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Vollstândige konforme Metriken und isolierte

Singularitâten subharmonischer Funktionen

von Alfred Huber, Zurich

1. Einleitung

Im Rahmen von Untersuchungen zum Cohn-Vossenschen Problemkreis wurde R.
Finn [2, 3] dazu gef iihrt, die Gultigkeit eines gewissen Darstellungssatzes f iir
vollstândige konforme Metriken (Satz 1 der vorliegenden Arbeit) zu vermuten. Es gelang
ihm, die in Frage stehende Darstellung nach Einfiihrung einer zusâtzlichen Voraus-

setzung (siehe Bemerkung 3 zu Satz 1) zu beweisen und damit den Zugang zu bedeut-

samen geometrischen Resultaten zu finden.
Das wichtigste Ziel dièses Artikels ist ein Beweis der vollen Finnschen Vermutung.

Als Konsequenzen ergeben sich daraus neue Kriterien fur die Hebbarkeit isolierter
Singularitâten subharmonischer und 5-subharmonischer Funktionen.

Auf geometrische Folgerungen gehen wir in der vorliegenden Arbeit nicht ein. Wir
begniigen uns mit dem Hinweis, dass mit Satz 1 die von Finn auf Grund der Darstellung

(1) hergeleiteten geometrischen Sâtze wegen des Wegfallens der zusâtzlichen
Annahme einen wesentlich erweiterten Giiltigkeitsbereich erhalten.

Définition. Unter einem in den Punkt z0 fuhrenden Weg in der komplexen Ebene

verstehen wir eine stetige - im Falle z0 oo auf der Riemannschen Kugel stetige -
Kurve y mit folgenden Eigenschaften:

(1) y verbindet z0 mit einem Punkt zt^z0;
(2) jeder z0 nicht enthaltende abgeschlossene Teilbogen von y ist rektiflzierbar.

Satz 1. Sei u(z) eine reellwertige Funktion, definiert und zweimal stetig dijferenzier-
bar im Gebiet Q {z\ R<\z\<co}, R>0, mit folgenden Eigenschaften:

(a) \Au\ dx dy <oo;

(b) Lu(z)\dz\=oo

y

fur jeden ins Unendliche fuhrenden Weg y. Dann gilt
1 f f z

u(z) — I I log 1 — A u (Q d£ drj
2*JJ C

(1)

+ c log \z\ + h(z) (C £ + i*\),
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wobei c eine Konstante und h eine in Q und im Unendlichen harmonische Funktion be-

zeichnen.

Bemerkungen

1. Die Eigenschaft (b) der Metrik eu(z)\dz\ kônnte man ,,Vollstândigkeit im
Unendlichen" nennen. Die Enden einer genûgend regulâren, vollstândigenx), orientier-
baren offenen Flâche mit summierbarer Gausscher Kriimmung kônnen durch kon-
forme Metriken dargestellt werden, welche die Voraussetzungen von Satz 1 erfullen.

2. Es ist sofort klar, dass sich die Funktion u vom ersten Summanden auf der
rechten Seite von (1) um eine harmonische Funktion unterscheidet; dies ist sogar
richtig, wenn die Voraussetzung (b) gestrichen wird. Die wesentliche Aussage des

Satzes besteht darin, dass bei Giiltigkeit von (b) dièse Differenzfunktion im Unendlichen

entweder logarithmisch singulâr oder harmonisch sein muss.
3. R. Finn [3] hat die Darstellung (1) bewiesen unter der zusâtzlichen Annahme,

dass die Menge {z\ Au(z)< 0} beschrânkt sei. Es gelang ihm dies mit Hilfe einer kurzen
indirekten Schlussweise, die sich jedoch einer Erweiterung auf den allgemeinen Fall
zu entziehen scheint. Unsere Méthode besteht in einer direkten Konstruktion der

gesuchten Darstellung.

Korollar. Sei u(z) eine reellwertige Funktion, definiert und zweimal stetig differen-
zierbar in der endlichen Ebene. Ist A u summierbar und erfMit u die Bedingung (b) von

Satz 1, so gilt die Darstellung

«(*)= 2«
log

Ç-Ebene

wobei c eine Konstante bezeichnet.

(2)

Bemerkung. Die Voraussetzungen dièses Korollars erfullen diejenigen konformen
Metriken ett(z)\dz\9 welche vollstândige Flâchen mit summierbarer Gaussscher Kriimmung

vom topologischen Typ der Ebene darstellen.

Beweis des korollars. Wir wâhlen ein R>0 und machen Gebrauch von der

Darstellung (1) der Funktion u im Gebiet Q {z\R<\z\<oo}. Die Funktion

— — II log

Ç-Ebene

Au

log
c

im Sinne von H. Hopf und W. Rinow [6].
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ist harmonisch in der endlichen z-Ebene. Im Unendlichen ist sie entweder logarith-
misch singulâr oder harmonisch. Also ist sie eine Konstante. Q.E.D.

Wir werden mit Satz 2 eine Aussage beweisen, die etwas allgemeiner ist als Satz 1.

An Stelle der Existenz und Stetigkeit aller Ableitungen von u bis und mit der zweiten

Ordnung fordern wir nur, dass u <5-subharmonisch sei. Man versteht darunter, dass

die Funktion u in der Umgebung eines jeden Punktes ihres Definitionsgebietes als

Differenz subharmonischer Funktionen darstellbar sein soll. Der Laplaceoperator ist
dann im Sinne der Théorie der Distributionen zu verstehen: Au ist ein Radonsches

Mass, von welchem - in Verallgemeinerung von Bedingung (a) in Satz 1 - vorausge-
setzt wird, dass seine totale Variation endlich sei.

Dièse Allgemeinheit hat zunâchst den Vorteil, dass durch die zugelassenen Metriken

eine grosse Klasse von Flâchen erfassbar wird, nâmlich - nach einem Résultat von
I. G. Reschetnjàk [10] - die Klasse der Mannigfaltigkeiten von beschrânkter Krixm-

mung im Sinne von A. D. Alexandrow. Vor allem aber wird durch sie der potential-
theoretische Aspekt der bewiesenen Darstellung erst richtig beleuchtet. Dies zeigen

die folgenden Sâtze, deren Beweis - mit wesentlicher Anwendung von Satz 2 - im
letzten Abschnitt erfolgt:

Satz 3. Sei u(z) à-subharmonisch im Gebiete G {z 10 < \z\ < R}9 R>0. Dafûr, dass

u auch in der Umgebung von 0 Ô-subharmonisch ist, sindfolgende Bedingungen notwendig
und hinreichend:

(a) die totale Variation des Masses Au ist endlich in der Umgebung von 0;
(b) es existiert eine réelle Zahl a mit der Eigenschaft, dass

j\z\'eu(z)\dz\ 00

ftir jeden in den Punkt Ofuhrenden Weg y.

Bemerkungen

1. Die eine Hâlfte von Satz 3, nâmlich die Hinlânglichkeit der Bedingungen (a)

und (b), ist im wesentlichen die Aussage von Satz 2, transformiert durch Inversion von
einer Umgebung von oo auf eine Umgebung von 0.

2) Dass u sich in einer Umgebung von 0 als Differenz subharmonischer Funktionen,

u(z)=ux(z)-u2(z)9 darstellen lâsst, bedeutet nicht, dass der Wert w(0) definiert
ist. Es kann vorkommen, dass fur jede solche Darstellung von u der Ursprung zur
Menge {z|m1(z)=m2(z)= -oo} gehôrt. Auf dieser bleibt u undefiniert.

Satz 4. Sei u(z) superharmonisch im Gebiet G {z\0<\z\<R}, R>0. Dafiir, dass

u als superharmonische Funktion in den Punkt 0 hinein fortgesetzt werden kann, sind

folgende Bedingungen notwendig und hinreichend:
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(a) die totale Variation des Masses A u ist endlich in der Umgebung von 0;
(b) es ist

V(2)

furjeden in den Punkt Ofùhrenden Weg y.
Die Resultate dieser Arbeit sind in einer in den Comptes Rendus publizierten Note

[9] angekiindigt worden.

