA definieren wir ux durch y n > u(x, y), wobei y€FA>. Es ist

uxe&(FA>;GA,>). Durch x n—> uxist eine lineare Abbildung v:EA —? &(FAr9GA,)
definiert. Weil v œ°(vxidF) u ist, ist v nach Lemma (2.2.18.) stetig.

Satz 2.2.21. Seien EA> FA, und GA» limitierte Vektorrâume. Dann ist die lineare Ab-

uiiciung _ ^(J? * £P(V 'C \ \ *¦!?(F F * C \

definiert durch v n > v ein Homôomorphismus.

Beweis: Wir haben nur noch die Stetigkeit von / und 7"1 nachzuweisen. Weil I
stetig ist, ist nach Lemma (2.2.18.) / stetig. Durch zweimaliges Anwenden von Lemma

(2.2.18.) beweist man die Stetigkeit von 7"1.
Nun beweist man mit einer Induktion nach n, dass die natûrliche Abbildung von

J?((EU A,); J?((E2, A2);...; SC((En, An);FA)Ac)Ac...)Ac)Ac

nach SP{Elt At), (E2, A2),...,(En, An);FA.) ein Homôomorphismus ist.
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Satz 2.2.22. Seien F^{0} und Et^{0} fur i l,...,«. ^w^ ij/0 At separiert fur
i=l9...,nfolgt dann, dass J?((El9 A,), (E2, A2),...9(EH9 AH);FA.)*{0}.

Beweis: Wegen der Voraussetzungen ist J&?((En,

erhaltenwir^f((£n, An);FA.)*{0}.Nunsd &((E2, A2)9 (E3, A3)9...9(Em9

schon bewiesen. Dann ergibt sich aus ^((Ei9 A1);R)^{0}9 dass

l9 At); X((E29 A2)9 (£3, yi3),..., (£„, An); FA.)*{0} und daher
At)9 (E29 A2)9...9(En9 An);

2.3. Induktiver Limes limitierter Vektorrâume

Sei {(Ea, Aa)}aeJ eine Familie limitierter Vektorrâume mit den Eigenschaften:
1.) /istdurch < gerichtet.
2.) Fur a<jS ist Ea linearer Unterraum von Efi.
3.) Fur a</? ist die natiirliche Inklusionsabbildung fp: (Ea, Aa) > (Ep, Afi)

stetig.
Auf dem Vektorraum E={JaeIEa existiert unter allen Limitierungen A, fur

welche aile natiirlichen Abbildungen ia:(Ea, Aa) > EA stetig sind, eine feinste.
Dièse ist fiir E zulâssig (s. [3]) und soll mit indag I Aa bezeichnet werden. Der limitierte
Vektorraum (E9indaeIAa) heisst induktiver Limes der limitierten Vektorrâume
(Ea, Aa).

Bemerkung 2.3.23. Ein Filter ^e^(E) konvergiert beziiglich indae/yla genau
dann gegen OeE, wenn ein ae/ und ein <PaeAa(0) existieren, so dass [^a]£ ^ gilt
(s. [3]).

In [3] finden wir noch die folgenden beiden Sâtze bewiesen.

Satz 2.3.24. indaeI^la ist genau dann separiert, wennjedes Aa separiert ist.

Satz 2.3.25. Sei FA, ein beliebiger Limesraum. Eine Abbildung f:(E9indaeIAa)
>pA, ist genau dann stetig, wennf°iol:(Ea9 Aa) FA,fûrjedes ae/ stetig

ist.

Fur einen beliebigenVektorraumE bezeichne /die Menge allerendlichdimensionalen
linearen Unterrâume von E. Fiir H, Kel heisse H<K9 wenn HczK. Dann ist / durch
<: gerichtet. Jedes H aus / trage die natiirliche Topologie TH. Fiir H<K ist die

Inklusionsabbildung i%:H >K stetig. Den Vektorraum E= {JHeIH versehen

wir mit ylo=indHe/TH. Wie man leicht feststellt, ist Ao dann und nur dann eine

Topologie, wenn E endlichdimensional ist.

Satz 2.3.26. Trâgt ein Vektorraum E die Limitierung A0,folgt
'> FA)-L{E\ F)fûrjeden limitierten Vektorraum FA,.

Beweis: Sei £eL(E; F). Fiir jeden endlichdimensionalen linearen Unterraum
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HcEist t°iH:H > FA9 nach Satz (2.2.12) stetig, was aber wegen Satz (2.3.25.)
die Stetigkeit von t impliziert.

