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Vollstindige konforme Metriken und isolierte

Singularititen subharmonischer Funktionen

von ALFRED HUBER, Ziirich

1. Einleitung

Im Rahmen von Untersuchungen zum Cohn-Vossenschen Problemkreis wurde R.
FINN [2, 3] dazu gefiihrt, die Giiltigkeit eines gewissen Darstellungssatzes fiir voll-
stindige konforme Metriken (Satz 1 der vorliegenden Arbeit) zu vermuten. Es gelang
ihm, die in Frage stehende Darstellung nach Einfiihrung einer zusétzlichen Voraus-
setzung (siche Bemerkung 3 zu Satz 1) zu beweisen und damit den Zugang zu bedeut-
samen geometrischen Resultaten zu finden.

Das wichtigste Ziel dieses Artikels ist ein Beweis der vollen Finnschen Vermutung.
Als Konsequenzen ergeben sich daraus neue Kriterien fiir die Hebbarkeit isolierter
Singularitdten subharmonischer und d-subharmonischer Funktionen.

Auf geometrische Folgerungen gehen wir in der vorliegenden Arbeit nicht ein. Wir
begniigen uns mit dem Hinweis, dass mit Satz 1 die von Finn auf Grund der Darstel-
lung (1) hergeleiteten geometrischen Séitze wegen des Wegfallens der zusétzlichen
Annahme einen wesentlich erweiterten Giiltigkeitsbereich erhalten.

DErINITION. Unter einem in den Punkt z, fiihrenden Weg in der komplexen Ebene
verstehen wir eine stetige — im Falle z,=o0 auf der Riemannschen Kugel stetige —
Kurve y mit folgenden Eigenschaften:

(1) y verbindet z, mit einem Punkt z, #z,;

(2) jeder z, nicht enthaltende abgeschlossene Teilbogen von y ist rektifizierbar.

SATZ 1. Sei u(z) eine reellwertige Funktion, definiert und zweimal stetig differenzier-
bar im Gebiet Q= {z| R<|z| <o}, R>0, mit folgenden Eigenschaften:

(a) jJ.lAuldxdy<oo;

Q

(b) Je““) |dz| = o0

?

fiir jeden ins Unendliche fiihrenden Weg y. Dann gilt

o= [ [ 10s

+cloglzl +h(z) (=¢+in),

z

1—&Au({;)d(§dn

(D
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wobei ¢ eine Konstante und h eine in Q und im Unendlichen harmonische Funktion be-
zeichnen.

BEMERKUNGEN

1. Die Eigenschaft (b) der Metrik e*®|dz| konnte man ,,Vollstindigkeit im Un-
endlichen nennen. Die Enden einer geniigend reguldren, vollstindigen!), orientier-
baren offenen Fliche mit summierbarer Gausscher Kriimmung kénnen durch kon-
forme Metriken dargestellt werden, welche die Voraussetzungen von Satz 1 erfiillen.

2. Es ist sofort klar, dass sich die Funktion ¥ vom ersten Summanden auf der
rechten Seite von (1) um eine harmonische Funktion unterscheidet; dies ist sogar
richtig, wenn die Voraussetzung (b) gestrichen wird. Die wesentliche Aussage des
Satzes besteht darin, dass bei Giiltigkeit von (b) diese Differenzfunktion im Unend-
lichen entweder logarithmisch singuldr oder harmonisch sein muss.

3. R. FINN [3] hat die Darstellung (1) bewiesen unter der zusédtzlichen Annahme,
dass die Menge {z| 4u(z) <0} beschrinkt sei. Es gelang ihm dies mit Hilfe einer kurzen
indirekten Schlussweise, die sich jedoch einer Erweiterung auf den allgemeinen Fall
zu entziehen scheint. Unsere Methode besteht in einer direkten Konstruktion der
gesuchten Darstellung.

KOROLLAR. Sei u(z) eine reellwertige Funktion, definiert und zweimal stetig differen-
zierbar in der endlichen Ebene. Ist Au summierbar und erfiillt u die Bedingung (b) von
Satz 1, so gilt die Darstellung

u(z)=—i—1; ” 1ogl1-§

{-Ebene

Au(Q) dédn +c, 2

wobei ¢ eine Konstante bezeichnet.

BEMERKUNG. Die Voraussetzungen dieses Korollars erfiillen diejenigen konformen
Metriken e*®|dz|, welche vollstindige Flichen mit summierbarer Gaussscher Kriim-
mung vom topologischen Typ der Ebene darstellen.

BEWEIS DES KOROLLARS. Wir wihlen ein R >0 und machen Gebrauch von der Dar-
stellung (1) der Funktion u im Gebiet @={z|R<|z| < o0}. Die Funktion

H(z)=u(z)——2% ‘”‘ 10g’1-—-§Au(C)d§dﬂ=
{-Ebene
1 z
=cloglz|+h(z)—ﬂfflog I—ZAu(C)dfdn

Kl=R

1) im Sinne von H. Hopr und W. RmNow [6].
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ist harmonisch in der endlichen z-Ebene. Im Unendlichen ist sie entweder logarith-
misch singuldr oder harmonisch. Also ist sie eine Konstante. Q.E.D.

Wir werden mit Satz 2 eine Aussage beweisen, die etwas allgemeiner ist als Satz 1.
An Stelle der Existenz und Stetigkeit aller Ableitungen von u bis und mit der zweiten
Ordnung fordern wir nur, dass # J-subharmonisch sei. Man versteht darunter, dass
die Funktion u in der Umgebung eines jeden Punktes ihres Definitionsgebietes als
Differenz subharmonischer Funktionen darstellbar sein soll. Der Laplaceoperator ist
dann im Sinne der Theorie der Distributionen zu verstehen: Au ist ein Radonsches
Mass, von welchem — in Verallgemeinerung von Bedingung (a) in Satz 1 — vorausge-
setzt wird, dass seine totale Variation endlich sei.