2. Einige Hilfssâtze

In diesem Abschnitt betrachten wir eine Funktion v der Form

v(z) k\og\z\+q(z). (3)

Dabei bezeichnet k eine natûrliche Zahl. Die Funktion q besitze folgende Eigenschaf-
ten: (a) q sei definiert und superharmonisch in C endliche komplexe Ebene); (b)

q sei harmonisch in einer Umgebung von 0; (c) die totale Variation a der q zugeord-
neten Massenbelegung fi sei kleiner als \. Ferner setzen wir die Vollstândigkeit der
durch das Linienelement ev{z)\dz\ erzeugten Metrik voraus, d.h. es soll gelten

fur jeden ins Unendliche fiïhrenden Weg y.
Fur irgend zwei Punkte zt und z2 in C definieren wir

q{zuz2)= inf fe"w|dz|,
yeA(zi,z2) J

(4)

wobei A(z1,z2) die Menge aller rektifizierbaren Verbindungskurven von zt und z2

bezeichnet. Fur zwei beliebige Mengen A und B in C bedeute

9B)= mfQ(zuz2). (5)

"Die Funktion q ist in bekannter Weise darstellbar als Limes regularisierter Funk-
tionen qn=0Ln*q{n=l, 2, 3,...), wobei etwa

0 fur |z|£-,
n

fur |z|<-,
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mit

Die Funktionen qn sind definiert, unendlich oft differenzierbar und superharmonisch
in C, und qn\q fiir n-+co. Es ist

MB an*/i (n l,2,3, (7)

wobei \in die qn zugeordnete Massenbelegung (mit der Dichtefunktion —Âqjln) be-
zeichnet (siehe [11], Bd. II, p. 16). Die totale Variation von \in stimmt ûberein mit der
totalen Variation a von ju (« 1, 2, 3,...).

Wir definieren vn(z) k log \z\+qn(z) und bezeichnen mit Qn(zu z2) (fur
zi9 z2eC) und Qn(A, B) (fiir A9 BczC) die - entsprechend (4) und (5) - durch das

Linienelement eVn(z)\dz\ erzeugten Abstandsfunktionen.

Lemma 1. Sei {Qn} eine monotone, C ausschôpfende Gebietsfolge. Dann gilt

Qn(0,rn)-^oo fur n-»oo, (8)

wobei Fn den Rand von Qn bezeichnet (/i l, 2, 3,

Beweis. Wir definieren

Xn lim inf Qn (0, rm) (n 1, 2, 3, (9)
m-*ao

und beweisen vorerst : Entweder gilt Awfoo fiir «foo oder es ist An= oo fiir aile geniigend
grossen Indizes n2). Da - zufolge der Monotonie der Funktionenfolge {vn} - die Zahl-
folge {Xn} nicht abnimmt, geniigt es, folgende Annahme ad absurdum zu fiihren:

Àn\X fur nfoo, wobei A<oo. (10)

Nach Voraussetzung ist die Metrik q vollstândig. Also existieren zwei Kreise

Cy^zllz^r,-} (/=1, 2), 0<r1<r2<°o> niit der Eigenschaft, dass

Q(Ci9C2) A>X. (11)

Wegen (10) gibt es zu vorgegebenem e>0 eine Folge {yn} von Cx mit C2 verbin-
denden, rektifizierbaren Kurvenbogen mit der Eigenschaft, dass

"(2Vz|<A + 8, (12)

2) Ans dem zu beweisenden Satz 2 kann a posteriori geschlossen werden, dass aile Metriken Qn

vollstândig (also aile Xn oo) sind.



110 ALFRED HUBER

(w=l, 2, 3,...). Zur Darstellung dieser Kurven

beniitzen wir als Parameter t=s/Ln, wobei s die (euklidische) Bogenlânge auf yn - vom
auf Cx liegenden Anfangspunkt aus gemessen - und Ln die (euklidische) Lange von yn

bezeichnet. Da die Funktionen vn nach unten gleichmâssig beschrânkt sind, folgt aus

(12) die Beschrânktheit der Folge {Ln}. Daraus schliesst man unter Beniitzung der
durch die Définition des Parameters / implizierten und fur aile tl9 t2e[p,ï] gûltigen
Ungleichung \fn{t\)—fn(t2)\SLn\tl-t2\ auf die gleichgradige Stetigkeit der Funktio-
nenfolge {fn} auf [0,1]. Da dièse Folge ausserdem gleichmâssig beschrânkt ist, ent-
hâlt sie nach dem Satz von Arzelà eine gleichmâssig konvergente Teilfolge {fnk}. Es

bezeichne/(O=lim/nfc(r) fur aile re[O,l]. Die Kurve

ist rektifizierbar und verbindet Cx mit C2. Man beweist - mit Beniitzung der gleich-
mâssigen Stetigkeit von vm auf {z>|r1^|z|^r2} - leicht, dass

f eVm(z) \dz\ S lim inf f eVm(z) \dz\ (13)

y y»k

fiir m 1, 2, 3, Aus der Monotonie der Folge {vn} und Ungleichung (12) schliessen

wir, dass fur nk^.m

J*»"<*>|dz| g JV-^jdzKA + e. (14)

Aus (13) und (14) folgt

e*""(z)|dz|^A + e fur m 1, 2, 3 (15)

Lassen wir m-*ao streben, so erhalten wir aus (15) unter Anwendung des Fatouschen
Lemmas

tfw\dz\£X + e. (16)

y

Wâhlt man s kleiner als A-À, so steht (16) im Widerspruch zu (11). Also kann (10)

nicht gelten.
Nun nehmen wir an, es gebe eine Zahl C so, dass

Qn(O9rn)£C fur n-1,2, 3, (17)

und zeigen, dass dies zu einem Widerspruch fiihrt.
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Nach dem eben bewiesenen Résultat gibt es eine natiirliche Zahl N mit der Eigen-
schaft, dass

ÀN= limQN(0, rm)>C.
m-+co

Daraus folgt qn(0, Fm)>C fur einen genûgend grossen Index M. Fur aile

n ;> max (M, N) gilt
C. (18)

Dies steht im Widerspruch zu (17).
Die Folge {gn(09 Fn)} ist also unbeschrânkt. Da sie monoton wâchst, erfullt sie

(8). Q.E.D.

Lemma 2. Es gibt eine Folge {Fn} von stùckweise analytischen Jordankurven und
eine Zahl A mit folgenden Eigenschaften:

(a)

(b) die Innengebiete Gn der Kurven Fn enthalten den Ursprung und streben mit n-+ao

gegen C.

Beweis. Um die Resultate von F. Fiala [1] liber Parallelkurven auf analytischen
Flâchen positiver Krûmmung anwenden zu kônnen, approximieren wir die unendlich
oft differenzierbaren Metriken eVn(z)\dz\ durch solche, die in den Variablen x und y
analytisch sind.