Daraus folgt unmittelbar

Satz 2.3.27. Fur einen Vektorraum E ist Ao die feinste zulàssige Limitierung,
Daher ist i//° Ao die feinste lokalkonvexe Topologie auf E.

Satz (2.3.26.) und Satz (2.3.27.) besagen zusammen:

Satz 2.3.28. Sei E ein Vektorraum, Eine fur E zulàssige Limitierung A ist genou
dann mit Ao identisch, wenn fur jeden limitierten Vektorraum FA> gilt &(EA'9FA)
=L(E;F).

Satz 2.3.29. Jeder der Vektorrâume Et, wobei i— 1,..., n trage die Limitierung AQ.

Dann gilt fur jeden limitierten Vektorraum FA,

J?((EU Ao), (E2, Ao),..., (En, AO);FA)=L{EU E2,..., En;F).

Beweis: WirfiihrendenBeweismit einerlnduktion nach n. Es ist l£((El9 A0)\FA)
L{Et\F). Wir nehmen 2{(EU Ao), (E29 Ao),...9 (En-UAO); FA,)

L{EU E2,.-*9 En^x;F) als bewiesen an. Weil nun jede w-lineare Abbildung

u:(Et xE2 x ••• xEn9 Ao xA0 x ••• xyl0) > FA,

eine (n-l)-lineare Abbildung

n9 Ao); FA)Ac

mit u=v induziert, folgt aus der Induktionsvoraussetzung und Lemma (2.2.18) die

Behauptung.

Satz 2.3.30. Fur jeden Vektorraum E ist ^° Ao separiert.
Der Beweis ergibt sich unmittelbar aus den Sâtzen (2.3.26.) und (2.3.14.).

3. Restglieder zwischen limitierten Vektorrâumen

3.1. Définition und einige allgemeine Eigenschaften
der Restglieder zwischen limitierten Vektorrâumen

Die in diesem Kapittel auftretenden Râume EA9 FA> und GA>, seien limitierte
separierte Vektorrâume.

Sei UcEA eine yl-offene Menge. Fur xeU besitzt jedes <PeA(x) eine Spur $v
auf U, und es ist [^t/]£=#. Dazu sei auf Lemma (1.2.4.) verwiesen. Wir bezeichnen

ein Elément atfs Av(x) mit $U9 wobei # der Filter aus A(x) ist, dessen Spur auf U

gerade $v ist. In der nachstehenden Définition verwenden wir die im folgenden Lemma

formulierte Tatsache.

Lemma 3.1.1. Seien UcEA eine den Nullvektor enthaltende /1-offene Menge und
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$veAv(0). Dann existieren ein Me<Pv und ein e>0, so dass X-McU fur aile

Ae[-e, e].

Beweis: Weil U /1-offen ist, gilt Ue0^'^eA(O). Also existieren ein Me$v und
ein e>0, so dass [ — e, e]-MczU.

Die im folgenden auftretenden a seien réelle Funktionen, definiert (fur e>0) auf
dem abgeschlossenen Intervall [ —e, e]c=R mit den Eigenschaften limA_0 ff(A)/A=0
und a(0) 0.

Définition 3.1.2. Sei UcEA eine den Nullvektor enthaltende yl-offene Menge.
Eine an der Stelle OeU stetige Abbildung r:U >FA, heisst ein Restglied,
wenn zu jedem ^ueAu(0) ein WeA'(0) existiert, das die folgende Bedingung erfullt:

(B) Zu jedem NeW gibt es ein Me<Pv und ein er, so dass r(X-M)co-(X)-N fur
aile X aus dem Definitionsbereich [ —e, e] von a.

Die Menge R(UczEA,FA>) der Restglieder von UcEA nach FA, ist nicht leer,
denn wie man leicht nachpriift, enthâlt sie die Nullabbildung.

Lemma 3.1.3. Fur die Abbildung r: UcEA > FA,9 $e^(U) und We3?{F)
sei die Bedingung (B) erfullt. Gelten fur ^fe^(U) und We^(F) die Beziehungen

$<$' und ¥'<¥, so ist fiir r, $' und T die Bedingung (B) giiltig.

Beweis: Fur jedes NeW ist Ne Y. Daraus folgt: Zu jedem NeW existieren ein

Me# und ein a derart, dass r(X* M)czo(X)*N fur aile X aus dem Definitionsbereich

[-e, e] von a. Weil jedes Me 4> auch in $' enthalten ist, resultiert die Behauptung.
Damit ergibt sich leicht:

Lemma 3.1.4. Seien A, Âe&E und A\ Â'eSfF. Wenn A<A und ^'<yl', dann

folgt aus reR(UczEA9FA>), dass reR{UaEA,FA).