Diese Allgemeinheit hat zunidchst den Vorteil, dass durch die zugelassenen Metri-
ken eine grosse Klasse von Flichen erfassbar wird, ndmlich — nach einem Resultat von
I. G. RescHETNJAK [10] — die Klasse der Mannigfaltigkeiten von beschrinkter Kriim-
mung im Sinne von A. D. Alexandrow. Vor allem aber wird durch sie der potential-
theoretische Aspekt der bewiesenen Darstellung erst richtig beleuchtet. Dies zeigen

die folgenden Sitze, deren Beweis — mit wesentlicher Anwendung von Satz 2 — im
letzten Abschnitt erfolgt:

SATZ 3. Sei u(z) 6-subharmonisch im Gebiete G={z|0<|z| <R}, R>0. Dafiir, dass

u auch in der Umgebung von 0 5-subharmonisch ist, sind folgende Bedingungen notwendig
und hinreichend:

(a) die totale Variation des Masses Au ist endlich in der Umgebung von Q;
(b) es existiert eine reelle Zahl a mit der Eigenschaft, dass

f |z|* € ® |dz| = 0
?

fiir jeden in den Punkt O fiihrenden Weg y.

BEMERKUNGEN

1. Die eine Hilfte von Satz 3, nimlich die Hinldnglichkeit der Bedingungen (a)
und (b), ist im wesentlichen die Aussage von Satz 2, transformiert durch Inversion von
einer Umgebung von oo auf eine Umgebung von 0.

2) Dass u sich in einer Umgebung von 0 als Differenz subharmonischer Funktio-
nen, u(z)=u, (z)—u,(z), darstellen lisst, bedeutet nicht, dass der Wert u(0) definiert
ist. Es kann vorkommen, dass fiir jede solche Darstellung von u der Ursprung zur
Menge {z|u,(z)=u,(z)= — oo} gehort. Auf dieser bleibt u undefiniert.

SATZ 4. Sei u(z) superharmonisch im Gebiet G={z|0<|z| <R}, R>0. Dafiir, dass
u als superharmonische Funktion in den Punkt O hinein fortgesetzt werden kann, sind
Jfolgende Bedingungen notwendig und hinreichend:
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(a) die totale Variation des Masses Au ist endlich in der Umgebung von 0;

(b) es ist

eu (z)

ldz| =0
|z|
?

fiir jeden in den Punkt O fiihrenden Weg 7.

Die Resultate dieser Arbeit sind in einer in den Comptes Rendus publizierten Note
[9] angekiindigt worden.

2. Einige Hilfssiitze
In diesem Abschnitt betrachten wir eine Funktion v der Form

v(z) = k log |z| + q(2). 3)

Dabei bezeichnet k eine natiirliche Zahl. Die Funktion g besitze folgende Eigenschaf-
ten: (a) g sei definiert und superharmonisch in C (= endliche komplexe Ebene); (b)
g sei harmonisch in einer Umgebung von 0; (c) die totale Variation « der ¢ zugeord-
neten Massenbelegung u sei kleiner als 4. Ferner setzen wir die Volistindigkeit der
durch das Linienelement e”®|dz| erzeugten Metrik voraus, d.h. es soll gelten

f e’ |dz| =00

?

fiir jeden ins Unendliche fiihrenden Weg y.
Fiir irgend zwei Punkte z, und z, in C definieren wir

0(zy,z5) = inf f @ |dz, @

yeA(zy,22)
Y

wobei A(z,, z,) die Menge aller rektifizierbaren Verbindungskurven von z; und z,
bezeichnet. Fiir zwei beliebige Mengen 4 und B in C bedeute

e(4, B) = inf o(zy, z,). )

z1eA
z2€B

‘Die Funktion q ist in bekannter Weise darstellbar als Limes regularisierter Funk-
tionen ¢,=a,*q(n=1,2, 3, ...), wobei etwa

1
0 fir |z|=-,
n

1 1 6
kn? exp {M—-————} fir |zl <-—,
n

o(2) =

n?|z]* =1
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1 . »
k=2 t dt .
0

Die Funktionen g, sind definiert, unendlich oft differenzierbar und superharmonisch
in C, und ¢,}q fiir n— 0. Es ist

Po=o*xp (n=1,23,..), @)

wobei p, die g, zugeordnete Massenbelegung (mit der Dichtefunktion —4gq,/27) be-
zeichnet (siehe [11], Bd. II, p. 16). Die totale Variation von p, stimmt iiberein mit der
totalen Variation a von u (n=1,2,3,...).

Wir definieren v,(z)=k log |z| +¢,(z) und bezeichnen mit g,(z,z,) (fiir
24, 2,€C) und g,(4, B) (fir A, BcC) die - entsprechend (4) und (5) — durch das
Linienelement e’"® |dz| erzeugten Abstandsfunktionen.

mit

LemMA 1. Sei {Q,} eine monotone, C ausschipfende Gebietsfolge. Dann gilt
0,(0,I)—>o0 fir n-oo, )
wobei I, den Rand von Q, bezeichnet (n=1, 2, 3, ...).
BEwEls. Wir definieren

.=liminfg,(0,I,) (n=1,2,3,..) 9)

m-—w

und beweisen vorerst: Entweder gilt 1,4 0o fiir n} oo oder es ist A, = oo fiir alle geniigend
grossen Indizes n2). Da - zufolge der Monotonie der Funktionenfolge {v,} — die Zahl-
folge {4,} nicht abnimmt, geniigt es, folgende Annahme ad absurdum zu fiihren:

A fir ntoo, wobei A<o. (10)

Nach Voraussetzung ist die Metrik ¢ vollstindig. Also existieren zwei Kreise
C;={z|lz|=r;} (j=1, 2), 0<r, <r,<oo, mit der Eigenschaft, dass

0(Cy, C))=A> 4. (11)

Wegen (10) gibt es zu vorgegebenem &¢>0 eine Folge {y,} von C; mit C, verbin-
denden, rektifizierbaren Kurvenbogen mit der Eigenschaft, dass

f e ®|dz| < A+, (12)

n

2) ;\us Aciem zu beweisenden Satz 2 kann a posteriori geschlossen werden, dass alle Metriken gs
vollstindig (also alle 1, = o0) sind.
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(n=1, 2,3, ...). Zur Darstellung dieser Kurven