Sei {Rn}9 R0>U eine gegen oo strebende Folge von Radien, Cn={z\\z\-Rn) und
|

Sei zunâchst n eine feste natiirliche Zahl. Die Funktion

1 + x2 + y2

kann durch ein Polynom/?„(*, y) derart approximiert werden, dass sich auf Bn die

Werte der Funktionen wn(x9 y) und pn(xy y) sowie die Werte aller entsprechenden

partiellen Ableitungen bis und mit der zweiten Ordnung voneinander um weniger als

1/2(1+ i**) unterscheiden. Es gelten dann auf Bn die Ungleichungen

(19)

(20)
oy

Apn<0. (21)

dvn

dx

ÔP»

~~~dx~

-log 3< Pn<

Ôvn

dy

ÔPn

ly~
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Das Linienelement ePn(z)\dz\ erzeugt eine Metrik in C, deren Abstandsfunktion
wir mit q* bezeichnen. Es ist (in der Terminologie von Fiala [1, p. 295]) eine analy-
tische Riemannsche Ebene definiert, deren Gausssche Kriimmung

wegen (21) auf Bn positiv ist. Dièse Flâche besitzt nicht aile der in [1] geforderten
Eigenschaften; zum Beweis der hier beniitzten Aussagen macht jedoch Fiala von den
noch fehlenden Voraussetzungen (K> 0 auch ausserhalb Bn und Vollstândigkeit) kei-

nen Gebrauch.
Die Menge

r; {z | rf(c0, z) (?;(Co, cn\ \z\ > r0}

ist Vereinigung von endlich vielen analytischen Kurvenbogen (vrai parallèle [1, p.
325]). Sie enthâlt als Teilmenge eine stiickweise analytische Jordankurve, nâmlich den

Rand Fn der mit oo zusammenhângenden Gebietskompqnente des Komplementes von
Fn (composante extérieure [1, p. 326]). Es soll nun gezeigt werden, dass die Kurven-
folge {rn}(n 1, 2, 3,...) die Bedingungen (a) - fur geniigend grosses A - und (b) er-
fullt.

Aus (20) und der Konstruktion von vn schliessen wir, dass

\-P\dz\^4nR0+ \-^\dz\^
J dv J cv

(22)
ov

Co Co

wobei d/dv die Ableitung in Richtung der âussern Normalen bezeichnet. Der linke
Term in Ungleichung (22) ist das um 2n verminderte Intégral iiber die geodâtische

Kriimmung der Metrik ePn(z)\dz\ lângs Co. Beachten wir noch, dass die Gausssche

Krûmmung im Zwischengebiet von Co und Fn iiberall positiv ist, so erhalten wir durch

Anwendung der Fialaschen Sâtze 3 und 4 [1, p. 330]

f ePn(z)\dz\ S f ePn{z)\dz\ £ 2n(2R0 + k 4- l)rf(C0, F'n). (23)

Aus (19) und (23) folgt

g 3 [ep»iz)\dz\ S AqUC09 F'n) AqÎ{Ç0, Fn) ^
rn

S AQn(0, rn)9 wobei A 6n(2Ro + k + 1).

Die Folge {Fn} besitzt also die Eigenschaft (a).
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FUr n->co gilt nach Annahme i?M-*oo, also nach Lemma 1 Qn(0, Cn)-»oo. Daraus
folgt Qn(C0, Cn)-xx). Da fur aile n die Ungleichungen

z rf(c0, rH) qî{c09 cn) ^ $Qn(c0, cn)

erfiillt sind, schliessen wir, dass q(0, Fn)-+oo fiir h->oo. Dies ist âquivalent mit der
Giiltigkeit von (b). Q.E.D.

Bemerkung. P. Hartman [5] hat kiirzlich bewiesen, dass die wichtigsten Resultate
von Fiala unter wesentlich abgeschwàchten Voraussetzungen noch giiltig sind. Durch
Anwendung dieser tieferliegenden Sâtze kônnte der Beweis von Lemma 2 etwas kûrzer
gehalten werden.

Lemma 3. Es existieren eine die z-Ebene ausschôpfende Gebietsfolge {Qn} und eine

Folge zugeordneter Abbildungen {cpn} mit folgenden Eigenschaften:
(a) q>n bildet Qn konform ab auf eine Kreisscheibe Dn {w\\w\<R1], wobei

^(O^O 11*^(1) 1;

(b) Sei eVn{w) \dw\ die durch Verpflanzung bei der Abbildung (pn aus eVn{z) \dz\ hervor-
gehende Metrik. Es gilt die Darstellung

vn(w) k log |w| + J gn(w, œ)dpn(e(û) cn. (24)

Dabei bezeichnen gn die Greensche Funktion von Dn, p.n das durch Verpflanzung bei der

Abbildung cpn aus \xn entstehende positive Mass, und cn eine Konstante (« 1, 2, 3,

Beweis. Der Beweis dièses Hilfssatzes besteht aus zwei Teilen. Zuerst legen wir
eine Konstruktion dar, welche jedem Gebiet Gn der in Lemma 2 auftretenden Gebietsfolge

ein Gebiet Qn und eine Abbildung cpn zuordnet derart, dass die Bedingungen (a)
und (b) von Lemma 3 erfiillt sind. Dann beweisen wir unter Anwendung von Lemma
2, dass die so erhaltene Gebietsfolge {Qn} die z-Ebene ausschôpft.

Sei n eine natiirliche Zahl, und sei G ein beschrânktes, einfach zusammenhângendes
Gebiet in der z-Ebene, welches den Ursprung enthâlt. Wir ordnen dem Paar (n, G)
nach folgender Vorschrift eine positive Zahl tn(G) zu. Es bezeichne hn die Lôsung des

Dirichletschen Problems fur das Gebiet G mit den Randwerten vm und es sei

Hn(z)=hn(z)-kg(z, 0), wobei g die Greensche Funktion des Gebietes G bezeichnet.
Wir definieren: xn{G) sei der Abstand des Ursprungs vom Rande F des Gebietes G,

gemessen in der Metrik eHn(z)\dz\.

Die Funktion vn — Hn ist superharmonisch in G und nimmt auf F die Randwerte 0

an. Also ist sie nach dem Minimumprinzip nicht negativ in G. Daraus folgt

Tn(G)SQn(0,F). (25)



114 ALFRED HUBER

Im nun folgenden ersten Teil des Beweises wird n festgehalten. Wir setzen zur Ab-
kiirzung Tn(Gn)~tn9 wobei unter Gn das in Lemma 2 so bezeichnete Gebiet zu ver-
stehen ist. Sei Sn die Menge aller beschrânkten, einfach zusammenhângenden, den

Ursprung enthaltenden Gebiete G in der z-Ebene, fur welche in{G)^.tn gilt. Dièse

Menge ist nicht leer, denn GneSn. Zunâchst beweisen wir:
(I) Sn enthâltein ,,Minimalgebiet", d.h. es existiert ein Gebiet QneSn mit der Eigen-

schaft, dass Qn^Gfur aile GeSn.
Sei Mn der Durchschnitt aller zu Sn gehôrigen Gebiete, und sei /„ das Innere von

Mn. Die Menge In ist nicht leer, denn aus (25) folgt

{z\Qn(O9z)<tm}sG (26)

fiir aile GeSn. Wir bezeichnen mit Qn diejenige - wegen (26) existierende - Gebiets-

komponente von /„, welche 0 enthâlt. Das Gebiet Qn ist einfach zusammenhângend;
andernfalls mûsste nâmlich mindestens eines der zur Durchschnittsbildung heran-

gezogenen Gebiete mehrfach zusammenhângend sein, was der Définition von Sn

widersprâche.
Zum Beweise von (I) genûgt es, nun noch zu zeigen, dass Qn in Sn liegt, d.h. dass

Wâre xn(Qn)<tn, so gâbe es einen Punkt z0 auf dem Rande An von Qn, einen 0 mit

z0 verbindenden analytischen Kurvenbogen yn in Qn und eine positive Zahl rj derart,
dass

eH"^\dz\ «,-!,. (27)

Darin bedeutet Hn(z)=hn(z)—kg(z, 0), wobei hn die Lôsung des Dirichletschen Pro-
blems fur das Gebiet Qn mit den Randwerten vn und g die Greensche Funktion von