Bemerkung 3.1.5. Fiir jedes reR(UczEA, FA) folgt r(0) 0. Das ergibt sich direkt
aus der Giiltigkeit der Bedingung (B) fur ein Tripel r, <PeA(0), W'eA'(0).

Also kônnen wir uns wegen der Lemmas (3.1.3.) und (2.1.2) in der Définition
(3.1.2.) fortan W<r(<Pv) und sogar von der Form W=Wa^W denken.

Wir definieren zu einem Restglied reR(UcEA9 FA) die Abbildung r' : EA
durch i r \ c

Lemma 3.1.6. r' ist ein Restglied.

Beweis: Aus Lemma (1.2.4.) folgt die Stetigkeit von r' an der Stelle 0eEA. Weil

$eA(0) von der Filterbasis ^V auf E erzeugt wird, folgt aus der Giiltigkeit der

Bedingung (B) fiir r=r'\U, $v und WeA'(0)9 dass auch fiir r', # und W die Bedingung
(B) erfullt ist.

Die Menge der Restglieder r:EA > FA, sei mit R(EA, FA) bezeichnet.
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Lemma 3.1.7. Seien reR(EA,FA) und UaEA eine den Nullvektor enthaltende
yl-offene Menge. Dann ist r\ U ein Restglied.

Beweis: r|t/ist an der Stelle Oei^stetig.Zu jedem ^e^l(O) existiert ein WeA'(0)
mit: Zu jedem NeW gibt es ein Me# und ein <x, so dass r{X-M)(=.o(k)-N fur aile
A aus dem Definitionsbereich [ — e, e] von o\ Nach Lemma (3.1.1.) kônnen zu U
ein M'e$v und ein e'>0 gefunden werden, so dass X-McU fur aile Ae[ — e/, e'].
Wir setzen M" M'r\M. Also finden wir zu jedem NeW ein M"e<ï>v, mit
r(A-AT)c:c7(/l)-Ar, sobald |A|<Min(e, e').

Die beiden letzten Lemmas besagen zusammen :

Satz 3.1.8. Sei UcEA eine Â-offene Menge, welche den Nullvektor enthâlt. Eine

Abbildung r:EA > FA, ist genau dann ein Restglied, wenn r\U ein Restglied ist.

Wir beschrânken uns also im folgenden auf Restglieder, welche auf ganz 1s definiert
sind.

3.2. Restglieder zwischen speziellen limitierten Vektorrâumen

(a.) Seien A eine zulâssige Limitierung fur E9 A' eine zulâssige Topologie fur F
und r\EA > FA, ein Restglied.

Wegen Lemma (3.1.3.) ist die Bedingung (B) fur r, jedes <PeA(0) und den Null-
umgebungsfilter W°eA'(0) erfûllt.

Gilt umgekehrt (B) fur eine an der Stelle OeEA stetige Abbildung r : EA FA,9

jedes <PeA(0) und W°, so ist r ein Restglied.
(b.) Sei A wieder eine zulâssige Limitierung fur E und FA> ein normierter Vektor-

raum, wobei y ° > \\y\\ die Norm in F ist.
Die Définition eines Restgliedes kann hier wie folgt gefasst werden :

Eine an der Stelle QeEA stetige Abbildung r:EA > FA, heisst ein Restglied,

wenn in jedem #eyl(0) ein M existiert, so dass lim^o r(A-x)/A=O gleichmâssig in M.
Wir haben (B) fiir r, jedes #eyl(0) und den Nullumgebungsfilter V°eA'(O) nach-

zuweisen. Dabei kann W° durch die Filterbasis, bestehend aus dem Mengensystem

{Ke {y\ \\y\\ < q} \q > 0}, ersetzt werden.
Seien <PeA(0) und Me#. Es bedeutet limA_^o r(l-x)/X 0 gleichmâssig in M:

Zu jedem KQ existiert ein e>0, so dass r(À-x)/XeKe fur aile xeM und 0<|A|<e. Sei

also KQ beliebig. Wir denken uns e<l. Nun definieren wir af(X) SupxeM r(À-x) fiir
Ae[—e, e]. Dann gilt g'(A)<g fiir aile Ae[ — e, e]. Damit resultiert r(X-M)ciGf(X)-Ki
fiir Ae[~a, e]. Setzen wir noch cr(A) l/£V(A), ergibt sich r(X-M)cz(r(X)-Ke fur
jedes Ae[ — e, e].*

Umgekehrt sei r ein Restglied. Weiter seien &eA(0) und KeeW° vorgegeben.