7a:[0, 1], 1> C, fu(9)

beniitzen wir als Parameter t=s/L,, wobei s die (euklidische) Bogenldnge auf y, — vom
auf C, liegenden Anfangspunkt aus gemessen — und L, die (euklidische) Lénge von v,
bezeichnet. Da die Funktionen v, nach unten gleichméssig beschrinkt sind, folgt aus
(12) die Beschrinktheit der Folge {L,}. Daraus schliesst man unter Beniitzung der
durch die Definition des Parameters ¢ implizierten und fiir alle ¢,, t,€[0,1] giiltigen
Ungleichung | £,(t,)— £, (t,)| S L, |t — t,| auf die gleichgradige Stetigkeit der Funktio-
nenfolge {f,} auf [0,1]. Da diese Folge ausserdem gleichmaissig beschrinkt ist, ent-
hilt sie nach dem Satz von Arzeld eine gleichmissig konvergente Teilfolge { f,.}. Es
bezeichne f(f)=lim £, () fiir alle z€[0,1]. Die Kurve
k— o

7:[0, 1}, t=>C, (1)

ist rektifizierbar und verbindet C; mit C,. Man beweist — mit Beniitzung der gleich-
missigen Stetigkeit von v,, auf {z|r, <|z|<r,} - leicht, dass

f e’ ®|dz| < lim inf | €@ |dz]| (13)
7 ke b
firm=1, 2, 3, .... Aus der Monotonie der Folge {v,} und Ungleichung (12) schliessen
wir, dass fiir n,=m
fe"'"“’ldzl < f e @idzl < A +e. (14)

Rk i

Aus (13) und (14) folgt

fe"'”") [dz| £A+¢ fir m=1,2,3, ... (15)
¥
Lassen wir m— oo streben, so erhalten wir aus (15) unter Anwendung des Fatouschen
Lemmas
fe”(’)ldzl <A+e. (16)
b4

Wihlt man ¢ kleiner als A— 4, so steht (16) im Widerspruch zu (11). Also kann (10)
nicht gelten.

Nun nehmen wir an, es gebe eine Zahl C so, dass
0,0, I,)sC fir n=1,23,.., 17

und zeigen, dass dies zu einem Widerspruch fiihrt.
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Nach dem eben bewiesenen Resultat gibt es eine natiirliche Zahl N mit der Eigen-
schaft, dass
Ay = lim gy(0, I,,) > C.
Daraus folgt g5(0, I'y,)> C fiir einen geniigend grossen Index M. Fiir alle
n = max (M, N) gilt
04(0, I,) Z e (0, I'y) > C. (18)

Dies steht im Widerspruch zu (17).
Die Folge {0,(0, I',)} ist also unbeschrinkt. Da sie monoton wichst, erfiillt sie
(®). Q.E.D.

LEMMA 2. Es gibt eine Folge {I',} von stiickweise analytischen Jordankurven und
eine Zahl A mit folgenden Eigenschaften:

(a) Je""(’)ldz] <Ap,(0,T,) (n=1,2,3,..);

I

(b) die Innengebiete G, der Kurven I, enthalten den Ursprung und streben mit n— oo
gegen C.

Beweis. Um die Resultate von F. FIALA [1] iiber Parallelkurven auf analytischen
Fliachen positiver Kriimmung anwenden zu kénnen, approximieren wir die unendlich
oft differenzierbaren Metriken e”®|dz| durch solche, die in den Variablen x und y
analytisch sind.

Sei {R,}, R,>1, eine gegen oo strebende Folge von Radien, C,={z||z|=R,} und
B,={z|12|z|£R,} (n=0,1,2, ...).

Sei zunéchst n eine feste natiirliche Zahl. Die Funktion

1+ x%+ y?
2(1 + R?)

Wn(x’ y) = Un(X, y) -

kann durch ein Polynom p,(x, y) derart approximiert werden, dass sich auf B, die
Werte der Funktionen w,(x, y) und p,(x, y) sowie die Werte aller entsprechenden
partiellen Ableitungen bis und mit der zweiten Ordnung voneinander um weniger als
1/2(1+ R?) unterscheiden. Es gelten dann auf B, die Ungleichungen

v, —log 3 < p, <v,, (19)
0 0 0
. YR B . ST 9)
ox Ox |0y 0Oy

Ap,<0. (21)
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Das Linienelement e”"(*|dz| erzeugt eine Metrik in C, deren Abstandsfunktion
wir mit g bezeichnen. Es ist (in der Terminologie von FIALA [1, p. 295]) eine analy-
tische Riemannsche Ebene definiert, deren Gausssche Kriimmung

K(z) =— 4p,(z)/e*P?

wegen (21) auf B, positiv ist. Diese Flidche besitzt nicht alle der in [1] geforderten
Eigenschaften; zum Beweis der hier beniitzten Aussagen macht jedoch Fiala von den
noch fehlenden Voraussetzungen (K> 0 auch ausserhalb B, und Vollstindigkeit) kei-
nen Gebrauch.

Die Menge

I, = {z|ex (Co, 2) = €7 (Co, Cp); Izl > Ro}

ist Vereinigung von endlich vielen analytischen Kurvenbogen (vrai paralléle [1, p.
325]). Sie enthdlt als Teilmenge eine stiickweise analytische Jordankurve, nimlich den
Rand I', der mit co zusammenhéngenden Gebietskomponente des Komplementes von
I, (composante extérieure [1, p. 326]). Es soll nun gezeigt werden, dass die Kurven-
folge {I',}(n=1, 2, 3, ...) die Bedingungen (a) - fiir geniigend grosses 4 — und (b) er-
fiillt.

Aus (20) und der Konstruktion von v, schliessen wir, dass

op, ov,
B——Idzl S4nRy + | ——|dz| £27n(2R, + k), (22)
v ov

Co Co

wobei d/0v die Ableitung in Richtung der dussern Normalen bezeichnet. Der linke
Term in Ungleichung (22) ist das um 2=n verminderte Integral iiber die geoditische
Kriimmung der Metrik e?*(?|dz| lings C,. Beachten wir noch, dass die Gausssche
Kriimmung im Zwischengebiet von C, und I', iiberall positiv ist, so erhalten wir durch
Anwendung der Fialaschen Sitze 3 und 4 [1, p. 330]

fep"(z)ldzl < f e""(z)ldzl <2n(Q2Ry+ k + I)QI(CO, r;). (23)

rn r’l’l

Aus‘(19) und (23) folgt

fevnm dz| <3 f ™ |dz| < Ag*(Co, I) = A0*(Co, I,) <
In I'n

<A9,(0,I,), wobei A=6n(2R,+ k+1).

