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Ein Differenzierbarkeitsbegriff in limitierten Vektorriumen

ERNsT BINz (Ziirich)

Einleitung

In der vorliegenden Arbeit soll der Versuch unternommen werden, eine Differen-
zierbarkeit fiir Abbildungen zwischen limitierten Vektorrdumen zu erkliren.

Im ersten Kapitel sind die notwendigen Begriffe der Filtertheorie (s. [2]) und der
Limesrdume (s. [3]) zusammengestellt.

Die limitierten Vektorrdume werden in (2.) eingefiihrt. Fiir die Theorie der topo-
logischen Vektorrdume sei auf [5] verwiesen. In (2.1.) finden wir eine Verallgemeine-
rung eines Satzes von TyCHONOFF iiber endlichdimensionale limitierte Vektorrdume
(Satz (2.1.5.)). Von stetigen linearen und stetigen multilinearen Abbildungen zwischen
limitierten Vektorriumen handelt (2.2.). In (2.3.) wird der induktive Limes limitierter
Vektorrdume betrachtet und die feinste fiir einen gegebenen Vektorraum noch zu-
lassige Limitierung bestimmt. Fiir diese Limitierung zeigen wir einige spezifische
Eigenschaften auf.

Die Definition eines Restgliedes zwischen limitierten Vektorrdumen wird in Kapitel
(3.) aufgestellt. Sie ist eine Verallgemeinerung der Definition eines Restgliedes zwischen
topologischen Vektorrdumen in [6]. Weiter werden Spezialfille untersucht, Beispiele
von Restgliedern angegeben und einige speziellere Eigenschaften der Restglieder
zusammengestellt, welche hernach in (4.) Anwendung finden.

Das Kapitel (4.) widmet sich einigen Sétzen iiber differenzierbare Abbildungen
zwischen limitierten Vektorriumen. So werden unter anderem die Kettenregel, der
Mittelwertsatz und der Hauptsatz der Integralrechnung bewiesen.

1. Limitierungen
1.1. VORBEMERKUNGEN

Sei E eine nicht leere Menge. Die Halbordnung der Filter auf E sei mit & (E)
bezeichnet. Die untere Grenze von @, Ye# (E) wird durch & AY dargestellt. Sie
besteht aus dem Mengensystem {M UN|Me®, Ne¥}.

Definition 1.1.1. Ein Element I aus der Potenzmenge (% (E)) von % (E) heisst ein
A-Ideal in F (E),falls mit ®,'¥ € # (E) auch ® A¥ e F (E) und mit deF (E) auch alle
seine Oberfilter auf E in I liegen.

I heisst ein A -Hauptideal in # (E), wenn es aus allen Oberfiltern zu einem festen
PeF (E) besteht. Wir nennen dann I das von @ erzeugte Hauptideal in & (E).
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Sei A eine nicht leere Teilmenge von E. Existiert die Spur eines Filters ¢ % (E)
auf A4, wird diese mit @, bezeichnet.

Alle Filter aus einem A -Ideal in & (E), welche eine Spur auf 4 haben, erzeugen
in #(A4) ein A-Ideal (s.[3]).

Ist B ein Mengensystem auf E und existiert der von B erzeugte Filter in & (E),
wird dieser mit [ B]; bezeichnet. Sei xe E. Den vom Mengensystem {{x}}, bestehend
aus der einelementigen Menge {x}, erzeugte Ultrafilter in # (F) nennen wird fortan x.

1.2. LIMITIERUNGEN
Sei E eine nicht leere Menge.

Definition 1.2.2. Eine Abbildung A: E ———— P (% (E)) heisst eine Limitierung
auf E, wenn sie folgende Eigenschaften hat:

(1.) Fiir jedes xeE ist A(x) ein A-Ideal in # (E).

(2.) Fiir jedes xeE ist Xe A(x).

Die Elemente in A(x) heissen beziiglich A gegen xe E konvergente Filter auf E.
Das Paar (E, A), wofiir wir oft E, setzen, heisst ein Limesraum. Die Gesamtheit aller
Limitierungen auf E sei mit & bezeichnet.

Sei Ae&. Bilden fiir jedes xe E, die beziiglich A gegen x konvergenten Filter ein
A-Hauptideal in & (E), heisst A eine Hauptideallimitierung auf E. Es bedeute &%,
die Menge aller Hauptideallimitierungen auf E.

Eine Hauptideallimitierung A€, ist eine Topologie auf E, wenn fiir jedes
xeE, das grobste Element ¢°(x)eA(x) zusdtzlich der folgenden Bedingung geniigt:
Zu jedem Ue®°(x) existiert ein Ve ®®(x), sodass fiir alle ye V' folgt Ued°(p).

Bezeichnet %, das System aller Topologien auf E, so gilt ¥ > %> %,.

Nun sei Ae#. In F(E) existiert fiir jedes xeE die untere Grenze $°(x) aller
Filter aus A(x). Das von ®°(x) erzeugte A-Hauptideal y A(x) in & (E) ist durch 4
eindeutig bestimmt. Also wird durch x "—— y A(x) eine Hauptideallimitierung
¥ A auf E definiert. Durch A "——— A wird eine natiirliche Abbildungy: ¥ —.%,
bestimmt, fiir die | %, 2y =y gilt.

Definition 1.2.3. Sei Ae.%. Eine Menge Uc E, heisst A-offen, wenn aus xeU
folgt, dass Ue @ fiir jedes € A(x).

Lemma 1.2.4. Sei E, ein Limesraum. Fiir irgend ein x aus der A-offenen Menge
UcE, sei € A(x). Dann existiert die Spur @, auf U und es ist =[dy].

Beweis: Aus'U e® folgert man fiir jedes Me ®, dass M U#0. Somit existiert
&y. Es ist @<[Py];. Umgekehrt gibt es zu jedem M’'e[P,]; ein Med, so dass
M'>5MAnU. Das beweist M'e ®. Also gilt [@,]z< P und wegen & <[P, ] resultiert

P=[Pyle.
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Sei Ae#. Das System der A-offenen Mengen in E, geniigt den Axiomen eines
topologischen Raumes. Daher hat man eine natiirliche Abbildung ¢: & ———— .
Weil eine Menge Uc E genau dann A-offen ist, wenn sie y A-offen ist, folgt ¢ =
@|#1°y. Wir nennen E,, den zu E, assoziierten topologischen Raum.

Definition 1.2.5. Sind auf einer Menge E die beiden Limitierungen A und A’
definiert, heisst A feiner als A’ (in Zeichen A’ < A), wenn fiir jedes xe E gilt A(x)= A'(x).

Die auf ¥, von < induzierte Ordnungsrelation stimmt mit der iiblichen An-
ordnung von Topologien iiberein (s. [3]).
Wir benétigen noch folgenden Begriff:

Definition 1.2.6. Eine Limitierung A auf E heisst separiert, wenn fiir x, ye E, aus
x#y folgt, dass A(x)nA(y)=0 ist.

1.3. ABBILDUNGEN ZWISCHEN LIMESRAUMEN

Seien E und F zwei nicht leere Mengen. Eine Abbildung f: E————— F fiihrt
einen Filter e.# (E) in das Mengensystem B={f(M)|Me®} iiber. Dieses ist eine
Filterbasis auf F. Der Filter f(®):=[B]g soll das Bild von @ unter f heissen.

Nun seien E, und F,. zwei Limesrdume.

Definition 1.3.7. Eine Abbildung f:E, —— F,. heisst an der Stelle xeE,
stetig, falls fiir jedes ®eA(x) folgt £ (P)eA'(f(x)).
Ist fan jeder Stelle xe E; stetig, heisst f stetig in E,.