Dann existieren ein Me<P und ein <r, so dass r(X'M)c:G(X)-Ke fiir aile Ae[—e, e].

Fur ein gewisses e'>0 und 0<|A|<e' gilt |(t(A)/A|^1. Also hat man r(X-x)IXeo{X)IX-

•KecKe oder \\r(X-x)/X\\<Q fiir aile xeM, sobald 0<|A|^Min(e, s').
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(c.) Nun seien EA ein topologischer und FA, ein beliebig limitierter Vektorraum.
Ohne Miihe weist man nach:
Eine an der Stelle OeEA stetige Abbildung r:EA > FA, ist genau dann ein

Restglied, wenn ein WeAf(0) existiert, so dass die Bedingung (B) fur r, den Null-
umgebungsfilter #° in EA und W erfullt ist.

(d.) Seien EA ein normierter, FA, ein limitierter Vektorraum und r : EA > FA,

ein Restglied. Den Nullumgebungsfilter in EA bezeichnen wir mit 3>°.

Dann gibt es einen Filter WeA'(0) (s. Bemerkung (3.1.5.)), so dass zu jedem
iVu[ — e, e]'N aus W ein KQe<P° und ein a existieren, mit der Eigenschaft, dass

r(X-Ke)czcr(X)-(Nu\_ — e, s]N)fiiraileX aus dem Definitionsbereich [ — e\ e'] von a.
Fur den Rest dièses Abschnitts (d.) sei X stets positiv. Nun setzen wir KQ. XKQ
und driicken jedes x'eKQ> durch ein xeKQ mit ||jc||=£ in der Form x' X-x aus.
Dann folgt r(x')/||jc'||6a(||x'||/e)/l|x/|| '(Nv[-e9 e]N), falls 0< ||x'|| <<?'. Wir denken

uns e' noch so klein, dass (r(||;c'||/g)/||x'||<Min(e, 1). Damit resultiert r(x')/||x'||e
eiVu[ — e, e]-N, weshalb wir lim^^o r^'J/Hjc'H =0 folgern kônnen.

(e.) Seien EA und FA. topologische Vektorrâume mit den Nullumgebungsfiltern
^° bezw. <F°.

Aus (a.) und (c.) folgt:
Eine Abbildung r\EA > FA, ist genau dann ein Restglied, wenn fur r, 4>°

und W° die Bedingung (B) giiltig ist.
Das ist aber gerade die Définition eines Restgliedes, die S. Lang in [6] gibt.
(f.) Sind EA und FA lokalkonvexe Vektorrâume, fallen unsere Restglieder wegen

(e.) mit den F-Restgliedern in [4] zusammen.
(g.) Seien {(Ea, Ta)}aef und {(Fa,, Ta)}a^r Familien topologischer Vektorrâume;

(E, inda6l Ta) und (F, inda,€/, Ta<) seien bezw. ihre induktiven Limites. Die
Nullumgebungsfilter in (Ea9 Ta) und (Fa, Ta) bezeichnen wir mit 4>° und 4>°.

Lemma 3.2.9. Eine Abbildung r von (£, indae/ Ta) nach (F, indaer Ta>) ist genau
dann ein Restglied, wenn zu jedem a'e/ein Ua€<P°a und ein a'eJ' existieren, so dass

(1.) r(iycF.,
(2.) r\Ua:(Ua, TaUv) ?(F.., T..) ein Restglied ist.

Beweis: Sei r ein Restglied. Aus den Bemerkungen (2.3.23.) und (3.1.5.) folgt:
Zu jedem ae/existiert ein a'e/' derart, dass es zu jedem Fa,e#° ein U'e$°a und ein
<r gibt, mit der Eigenschaft, dass r(A-U«)c(r(A)-Fa, fiir aile A aus dem Definitionsbereich

[-e,8] von a. Wir kônnen Ura und Va, als kreisfôrmig (s. [5], p. 149) annehmen.
Es lâsst sich ein e' mit 0<6'<l finden, so dass fiir Ae[-e', e'] gilt a(X)'Va,czVa,.
Ersetzt man fur ein festes Ae[-e', e'] die Menge X-U^ durch Ua, resultiert (1.).
Aus (e.) ergibt sich (B) fur r\Ua9 die Spur von #° auf Ua und *®. Die Umkehrung
folgert man leicht aus Bemerkung (2.3.23.) und den Lemmas (1.2.4.) und (3.1.6.).
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3.3. Beispiele eines Restgliedes