Qn bezeichnen. Wir definieren

<5 min(l, — wobei m= max eVn{z). (28)
2
—
2m/

Da z0 Randpunkt von Qn ist, existiert ein Gebiet G*eSn, dessen Rand F* die Kreis-
scheibe {2||z—zo|<<5} schneidet. Sei ifn*(z)=A*(z)-fc^*(z, 0), wobei A* die Lôsung
des Dirichletschen Problems fur das Gebiet G* mit den Randwerten vn und g* die

Greensche Funktion von G* bezeichnet.

Die Funktion*vn — H* ist superharmonisch in G* und nimmt auf F* die Rand-

werte 0 an. Nach dem Minimumprinzip gilt also

vn (z) à H* (z) fur aile zeG*. (29)

Die Funktion HM-F* ist harmonisch in QH und nimmt auf AH die Randwerte vn-H?
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an. Da dièse nach (29) nicht negativ sind, folgt aus dem Minimumprinzip

Htt (z) £ f/* (z) fur aile z e Qn. (30)

Sei zt zu z0 (in der euklidischen Metrik der z-Ebene) nâchstgelegener Punkt von
r*, so dass also

\z1 - zo\ min |z - zo| < 5. (31)
zeT*

Wir bezeichnen die geradlinige Verbindungsstrecke von z0 und zt mit y', und den zu-
sammengesetzten Weg yn\jyr mit y'n. Aus (27) bis (31) erhâlt man

(eH*n(z)\dz\S !eHniz)\dz\+ [eVn{z)\dz\^tn-n + mô <tn.
y'n yn y'

Daraus folgt xn(G *)</„. Damit sind wir bei einem Widerspruch angelangt, denn

G*eSn impliziert per definitionem xn(G*)^tn. Also gilt (I).
(II) Es existiert eine Abbildung q>n des Minimalgebietes Qn in die w-Ebene mit der

Eigenschaft, dass Qn und q>n miteinander die Bedingungen (a) und (b) in Lemma 3 er-
fûllen.

Sei g die Greensche Funktion von Qm hn die Lôsung des Dirichletschen Problems
fur das Gebiet Qn mit den Randwerten vny Hn(z) hn(z)-kg(z, 0), Hn eine zu Hn kon-
jugiert harmonische Funktion. Ën ist definiert und exp {iffn} ist eindeutig in Qn — {0}.
Durch die Funktion

z

\l/n : z -> w j exp {Hn(z) + i Ên(z)} dz

wird Qn konform abgebildet auf eine iiber der w-Ebene ausgebreitete Riemannsche
Flâche Fn. Dièse besitzt einen tiber >v=0 liegenden fc-fachen Verzweigungspunkt und
ist im iibrigen unverzweigt.

Sei a eine (auf irgendeinem Blatt von Fn liegende) geradlinige Strecke, die den Ver-
zweigerungspunkt mit einem Randpunkt von Fn verbindet. Dann ist xf/'x (<r) ein 0 mit
einem Randpunkt von Qn verbindender analytischer Kurvenbogen, und infolgedessen

rfw|- J Wm{z)\\dz\= J (32)

Es bezeichne Kn diejenige der w-Ebene iiberlagerte Riemannsche Flâche, die man
erhâlt, wenn man fc + 1 Exemplare der Kreisscheibe {w||w|<^} lângs der positiven
reellen Achse aufschneidet und so miteinander verheftet, dass iiber w=0 ein fc-facher

Verzweigerungspunkt entsteht. Aus (32) folgt, dass Kn in Fn enthalten ist. Nun be-
weisen wir, dass Kn Fn ist.
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Nehmen wir an, Kn sei ein echter Teil von Fn. Dann ist G * \j/~1 (Kn) - ein einfach
zusammenhângendes, den Ursprung enthaltendes Gebiet - eine echte Teilmenge von
Qn. Sei g* die Greensche Funktion von G*, h* die Lôsung des Dirichletschen Pro-
blems fiir das Gebiet G* mit den Randwerten vn, H*(z)=hn(z)-kg*(z, 0). Die Funktion

H* — Hn ist harmonisch im Gebiete G* und nimmt auf dessen Rand F* die nicht
negativen Werte vn—Hn an. Daraus folgt

H* (z) ^ Hn (z) fiir aile zeG*. (33)

Sei y irgend eine 0 mit einem Punkt von F* verbindende Kurve in G*. Dann verbindet
die Bildkurve \j/n(y) den Windungspunkt ûber w 0 mit einem Randpunkt von Kn.
Unter Anwendung von (33) erhalten wir

f eH*"(z) \dz\ ^ f eHn(z) \dz\ f \dw\ ^ tn.

y y *n(y)

Daraus schliessen wir, dass Tn(G*)^/rt, also G*eSn. Dies widerspricht aber der Vor-
aussetzung, dass Qn Minimalgebiet in Sn ist, dass also kein echtes Teilgebiet von Qn zu
Sn gehôren kann. Unsere Annahme war falsch: es gilt Fn-Kn.

Wir definieren t

wobei die Bestimmung der Wurzel so festgelegt werde, dass q>n{\) \ und cpn in Qn

analytisch ist. Durch cpn wird Qn konform abgebildet auf eine Kreisscheibe
Dn {w\\w\<Rn}9 und es ist (pn(0)=0.

Nach Définition von vn(w) muss gelten eVniz)\dz\=eCn(w)\dw\9 falls das Elément
(z, z+dz) durch die Abbildung q>n iibergefuhrt wird in (w, w + dw). Also ist

Vn (<Pn (Z)) Vn (Z) - log \<p'H (z)| (z 6 O.) (34)

Da die Abbildung <pw konform und die Funktion log \cpfn\ harmonisch ist, entnehmen
wir aus (34), dass die vH und vn zugeordneten Masse A vn und A vn durch Verpflanzung
auseinander hervorgehen. Es gilt somit die Darstellung

S» fi.(w) - kgn(w, 0) + jgn(w, œ)dh(em) (weDn). (35)

Dabei bezeichnen gw die Greensche Funktion des Gebietes Dn, fin die Verpflanzung
des Masses /*„ (charakterisiert durch #„(<?>„ (£)) /*„(£) fur aile Borelmengen eczQn)

und hn eine in Z>n harmonische Funktion. Die letztere ist nach (34) die Verpflanzung

-logKI, d.h.

ntt(çn(z)) hn(z) -4og |ç>;(z)| (zeQn). (36)
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Unter Zuriickgehen auf die Définition der Abbildung çn verifiziert man leicht, dass
die Funktion hn — log \q>'n\ auf An konstante Randwerte annimmt; da sie in Qn harmo-
nisch ist, ist sie somit eine Konstante. Wir schliessen aus (36), dass hn eine Konstante
ist. Fernergiltgn(w,0) logi?n-log|w|. Alsofolgt(24)aus(35). Damitist (II) bewiesen.

Nun zeigen wir, dass

Tn(Gn)-+œ fur n-+oo, (37)

wobei {Gn} die in Lemma 2 auftretende Gebietsfolge bezeichnet.
Damit fuhren wir den zweiten Teil des Beweises von Lemma 3 durch. Aus (25)

und den einschlâgigen Definitionen folgt nàmlich die Ungleichung

Tn(Gn) tn ^ Tn(Qn) g qh(09 An) S (?(0, An).

Also impliziert (37), dass g(0, Jn)-»oo fur «->oo. Dies ist aber âquivalent zur Aussage,
dass die Gebietsfolge {Qn} die z-Ebene ausschôpft.

Wir halten zunâchst n fest. Es bezeichne gn die Greensche Funktion des Gebietes

(jn, hn die Lôsung des Dirichletschen Problems fiir Gn mit den Randwerten vn,

Hn(z) hn(z)-kgn(z,0), und Hn eine zu Hn konjugiert harmonische Funktion (ffn
definiert und exp^'i?,,} eindeutig in Gn —{0}). Durch

: z -> w - J exp {Hn(z) + îHn(z)} dz

wird das Gebiet Gn konform abgebildet auf eine liber der w-Ebene ausgebreitete, ein-
fach zusammenhângende Riemannsche Flàche Fni welche ûber w 0 einen A:-fachen

Windungspunkt besitzt und im iibrigen unverzweigt ist. Die Projektion (Durch-