1.4. PRODUKTLIMITIERUNG

Seien E, und F,. Limesrdume. Auf E x F fiihren wir die grobste Limitierung ein,
fiir welche die Projektionen pry:ExF————>E, und prp:EXF———>F,,
stetig sind. Diese Limitierung heisst Produktlimitierung A x A" auf E x F.

Sind ®eF (E) und Y eF (F), so versteht man unter dem Produktfilter ® x¥ den
von der Filterbasis B={M x N|Me ®, Ne¥} auf E x F erzeugten Filter. Sind B und
B’ Filterbasen auf E bezw. auf F, so heisst Bx B'={M x N IM €B, NeB'} die Produkt-
filterbasis auf E x F von B und B'. Es gilt der

Satz 1.4.8. Seien E,und F,. zwei Limesrdume. Ein Filter Xe % (E x F) konvergiert
beziiglich A x A’ genau dann gegen (x,y)e E x F, wenn prg(X)e A(x) und prp(X)e A’ (y).

Die Produktlimitierung A4 x A’ ist genau dann separiert, wenn A und A’ separiert
sind.

1.5. SPURLIMITIERUNG

Definition 1.5.9. Seien E, ein Limesraum und A eine nicht leere Teilmenge von E.
Jedem xe 4 wird das von A(x) in # (4) induzierte A -Ideal A,(x)in & (A4) zugeordnet.
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Dann ist A,: 4 ———> P(F(A)) eine Limitierung auf A4 und heisst die von A auf
A induzierte Limitierung oder Spurlimitierung auf A.

FISCHER beweist in [3] den

Satz 1.5.10. Fir ®'eF (A) ist ®'€ A ,(x) genau dann, wenn [®']ze A(x).

2. Limitierte Vektorridume

2.1. EINFUHRUNG DER LIMITIERTEN VEKTORRAUME

Wir betrachten im folgenden Vektorrdume iiber dem Korper der reellen Zahlen R.
Statt reeller Vektorraum schreiben wir kurz Vektorraum.
Sei E ein Vektorraum. Der Korper R trage die natiirliche Topologie T.

Definition 2.1.1. Eine Limitierung A auf E heisst mit der Vektorraumstruktur von
E vertrdglich oder auch zulissig fiir E, wenn die Abbildungen (x,y) "—— x+y
und (4, x) —— A-x von (ExE, AxA) bezw. von (R xE, T x A) nach E, stetig
sind.

Ist A eine fiir den Vektorraum FE zuldssige Limitierung, so heisst das Paar (E, A),
wofiir wir oft E, setzen, limitierter Vektorraum. Wenn E endlichdimensional ist und 4
die natiirliche Topologie auf E bedeutet, schreiben wir statt (E, A) oder E, oft nur E.

Die Gesamtheit aller fiir den Vektorraum E zuldssigen Limitierungen sei mit &%
bezeichnet. Zur Formulierung eines notwendigen und hinreichenden Kriteriums
(Satz 2.1.3.) fiir A€ .%E, bendtigen wir noch folgende Begriffe.

Seien &, ¥eF (E). Unter &+¥ verstehen wir den von der Filterbasis {M+N|
Me®, Ne¥?} auf E erzeugten Filter. A(x)+A(y) bezeichnet die Menge {®+¥|
PeA(x), PeA(y)}. Ist A ®:=[{A- M|Me d}],fiir festes AeR, so bedeutet A-A(x) die
Menge {1-®|®eA(x)}. Sei Py der Nullumgebungsfilter in R. Wir denken ihn uns
erzeugt vom System der abgeschlossenen symmetrischen Intervalle {[—e, e]|s>0}.
Fiir festes xe E'steht &g - x fiir [{R- x| Re®g}] ;. Fiir e F (E)ist g- ®:=[{R- M|Re Py,
Me ®}];. Hat e F (E) die Filterbasis B, erkennt man, dass #3- @ schon von der Filter-
basis {[—¢, &]- M |e>0, MeB} erzeugt wird. Statt {dg-P|deA(x)} schreiben wir
dp- A(x).

In diesem Zusammenhang sei noch erwihnt:

'Lemma 2.1.2. Sei #eF (E). Das Mengensystem {M U [—¢, &]- M [e> 0, Me &} ist
eine Filterbasis'von $==® A $2-® und es ist $=33 A 3 B.

Beweis: Den ersten Teil des Lemmas beweist man leicht. Den zweiten Teil sieht
man wie folgt ein. Seien &, &' e F (E). Fiir & A &' folgt B (DA D' )=D3- S A Dp-P'.
Das erhiilt man aus der Beziehung R(M UM')=R-M U R- M’ fiir Redy, Me® und
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M'ed’. Da weiter &g-(Pp-®)=dp & gilt, resultiert & Adg-B=(P A Dy D) A
ADR (PADR- D)=DA DR DADY D ADY Ba- D oder also BADPY-B=P A D3 P.
In [3] beweist FisCHER den

Satz 2.1.3. Eine Limitierung A ist genau dann fiir den Vektorraum E zuliissig, falls
gilt
1.) A(0)+A(0)=A(0)
2) A-A(0)=A(0) fiir jedes AcR
3) Pp-A(0)=A(0) und
4)) dp-xe A(0) fiir jedes xeE.

Lemma 2.1.4. Sei E ein endlichdimensionaler Vektorraum. Die natiirliche Topo-
logie T auf E ist die feinste zulédssige Limitierung fiir E.

Beweis: Sei e,,...,e, eine Basis von E. Fiir irgend ein Ae &F folgern wir aus Satz
(2.1.3.), dass d=dg-e,+---+ Py e, gegen 0cE konvergiert. Ein Element Me®
umfasst eine Menge der Form [ —e¢, ] e, + -+ [ —¢, €] -e,={>iZnA ¢ |4} < €}, wobei
¢>0. Das beweist, dass @ grober als der Nullumgebungsfilter in 7(0) ist, was aber
A <T nach sich zieht.

Wir betrachten wieder einen beliebigen limitierten Vektorraum E ,. Die beziiglich
A stetigen Seminormen definieren die feinste lokalkonvexe Topologie, welche noch
grober als A ist. Diese Topologie bezeichnet FISCHER in [3] mit /° A und nennt sie die
zu A assoziierte lokalkonvexe Topologie. Nun gilt der

Satz 2.1.5. Sei E, ein endlichdimensionaler limitierter Vektorraum. Weiter sei
Y° A als separiert vorausgesetzt. Dann ist A identisch mit der natiirlichen Topologie T
auf E.

Beweis: Weil °A separiert ist, muss T=y%4 gelten, weshalb T<A folgt. Aus
Lemma (2.1.4.) resultiert nun unmittelbar die Behauptung,.

Wir wenden uns noch kurz den A-offenen Mengen in einem limitierten Vektor-
raum E,, zu. Mit E, 4 sei der zu E , assoziierte topologische Raum bezeichnet (s. (1.2.)).

Definition 2.1.6. Ein Limesraum Z, heisst zusammenhdngend, wenn der zu Z,
assoziierte topologische Raum Z,, zusammenhédngend ist.

Eine Teilmenge A< Z , heisst zusammenhdingend, wenn (A, A ,) zusammenhéngend
ist.

Man zeigt leicht: Z, ist zusammenhédngend, wenn irgend zwei Elemente x und x’
aus Z, in einer zusammenhidngenden Teilmenge von Z , liegen.

In einem limitierten Vektorraum E, liegen zwei Elemente x, x'eE, in
g={x+1-(x—x")|]—w <r<o0}. Die Abbildung i:R———g, welche durch
TN—— 5 x+1-(x—x') definiert ist, ist beziiglich ¢ A, stetig. Deshalb ist (g, A,)
zusammenhingend, woraus man folgern kann:
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Satz 2.1.7. Jeder limitierte Vektorraum E, ist zusammenhdingend.

Lemma 2.1.8. Sei U eine A-offene Teilmenge eines limitierten Vektorraumes E ;.
Fiir aeE, ist U+ a ebenfalls A-offen.