(1.) Seien EA und FA, limitierte Vektorrâume. Wir setzen ifr0 A als separiert voraus.
Zu einer n-linearen Abbildung u:(ExEx>xE, AxAx---xA) > FA, defi-
nieren wir die Abbildung _u:EA > FA,

durch x ° > u(x9 x,..., x) fur xeEA. Nun sei w;>2 und u symmetrisch und stetig
(s. Satz (2.2.22.)). Dann ist û ein nicht identisch verschwindendes Restglied. Fur
#e/l(O)existiertnâmlichzujedemiVe«(#)ein Me#, so dass u(M)cN. Also ergibt
sich u(X-M)=Xt-u(M)czXH-Nfur aile AeR.

3.4. Weitere Eigenschaften der Restglieder

Seien E und F Vektorrâume. Fur Abbildungen g,f:E >F und
h.EE > R definieren wir :

(A.) g+f:E > F durch (g+/) (x)=g(x)+f(x)
(B.) ^•/:£' >F durch (h'f) (x)=^h(x)'f(x)
(C.) t-/:£ >F durch (t-/)(x) t-/(x) fur xeR.

Lemma 3.4.10. R(EA, FA>) ist ein Vektorraum (bez. der Operationen unter (A.)
und (G)).

Beweis: Seienri9 r2eR(EA9 FA) und teR fest.

Erst soll (rï+r2)eR(EA, FA) nachgewiesen werden. Nach der Définition eines

Restgliedes existieren fur / 1, 2 zu jedem #eyl(0) gewisse WteA'(0), so dass ri9 <P

und Wt der Bedingung (B) geniigen. Die Filter Wt und W2 kônnen wir uns noch so
beschaffen denken, dass fur W^WxaW2 gilt W=Wa$1 !F<r£(#), wobei i«l,2
(s. Bemerkung (3.1.5.)). Daraus folgt lF + ¥'^r1(#) + r2(#)<(r1 + r2) (#). Also ist

rj + r2 an der Stelle 0e^ stetig. Ein Elément Ne Y+W umfasst ein Elément der Form
N' + N' mit N'e W. Sei i= 1, 2. Zu JNTe !F gibt es Mengen Mf e<^ und réelle Funk-
tionen <ri9 definiert auf [ — ei5 ej, wobei ef>0, so dass ri(X-M)<zai(X)-Nf fiir aile

fif, 8|] folgt. Wir setzen e Min (el9 e2) und M Mt n M2. Dann resultiert

Die Menge iV'elF kann noch von der Form JVru[-e',e/]-JV/r mit iV"e!F und

0<e'^l angenommen werden. Fiir fi9fi'eR mit |/j//i'|<e' stellt man dann nln'*
•(N"\j[-e'9 e']-#'9c#"u[-£',£']•#" oder also fiN'cn'N' fest. Wir definieren

-«, a]:. ^̂l()/ falls

Es ist limA_o<7(A)/A=0 und |e/-<r(A)|^Max(<T1(A), c2(A)). Daraus folgert man

a(X)'N'z><rx(X)-N\ <r2(X)-Nf.
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Darait leitet man nun aus (*)

(ri+r2)(X'M)c:<j(X).
oder

(r1+r2)(A-M)c:a(A).(
also endlich

(rl+r2)(X-M)cza(X)'N

fiir aile Ae[-e, e] her. Demnach ist also fiir rt+r2, <PeA(0) und WeA'(0) die Be-

dingung (B) giiltig.
Aus reR(EA, FA) und teR soll noch xreR(EA, FA) gefolgert werden. An der

Stelle OeEa ist tt stetig. Sei fur r, <f>e/L(O) und VeA'(0) die Bedingung (B) erfiillt.
Also finden wir zu einem Ne Y ein Me<P und ein <x, so dass r(X'M)cza(X)'N oder

(t • r) (A• M)c(j(A) • (t • N), sobald Ae [- e, e]. Da das Mengensystem {t • N\Ne W} eine
Filterbasis von t-ÎP ist, folgt (B) fur tt, $ und t-W.

Muhelos verifiziert man als letztes die Axiome eines Vektorraumes fiir R(EA, FA).