driickung) Fn von Fn in die w-Ebene ist enthalten in der Kreisscheibe

{w\\w\<tAQH(09rn)},

denn eine Anwendung von Lemma 2 ergibt3)

J \dw\ J^(z)|dz| J^(2)|dz| <Aqh(09 rH).

rn

Daraus folgt - etwa durch Anwendung des Schwarzschen Lemmas - fiir die Greensche

Funktion gn von Fn die Abschâtzung

gn(p, q)^B + log rn - log |w - a>|. (38)

3) Die Abbildung </rn ist auf dem Rande von Gn stetig und fùhrt diesen in eine rektifizierbare Kurve
iiber.
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Dabei bezeichnen w und œ die Projektionen (Durchdriickungen) der Punkte p und q
in die w-Ebene und B eine von n unabhângige Konstante. Zur Abkiirzung setzen wir
^(0,rn) rll(/i l,2,3,...).

Die Funktion vn(z) besitzt die Darstellung

vn(z) Hn(z) + jgn(z, C)rf^(«ç). (39)

Sei eùniw)\dw\ die durch Verpflanzung bei der Abbildung \j/n aus eWM(z)|<iz| hervor-

gehende Metrik. Da eHn™\dz\ Wn{z)\ \dz\**\dw\9 geht (39) uber in

J £. (P. (40)

Dabei bezeichnet gB die Greensche Funktion von Fn und p,n die Verpflanzung des

Masses fin auf Fn bei der Abbildung ^n (charakterisiert durch fln(il/n(e)) fin(e) fur aile

Borelmengen ecGn). Fiirp darf in (40) jeder uber w liegende Punkt von Fn eingesetzt
werden: vn(w) ist eine mehrdeutige Funktion auf Fn.

Aus (38) und (40) folgt

vn (w) ^ an (B + log rn) - J log |w - o>| djln (en). (41)

Darin bezeichnet pn die Durchdriickung des Masses fin in die w-Ebene, und

«„ AW A(FJ MC) ê « < i ¦ (42)

Die rechte Seite von (41) ist eine in der w-Ebene eindeutig definierte Funktion, welche

aile Bestimmungen von vn(w) simultan majorisiert.
Die frûher definierte Zahl ^=Tw(Gn) ist gleich dem Abstand (gemessen in der

Metrik \dw\) des Randes von Fn von dem uber w=0 gelegenen Verzweigungspunkt.
Sei y eine diesen Abstand realisierende Kiirzeste auf Fn. Dièse fûhrt vom
Verzweigungspunkt (Durchdriickung 0) geradlinig zum nâchsten Randpunkt qn

(Durchdriickung tneiên) von Fn. Mit Anwendung von (41) erhâlt man

£ J exp {«>,,(*«*•»)} A g
0 (43)(lângsy)
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Es gilt die Ungleichung
tn

jexp [f
F

lOg — ^^^j >dt S (44)
\t€ n — Ct)| J 1 — 0Ln

Fn

Um dièse zu beweisen, nehmen wir zunâchst an, das Mass fin bestehe aus einer einzigen
Punktmasse aw, angebracht in einem Punkte co0. In diesem Falle besagt die Behaup-
tung (44)

»"_û>or**£^^. (45)
1 -an

Zur Veriflkation von (45) beachte man, dass fur feste /„, #„, an das Intégral auf der
linken Seite offenbar dann seinen grôssten Wert annimmt, wenn œo tnel9n/2 ist.
Dann ist aber - wie eine leichte Rechnung zeigt - dièses Intégral gleich der rechten
Seite von (45).

Wir gehen nun dazu liber, die Punktmasse p,n zu verschmieren. Betrachten wir
zunâchst den Fall, da jin aus endlich vielen Einzelmassen besteht:

ptan in œi9 p2<*n in co2, proaB in œm

(7=1, 2,..., m). Aus der Hôlderschen Ungleichung (siehe z.B. [4], p. 140) und (45)
schliessen wir

n

j exp { l p,«. ,og j^-^j}* - J ft (il'- - -il-)** S

0 0

Damit ist (44) auch fur diesen Fall bewiesen. Ein naheliegender Grenziibergang liefert
schliesslich die Giiltigkeit dieser Ungleichung fur beliebige positive Masse jln mit
Trâger Fn und totaler Variation ocn.

Aus (42), (43) und (44) folgt zunâchst

und daraus, mit nochmaliger Anwendung von (42),

A (n l,2,3,...). (46)
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Nach Lemma 1 gilt rn gn(0, JTJ-+OO fur n-^oo. Also wird (37) durch (46) impliziert.
Damit ist Lemma 3 bewiesen.

Lemma 4. Die in Lemma 3 auftretende Radienfolge {Rn} (n= 1, 2, 3, strebî mit
n gegen unendlich.

Beweis. Aus (24) folgt

vn(w)^cn + k\og\w\ (n l, 2, 3, ...)•

Da eBn(w}\dw\ das Linienelement der bei der Abbildung (pn auf Dn verpflanzten Metrik
qn darstellt und da femer das réelle Intervall [0,1] die kiirzeste Verbindung der Punkte
0 und 1 in der Metrik exp {cn + k log |w|} \dw\ bildet, gilt

î

e (0, 1) £ Qn (0, 1) £ ec" jtkdt £-k. (47)

0

Andrerseits gilt
Rn Rn

e.(0, âH) è | ee""dt ec"| tk exp ||gB(f, c9)dA,(ea()Jdt ^
°

ju
° fl" (48)

log ^^^(eUg ec"Rkn f exp |J
0

Dabei wurde beniitzt, dass die Greensche Funktion gn von Dn die Ungleichung

JW — Û)|

erfiillt. Es gilt die Abschâtzung

Rn

f f f
J exp |J
0 Dn

2R 22fltn

log —a

wobei ocn=fln(Dn)=nn(Qn) S & < 1- Die Verifikation von (49) iiberlassen wir dem Léser ;

sie verlâuft ganz analog wie der Beweis von (44). Aus (47) bis (49) folgt

ft,(0, An) ^ 4(1 + fc)c(0, l)Rw1+fc (50)

(n l, 2, 3,...). Da nach Lemma 1 die linke Seite von (50) mit n gegen unendlich

strebt, muss dies auch die rechte Seite - und damit Rn - tun. Q.E.D.

Lemma 5. Die in Lemma 3 vorkommende Abbildungsfolge {cpn} (« 1, 2, 3, •••) ist

in der endlichen z-Ebene lokal gleichmâssig beschrânkt.
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Beweis. Fur irgend zwei Punkte wt und w2 in Dn definieren wir

f (51)

wobei An(wu w2) die Menge aller in Dn enthaltenen rektifizierbaren Verbindungs-
kurven von wx und w2 bezeichnet. Fiir irgend zwei Teilmengen A und B von Dn
bedeute

Qn{A9B) MQn(wuw2). (52)
wieA

Offenbar ist
Qn{<Pn{*l\ VniZl)) è QH(zu Z2) (53)

fur aile zl9 z2eQn (n= 1, 2, 3,...). Zu jedem Punktepaar zu z2eC gibt es einen Index
N(zi> z2) derart, dass fiir aile n>N in (53) die Gleichheit eintritt. (Z.B. besitzt jede
natiirliche Zahl N, fiir welche ^^(^i, An)>q(z19 z2) ist, dièse Eigenschaft). Entspre-
chende Aussagen gelten fiir die Mengenabstânde. Wir leiten zunâchst eine dièse

Metrik betreffende Ungleichung her.
Sei B>\ eine vorgegebene positive Zahl. Im Folgenden lassen wir nur solche

Indizes n zu, fur welche Rn>2B ist; nach Lemma 4 gibt es hôchstens endlich viele
Indizes, welche dièse Bedingung nicht erf iillen. Wir definieren

und

yn(r) fin({œ\2B<\œ\<r})

fiir 2B<r<Rn. Mit Anwendung von (24) erhalten wir

î

èB(0, 1) g fee^dt ^ ec"(V exp Ugn(t, œ)dfi^ejjdt ^
0 0 Dn

Rn

S exp jcB + J log ^-^ dyB(r)| • (54)

¦KL
Dabei wurde im letzten Schritt der Faktor ^(^1) durch die Konstante 1 ersetzt.

Ausserdem wurde von folgenden Abschâtzungen fiir die Greensche Funktion gn von