Beweis: U ist A-offen bedeutet: fiir jedes xe U und jedes e A(x) ist Ue &. Fiir
acE ; kann man zu jedem ¢'€ A(x+a) ein #€ A(x) derart finden, dass &' =P +a gilt.
Aus Ue @ ergibt sich dann U+ae ®+a. Demnach ist also U+a A-offen.

Definition 2.1.9. Eine Teilmenge M eines Vektorraumes E heisst absorbierend,

wenn zu jedem xe€E eine reelle Zahl ¢ >0 existiert, so dass A xe M fiir alle AeR mit
|| <e.

Lemma 2.1.10. Jede den Nullvektor enthaltende A-offene Menge U in einem
limitierten Vektorraum E, ist absorbierend.

Beweis: Fiir irgend ein xe E , ist &g-xe A(0). Weil U den Nullvektor enthilt, ist
Ue @3- x. Daraus folgt Uo[ —¢, £]- x fiir ein gewisses >0, d.h. es ist 1-xe U fiir alle
AeR mit |1| <e.

Aus dem Lemma (2.1.10.) ergibt sich, dass jede den Nullvektor enthaltende
A-offene Menge eines limitierten Vektorraumes E, den Vektorraum E erzeugt.

2.2. STETIGE LINEARE UND STETIGE MULTILINEARE
ABBILDUNGEN ZWISCHEN LIMITIERTEN VEKTORRAUMEN

Seien (E;, 4;), wo i=1,2, ...,n, E, und F,. limitierte Vektorrdume. Es bedeuten
L(E; F)und L(E,, E,, ..., E,; F) die Vektorrdume der linearen Abbildungen von
E nach F resp. der n-linearen Abbildungen von E; xE, x-.--xE, nach F. Mit
Z(E4;F,) bezeichnen wir den Vektorraum der stetigen linearen Abbildungen
von E, nach F,.. Unter £((E, Ay), (E;, A3), ..., (E,y A,); F4.) verstehen wir den
Vektorraum der stetigen n-linearen Abbildungen von dem mit der Produktlimitierung
versehenen Vektorraum E; x E, x --- X E, nach F,..

Satz 2.2.11. Seien E, ein limitierter und F ein beliebiger Vektorraum. Eine lineare
Abbildung ¢ € L(E; F), welche auf einer A-offenen Menge U < E 4 identisch verschwindet,
ist die Nullabbildung.

Beweis: Dieser Satz folgt unmittelbar daraus, dass fiir jedes ae U die Menge
U-=a den Vektorraum E erzeugt.
Als Korollare von Lemma (2.1.4.) ergeben sich die beiden folgenden Sitze.

Satz 2.2.12 Trdgt R" die natiirliche Topologie, so ist £(R";F,) = L(R"; F) fiir
jeden limitierten Vektorraum F ...

Beweis: Sei /e L(R";F). Wir bezeichnen die natiirliche Topologie auf ¢(R") mit
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T. Die Abbildung/:R" ————— /(R") ist stetig. Aus Lemma (2.1.4.) folgt daher die
Stetigkeit von £/:R" ———— F ..

Satz 2.2.13. Seien E;, i=1,2,...,n endlichdimensionale Vektorrdume, versehen
mit der natiirlichen Topologie. Fiir jeden limitierten Vektorraum F folgt

aZ’(El, Ez, ey E”;FAr)zL(El, Ez, sesy E”;F)
Dieser Satz wird analog bewiesen wie Satz (2.2.12.). In [3] beweist FISCHER den

Satz 2.2.14. Fiir einen limitierten Vektorraum E, ist £(E ;R)=%(E,o4;R).
Wenn ¥ °A separiert ist, dann existiert zu jedem x #0 aus Eyo, €in €% (Eyo4;R)
mit /(x)=1. Daraus folgert man:

Satz 2.2.15. Sei E, ein limitierter Vektorraum. Ist die zu A assoziierte lokal-
konvexe Topologie y° A separiert, folgt (), . 2 (E4:r) Kern £={0}.

Als néchstes fiihren wir auf L(E (; F,.)und L((Ey, A,), (Ez, A3),s ..., (Ep Ap); Fye)
je eine zuldssige Limitierung ein. Zu diesem Zwecke betrachten wir fiir zwei Limes-
rdume Y, und Z,. die Menge €(Y,, Z,.) der stetigen Abbildungen von Y, nach Z,..
Fiir ge¥(Y,, Z,-) und yeY, wird durch die Zuordnung (g, y) ~——— g(») eine
Abbildung @:¥(Y,, Z,) x Y —— Z definiert. Nach [1] existiert unter allen
Limitierungen A auf €(Y,, Z,.), fir die w:(¢(Yy, Z4)xY, AXA)—-Z,.
stetig ist, eine grobste. Diese sei mit A, bezeichnet. Ein Filter @ auf ¢(Y,, Z,.)
konvergiert beziiglich A, genau dann gegen ge%(Y,, Z,), wenn fiir jedes
yeY, und jedes PeA(y) folgt w(@ xP)eA’'(g(y)). In [1] wird A, die Limitie-
rung der stetigen Konvergenz genannt. Fiir eine Menge S und eine Abbildung
fiS——> € (Y,, Z,)sei fr=we(f xidy). Es gelten die beiden nachstehenden in
[1] bewiesenen Sitze.

Satz 2.2.16. Sei S,.. ein Limesraum. Eine Abbildung .S, ——— € (Y4, Z4),.
ist genau dann stetig, wenn f:(S x Y, A" x A) ———— Z ,, stetig ist.
Als Folgerung davon ergibt sich:

Lemma 2.2.17. Die von A, auf einer Teilmenge #<%(Y,, Z,.) induzierte
Limitierung ist unter allen Limitierungen A auf 5, fiir welche
o|# x Y:(H# xY, AxA) —— Z, stetig ist, die grobste.

Die von A, auf # induzierte Limitierung nennen wir ebenfalls Limitierung der
stetigen Konvergenz auf 5 und bezeichnen sie auch mit A,. Statt w|# x Y schreiben
wir kiinftig nur w. Es folgt unmittelbar:

Lemma 2.2.18. Seien S, ein Limesraum und f:S,., —— #,_ eine Abbil-
dung. Genau dann ist f stetig, wenn f=we°(f xidy):(# xY, A xA) ——> Z .
stetig ist.
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Auf L(E,;F )<¥€(E,, Fy) und L (Ey, Ay),....(E,, A,); Fp)cC(Ey X Ey X -+
v+ X E,y Ay XA, X+ xA,), F,) filhren wir nun die Limitierung der stetigen Konver-
genz ein. Diese ist fiir beide Vektorrdume zuldssig und ist separiert, wenn A’ separiert

ist (s. [1]).

Satz 2.2.19. Auf L (E,;F,) resp. auf £((Ey, Ay),(E;, A3)s-...(E,, A,);Fy) ist
Y° A, separiert, wenn y° A’ separiert ist.

Beweis: Wir nehmen ° A’ als separiert an und zeigen, dass auch /° A, separiert
ist. Ist/oe £ (E;F4.) nicht die Nullabbildung, so existiert ein x,eE,, fiir welches
¢o(x0) #0 gilt. Weil y° A’ separiert ist, finden wir in £ (F;R) ein g mit g(£,(x,)) #0.
Fiir /e Y (E;F,.) definiert die Zuordnung £ "——— g(¢(x,)) eine stetige lineare
Abbildung von Z(E,;F,),, nach R, welche auf £, nicht verschwindet. Weil £,#0
beliebig war, resultiert die Separiertheit von y° A.. Den zweiten Teil des Lemmas
beweist man analog.