Lemma 3.4.11. (i) R(EA9 R) ist ein Ring (bez. der Operationen unter (A.) und
(B.)) und R(EAi FA>) ist ein Modul liber R(EA, R). (ii) Fur fe&(EA;R) und reR(EA9
FA) ist t-reR(EÂ9 FA.). (iii) AusreR(EAy R)und teX(EA; FA) folgt r- teR(EA, FA).

Beweis: (i): Wir weisen nur r'reR(EA, FA) fiir reR(EA, FA) und r'eR{EA, R)
nach. Die natûrliche Topologie auf R bezeichnen wir mit To. Die Abbildung r'-r ist
an der Stelle Oe^ stetig. Die Bedingung (B) sei erfiillt fur die Tripel r, ^eyl(O),
^eyl'(O) und r', <f>e,l(0), XeTo(0). D.h. zu NeV und PeX gibt es ein M und réelle

Funktionen ax und a2, mit r(l-M)cz<Tl(X)'N und r'(A-M)c:<t2(A)-P fiir aile A aus
dem Durchschnitt der Definitionsbereiche [—e, e] von o"! und <r2. Daraus ergibt sich

dann

fiir aile Ae[-e, e]. Weil das Mengensystem {P-N\NeW, PeX} eine Filterbasis von
X^€Âf{(S) ist, gilt (B) fur r'-r, $eA(0) und X-WeA'(0).

(ii) Auch hier zeigen wir nur SreR(EA, FA>) falls reR(EA, FA) und te£{E\ R).
An der Stelle OeEA ist die Abbildung ••r stetig. Sei (B) fiir r, ^€^1(0) und WeAf(0)
richtig. Wir zeigen die Gultigkeit der Bedingung (B) fur t-r9 ^eyl(O) und S(<P)Ve
eA'(0). Zu einem iVe W existiert ein Me 0, so dass mit einem gewissen a: [ —e, e]->R
fiir aile Ae[~e, e] folgt r{X-M)<=.o(k)-N. Daraus entnimmt man (^-r)(A*M)c=
c^(A-M)-r(A-M)c:a(A)-/(M)-A/r. Die Behauptung resultiert nun unmittelbar aus
der Tatsache, dass das Mengensystem {t(M)-N\NeW9 Me<P} eine Filterbasis von

#)-!Fist.
(iii) : Analog wie die Aussage unter (ii) beweist man dièse Behauptung.

Lemma 3.4.12. Aus reR(EA, FA) und ieSe(FA,\ GA») folgt t°reR(EA, FA).
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Beweis: AnderStelle QeEA ist t°r stetig. Aus der Beziehung (B) fiir r,
und WtA'iÇ) leitet man leicht (B) fur /°r, <PeA(O) und é(W)eA'(O) her.

Lemma 3.4.13. Fur ^e^(EA; FA) und reR(FA,, GA) ist

Beweis: Die Abbildung r°<?ist an der Stelle OeEA stetig. Weiter folgert man miihe-
los (B) fiir r0/, 4>eyl(0) und XeA"(0) aus der Giiltigkeit der Bedingung (B) fiir r,

Ist speziell E= R und wird fur ein festesjoeF^ die lineare Abbildung {: R >FA>

durch X n >X*y0 definiert, ergibt sich r°/ei?(R, GA). Dann ist
limA_>0 r°t(X)/À 0, d.h. limA_0 r(À-yo)/À 0 (s. (d) in(3.2.)). Darausentnehmen wir

Lemma 3.4.14. R(FA,f GA.)

Lemma 3.4.15. Aus rteR(EA, FA), fe&(EA; FA) und r2eR(FA,, GA) resultiert

Beweis: Die Abbildung r2°(/ + rl) ist an der Stelle OeEA stetig. Fur rl9 <PeA(0)
und ein gewisses WeA'(0) sei (B) erfûllt. Anderseits wissen wir von der Giiltigkeit der

Bedingung(B) fur r2, S(<P)+¥eA'(0) und ein bestimmtes XeA"(0). Wir leiten nun
(B)fiirdas Tripel r2o(S + r2)9 ^e^l(O) und ^€^"(0) her. Zu PeX existieren ein

und ein <r2, so dass r2(k-{t{M) + N))<zo2(kyP oder

(**)

fiir aile X aus dem Definitionsbereich [ —e, s] von o2> Die MengeiVG W kônnen wir
von der Form N u [ — e', e'] N, mit 0 < s' < 1, denken. Es lâsst sich ein e" mit 0 < a" < a'

finden, so dass 1^*! (A)/A| <e" fiir aile Ae[ — e", e"]. Daher gilt fur ein gewisses M'e<P
und fiir aile Ae[ — s", e"] die Beziehung r1(X'Mf)czai(X)'NczX'N. Also folgern wir
aus (**), dass

fiir aile AeR mit |A|<Min (e, e';)=ew. Setzen wir noch M" MnM', so ergibt sich

r
fiir aile Ae[-ew, ew].