Die Folge {I',} besitzt also die Eigenschaft (a).
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Fiir n— 00 gilt nach Annahme R,— 0, also nach Lemma 1 ¢,(0, C,)— c0. Daraus
folgt ¢,(Cy, C,)— . Da fiir alle n die Ungleichungen

e(0, ') 20,0, I,)20,(0, 1) 2
g Q: (CO’ Fn) = Q: (COa Cn) g %’Qn(co’ Cn)

erfiillt sind, schliessen wir, dass ¢(0, I',)— oo fiir n— 0. Dies ist dquivalent mit der
Giiltigkeit von (b). Q.E.D.

BEMERKUNG. P. HARTMAN [5] hat kiirzlich bewiesen, dass die wichtigsten Resultate
von Fiala unter wesentlich abgeschwichten Voraussetzungen noch giiltig sind. Durch

Anwendung dieser tieferliegenden Sétze konnte der Beweis von Lemma 2 etwas kiirzer
gehalten werden.

LEMMA 3. Es existieren eine die z-Ebene ausschopfende Gebietsfolge {Q,} und eine
Folge zugeordneter Abbildungen {¢,} mit folgenden Eigenschaften:

(@) @, bildet Q, konform ab auf eine Kreisscheibe D,={w||w|<R,}, wobei
(Pn(()):() und (P,,(l)-‘: 19

(b) Sei e’ |dw| die durch Verpflanzung bei der Abbildung ¢, aus e’*® |dz| hervor-
gehende Metrik. Es gilt die Darstellung

52(w) = og vl + | 22w, @) dfn(e) + .. (24)

D,

Dabei bezeichnen g, die Greensche Funktion von D,, i, das durch Verpflanzung bei der
Abbildung ¢, aus p, entstehende positive Mass, und c, eine Konstante (n=1,2, 3, ...).

Beweis. Der Beweis dieses Hilfssatzes besteht aus zwei Teilen. Zuerst legen wir
eine Konstruktion dar, welche jedem Gebiet G, der in Lemma 2 auftretenden Gebiets-
folge ein Gebiet Q, und eine Abbildung ¢, zuordnet derart, dass die Bedingungen (a)
und (b) von Lemma 3 erfiillt sind. Dann beweisen wir unter Anwendung von Lemma
2, dass die so erhaltene Gebietsfolge {Q,} die z-Ebene ausschpft.

Sei » eine natiirliche Zahl, und sei G ein beschrinktes, einfach zusammenhidngendes
Gebiet in der z-Ebene, welches den Ursprung enthélt. Wir ordnen dem Paar (n, G)
nach folgender Vorschrift eine positive Zahl z,(G) zu. Es bezeichne 4, die Losung des
Dirichletschen Problems fiir das Gebiet G mit den Randwerten v,, und es sei
H,(z)=h,(z)—kg(z, 0), wobei g die Greensche Funktion des Gebietes G bezeichnet.
Wir definieren: 7,(G) sei der Abstand des Ursprungs vom Rande I" des Gebietes G,
gemessen in der Metrik e |dz]|.

Die Funktion v,— H, ist superharmonisch in G und nimmt auf I" die Randwerte 0
an. Also ist sie nach dem Minimumprinzip nicht negativ in G. Daraus folgt

%, (G) 0.0, T). (25)
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Im nun folgenden ersten Teil des Beweises wird n festgehalten. Wir setzen zur Ab-
kiirzung t,(G,)=1, wobei unter G, das in Lemma 2 so bezeichnete Gebiet zu ver-
stehen ist. Sei S, die Menge aller beschrinkten, einfach zusammenhingenden, den
Ursprung enthaltenden Gebiete G in der z-Ebene, fiir welche 7,(G)>1¢, gilt. Diese
Menge ist nicht leer, denn G,€S,. Zunichst beweisen wir:

() S, enthdlt ein ,,Minimalgebiet‘, d.h. es existiert ein Gebiet Q,€ S, mit der Eigen-
schaft, dass Q,< G fiir alle Ge S,

Sei M, der Durchschnitt aller zu S, gehorigen Gebiete, und sei I, das Innere von
M,. Die Menge I, ist nicht leer, denn aus (25) folgt

{z]|0.(0, 2) <t,} =G (26)

fiir alle Ge S,. Wir bezeichnen mit €, diejenige — wegen (26) existierende — Gebiets-
komponente von I,, welche 0 enthilt. Das Gebiet , ist einfach zusammenhingend;
andernfalls miisste ndmlich mindestens eines der zur Durchschnittsbildung heran-
gezogenen Gebiete mehrfach zusammenhidngend sein, was der Definition von S,
widerspriche.

Zum Beweise von (I) geniigt es, nun noch zu zeigen, dass Q, in S, liegt, d.h. dass
7,(Q,) =1, ist.

Wire 1,(R,) <t,, so gibe es einen Punkt z, auf dem Rande 4, von Q,, einen 0 mit
z, verbindenden analytischen Kurvenbogen y, in 2, und eine positive Zahl n derart,
dass

f e Didzl =1, — 1. 27

n

Darin bedeutet H,(z)=h,(z)—kg(z, 0), wobei h, die Losung des Dirichletschen Pro-
blems fiir das Gebiet Q, mit den Randwerten v, und g die Greensche Funktion von
Q, bezeichnen. Wir definieren

é = min (1, —”—), wobei m= max @, (28)
2m lz—z20]l 51
Da z, Randpunkt von Q, ist, existiert ein Gebiet G*€ S,, dessen Rand I'* die Kreis-
scheibe {z||z—z,| <5} schneidet. Sei H,'(z)=hy (z)—kg*(z, 0), wobei k; die Losung
des Dirichletschen Problems fiir das Gebiet G* mit den Randwerten v, und g* die
Greensche Funktion von G* bezeichnet.
Die Funktion'v,— H) ist superharmonisch in G* und nimmt auf I'* die Rand-
werte 0 an. Nach dem Minimumprinzip gilt also

v,(z) = H}(z) firalle zeG*. (29)

Die Funktion H,— H) ist harmonisch in Q, und nimmt auf 4, die Randwerte v, —H}
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an. Da diese nach (29) nicht negativ sind, folgt aus dem Minimumprinzip
H,(z) 2 Hf (z) fiiralle zeQ,. (30)

Sei z; zu z, (in der euklidischen Metrik der z-Ebene) nichstgelegener Punkt von
I'*, so dass also

|zy — zol = min |z — zy] < 4. 31
zel*
Wir bezeichnen die geradlinige Verbindungsstrecke von z, und z,; mit y’, und den zu-
sammengesetzten Weg y,Uy’ mit y,. Aus (27) bis (31) erhilt man

fe"'"(’) |dz| < fe"”(‘)ldzl + je”"(’)ldzl <t,—n+mé<t,.