Nun soll fiir limitierte Vektorrdume E,, F,. und G,. gezeigt werden, dass
FL(Ey; L(Fp3Gy)a)a, und L(E,, Fy5 Gyoo) 4, natiirlich homdomorph sind.

Die bilineare Abbildung

w:(.?(FA';GAu)XF, AC XA,)——“——‘—"‘"’) GA"

ist stetig. Daher ist fiir jedes ve £ (E,; £ (F4;G4),,) die bilineare Abbildung
i=we (v xidg)stetig. Die AbbildungI: #(E .; £ (F4;G4) 4 )———>FL (E, F ;G o),
definiert durch v "—— ¢, ist ein Monomorphismus.

Lemma 2.2.20. [ ist ein Isomorphismus.

Beweis: Es geniigt zu zeigen, dass I epimorph ist. Sei ue Z(E,, F,.; G,). Fiir
ein festes xeE, definieren wir u, durch y "——— u(x, y), wobei yeF,.. Es ist
u,e #(F, ;G ). Durch x "—— u_ ist eine lineare Abbildung v:E, —> L (F,;G,)
definiert. Weil §=we°(vxidg)=u ist, ist v nach Lemma (2.2.18.) stetig.

Satz 2.2.21. Seien E,, F,. und G 4. limitierte Vektorriume. Dann ist die lineare Ab-

bildung I: ,?(EA; og(FA';GA")Ac)Ac ——>Z(E,, FA'§GA")A..-

definiert durch v "——— © ein Homdomorphismus.

_ Beweis: Wir haben nur noch die Stetigkeit von 7 und ™! nachzuweisen. Weil 1
stetig ist, ist nach Lemma (2.2.18.) I stetig. Durch zweimaliges Anwenden von Lemma
(2.2.18.) beweist man die Stetigkeit von ™2,

Nun beweist man mit einer Induktion nach n, dass die natiirliche Abbildung von

L((Ey, 41); L(Ezs A2)s5 L(Ens An)sFa)a) o) a) e
nach Z(E,, A,), (E,, A),...,(E,, A,);F4) ein Homdomorphismus ist.
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Satz 2.2.22. Seien F#{0} und E;#{0} fiir i=1,...,n. Aus y° A; separiert fiir
i=1,..., n folgt dann, dass ¥ ((E,, A,), (E;, A3),....,(E, 4,); F4)#{0}.

Beweis: Wegen der Voraussetzungen ist £ ((E,, 4,);R) #{0}. Weil Z(R;F,.) #{0}
erhalten wir Z((E,, 4,); F,.) #{0}. Nunsei Z((E,, 4,), (E3; 43),--.,(E,, 4,); F4) #{0}
schon bewiesen. Dann ergibt sich aus Z((E, 4,);R)#{0}, dass
"?((El’ Al); "g((Eb AZ)’ (ES’ A3)9 s (En’ An); FA’) 7é{0} und daher
L((E1> A1)s (Ezs A2)se-s(Ens An); Fpr) #{0}.

2.3. INDUKTIVER LIMES LIMITIERTER VEKTORRAUME

Sei {(E,, A,)},<; cine Familie limitierter Vektorriume mit den Eigenschaften:

1.) Iist durch < gerichtet.

2.) Fiir a<p ist E, linearer Unterraum von E;.

3.) Fiir a<p ist die natiirliche Inklusionsabbildung ig: (E,, 4,) —— (Eg, Ap)
stetig.

Auf dem Vektorraum E=|J,.,FE, existiert unter allen Limitierungen A, fiir
welche alle natiirlichen Abbildungen i, :(E,, A,) ————— E, stetig sind, eine feinste.
Diese ist fiir E zuléssig (s. [3]) und soll mit ind, . ; 4, bezeichnet werden. Der limitierte
Vektorraum (E, ind,.;A,) heisst induktiver Limes der limitierten Vektorriume
(Ep Ag)-

Bemerkung 2.3.23. Ein Filter #e% (E) konvergiert beziiglich ind,.; 4, genau
dann gegen OeE, wenn ein ac/ und ein &, A,(0) existieren, so dass [®,];= gilt

(s. [3D).

In [3] finden wir noch die folgenden beiden Sétze bewiesen.
Satz 2.3.24. ind,.; A, ist genau dann separiert, wenn jedes A, separiert ist.

Satz 2.3.25. Sei F,. ein beliebiger Limesraum. Eine Abbildung f:(E,ind, ;A,)
———— F,. ist genau dann stetig, wenn f°i,:(E,, A,) ————— F. fiir jedes a€l stetig
ist.

Fiir einen beliebigenVektorraum E bezeichne I die Menge allerendlichdimensionalen
linearen Unterrdume von E. Fiir H, Ke! heisse H< K, wenn Hc K. Dann ist I durch
< gerichtet. Jedes H aus I trage die natiirliche Topologie Ty. Fiir H<K ist die
Inklusionsabbildung if : H —— K stetig. Den Vektorraum E= |y, H versehen
wir mit Ay=indy ;Ty. Wie man leicht feststellt, ist 4, dann und nur dann eine
Topologie, wenn E endlichdimensional ist.

Satz 2.3.26. Trdgt ein Vektorraum E die Limitierung A, folgt
L(E,; Fy)=L(E; F) fiir jeden limitierten Vektorraum F ..

Beweis: Sei /eL(E; F). Fir jeden endlichdimensionalen linearen Unterraum
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HcEist £°ig: H—— F,, nach Satz (2.2.12) stetig, was aber wegen Satz (2.3.25.)
die Stetigkeit von ¢ impliziert.
Daraus folgt unmittelbar

Satz 2.3.27. Fiir einen Vektorraum E ist A, die feinste zuldssige Limitierung.
Dabher ist Y° A, die feinste lokalkonvexe Topologie auf E.
Satz (2.3.26.) und Satz (2.3.27.) besagen zusammen:

Satz 2.3.28. Sei E ein Vektorraum. Eine fiir E zuldssige Limitierung A ist genau
dann mit A, identisch, wenn fiir jeden limitierten Vektorraum F,. gilt ¥ (E; F4.)=
=L(E;F).

Satz 2.3.29. Jeder der Vektorrdume E;, wobeii=1,..., n trage die Limitierung A,.
Dann gilt fiir jeden limitierten Vektorraum F .

g((El’ AO)! (EZ’ AO)’ cees (Em AO);FA’)—"'L(EI’ Ez’ sevs E";F).
Beweis: Wirfiihren den Beweis mit einer Induktion nachn. Esist Z((E;, Ao); F4)=

= L(El ;F). Wir nehmen g((El, Ao), (Ez, Ao), ceey (En,. 15 Ao); FAI)=
= L(E,, E,, ..., E,_;F) als bewiesen an. Weil nun jede n-lineare Abbildung

u(EyxEy %+ xXE, AgxAg X+ x Ag) ———> F.
eine (n-1)-lineare Abbildung
vi(Ey X Ey e XEy_y, Ag X Ag X +++ X Ag) ———> L((E,, Ao); Fa)a,

mit =7 induziert, folgt aus der Induktionsvoraussetzung und Lemma (2.2.18) die
Behauptung.

Satz 2.3.30. Fiir jeden Vektorraum E ist y° A, separiert.
Der Beweis ergibt sich unmittelbar aus den Sdtzen (2.3.26.) und (2.3.14.).

3. Restglieder zwischen limitierten Vektorrdumen

3.1. DEFINITION UND EINIGE ALLGEMEINE EIGENSCHAFTEN
DER RESTGLIEDER ZWISCHEN LIMITIERTEN VEKTORRAUMEN

Die in diesem Kapittel auftretenden Rdume E,, F,. und G,. seien limitierte
separierte Vektorrdume.