4. Differenzierbarkeit in limitierten Vektorraumen

4.1. Définition und Eindeutigkeit der Ableitung
Die in diesem Kapitel auftretenden Râume EA9 FA, und GA> seien limitierte

separierte Vektorrâume.

Définition 4.1.1. Sei UcEA eine ,4-offene Menge.
Eine Abbildung /: U >FA, heisst differenzierbar an der Stelle xelï, falls
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ein fe&(EA; FA) und ein reR(EA9 FA) existieren, so dass

identisch in U—x gilt.
Df(x): £ heisst die Ableitung von/an der Stelle xeU.
Wenn / in allen Punkten einer Teilmenge MaU differenzierbar ist, heisst /

differenzierbar in M.
Wenn / in ganz U differenzierbar ist, heisst / differenzierbar.

Satz 4.1.2. Seien UcEA A-offen undf: U > FA, an der Stelle xe U differenzierbar.

Dann ist D/(x) eindeutig bestimmt.

Beweis: Wàre D/(x) nicht eindeutig bestimmt, gâbe es Restglieder r, r'eR(EA, FA)
und zwei verschiedene Elemente /, £'e££{EA\ FA), so dass

und
'(A)

identisch in U-x erfullt sind. Also gilt (£' -S)\(U-x) (r-r')\(U-x). Das Rest-

glied (r — r')\(U—x) kann aber zu (<f' — /)^0 erweitert werden. Wegen Lemma (3.1.6.)
folgt {£' -t)eR(EA9 FA), was aber Lemma (3.4.14.) widerspricht.

4.2. LOKALITÂT DER ABLEITUNG

Die Abbildung/:^ > FA, sei an der Stelle xeEA differenzierbar und habe
die Ableitung Df(x). Fur eine yl-offene Menge UczEA, welche den Vektor x enthâlt,
ist/|C/ wegen Satz (3.1.8.) an der Stelle x differenzierbar und hat dort ebenfalls die

Ableitung D/(x). Umgekehrt habe g: U > FA, an der Stelle xe (7die Ableitung
Dg(x). Aus Satz (3.1.8.) und der Définition der Ableitung an der Stelle xe U folgt, dass

g:EA > FA>, defîniert durch

z(x)=\
gK } ^beliebigfur

an der Stelle xeEA die Ableitung Dg(x) besitzt.

Mit Dx(UcEA, FA) bezeichnen wir die an der Stelle xe U differenzierbaren Ab-
bildungen von UcEA nach FA,. Sei D^^, FA) die Menge der an der Stelle xeEA
differenzierbaren Abbildungen von EA nach FA>.

Die obigen Oberlegungen zeigen: feDx(EA, FA) gilt genau dann, wenn f\Ue

4.3. Beispiele

1.) Jedesrei?^, FA) ist eine an der Stelle Oe^ differenzierbare Abbildung mit
Dr(0) 0.
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2.) Eine konstante Abbildung c: EA >FA. hat an jeder Stelle xeEA die

Ableitung Dc(x)=0.
3.) Fur jedes £e&(EA\ FA) und jedes xeEA gilt D/(x)=/.
4.) Sei u:(ExEx ••• xE9 A xA x«- xyl) > FA> eine«-lineare(n^2) stetige

Abbildung. Sei ûi:EA >FA, definiert durch «i(/i)=w(x, x9..., h,..., x) mit h

an der /-ten Stelle fur ein festes xeEA. In (3.3.) wurde û definiert. Man stellt nun leicht
fest, dass û an jeder Stelle xeEA differenzierbar ist und dort die Ableitung Du(x)

Weitere Beispiele kônnen mit Hilfe des folgenden Satzes konstruiert werden.

Satz 4.3.3. (i) T>X(EA, R) ist ein Ring (fur die gewôhnliche Addition und Multi-
plikation reeller Funktionen s. (3.4.)). (ii) DX(EA, FA.) ist ein Modul iïber dem Ring
DX(EA9 R). (iii) Fur seT>x(EA, R) undf, geDx(EAf FA) hat man

D(/+g) (x) D/(x)+D*(x) und

D(s-f)h =(Ds(x)hyf(x)+s(x)-Df(x)h.
Beweis: Wir beweisen nur die letzte Behauptung.
Es gilt identisch in h :

f(x+h)=f(x)+Df(x)h + rf(h)
g(x+h)=g(x)+Dg(x)h + rg(h) und
s(x+h)=s(x)+Dsix)h + rs(h).