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DH Gebrauch gemacht:

gn(t, œ)^

ALFRED HUBER

\t-<o\
fur

gn(t, co) S g«(U M) g gn(h M) log N-i
Auf analoge Weise wie Ungleichung (44) beweist man, dass

fur 2B< \œ\ < Rn.

HI0 \<o\£2B

22f"
(55)

Dabei wurde zuletzt beniitzt, dass jSn^a<|. Aus (54) und (55) folgt

| f log

r=2B r- 1
(56)

Nun soll èn(0, CB) nach unten abgeschâtzt werden4). Fiir |w|gjB ist

vn(w) ^cn + k log \w\ + /?„ log h log --——dyn\r
3B r=r2B r + B

(57)

Dièse Ungleichung folgt aus (24) unter Beachtung folgender Abschâtzungen fur die
Greensche Funktion gn von Dn :

gn(w, co) £ gB(|w|, - \co\) ^ gn(B9 - 2B) log

gB(w, co) ^ g»(|w|, - |cd|) ^ g«(B, - |co|) log —-

„ 2R
Rn+~T r" > log -£

|co|

— fur \w\ S B

und 22?<|co|<i£rt.
Die Metrik ed*nW\dw\, wobei v*(w) die rechte Seite von (57) bezeichnet, ist rotations-
symmetrisch beziiglich 0. Infolgedessen realisieren die von 0 ausgehenden (euklidisch
geradlinigen) Strahlen die kûrzeste Verbindung von 0 mit CB in dieser Metrik. Aus

4) Wir fuhren die Bezeichnung Cr {w\\w\ r} ein.
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dieser Tatsche folgt mit (57)

exp

*. R+rB
log n-1

> 2B

dy.if)
k+l

(58)

Beriicksichtigt man, dass die Ungleichungen B>1, k^l und Oïï/?B<;<x<| die Ab-
schâtzung

B

implizieren, so erhâlt man aus (56) und (58)

Rn

J
r=2B

log

rB

r r + B
(59)

Der Betrag des ersten Faktors des zwischen den Absolutstrichen stehenden Produktes
ist offensichtlich grôsser als 1 ; der zweite Faktor wird - wie eine elementare Betrach-

tung zeigt - nie kleiner als |. Der Integrand wird also minorisiert durch die Konstante

log |, und da J

ist, folgt aus (59)
2B

.^a<i

B

12(fc 24(fe + 1)"
(60)

Sei A >0 beliebig vorgegeben. Wir werden nun zeigen, dass es zwei positive Zahlen
B und Ngibt mit folgender Eigenschaft: Aus \z\£A folgt \<pn(z)\£B fur aile n>N.
Damit wird Lemma 5 bewiesen sein.

Es gibt eine natiirliche Zahl No mit der Eigenschaft, dass

Wir definieren

q(0,

B max 2,

z). (61)

(62)
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Nach Lemma 4 existiert ein Index Nt so, dass

Rn>2B fur aile n>Nl. (63)

Schliesslich gibt es einen Index N2 mit der Eigenschaft, dass

£,(0, 1) £«(0, 1) fur aile n>N2. (64)

Wir definieren N=m&x (N09 Nu JV2).

Fur beliebige z, \z\£A9 und aile n>Nfolgt aus (61), (62), (63) und (60)

g.(0, z) g(0, Q,) g(0, QJ B fi,(Q, CB)

&((>, 1) " &(0, 1) - QNo(0, 1) ^ 24(fc + 1) - fc,(0f 1)
* l

Aus (64) und (65) schliessen wir, dass

qh(09 z) £ &(0, CB) gn(0, 9;x (CB)).

Es liegt also z im Innengebiet der Kurve q>~l(CB)9 und dies impliziert \<pn(z)\ SB-
Q.E.D.

3. Der Darstellungssatz

Satz 2. Die Funktion u(z) sei ô-subharmonisch im Gebiete Q {z\R<\z\<co),
R>0, und erfùlle folgende Bedingungen:

(a) die totale Variation des zugeordneten Masses v=Ju/2n sei endlich5)
(b) fûrjeden ins Unendliche fùhrenden Weg y giltQ)

Dann besitzt u die Darstellung

u(z) log

euiz)\dz\~oo.

y

(66)

wobei c eine Konstante und h eine in Q und im Unendlichen harmonische Funktion be-

zeichnet.

5) Der Laplaceoperator ist hier und im Folgenden im Sinne der Théorie der Distributionen [11 ]

zu verstehen.
6) Auf jeder lokal rektifizierbaren Kurve y ist eu aus folgenden Griinden eine messbare Funktion

der Bogenlânge: (1) u ist eine Differenz halbstetiger Funktionen; (2) die Menge A, auf welcher u un-
definiert ist, schneidet y in einer Menge vom Lângenmass 0 auf y. Da A die logarithmische Kapazitât
0 besitzt, ergibt sich der Beweis von (2) durch Anwendung eines Résultâtes von M. Tsuji (Satz 7 in
[12].) Hierauf hat mich Herr Pfluger hingewiesen.



Vollstândige konforme Metriken 125

Beweis. Es sei v v+ — v die Jordansche Zerlegung des Masses v — Au/2n, und
es bezeichne g0 die Greensche Funktion des Gebietes & + {oo}. Die Funktion

(67)

ist superharmonisch in Q, und es gilt ui^.u und Aux — 2nv Da

£o(z>

folgt aus (67)

si

-v+(fî)

0 log

z

l~ï
log|2

R

3

1 Jlog
JK - zÇ

RzÇ

(68)

Wir wâhlen einen Radius Rt>R. Es existiert eine in ganz C definierte, (5-subharmo-
nische Funktion u2 mit der Eigenschaft, dass u2 ul in 01 {z|JR1<|z|<oo}. (Man
definiere etwa

J-u2(z) F(z)- log

wobei F eine in ganz C definierte, reellwertige, zweimal stetig differenzierbare Funktion

bezeichnet, welche auf Qx mit der in Q harmonischen Funktion

log

iibereinstimmt).
Nun wâhlen wir einen Radius R2>Rt derart, dass v~({(||C|>i?2})<l»

nieren

'
log|z-CI (69)

Kl 3*2

wobei a-àu2/2n und k eine natiirliche Zahl bezeichnet, welche die Ungleichung

|

erfiille. Danngilt:
Die Funktion v ist darstellbar in der Form (3) und befriedigt die zu Beginn desAh-

schnitts 2 aufgezàhlten Voraussetzungen.
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Dièse Eigenschaften von v ergeben sich direkt aus obiger Konstruktion. Insbe-
sondere ist die Vollstândigkeit der Metrik ev(z)\dz\ eine Konsequenz von Eigenschaft
(b) der Funktion u und von der - zufolge (70) und (67) - in einer Umgebung von oo

giiltigen Ungleichung v(z)>u2(z) u1(z)"^u(z).
Im Folgenden soll verifiziert werden, dass

•M- J log

Ç-Ebene

(71)

fur aile zeC, wobei fi das in Abschnitt 2 so bezeichnete Mass und d eine Konstante
bedeutet.

Damit wird Satz 2 bewiesen sein: Denn aus (68), (69) und (71) folgt zunàchst, dass

u im Gebiete Q2 {z\ R2 < \z\ < oo} die in Satz 2 behauptete Darstellung zulâsst. Ver-

môge dieser Beziehungen kann nâmlich u als Summe geschrieben werden, deren

Glieder sâmliche die erwâhnte Darstellung besitzen. (Man beachte, dass der letzte

Term auf der rechten Seite von (68) in & + {oo} harmonisch ist). Es ist also die in Q2

harmonische Funktion

H2(z) w(z)~ log

im Unendlichen entweder harmonisch oder logarithmisch singulâr. Daraus folgt die-

selbe Eigenschaft fur die in Q harmonische Funktion

log -.«-j log 1--! dv(e,).

Dies ist aber die Aussage von Satz 2.

Zum Beweise von (71) machen wir Gebrauch von Lemma 3. Die Darstellung (24)

kann auch in der Form

vn(w) k log |w| + J [gn(w, co) - gn(w, 0)] dfiM + dn

geschrieben werden. Es ist

co)-grt(w, 0) log 1-