. Sei UcE, eine A-offene Menge. Fiir xe U besitzt jedes ®#e A(x) eine Spur Py
auf U, und es ist [®,];=P. Dazu sei auf Lemma (1.2.4.) verwiesen. Wir bezeichnen
ein Element aus Ay(x) mit &, wobei & der Filter aus A(x) ist, dessen Spur auf U
gerade & ist. In der nachstehenden Definition verwenden wir die im folgenden Lemma
formulierte Tatsache.

Lemma 3.1.1. Seien Uc E, eine den Nullvektor enthaltende A-offene Menge und
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dy e Ay(0). Dann existieren ein Med, und ein >0, so dass A-Mc U fiir alle
Ae[—e, €].

Beweis: Weil U A-offen ist, gilt Ue - Pe A(0). Also existieren ein M e d, und
ein ¢>0, so dass [~¢, ] McU.
Die im folgenden auftretenden o seien reelle Funktionen, definiert (fiir ¢>0) auf

dem abgeschlossenen Intervall [ —¢, e] =R mit den Eigenschaften lim;_, 6(1)/A=0
und ¢(0)=0.

Definition 3.1.2. Sei UcE, eine den Nullvektor enthaltende A-offene Menge.
Eine an der Stelle 0eU stetige Abbildung r:U—— F,. heisst ein Restglied,
wenn zu jedem @y e A,(0) ein Pe A'(0) existiert, das die folgende Bedingung erfiillt:

(B) Zu jedem NeV gibt es ein Me Py und ein o, so dass r(A*M)co-(4)-N fiir

alle A aus dem Definitionsbereich [ —¢, ¢] von o.

Die Menge R(Uc<E,, F,.) der Restglieder von Uc E, nach F,. ist nicht leer,
denn wie man leicht nachpriift, enthilt sie die Nullabbildung.

Lemma 3.1.3. Fiir die Abbildung r:UcE, —— F,.,, % (U) und YeZ (F)
sei die Bedingung (B) erfiillt. Gelten fiir '€ % (U) und Y e% (F) die Beziehungen
®<P" und V' <Y, so ist fiir r, &' und ¥’ die Bedingung (B) giiltig.

Beweis: Fiir jedes Ne ¥’ ist Ne¥. Daraus folgt: Zu jedem Ne¥’ existieren ein
Me @ und ein o derart, dass r(A:- M)co(A)- N fiir alle A aus dem Definitionsbereich
[ —¢&, £] von 0. Weil jedes Me & auch in @’ enthalten ist, resultiert die Behauptung.
Damit ergibt sich leicht:

Lemma 3.1.4. Seien A, Ae #F und A', A'e #F. Wenn A<A und A'<A’, dann
folgt aus re R(U<E,, F,.), dass re R(UcEjz,Fy.).

Bemerkung 3.1.5. Fiir jedes re R(U<E,, F,.) folgt r(0)=0. Das ergibt sich direkt
aus der Giiltigkeit der Bedingung (B) fiir ein Tripel r, ®€ A(0), ¥'e A'(0).

Also konnen wir uns wegen der Lemmas (3.1.3.) und (2.1.2) in der Definition
(3.1.2.) fortan ¥ <r(®,) und sogar von der Form ¥ =¥ A &p-¥ denken.

Wir definieren zu einem Restgliedre R(U< E,,, F,;.) die Abbildung r': E,— F
durch ()= r(x) fir xeU
"WX)=) beliebig fiir  x¢ U.

Lemma 3.1.6. r’ ist ein Restglied.

Beweis: Aus Lemma (1.2.4.) folgt die Stetigkeit von r’ an der Stelle 0e E,. Weil
®e A(0) von der Filterbasis @, auf E erzeugt wird, folgt aus der Giiltigkeit der
Bedingung (B) fiir r=r'|U, &, und ¥ € A'(0), dass auch fiir r’, & und ¥ die Bedingung
(B) erfiillt ist.

Die Menge der Restglieder r: E, —— F,. sei mit R(E , F,.) bezeichnet.
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Lemma 3.1.7. Seien reR(E,, F,.) und UcE, eine den Nullvektor enthaltende
A-offene Menge. Dann ist r|U ein Restglied.

Beweis: r|U ist an der Stelle Oc E,; stetig. Zu jedem ®e A(0) existiert ein ¥ e A’(0)
mit: Zu jedem Ne Y gibt es ein Me ® und ein o, so dass r(A-M)ca(A)-N fiir alle
A aus dem Definitionsbereich [ —¢, €] von ¢. Nach Lemma (3.1.1.) kénnen zu U
ein M'e &, und ein & >0 gefunden werden, so dass A- M c U fiir alle Ae[ —¢', ¢].
Wir setzen M"=M'nM. Also finden wir zu jedem NeVW ein M"e®;, mit
r(A*M")ca(2)- N, sobald || <Min(e, ).

Die beiden letzten Lemmas besagen zusammen:

Satz 3.1.8. Sei Uc E, eine A-offene Menge, welche den Nullvektor enthdlt. Eine
Abbildung r. E, —— F,. ist genau dann ein Restglied, wenn r| U ein Restglied ist.

Wir beschrinken uns also im folgenden auf Restglieder, welche auf ganz E definiert
sind.

3.2. RESTGLIEDER ZWISCHEN SPEZIELLEN LIMITIERTEN VEKTORRAUMEN

(a.) Seien A eine zuldssige Limitierung fiir E, A’ eine zulédssige Topologie fiir F
und r: E, — F,. ein Restglied.

Wegen Lemma (3.1.3.) ist die Bedingung (B) fiir r, jedes € A(0) und den Null-
umgebungsfilter ¥ °e A’ (0) erfiillt.

Gilt umgekehrt (B) fiir eine an der Stelle Oe E , stetige Abbildungr: £, —> F,,,
jedes @€ A(0) und ¥, so ist r ein Restglied.

(b.) Sei A wieder eine zuldssige Limitierung fiir £ und F,. ein normierter Vektor-
raum, wobei y "——— ||y|| die Norm in F ist.

Die Definition eines Restgliedes kann hier wie folgt gefasst werden:

Eine an der Stelle Oc E, stetige Abbildung r: E, ———— F,. heisst ein Restglied,
wenn in jedem @€ A(0) ein M existiert, so dass lim,_, o r(4-x)/A=0 gleichméssig in M.

Wir haben (B) fiir , jedes @€ A(0) und den Nullumgebungsfilter ¥ °e A’(0) nach-
zuweisen. Dabei kann ¥° durch die Filterbasis, bestehend aus dem Mengensystem
{K,={y| Iyl <o}|e>0}, ersetzt werden.

Seien #eA(0) und Me®. Es bedeutet lim,_,, r(A-x)/A=0 gleichmissig in M:
Zu jedem K, existiert ein ¢>0, so dass r(4-x)/AeK, fiir alle xe M und 0 < |/1| <e. Sei
also K, beliebig. Wir denken uns ¢<1. Nun definieren wir ¢'(1)=Sup, ., r(4-x) fir
Ae[ —e, €]. Dann gilt o’ (1) < ¢ fiir alle e[ —e¢, ¢]. Damit resultiert r(A- M)<c o’ (1) Ky
fiir Ae[ —¢, ¢]. Setzen wir noch ¢(1)=1/g-0’(A), ergibt sich r(1-M)co(4)-K, fiir
jedes Ae[ —¢, g]-

Umgekehrt sei r ein Restglied. Weiter seien $eA(0) und K,e¥° vorgegeben.
Dann existieren ein Me @ und ein o, so dass r(A-M)ca()-K, fiir alle Ae[ —¢, €].
Fiir ein gewisses &' >0 und 0 <|4|<¢’ gilt |¢(1)/4| <1. Also hat man r(-x)/Aea(2)/A:
-K,=K, oder ||r(A-x)/A] <g fiir alle xe M, sobald 0 <|4| <Min (g, £).
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(c.) Nun seien E ein topologischer und F,. ein beliebig limitierter Vektorraum.