Daraus resultiert

(f+g)(x+h)=(f+g)(x)+Df(x)
Und

Oder
s(x+h)>f(x+h)=s(xyf(x)+(ps(x)h)'f(x)+3(xyDf(x)h +

+(Ds(x)hy(Df(x)h)+r,(hyDf(x)h +
+(Ds(x)hyr/(h)+s{xyr,(h)+r.(hyf(x)+
+rt(h)-rf(h).

Man stellt leicht fest, dass rs(h)-f(x) ein Restglied ist. Die Behauptung (iii) folgert
man nun aus den Lemmas (3.4.10.) und (3.4.11.).

4.4. Kettenregel und Mitiïlwertsatz
Satz 4.4.4. WennfeT>x(EA, FA) und geDf(x)(FA,, GA»), dann istg°feDx(EA, GA.)

und hat an der Stelle xeEA die Ableitung Dg(f(x))°Df(x).

Beweis: Fur jedes heEA gilt

g(f(x+h))=g(f(x)+Df(x)h+rf(h))=
=g°Ax) + Dg{f(x))(Df(x)h+rf(h))+rg(Df(x)+rf(h))=g°f(x)+

+ Dg(f(x))oDf(x)h+Dg(f(x))orf(h)+rto(pf(x)+rf)(h).
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Die Behauptung erhalten wir nun aus den Lemmas (3.4.12.), (3.4.15.) und (3.4.10.).
Seien cXo:R EA durch cXo(x) x0 und i:R > EA durch j(t)

x(xi-x0) fur feste x0, xieEA definiert. Aus g\ cXQ + i folgt Dg(X)=i fur jedes
AeR.

Es bedeuten (0,1) das offene und [0,1] das abgeschlossene Intervall der reellen
Zahlen zwischen 0 und 1.

Die Abbildung/:^ > FA, sei in g([0,l]) stetig und in g((0,l)) differenzier-
bar. Fûr/e«^(Fyl;R)ergibt sich, dass h:=S°f°g stetig in [0,1] und differenzierbar in
(0,1) ist. Mit einem festen AoeR gilt D/*(A0) ^D/(g(A0))°/ oder Dh(X0)x

£°Df(g(A0))x(xl-~x0) identisch in R. Fur h sind die Voraussetzungen fur den
Mittelwertsatz erfiillt und deshalb resultiert

fur ein gewisses #e(0, 1), das allerdings von *f abhângt. Wir setzen g(8) x(d). Da
h(\) £{f()) und h(0) S(f(xo)) ist, folgt dann

Damit wissen wir :

Satz 4.4.5. Sind x0, xleEA feste Vektoren und ist f:EA >FA> stetig in
{jco4-t(x1— xo)|0<t<1} und differenzierbar in {xo + x(x1 — xo)\0<x<l}, danngiltfùr

R) und ein gewisses x(9)e{xo-\'x(x1'-x0)\0<x<l}

Fur das weitere setzen wir \j/° A' separiert voraus. Mit Hilfe von Satz (2.2.15.)
zeigt man dann leicht :

Lemma 4.4.6. Seien x0, xteEA. Eine in {xo + x(xl—xo)\Q<x<l} stetige und in
{xo + x(xl—xo)\0<x<l} differenzierbare Abbildung f:EA > FA, der Ab-
leitung D/(x)=0 an jeder Stelle x€{xo + x(xl-xo)\O<x<l} ist auf {xo + x(xl-xo)\
| konstant.

Sei UaEA eine yl-offene, beziiglich xoeU sternfôrmig konvexe Menge. Die

Abbildung/:/^ > FA> sei differenzierbar in U und habe an jeder Stelle xe U die

Ableitung 0. Da mit xeU auch xo + t(x — x0) fiir aile 0<t<1 in U liegt, folgt aus

dem Lemma (4.4.6.), dass/auf U konstant ist. Umgekehrt hat jede auf U konstante

Abbildung c:EA > FA. an jeder Stelle in U die Ableitung 0. Zusammengefasst
heisst das:

Satz 4.4.7. Sei UcEA eine A-offene, sternfôrmig konvexe Menge. Eine in U
differenzierbare Abbildung f:EA >FA, ist genau dann konstant auf U, wenn'

D/(x) » 0 fur jedes xeU.
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