W(O

-log
w

(72)

(73)

fur aile w, œeDn. Aus (34), (72) und (73) folgt, dass fur aile zeQn

vn(z) k log \<pn(z)\ + log Wn{z)\ + dn +
<pn(z)co

J log 1- -j loê
0)

(74)
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(n 1, 2, 3, Wir diirfen annehmen, dass die Abbildungsfolge {<pn} in der endlichen
z-Ebene lokal gleichmâssig konvergiert. Durch Obergang auf eine geeignete Teilfolge
unter Anwendung eines Diagonalverfahrens kann man dies jedenfalls erreichen, denn

nach Lemma 5 ist die Folge {(pn) lokal gleichmâssig beschrânkt. Da (pn(0)=0 und

(pn(l) l fur aile n, kann die Grenzfunktion q> der Folge {q>n} keine Konstante sein.

Aus dieser Tatsache und daraus, dass cp Limes der schlichten Funktionen q>n:Qn-*Dn

ist, schliessen wir, dass die endliche z-Ebene durch <p schlicht und konform auf die

endliche w-Ebene abgebildet wird. Da ausserdem <p(0) 0 und q>(i)=l ist, folgt
cp(z) z fur aile zeC. Also gilt

lim cpn(z) z und lim <p'n(z) 1, (75)

wobei die Konvergenz in C lokal gleichmâssig erfolgt. Fur aile auf C definierten, steti-

gen Funktionen/mit kompakten Trâger ist

limim f
-»oo J

d.h. mit n-+oo konvergiert ftn schwach gegen fi.
Aus (75) folgt

lim [fc log |9ïl(z)| + log \<p'n(z)q k log \z\ (76)

fur aile zeC. Die Abschâtzungen

und Lemma 4 implizieren

lim log
n-*ao J

1-

t (fi 1,2, 3,...)

<pn{z)ô5
o

fiir aile zeC. Wir verifizieren nun, dass

lim log 1-
(O

log

Ç-Ebene

(77)

(78)

fur aile z aus der Menge £={z#0|y(z)<oo}.
Damit wird (71) (und also auch Satz 2) bewiesen sein. Denn, da vn\v fiir nfoo,

schliesst man aus (74), (76), (77) und (78) - wobei man einen festen Punkt zeE be-

trachtet - auf die Konvergenz der Zahlfolge {dn}. Sei

lim dn d.
n-*oo

(79)

Aus (74) und (76) bis (79) ersehen wir, dass (71) fur aile zeE erfûllt ist. Da beide
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Seiten von (71) in C—{0} superharmonische Funktionen sind, kann daraus auf die

Giiltigkeit dieser Darstellung in ganz C — {0} geschlossen werden. Fiir z=0 ist schliess-

lich (71) trivialerweise richtig.
Seien zeE und e>0 vorgegeben. Sei No eine natiirliche Zahl so, dass zeQn fur

n>N0. Es existiert eine positive Zahl JR(>|z|) mit folgenden Eigenschaften:

#*«C|ICI — JR» —0;

log <- und
4

log 1-
C <4

fiir /i=JV0 + l, No + 2,... und aile C aus der Menge G={Ç\\Ç\>R}. Da
fin(GnDn)<i fiir aile w, folgt

logJ-

und

8

log 1-
co

(a)

(b)

und

(80)

(81)

WirfuhrendieBezeichnungD(z;r)=={C||z—C|<r}ein. Esgibtein^,
mit der Eigenschaft, dass (a) ^({£||z—^| 5})=0 und (b) die Ungleichungen

und

J log ]z — CI

D(z;ê)

< |, J log |C| du(eç

D(z;ô)

e

8'

(82)

j e

<8
(83)

erfûllt sind.

Zur Verifikation dieser Aussage bemerken wir zunâchst, dass die Voraussetzung

v(z)< oo âquivalent ist mit der Existenz des Intégrais

fiir beschrânkte Borelmengen B. Es kann daher Si >0 so klein gewâhlt werden, dass

die erste der Abschâtzungen (82) fiir 0<ô<ôt erfiillt ist. Durch die Bedingung

v(z)< oo wird auch ^({z})=0 impliziert. Daraus schliessen wir, dass fiir geniigend
kleine S (0<ô<ô2) die zweite der Ungleichungen (82) ebenfalls befriedigt ist.
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Da die Massenbelegungen jin unendlich oft differenzierbare Dichtefunktionen be-

sitzen, gibt es zu jeder endlichen Menge / von natiirlichen Zahlen (>N0) ein <53>O

derart, dass (83) fur neIundO<5<ô3 gliltigist. Es geniigt daher, noch zubeweisen,
dass ein Index N und ein <54 > 0 existieren so, dass (83) fur n > N und 0 < <5 < <54 erfiillt
ist.

Es gibt ein rç, 0<rj<$9 mit den Eigenschaften

und

n(D{z;2ri))<-.

(a)

(b)

Es bezeichne nn die Einschrânkung des Masses \i auf die Kreisscheibe D(z; 2rf) (defi-
niert durchnn(e) n(enD(z; 2y)) fur aile Borelmengen e). Fur aile n>Ni [l/rj] gilt
(dax= Flâchenelement in der t-Ebene)

J datlog|2-
Bbene

J dat«n(z-x) Jlog|T-

T-Ebcne

r-Ebene

(84)

<Ï6'
wobei aw hier die durch (6) definierte Funktion bezeichnet. Dabei wurden beniitzt die

Eigenschaft (a) der Zahl rj, die Kommutativitât des Faltungsproduktes sowie die Tat-
sache, dass die Funktion

j in D(z;tj)

superharmonisch ist. Eigenschaft (b) von ri impliziert

Aus (75) folgt die Existenz einer Zahl N2 so, dass

(85)

(86)
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fur n>N2 und (eD(z;rç). Schliesslich existieren ein Index JV3 und eine Zahl <54,

0<<54<l, mit der Eigenschaft, dass q>~l{D{z\ ô4))cD(z; rj) fur aile n>N3. Aus (84)
bis (86) schliessen wir, dass fur «>iVr=max (iV0, Nu N2, iV3) und 0<ô<ô4 die Un-
gleichung

j log|<pn(z)-(
D(z;ô)

J

I
g (log 2K(D(z ;,))

log

/

- 9.(01 <W«{)

|z-CI
log —t—

<8

erfûllt ist. Dieselbe Méthode liefert auch die zweite der Abschâtzungen (83). In diesem

Falle seien jedoch die Détails dem Léser uberlassen.
Es gibt einen Index Mx ^ No derart, dass

fur n > Mt und aile Ç aus der Menge H C- (Gu D (z ; ô)). Da fin (Hn Dn) < ±, gilt fur
n>Mt

J log

HnDn

- \

J
log

HnDn

1 - co 8
(87)

J
H

log - J log

HnDn
CO

dfiM

Da die Folge {/!„} schwach gegen \i konvergiert, folgt mit Beriicksichtigung der Eigen-
schaften (a) von R und Ô die Existenz einer Zahl M2 ^ No derart, dass

(88)

fiir aile n>M2. (Der Singularitât des Integranden im Ursprung braucht hier keine

Beachtung geschenkt zu werden, da die Trâger der Massenbelegungen /i und fln -
letztere fiir geniigend grosse n - zu einer festen Umgebung des Ursprungs disjunkt
sind). Aus (80) bis (83), (86) und (87) schliessen wir unter Anwendung der Dreiecks-

ungleichung, dass

1 log 1-
(O

log

Dn Ç-Ebenc

fiir aile w>max (Mi9 M2). Damit ist (78) bewiesen.

< e

Q.E.D.
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4. Beweis der ùbrigen Sâtze

131

Beweis von Satz 3

1. Behauptung: Die Bedingungen (a) und (b) sind hinreichend.
Beweis: Die Funktion

ist <5-subharmonisch im Gebiet

0 {z|R0<|z|<oo}, Ko>1/jR,

und erfiillt die Voraussetzungen von Satz 2. Das Mass Av entsteht nâmlich aus dem
Mass A u durch Verpflanzung bei der Abbildung

1

-,z
(p-

besitzt also eine endliche totale Variation. Ist ferner y irgend ein ins Unendliche