¥'n Yn v
Daraus folgt ,(G*)<¢, Damit sind wir bei einem Widerspruch angelangt, denn
G*€ S, impliziert per definitionem t,(G*)=1¢,. Also gilt (I).

(II) Es existiert eine Abbildung ¢, des Minimalgebietes Q, in die w-Ebene mit der
Eigenschaft, dass 2, und @, miteinander die Bedingungen (a) und (b) in Lemma 3 er-
fiillen.

Sei g die Greensche Funktion von Q,, 4, die Losung des Dirichletschen Problems
fiir das Gebiet Q, mit den Randwerten v,, H,(z)=h,(z)—kg(z, 0), A, eine zu H, kon-
jugiert harmonische Funktion. #,ist definiert und exp {if,} ist eindeutig in Q,—{0}.
Durch die Funktion

z

Y, zow= f exp {H,(z) + i A,(z)} dz

0

wird Q, konform abgebildet auf eine iiber der w-Ebene ausgebreitete Riemannsche
Fldche F,. Diese besitzt einen iiber w=0 liegenden k-fachen Verzweigungspunkt und
ist im iibrigen unverzweigt.

Sei o eine (auf irgendeinem Blatt von F, liegende) geradlinige Strecke, die den Ver-
zweigerungspunkt mit einem Randpunkt von F, verbindet. Dann ist i, ' (¢) ein 0 mit
einem Randpunkt von Q, verbindender analytischer Kurvenbogen, und infolgedessen

f Jdw] = f W) 1dz] = f 1 |dz] 2 1, () 2 1. 32)

¥~ 1,(0) V- 1,(0)

Es bezeichne K, diejenige der w-Ebene iiberlagerte Riemannsche Fliche, die man er-
hilt, wenn man k+1 Exemplare der Kreisscheibe {wllwi<t,,} lings der positiven
reellen Achse aufschneidet und so miteinander verheftet, dass iiber w=0 ein k-facher
Verzweigerungspunkt entsteht. Aus (32) folgt, dass K, in F, enthalten ist. Nun be-
weisen wir, dass K,=F, ist.
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Nehmen wir an, K, sei ein echter Teil von F,. Dann ist G*=y, ' (K,) - ein einfach
zusammenhéingendes, den Ursprung enthaltendes Gebiet — eine echte Teilmenge von
Q,. Sei g* die Greensche Funktion von G*, ¥ die Losung des Dirichletschen Pro-
blems fiir das Gebiet G* mit den Randwerten v, H, (z)=h,(z) —kg*(z, 0). Die Funk-
tion H) — H, ist harmonisch im Gebiete G* und nimmt auf dessen Rand I'* die nicht
negativen Werte v,— H, an. Daraus folgt

H}(z)2 H,(z) fiiralle zeG*. (33)

Sei y irgend eine 0 mit einem Punkt von I' * verbindende Kurve in G*. Dann verbindet
die Bildkurve y,(y) den Windungspunkt iiber w=0 mit einem Randpunkt von K,.
Unter Anwendung von (33) erhalten wir

J.eH'"(’)Idzl = fe""(’)ldzl = f ldw| = t,.
Y 4 ¥n(?)

Daraus schliessen wir, dass 7,(G*)21,, also G*€S,. Dies widerspricht aber der Vor-
aussetzung, dass Q, Minimalgebiet in S, ist, dass also kein echtes Teilgebiet von Q, zu
S, gehoren kann. Unsere Annahme war falsch: es gilt F,=K,,.

Wir definieren

', (z))ﬁ‘l' e

‘l’n (1)

wobei die Bestimmung der Wurzel so festgelegt werde, dass ¢,(1)=1 und ¢, in Q,
analytisch ist. Durch ¢, wird Q, konform abgebildet auf eine Kreisscheibe
D,={w||w|<R,}, und es ist ¢,(0)=0.

Nach Definition von #,(w) muss gelten e”*(?|dz| =™ |dw)|, falls das Element
(z, z+dz) durch die Abbildung ¢, iibergefiihrt wird in (w, w+dw). Also ist

B, (0a(2) = 0,(2) — log l@ (2)l  (z€2,). (34)

Da die Abbildung ¢, konform und die Funktion log |¢,| harmonisch ist, entnehmen
wir aus (34), dass die v, und o, zugeordneten Masse 4v, und 43, durch Verpflanzung
auseinander hervorgehen. Es gilt somit die Darstellung

go,,:z—+w=<

50 = ha0) = kga (0 0)+ [ a0 0)dR(e)  (weD). ()

Dn

Dabei bezeichnen g, die Greensche Funktion des Gebietes D,, i, die Verpflanzung
des Masses p, (charakterisiert durch fi,(¢,(e))=u,(e) fiir alle Borelmengen ec,)
und £, eine in D, harmonische Funktion. Die letztere ist nach (34) die Verpflanzung
von h,—log |@,|, d.h.

h(04(2)) = h(2) —1og lo,(2)]  (z€9,). (36)
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Unter Zuriickgehen auf die Definition der Abbildung ¢, verifiziert man leicht, dass
die Funktion &, —log |@,| auf 4, konstante Randwerte annimmt; da sie in ©, harmo-
nisch ist, ist sie somit eine Konstante. Wir schliessen aus (36), dass 4, eine Konstante
ist. Ferner gilt g, (w, 0)=log R, —log|w|. Also folgt (24) aus (35). Damitist (IT) bewiesen.
Nun zeigen wir, dass
7,(G,) =00 fir n-owo, (37
wobei {G,} die in Lemma 2 auftretende Gebietsfolge bezeichnet.

Damit fiihren wir den zweiten Teil des Beweises von Lemma 3 durch. Aus (25)
und den einschldgigen Definitionen folgt ndmlich die Ungleichung

Ty (Gn) = tn § Tn (Qn) é On (O, An) é Q(Oa An) .

Also impliziert (37), dass ¢(0, 4,)— oo fiir n—co. Dies ist aber dquivalent zur Aussage,
dass die Gebietsfolge {Q,} die z-Ebene ausschopft.