Ohne Miihe weist man nach:

Eine an der Stelle Oe E; stetige Abbildung r: E, ———— F,. ist genau dann ein
Restglied, wenn ein ¥e A'(0) existiert, so dass die Bedingung (B) fiir r, den Null-
umgebungsfilter #° in E, und ¥ erfiillt ist.

(d.) Seien E 4 ein normierter, F. ein limitierter Vektorraumund r: E, ——— F,,
ein Restglied. Den Nullumgebungsfilter in E, bezeichnen wir mit ¢°.

Dann gibt es einen Filter Y€ A'(0) (s. Bemerkung (3.1.5.)), so dass zu jedem
Nu[—¢¢e]"N aus ¥ ein K,e®® und ein o existieren, mit der Eigenschaft, dass
r(A-K,)ca(2)-(Nu[ —e, e] N)fiir alle A aus dem Definitionsbereich [ —¢’, ¢'] von o.
Fiir den Rest dieses Abschnitts (d.) sei 4 stets positiv. Nun setzen wir K, =41-K,
und driicken jedes x’€eK,. durch ein xeK, mit ||x||=¢ in der Form x'=A4-x aus.
Dann folgt r(x)/|x"llea(|x’l/@)/ x| (N U [ —¢&, €] N), falls 0 < || x'|| <¢’. Wir denken
uns ¢ noch so klein, dass o (|x'[|/g)/[|x'|| <Min (g, 1). Damit resultiert r(x")/||x'| €
eNU[ —¢, €] N, weshalb wir lim,._,, r(x")/||x"|| =0 folgern kénnen.

(e.) Seien E, und F,. topologische Vektorrdume mit den Nullumgebungsfiltern
@° bezw. ¥°.

Aus (a.) und (c.) folgt:

Eine Abbildung r:E, ——— F,. ist genau dann ein Restglied, wenn fiir r, ®°
und ¥ ° die Bedingung (B) giiltig ist.

Das ist aber gerade die Definition eines Restgliedes, die S. LANG in [6] gibt.

(f.) Sind E, und F, lokalkonvexe Vektorrdume, fallen unsere Restglieder wegen
(e.) mit den F-Restgliedern in [4] zusammen.

(g.) Seien {(E,, T,)},c; und {(F,, T,)}, ., Familien topologischer Vektorrdume;
(E,ind,¢; T,) und (F,ind, ., T,) seien bezw. ihre induktiven Limites. Die Null-
umgebungsfilter in (E,, T,) und (F,., T,) bezeichnen wir mit ¢ und &,.

Lemma 3.2.9. Eine Abbildung r von (E, ind,.; T,) nach (F, ind, T,) ist genau
dann ein Restglied, wenn zu jedem o' €] ein U,e ®° und ein o' el’ existieren, so dass

(1) r(U,)<F,

() r|U,:(U,, Tpy,) ——> (F,,, T,) ein Restglied ist.

Beweis: Sei r ein Restglied. Aus den Bemerkungen (2.3.23.) und (3.1.5.) folgt:
Zu jedem ael existiert ein o’el’ derart, dass es zu jedem V,.€ #2 ein U’e ® und ein
o gibt, mit der Eigenschaft, dass r(4-U,)<=a(4)'V,. fiir alle A aus dem Definitions-
bereich [ —¢, ¢] von 0. Wir kénnen U, und V. als kreisformig (s. [5], p. 149) annehmen.
Es ldsst sich ein ¢ mit 0<e¢’ <1 finden, so dass fiir Ae[ —¢, &'] gilt (1) V,.cV,..
Ersetzt man fiir ein festes Ae[—¢’, ¢'] die Menge A-U, durch U,, resultiert (1.).
Aus (e.) ergibt sich (B) fiir r|U,, die Spur von &} auf U, und ®,. Die Umkehrung
folgert man leicht aus Bemerkung (2.3.23.) und den Lemmas (1.2.4.) und (3.1.6.).
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3.3. BEISPIELE EINES RESTGLIEDES

(1.) Seien E, und F,. limitierte Vektorriume. Wir setzen y/° A als separiert voraus.
Zu einer n-linearen Abbildung u:(ExXEx--XE, AXxAX-+xA) ——> F,, defi-
nieren wir die Abbildung a:E, F,
durch x "— u(x, x, ..., x) fiir xe E,. Nun sei n>2 und u symmetrisch und stetig
(s. Satz (2.2.22.)). Dann ist # ein nicht identisch verschwindendes Restglied. Fiir
e A(0) existiert nimlich zu jedem Neu(®) ein Me &, so dass u(M)<N. Also ergibt
sich u(A-M)=2"-u(M)cA"- N fiir alle 1eR.

3.4. WEITERE EIGENSCHAFTEN DER RESTGLIEDER

Seien £ und F Vektorrdume. Fiir Abbildungen g,f:E ——— F und
h:E F ———> R definieren wir:
(A) g+ffE————F durch (g+f) (x)=g(x)+f(x)
(B) hfiE———F durch (h-f)(x)=h(x)-f(x)
(C) 1 f:E——F durch (tf)(x)=7f(x) fir zeR.

Lemma 3.4.10. R(E,, F,.) ist ein Vektorraum (bez. der Operationen unter (A.)
und (C.)).

Beweis: Seienr, r,e R(E,, F,) und 7eR fest.

Erst soll (r, +r,)e R(E4, F,) nachgewiesen werden. Nach der Definition eines
Restgliedes existieren fiir i=1, 2 zu jedem &€ A(0) gewisse ¥, A’'(0), so dass r;, ®
und ¥; der Bedingung (B) geniigen. Die Filter ¥, und ¥, konnen wir uns noch so
beschaffen denken, dass fiir ¥ =¥, A ¥, gilt Y=Y A PRV <r,(P), wobei i=1,2
(s. Bemerkung (3.1.5.)). Daraus folgt ¥ +¥ <r(®)+r,(®)<(ry+7r,) (P). Also ist
r,+r, an der Stelle O E , stetig. Ein Element Ne ¥ + ¥ umfasst ein Element der Form
N +N' mit N'eV. Seii=1,2. Zu N'e ¥ gibt es Mengen M, € ® und reelle Funk-
tionen o;, definiert auf [ —¢;, ¢;], wobei ¢;>0, so dass r,(1-M)co,;(1)-N' fiir alle
Ae[ —¢,, &;] folgt. Wir setzen e=Min (g, ¢,) und M= M, n M,. Dann resultiert

(*) (ri+r)) (A-M)cr (A-M)+ry(A-M)co,(4) N'+0,(4)N'.

Die Menge N'e¥ kann noch von der Form N"u[—¢,¢]-N” mit N'e¥ und
0<é¢' <1 angenommen werden. Fiir u, p’'eR mit u/u’[<8' stellt man dann u/p’-
‘(N"u[-¢,e]"N")eN"u[-¢,&] N" oder also uN'cu’' N’ fest. Wir definieren

fiir de[ e, e]: . (o,(A)fe’  falls  |o,(2)|=]o,(2)|
lo.(N)fe  falls  |oy(2)| 2|0y (D).

Es ist lim;_ o 6(4)/A=0 und |¢’ 6(4)|>Max (¢, (1), 5,(4)). Daraus folgert man
d(4)'N'o0.(1)'N',0,(1)'N'".

o(A)=
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Damit leitet man nun aus (*)

(ri+r2) (A-M)co(2)-N'+0(4) N’
oder

(ry+ry) (A M)<a(2)-(N'+N)
also endlich

(ri+ry)) (A M)ca(A) N

fiir alle Ae[ —¢, ¢] her. Demnach ist also fiir r, +r,, ®€ A(0) und ¥ e A’'(0) die Be-
dingung (B) giiltig.