fiihrender Weg, so fiihrt der Weg y' q>(y) in den Ursprung, und es ist

[ev{z)\dz\= fe"(2)|

Also gilt nach Satz 2 die Darstellung

log
J
Q

log \z\ (89)

wobei v Av/2n, c eine Konstante und h eine in Q und im Unendlichen harmonische
Funktion ist. Bezeichnetg0 die Greensche Funktion des Gebietes Q + {oo}, so ist

[log 1 --? dv(eç) - Jgo(z,

v(G)log|z|+ log

(90)

dv(e;).

Da der letzte Summand auf der rechten Seite von (90) in Q und im Unendlichen har-
monisch ist, folgt aus (89) und (90) die Darstellung

ct log \z\ + ht(z),

wobei ct eine Konstante und ht eine in Q und im Unendlichen harmonische Funktion



132 ALFRED HUBER

bezeichnen. Daraus folgt, dass die Funktion u im Gebiete

Darstellung
{z\0<\z\<l/Ro} die

u(z) - 2)

zulâsst, wobei ju=J m/2 ?r und g die Greensche Funktion des Gebietes Gt + {0} bezeich-

net. Die Funktion Ai (1/z) ist in Gx harmonisch. Man kann deshalb der Darstellung
(91) entnehmen, dass u in Gt 5-subharmonisch ist. Q.E.D.

2. Behauptung: Die Bedingungen (a) und (b) sind notwendig.
Beweis: Die Notwendigkeit von (a) ist klar. Zur Verifikation der Notwendigkeit

von (b) stiitzen wir uns auf den folgenden Hilfssatz:

Lemma 6. Sei v ein Radonsches Mass endlicher totaler Variation mit dem Trâger

Q={z|#0<|z|<oo}, Ro>0. Es bezeichne

-W-J log dv{eK). (92)

Dann existieren eine réelle Zahl k und eine Menge positiver Zahlen E von endlichem

linearem Lebesgueschem Mass derart, dass

inf w(z)> k log r
\z\=r

fiir aile nicht zu E gehôrenden positiven Zahlen r.

(93)

Anmerkung. Sei v v1 — v2 die Jordansche Zerlegung von v. Es ist (nach Définition)

w{z)=wl{z)—w2{z\ wobei

log (y=l,2). (94)

Die Funktion w bleibt also undefiniert auf der Menge A {z\wl(z)=w2(z)= —oo}.
Dièse ist aber von der Kapazitât 0 und fur uns nicht von Belang. Bei der Bildung des

Infimums in (93) sind in A liegende Punkte auszunehmen.

Beweis von Lemma 6. Wir definieren

Mj(r) maxvv,- (z) und mj(r) — inf Wj(z)
\*\-r |z|=r

(95)

(j=l, 2; r>0). Es gilt (Satz 5, p. 100 in [7])

(96)
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Ferner wurde bewiesen (Satz 6, p. 100 in [7]): Zu jedem e>0 gibt es eine Menge positiver

Zahlen L(e) von endlichem linearem Mass mit der Eigenschaft, dass

(97)

fiir aile im Komplement von L(e) liegenden r.
Nach (96) gibt es einen Radius Rx so, dass

Mj(r)
log r

fiir r>Rt und/=l, 2. Definieren wir nun

<1 (98)

so gilt wegen (95), (97) und (98) fur aile r$E die Ungleichung

inf w(z) > m,(r) - M2(r) ^ ^M^r) - M2(r) ^

Wâhlen wir etwa k= - v2(O)-2, so ist (93) fiir r$E erfiillt. Q.E.D.
Zum Beweis der Notwendigkeit von (b) betrachten wir die Funktion v(z) u(l/z)

in einem Gebiete 0={z\ Rt < \z\ < oo}, Rt > 1/R. Sie besitzt dort die Darstellung (vgl.
(90))

v(z) -

log
z

log \z\

¦ log \z\

Dabei bezeichnen ct und c Konstante, hx und A in 0 + {oo} harmonische Funktionen,
g0 die Greensche Funktion des Gebietes 0 + {oo}, und v=Aujln. Unter Anwendung
von Lemma 6 schliessen wir: Es existieren zwei réelle Zahlen a und t sowie eine Menge
positiver Zahlen E von endlichem linearem Mass derart, dass

inf v(z) ^ a log r + t (99)

fur aile im Komplement von E liegenden positiven Zahlen r.
Sei nun y irgend ein in den Punkt 0 fiihrender Weg, y' sein ins Unendliche fiihren-

des Bild bei der Transformation z-+l/z. Wàhlen wir a^<x-l, so erhalten wir aus
(99) - man beachte auch Fussnote6) -



134 ALFRED HUBER

00

^ exp { inf v(z) - (a + 2) log r} dr £ —
J W«r J r

C

oo

Beweis von Satz 4

1. Behauptung: Die Bedingungen (a) w«rf (b) sind hinreichend.
Beweis: Nach Satz 3 folgt aus der Giiltigkeit von (a) und (b), dass u <5-subharmo-

nisch ist im Gebiete G + {0}. Es bleibt zu verifizieren, dass das Mass \i--Au\2n\xi
G+{0} nicht negativ ist. In G erfùllt \i dièse Bedingung jedenfalls, denn nach Voraus-
setzungist u in G superharmonisch. Daher ist nur noch zu beweisen, dass /*({0})^ 0 ist.

Nehmen wir an, es sei ^({0})= -a<0. Es gibt einen Radius Rl9 0<Rt<R, mit
der Eigenschaft, dass

/a 1\
/J^ min ^-,-J,

wobei G1 {z|0<|z|<JR1}. Fiir aile zeGx gilt

u(z) jg(z, C) dii00 + a log \z\ + h (z), (100)

wobei g die Greensche Funktion von Gt + {0} und h eine in Gx + {0} harmonische
Funktion bezeichnen. Da

||z|-|Ç||'
schliessen wir aus (100) auf die Existenz einer Zahl c mit der Eigenschaft, dass

u(z) S c 4- a log \z\ + J log
_

dfi(eç) (101)

fiir aile z aus Go I z| 0 < |z| < i?0 — J. Dièse Abschâtzung wird uns aufdie Aussage

Ko

f — dt«x> (102)

0

fiihren. Da dièse im Widerspruch zur Bedingung (b) steht, wird damit die Behauptung
bewiesen sein. Das Intégral in (102) soll von nun an zur Abkiirzung mit / bezeichnet

werden.
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Betrachten wir zunâchst den Spezialfall, wo die Masse fi(Gl) P ganz in einem
Punkte Co konzentriert ist. Dann gilt

Sec Çf-'lt- (103)

wobei M eine von Co unabhângige endliche Zahl bedeutet. Zum Beweise von (103)
unterscheiden wir zwei Fâlle:

(I) a^l. Dann ist
Ro/2

IZe'R'o-^lt-Koll-'dt^le'Ri-1 f
o o

(II) 0<a<l. Eine Anwendung der Hôlderschen Ungleichung

a - 2 2 - a

dt. (104)

ergibt

I<ec

Ro

M it-icoir**^
(105)

/
Ro ~-l dt ,2-a

Da die rechten Seiten von (104) und (105) von Co unabhângige Zahlen sind, ist damit
(103) bewiesen.

Betrachten wir nun den Fall, da die Einschrânkung von fi auf Gi aus endlich vielen
Einzelmassen besteht:

ptp in Ci, Ç2» •••» in

/^1,2, m).

Aus der Hôlderschen Ungleichung [4, p. 140] und (103) schliessen wir
Ro

I^ec\ exp |(a - 1) log t + ^ Pjp log r^p J dt

0
Ro Ro

ec\f[ (l»-1 |t - \HJ\\-tYidt S ec fi f ?~l \t ~ \Cj\\~" ^ M.



136 ALFRED HUBER

Ein naheliegender Grenziibergang liefert schliesslich I<^ M fur beliebiges /x, und damit
(102). « Q.E.D.

2. Behauptung: Die Bedingungen (a) und (b) sind notwendig.
Beweis: Die Notwendigkeit von (a) ist klar. Da superharmonische Funktionen

lokal nach unten beschrânkt sind, ergibt sich die Notwendigkeit von (b) leicht durch
direkte Abschâtzung des in Frage stehenden Intégrais. Q.E.D.
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