Wir halten zundchst n fest. Es bezeichne g, die Greensche Funktion des Gebietes
G,, h, die Losung des Dirichletschen Problems fiir G, mit den Randwerten v,
H,(z)=h,(z)—k g,(z,0), und H, eine zu H, konjugiert harmonische Funktion (A,
definiert und exp {if,} eindeutig in G,—{0}). Durch

z

Vyizow= f exp {H,(2) + i 1, (2)} dz

0

wird das Gebiet G, konform abgebildet auf eine iiber der w-Ebene ausgebreitete, ein-
fach zusammenhéingende Riemannsche Fliche F,, welche iiber w=0 einen k-fachen
Windungspunkt besitzt und im iibrigen unverzweigt ist. Die Projektion (Durch-
driickung) F, von F, in die w-Ebene ist enthalten in der Kreisscheibe

{w|Iwl <$40,(0, T)},
denn eine Anwendung von Lemma 2 ergibt3)

f ldw| = fe"“(z)ldzl = Je”"(z)ldzl <Ag,0,rI),).

Vn(ln) I'n Iy

Daraus folgt — etwa durch Anwendung des Schwarzschen Lemmas - fiir die Greensche
Funktion &, von F, die Abschétzung

&.(p,q9)<B+logr,—log|w—w. (38)

iiber.
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Dabei bezeichnen w und w die Projektionen (Durchdriickungen) der Punkte p und ¢
in die w-Ebene und B eine von n unabhiingige Konstante. Zur Abkiirzung setzen wir
0,(0,I)=r,(n=1,2,3,...).

Die Funktion v,(z) besitzt die Darstellung

() = Hy(2) + [ (2, Ot (&), (39)

Gn

Sei ™™ |dw| die durch Verpflanzung bei der Abbildung ¥, aus e |dz| hervor-
gehende Metrik. Da e~ ®|dz| =y, (2)| |dz| = |dw|, geht (39) iiber in

5, (W) = f 2., 9)di(e,).- (40)

Fyn

Dabei bezeichnet g, die Greensche Funktion von F, und [, die Verpflanzung des
Masses p, auf F, bei der Abbildung ¥, (charakterisiert durch i, (¥, (e)) = p,(e) fiir alle
Borelmengen e G,). Fiir p darf in (40) jeder iiber w liegende Punkt von F, eingesetzt
werden: §,(w) ist eine mehrdeutige Funktion auf F,.

Aus (38) und (40) folgt

5,(#) S 1, (B + log r) - [ Tog v — 0l d (eo). @1)
F,

Darin bezeichnet fi, die Durchdriickung des Masses /i, in die w-Ebene, und
an = ﬁn(Fn) = Ian(Fn) = un(Gu) g a < % . (42)

Die rechte Seite von (41) ist eine in der w-Ebene eindeutig definierte Funktion, welche
alle Bestimmungen von #,(w) simultan majorisiert.

Die frither definierte Zahl ¢,=1,(G,) ist gleich dem Abstand (gemessen in der
Metrik ‘dwl) des Randes von F, von dem iiber w=0 gelegenen Verzweigungspunkt.
Sei y eine diesen Abstand realisierende Kiirzeste auf F,. Diese fiihrt vom Verzwei-
gungspunkt (Durchdriickung 0) geradlinig zum nichsten Randpunkt g, (Durch-
driickung #,€'%") von F,. Mit Anwendung von (41) erhélt man

tn
ry < j‘ exp {T,(te'*)}dt <

(tangs 7) (43)
tn

1
s rﬁ" e"""’f exp {J‘ log m dﬁn (8‘,,)} dt.

0 Fn
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Es gilt die Ungleichung

tn

1 1 d ( ) dt < Zan tl an (44)
€X 08 —g— adll .

P g !t e, Sn ' n\€w 1

0

—a,
Um diese zu beweisen, nehmen wir zunéchst an, das Mass i, bestehe aus einer einzigen

Punktmasse a,, angebracht in einem Punkte w,. In diesem Falle besagt die Behaup-
tung (44)

anl an

f!te"‘"— ol T dt < (45)

1—a,

Zur Verifikation von (45) beachte man, dass fiir feste ¢,, 9, «, das Integral auf der
linken Seite offenbar dann seinen grossten Wert annimmt, wenn w,=t¢,€'*"/2 ist.

Dann ist aber — wie eine leichte Rechnung zeigt — dieses Integral gleich der rechten
Seite von (45).

Wir gehen nun dazu iiber, die Punktmasse fi, zu verschmieren. Betrachten wir
zunidchst den Fall, da ji, aus endlich vielen Einzelmassen besteht:

P12, in w;, p%, in  ®,;, ... Pp,%, 1IN @,

_‘;lpj=1, p;>0

(j=1,2, ..., m). Aus der Holderschen Ungleichung (siche z.B. [4], p. 140) und (45)
schliessen wir

tnh t

m 1 K m
fexp{z p;e, log ,3"‘“;} H (]ters,,_ 'k a,.)wdt<

0 Jl
m " pPj 2a"ti—a”
<Tl (flteis”—wjl_“"dt) .
=1\

A

1—a,

Danmit ist (44) auch fiir diesen Fall bewiesen. Ein naheliegender Grenziibergang liefert
schliesslich die Giiltigkeit dieser Ungleichung fiir beliebige positive Masse j, mit
Tréger F, und totaler Variation a,.

Aus (42), (43) und (44) folgt zunéchst

r, < 4ePringl o,
und daraus, mit nochmaliger Anwendung von (42),

h2ige °r, (n=1,2,3,.). (46)
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Nach Lemma 1 gilt r,=¢,(0, I',)— o fiir n—o0. Also wird (37) durch (46) impliziert.
Damit ist Lemma 3 bewiesen.

LeEMMA 4. Die in Lemma 3 auftretende Radienfolge {R,} (n=1,2, 3, ...) strebt mit
n gegen unendlich.

BEWEIS. Aus (24) folgt
bo(w)yZc,+kloglw (n=1,2,3,..).