Aus reR(E,, F,.) und t€R soll noch t-reR(E,, F,.) gefolgert werden. An der
Stelle 0e E ; ist t-r stetig. Sei fiir r, € A(0) und ¥ e A’'(0) die Bedingung (B) erfiillt.
Also finden wir zu einem Ne ¥ ein Me & und ein o, so dass r(A- M)cag (L) N oder
(t:r) (A-M)<a(4):(x-N),sobald Ae[ —¢, £]. Da das Mengensystem {t- N|Ne ¥} eine
Filterbasis von t-¥ ist, folgt (B) fiir t-r, @ und z-V.

Miihelos verifiziert man als letztes die Axiome eines Vektorraumes fiir R(E ,, F,.).

Lemma 3.4.11. (i) R(E,, R) ist ein Ring (bez. der Operationen unter (A.) und
(B.)) und R(E, F,.) ist ein Modul tiber R(E,, R). (ii) Fir /e £(E,;R) und re R(E,,
F,)ist{-reR(E,, F,.). (ili)) Ausre R(E,,R)und ¢e £(E,; F,.) folgt r- L€ R(E 4, F ).

Beweis: (i): Wir weisen nur r'-reR(E,, F,.) fir reR(E,, F4.) und r'e R(E,, R)
nach. Die natiirliche Topologie auf R bezeichnen wir mit T,. Die Abbildung ' r ist
an der Stelle 0eE, stetig. Die Bedingung (B) sei erfiillt fiir die Tripel r, € A(0),
YeA'(0) und r', de A(0), XeTy(0). D.h. zu Ne¥ und PeX gibt es ein M und reelle
Funktionen ¢, und g,, mit r(1-M)<a,(A)'N und r'(A- M)co,(4)-P fiir alle A aus
dem Durchschnitt der Definitionsbereiche [ —¢, €] von ¢, und ¢,. Daraus ergibt sich
dann

(r-r)(AM)cr'(AM)-r(A-M)<o,(A) 6,(A)-P-N

fiir alle e[ —¢, £]. Weil das Mengensystem {P-N|Ne¥, Pe X} eine Filterbasis von
X-ye A'(0) ist, gilt (B) fiir r'-r, #e A(0) und X-¥e A'(0).

(i)) Auch hier zeigen wir nur ¢-re R(E,, F,.) falls re R(E,, F,.) und /e Z(E; R).
An der Stelle OcE, ist die Abbildung ¢-r stetig. Sei (B) fiir r, #€ A(0) und Y 4'(0)
richtig. Wir zeigen die Giiltigkeit der Bedingung (B) fiir £-r, #e A(0) und ¢(P)-¥Pe
€A’(0). Zueinem Ne ¥ existiert ein Me &, so dass mit einem gewissen g: [ —¢, e] >R
fiir alle e[ —e, e] folgt r(A-M)cg(A)-N. Daraus entnimmt man (¢:r) (A-M)c
<t(A-M)-r(A-M)co(A):-¢(M)-N. Die Behauptung resultiert nun unmittelbar aus
der Tatsache, dass das Mengensystem {#(M)-N|Ne¥, Me®} eine Filterbasis von
() ist.

(iii): Analog wie die Aussage unter (ii) beweist man diese Behauptung.

Lemma 3.4.12. Aus reR(E,, F,/) und £€ £ (F,.; G4-) folgt £ore R(E,, Fy.)-
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Beweis: An der Stelle O E,, ist /r stetig. Aus der Beziehung (B) fiir r, e A(0)
und Y€ A’ (0) leitet man leicht (B) fiir /°r, e A(0) und £(¥)e A’(0) her.

Lemma 3.4.13. Fiir /e ¥(E,; F,.) und reR(F,., G,.) ist ro/e R(E4, G 4-).

Beweis: Die Abbildungreo/istan der Stelle 0e E , stetig. Weiter folgert man miihe-
los (B) fiir re¢, @€ A(0) und Xe A”(0) aus der Giiltigkeit der Bedingung (B) fiir 7,
£(®)e A’'(0) und Xe A"(0).

Ist speziell E=R und wird fiir ein festes y,e F,. die lineare Abbildung¢:R———F,.
durch A "—— A-y, definiert, ergibt sich re/eR(R, G,.). Dann ist
lim;_q re£(A)/A=0, d.h. lim,_ 4 r(1+y,)/A=0 (s. (d) in (3.2.)). Daraus entnehmen wir

Lemma 3.4.14. R(FAI, GAu)('\g(FA'; GA")={0}

Lemma 3.4.15. Aus r,eR(E,, F,.), (e ¥(E,; F,-) und r,eR(F,., G4.) resultiert
ryo(£+r)eR(E,, Gyn).

Beweis: Die Abbildung r,°(¢+r,) ist an der Stelle Oe E, stetig. Fiir r;, #€ A(0)
und ein gewisses ¥ € A’(0) sei (B) erfiillt. Anderseits wissen wir von der Giiltigkeit der
Bedingung (B) fiir r,, £/(®)+¥e A'(0) und ein bestimmtes Xe A”(0). Wir leiten nun
(B) fiir das Tripel r,°(£+r,;), ?eA(0) und Ye A"(0) her. Zu PeX existieren ein
£(M)+Ne/(P)+Y und ein o,, so dass r,(A-(/(M)+N))co,(A) P oder
(**) ry(A¢(M)+A-N)co,(4)-P
fiir alle A aus dem Definitionsbereich [ —¢, ¢] von ¢,. Die Menge Ne ¥ konnen wir
vonder Form Nu[—¢', ¢'] N, mit 0<¢'<1, denken. Es ldsst sich ein ¢’ mit 0<e”<¢’
finden, so dass |o,(4)/4|<¢” fiir alle Ae[—¢”, ¢"]. Daher gilt fiir ein gewisses M'e ®
und fiir alle Ae[ —¢”, ¢"] die Beziehung r{(1-M')=0,(A): N=A-N. Also folgern wir

aus (**), dass
rz(/l‘f(M)+r1(l‘M')CO'2(l)'P

fiir alle AeR mit |A| <Min (¢, £”)=¢". Setzen wir noch M"=Mn M’, so ergibt sich
re(f+ry)(A-M)co,(A)-P

fiir alle Ae[—¢”, &”].

4. Differenzierbarkeit in limitierten Vektorrdumen

4.1. DEFINITION UND EINDEUTIGKEIT DER ABLEITUNG

Die in diesem Kapitel auftretenden Rdume E,, F,. und G,. seien limitierte
separierte Vektorrdume.

Definition 4.1.1. Sei Uc E, eine A-offene Menge.
Eine Abbildung f: U ———— F,. heisst differenzierbar an der Stelle xeU, falls
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ein /e £ (E,; F,.) und ein reR(E,, F,.) existieren, so dass

f(x+h)—f(x)=¢h+r(h)
identisch in U—x gilt.
Df (x):=¢ heisst die Ableitung von f an der Stelle xe U.

Wenn f in allen Punkten einer Teilmenge M < U differenzierbar ist, heisst f
differenzierbar in M.

Wenn f in ganz U differenzierbar ist, heisst f differenzierbar.

Satz 4.1.2. Seien Uc E, A-offen und . U
zierbar. Dann ist Df (x) eindeutig bestimmt.

F,. an der Stelle xe U differen-

Beweis: Wire Df (x) nicht eindeutig bestimmt, géibe es Restglieder r, r'e R(E,,, F.)
und zwei verschiedene Elemente ¢, /'€ £(E,; F,.), so dass

f(x+h)—f(x)=¢h+r(h) und
f(x+h)—f(x)=¢"h+r (h)

identisch in U—x erfiillt sind. Also gilt (¢'—¢)|(U—x)=(r—r')|(U-x). Das Rest-
glied (r—r')|(U—x) kann aber zu (¢’ —¢) #0 erweitert werden. Wegen Lemma (3.1.6.)
folgt (/' —¢)eR(E,, F,.), was aber Lemma (3.4.14.) widerspricht.