Da €™ |dw| das Linienelement der bei der Abbildung ¢, auf D, verpflanzten Metrik
0, darstellt und da ferner das reelle Intervall [0, 1] die kiirzeste Verbindung der Punkte
0 und 1 in der Metrik exp {c,+k log |w|} |dw| bildet, gilt

1

en

2(0, 1) = ¢,(0, l)gec”ft"dt=1+k. 47)

0o

Andrerseits gilt
Rn R,

0,(0, 4,) = Je""(" dt = e°"J. t* exp {Jg,,(t, w) dﬁ,,(e,,,)} dt <
° & ° o (48)

< e R¥ | ex 1 2Ry i
< e™R, | exp | log di,(e,) ¢ dt .
[t — o

0 D,

Dabei wurde beniitzt, dass die Greensche Funktion g, von D, die Ungleichung

2R,

lw — ol

gn(w, ) < log
erfiillt. Es gilt die Abschiitzung

Rn
2ap,

2R 2
exp 4 | log " dji,(e,)p dt S R, < 4R,, (49)
[t — 0] ~1—a
0

n

Dn

wobei a, =fI,(D,)=u,(R2,) S a< 3. Die Verifikation von (49) iiberlassen wir dem Leser;
sie Yerlé’.uft ganz analog wie der Beweis von (44). Aus (47) bis (49) folgt

0x(0, 4,) S 4(1 + k)e(0, DR, ™ (50)
(n=1,2,3,...). Da nach Lemma 1 die linke Seite von (50) mit n gegen unendlich
strebt, muss dies auch die rechte Seite — und damit R, — tun. Q.E.D.

LEMMA 5. Die in Lemma 3 vorkommende Abbildungsfolge {¢,} (n=1,2, 3, ---) ist
in der endlichen z-Ebene lokal gleichmdssig beschrdnkt.
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Bewers. Fiir irgend zwei Punkte w; und w, in D, definieren wir

Gu(wy, wy)=  inf f &0 [dw] 51)

vEAn(wy, w2)
7
wobei A,(w,, w,) die Menge aller in D, enthaltenen rektifizierbaren Verbindungs-

kurven von w, und w, bezeichnet. Fiir irgend zwei Teilmengen 4 und B von D,
bedeute

0,(4, B) = ianQ",, (wy, wy). (52)
W;EB
Offenbar ist
én((pn(zl)a (Pn(ZZ)) _2.. Qn(zla 22) (53)

fiir alle z,, z,€Q, (n=1, 2, 3, ...). Zu jedem Punktepaar z,, z,eC gibt es einen Index
N(zy, z,) derart, dass fiir alle n> N in (53) die Gleichheit eintritt. (Z.B. besitzt jede
natiirliche Zahl N, fiir welche gy(z,, 4y)>0(z,, z,) ist, diese Eigenschaft). Entspre-
chende Aussagen gelten fiir die Mengenabstinde. Wir leiten zunédchst eine diese
Metrik betreffende Ungleichung her.

Sei B>1 eine vorgegebene positive Zahl. Im Folgenden lassen wir nur solche
Indizes n zu, fiir welche R,>2 B ist; nach Lemma 4 gibt es hichstens endlich viele
Indizes, welche diese Bedingung nicht erfiillen. Wir definieren

B, = i, ({o] lo| <2 B})
und

¥n(r) = i ({0] 2B < || <1})
fiir 2B<r<R,. Mit Anwendung von (24) erhalten wir

1 1

8,(0,1) < je"“(') dt < ec”Jt" exp {J g,(t, o)dii, (ew)} dt <

0 0 Dy

Rn
< exp {c,, -+ j log | ————

r=2B

r/R

()} (st)

1

2R
. ~dji dt.
j exp { J log It — o Hn (ew)}

0 lw|<2B

Dabei wurde im letzten Schritt der Faktor £*(<1) durch die Konstante 1 ersetzt.
Ausserdem wurde von folgenden Abschitzungen fiir die Greensche Funktion g, von
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D, Gebrauch gemacht:

2R

g.(t, 0) <log —> fiir |w|<2B,
[t — ol
g,
" R, y
g (t, @) < g,(1, |0]) = g,(1, |0]) = log ol — 1 fir 2B<|w| <R,.
el -

Auf analoge Weise wie Ungleichung (44) beweist man, dass

1

2R, 226
fexp { f log - dﬁ,,(em)} dt £ i Ri" < 4 R0, (55)

It—' I ~ Pn
joj<2B

Dabei wurde zuletzt beniitzt, dass f,<a<3. Aus (54) und (55) folgt

R,
R, — r/R
3,(0,1) < 4 RE exp{ J‘ log |- r{—f' dy,,(r)}. (56)
r=2B

Nun soll §,(0, Cg) nach unten abgeschitzt werden?). Fiir |w|< B ist

Rn R +rB
b,(W) = c, + k log |w] + B, 1 R"+_[l n R"d (r) (57)
w) = — og ———— .
vn -—cn Og w n Og3B — g r+B '}’n r

Diese Ungleichung folgt aus (24) unter Beachtung folgender Abschédtzungen fiir die
Greensche Funktion g, von D,,:

R, +
g.(w, ®) 2 g,(Iwl, — |lw|) = g,(B, — 2B) = log —-—3—3——1 > log — -

fiir ]w|<B und |w|<28B,
|w| B

R, +

2. (W, @) 2 g, (1w}, — |]) 2 g,(B, — |w]) = log Y

n

fir |w/<B

und 2B<|w|<R,.

Die Metrik €~ |dw|, wobei y (w) die rechte Seite von (57) bezeichnet, ist rotations-
symmetrisch beziiglich 0. Infolgedessen realisieren die von 0 ausgehenden (euklidisch
geradlinigen) Strahlen die kiirzeste Verbindung von 0 mit Cy in dieser Metrik. Aus

4) Wir fiihren die Bezeichnung C; = {w||w| = r} ein.
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dieser Tatsche folgt mit (57)

B
0,(0, Cp) = Jeﬁ*"(‘)dt =
0
rB 58
R \#n T Rn+? B+l (58)
=er[— ] -ex lo °d . )
(3B> 1.2 R

Beriicksichtigt man, dass die Ungleichungen B>1, k=1 und 0<f,<a<% die Ab-

schitzung
Bk +1-8, B

36 3

1\

implizieren, so erhdlt man aus (56) und (58)

rB
.0,C;) B TRt R
Qn ’ B - r —
2 ' 1 : dy,(r) ;- 59
5,0, 1) S12(k+1) T J o8 B v(r)s (59)
r=2B R"_—I{_‘

Der Betrag des ersten Faktors des zwischen den Absolutstrichen stehenden Produktes
ist offensichtlich grosser als 1; der zweite Faktor wird — wie eine elementare Betrach-
tung zeigt — nie kleiner als . Der Integrand wird also minorisiert durch die Konstante

R,
log4, undda f dy,(r)Sa<}
r=2B
ist, folgt aus (59)
6,(0, C B B

> > .
0,(0,1) ~12(k+1)3* 24(k+1)
Sei A >0 beliebig vorgegeben. Wir werden nun zeigen, dass es zwei positive Zahlen
B und N gibt mit folgender Eigenschaft: Aus |z] < 4 folgt |¢,(z)| < B fiir alle n>N.