4.2. LOKALITAT DER ABLEITUNG

Die Abbildung f: E, ————— F,. sei an der Stelle xe E, differenzierbar und habe
die Ableitung Df (x). Fiir eine A-offene Menge U < E,, welche den Vektor x enthilt,
ist f |U wegen Satz (3.1.8.) an der Stelle x differenzierbar und hat dort ebenfalls die
Ableitung Df (x). Umgekehrt habe g: U ———— F,. an der Stelle xe U die Ableitung
Dg(x). Aus Satz (3.1.8.) und der Definition der Ableitung an der Stelle xe U folgt, dass
g:E, ————— F,, definiert durch

(g(x) fir xeU

& (x)=2 beliebig fir x¢ U,

an der Stelle xe E, die Ableitung Dg(x) besitzt.

Mit D,(U<E,, F,.) bezeichnen wir die an der Stelle xe U differenzierbaren Ab-
bildungen von U< E nach F,.. Sei D,(E,, F4) die Menge der an der Stelle xe E,
differenzierbaren Abbildungen von E, nach F,..

Die obigen Uberlegungen zeigen: feD,(E,, F,.) gilt genau dann, wenn f |Ue
EDx(UcEA’ FA’)'

4.3. BEISPIELE

1.) JedesreR(E,, F,.)isteine an der Stelle 0 E, differenzierbare Abbildung mit
Dr(0)=0.
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2.) Eine konstante Abbildung c: E, ———— F,. hat an jeder Stelle xe E, die
Ableitung Dc(x)=0.

3.) Fiir jedes /e #(E,; F,.) und jedes xe E, gilt D/ (x)=/.

4.) Seiu:(EXEx-+xE, AXAX:-- x A) ——— F,. eine n-lineare (n > 2) stetige
Abbildung. Sei i,:E, —— F,. definiert durch #&;(h)=u(x, x, ..., h,..., x) mit h
an der i-ten Stelle fiir ein festes xe E .. In (3.3.) wurde # definiert. Man stellt nun leicht
fest, dass # an jeder Stelle xe E, differenzierbar ist und dort die Ableitung Du(x)=
=YiZ1 @ hat.

Weitere Beispiele konnen mit Hilfe des folgenden Satzes konstruiert werden.

Satz 4.3.3. (i) D,(E,, R) ist ein Ring (fiir die gewohnliche Addition und Multi-

plikation reeller Funktionen s. (3.4.)). (ii) D,(E,, F,.) ist ein Modul iiber dem Ring
D.(E,, R). (iii) Fiir seD.(E4, R) und f, ge D,(E,, F,.) hat man

D(f+g)(x)=Df(x)+Dg(x) und
D(s-f)h  =(Ds(x)h)-f(x)+s(x)-Df (x)h.
Beweis: Wir beweisen nur die letzte Behauptung.
Es gilt identisch in A:
f(x+h)=f(x)+Df (x)h+r.(h)
g(x+h)=g(x)+Dg(x)h+ry(h) und
s(x+h)=s(x)+Ds (x)h+r (h).
Daraus resultiert

(f+8) (x+h)=(f+g) (x)+Df (x)h+Dg(x)h+re(h)+ry(h)
s(x+h)-f (x+h)=(s(x)+Ds(x)h+r, () - (f(x)+Df (x)h+r;(h))

s(x+h)-f(x+h)=s(x)-f (x)+(Ds(x)h)-f (x)+s(x)-Df (x)h +
+(Ds(x)h)(Df (x)h) +r,(h)-Df (x) h +
+(Ds(x)h)rp(h)+s(x)r(h)+r,(h)-f (x)+
+rs(h).rf(h)‘

Man stellt leicht fest, dass r (h)-f(x) ein Restglied ist. Die Behauptung (iii) folgert

man nun aus den Lemmas (3.4.10.) und (3.4.11.).

und

oder

4.4. KETTENREGEL UND MITTELWERTSATZ

Satz 4.4.4. Wenn feD,(E,, F,.) und geD;(,(F4., G4»), dannist g°feD,(E,, G4-)
und hat an der Stelle xe E, die Ableitung Dg( f(x))°Df (x).

Beweis: Fiir jedes he E, gilt

g(f(x+m)=g(f(x)+Df (x)h+r,(h))=
=g°f (x)+Dg(f () (Df () h+r,(h)) +r (Df (x)+r,(h))=g°f(x)+
+Dg(f(x))°Df (x)h+Dg(f (x))or,(h)+r,(Df (x)+r,) ().
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Die Behauptung erhalten wir nun aus den Lemmas (3.4.12.), (3.4.15.) und (3.4.10.).

Seien ¢, ,:R ——— E, durch ¢, (1)=x, und i:R——— E, durch i(7)=
=1(xy —Xo) fiir feste x,, x;€E, definiert. Aus g:=c, +i folgt Dg(4)=i fiir jedes
AeR.

Es bedeuten (0,1) das offene und [0,1] das abgeschlossene Intervall der reellen
Zahlen zwischen 0 und 1.

Die Abbildung f: E, —— F,. sei in g([0,1]) stetig und in g((0,1)) differenzier-
bar. Fiir /e £ (F,;R) ergibt sich, dass h:=/cfog stetig in [0,1] und differenzierbar in
(0,1) ist. Mit einem festen AgeR gilt Dh(4y)=¢°Df(g(4))°i oder Dh(iy)r=
=¢°Df (g(40))t(x; —x,) identisch in R. Fiir 4 sind die Voraussetzungen fiir den
Mittelwertsatz erfiillt und deshalb resultiert

h(1)—h(0)=Dh(9)1

fiir ein gewisses 3€(0, 1), das allerdings von ¢ abhidngt. Wir setzen g(3)=x(9). Da
h(D)=¢(f(x,)) und h(0)=¢( f(x,)) ist, folgt dann

¢(f (x1) =S (x0))=¢°Df (x(9)) (x4 —Xo)-

Damit wissen wir:

Satz 4.4.5. Sind x4, x,€E, feste Vektoren und ist f-E, ———> F,. stetig in
{xo+1(x; —x0)|0 <t <1} und differenzierbar in {xo+1(x, — xo)|0<t<1}, dann gilt fiir
¢e % (F4;R) und ein gewisses x(9)e{xo+1(x; —x0)[0<t<1}

£(f (x1) =S (x0))=¢°Df (x(8)) (x; — xo).

Fiir das weitere setzen wir Y°A’ separiert voraus. Mit Hilfe von Satz (2.2.15.)
zeigt man dann leicht:

Lemma 4.4.6. Seien x,, x,€E,. Eine in {x,+1(x; —x,)[0<t<1} stetige und in
{xo+71(xy—x0)|0<t<1} differenzierbare Abbildung f:E, —— F,, der Ab-
leitung Df (x)=0 an jeder Stelle xe&{xo+1(x; —x,)[0<t<1} ist auf {xo+1(x; —Xo)|
|0<t<1} konstant.

Sei Uc E, eine A-offene, beziiglich xye U sternférmig konvexe Menge. Die Ab-
bildung f: E, ——— F,. sei differenzierbar in U und habe an jeder Stelle xe U die
Ableitung 0. Da mit xe U auch x,+1(x—x,) fiir alle 0<t<1 in U liegt, folgt aus
dem Lemma (4.4.6.), dass f auf U konstant ist. Umgekehrt hat jede auf U konstante

Abbildung ¢: E, ———— F,. an jeder Stelle in U die Ableitung 0. Zusammengefasst
heisst das:

Satz 4.4.7. Sei UcE, eine A-offene, sternformig konvexe Menge. Eine in U
differenzierbare Abbildung f:E, ——> F,. ist genau dann konstant auf U, wenn’
Df (x)=0 fiir jedes xeU.
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