Damit wird Lemma 5 bewiesen sein.
Es gibt eine natiirliche Zahl N, mit der Eigenschaft, dass

2(0, Cy,) = max (0, z). (61)
|z]|=4
Wir definieren
0(0, Cy ))
B=max|2,24(k+1)——=). (62)
( D) @ 1)
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Nach Lemma 4 existiert ein Index N, so, dass
R,>2B firalle n>N,. (63)
Schliesslich gibt es einen Index N, mit der Eigenschaft, dass
0.(0,1) =0,(0,1) fiiralle n>N,. (64)

Wir definieren N=max (Ny, Ny, N,).
Fiir beliebige z, |z| £ 4, und alle n> N folgt aus (61), (62), (63) und (60)

On (O’ Z) < Q(O’ CNo) < Q(O’ CNo) < B < é" (O’ CB)
en(0,1) = 0,(0,1) T oy, (0, 1) ~ 24(k+ 1)~ 4,(0, 1)
Aus (64) und (65) schliessen wir, dass
2x(0, 2) £8,(0, Cs) = 2,(0, ¢, ' (Cy)).

Es liegt also z im Innengebiet der Kurve ¢, '(Cjp), und dies impliziert |p,(z)| < B.
Q.E.D.

(65)

3. Der Darstellungssatz

SATZ 2. Die Funktion u(z) sei d-subharmonisch im Gebiete Q=/{z| R<|z| <o},
R >0, und erfiille folgende Bedingungen:

(a) die totale Variation des zugeordneten Masses v=Au[2n sei endlich?®)

(b) fiir jeden ins Unendliche fiihrenden Weg v gilt®)

fe“(’)ldz| =00.

14
Dann besitzt u die Darstellung

u(z) = j log

1— Z— dv(e,) + ¢ log |z] + h(2), (66)

wobei ¢ eine Konstante und h eine in Q und im Unendlichen harmonische Funktion be-
zeichnet.

5) Der Laplaceoperator ist hier und im Folgenden im Sinne der Theorie der Distributionen [11]
zu verstehen.

6) Auf jeder lokal rektifizierbaren Kurve y ist e* aus folgenden Griinden eine messbare Funktion
der Bogenlédnge: (1) u ist eine Differenz halbstetiger Funktionen; (2) die Menge A, auf welcher « un-
definiert ist, schneidet y in einer Menge vom Léingenmass 0 auf y. Da A die logarithmische Kapazitét
0 besitzt, ergibt sich der Beweis von (2) durch Anwendung eines Resultates von M. Tsuii (Satz 7 in
[12].) Hierauf hat mich Herr Pfluger hingewiesen.
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BEWEIs. Es sei v=v* —v~ die Jordansche Zerlegung des Masses v=Au/2n, und
es bezeichne g, die Greensche Funktion des Gebietes 2+ {c0}. Die Funktion

0,(2) = u (@) + [ o6z Dy (@) ©7)
(7]
ist superharmonisch in Q, und es gilt ; 2u und 4u; = —2nv~. Da
gO(Z’ C) = log ’
z—={
folgt aus (67)
u(z) = ul(z)+Jlog 1-2 dv* (e;)
2 R (68)
R* -2z
—v Q)1 -1 dv* (e;).
v'(Q) log |z J—og‘ Rat v' (e)
2

Wir wiéhlen einen Radius R, > R. Es existiert eine in ganz C definierte, §-subharmo-
nische Funktion u, mit der Eigenschaft, dass u,=u, in §21={2|R1 <|z|] < ©}. (Man
definiere etwa

dv™(ep),

uz(z)=F(z)—flog 1——2

wobei F eine in ganz C definierte, reellwertige, zweimal stetig differenzierbare Funk-
tion bezeichnet, welche auf Q, mit der in Q harmonischen Funktion

z
1 ==

: dv™ (e)

ul(z)+J10g

libereinstimmt).

Nun wihlen wir einen Radius R,> R, derart, dass v~ ({{||{|>R,})<%, und defi-
nieren

(@) = us(2) + klog 21— | 1og |z = 0] doe), (©9)
49,3
wobei 0 =A4u,/2n und k eine natiirliche Zahl bezeichnet, welche die Ungleichung

k> o ({[ 1Ll = Ry}) (70)
erfiille. Dann gilt:

Die Funktion v ist darstellbar in der Form (3) und befriedigt die zu Beginn desAb-
schnitts 2 aufgezihlten Voraussetzungen.
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Diese Eigenschaften von v ergeben sich direkt aus obiger Konstruktion. Insbe-
sondere ist die Vollstindigkeit der Metrik e”®|dz| eine Konsequenz von Eigenschaft
(b) der Funktion u und von der - zufolge (70) und (67) — in einer Umgebung von oo
giiltigen Ungleichung v(z)>u,(z)=u,(z) 2 u(z).

Im Folgenden soll verifiziert werden, dass

du(e) + k log |z| + d (71)

v(z) = — J log '1 -—Z

{-Ebene

fiir alle zeC, wobei u das in Abschnitt 2 so bezeichnete Mass und d eine Konstante
bedeutet.

Damit wird Satz 2 bewiesen sein: Denn aus (68), (69) und (71) folgt zunichst, dass
u im Gebiete Q,={z| R, <|z| <0} die in Satz 2 behauptete Darstellung zuléisst. Ver-
moge dieser Beziehungen kann ndmlich u als Summe geschrieben werden, deren
Glieder simliche die erwdhnte Darstellung besitzen. (Man beachte, dass der letzte
Term auf der rechten Seite von (68) in Q+ {00} harmonisch ist). Es ist also die in Q,
harmonische Funktion

Hz(z)=u(z)—flog 1——2

dv(ey)

im Unendlichen entweder harmonisch oder logarithmisch singuldr. Daraus folgt die-
selbe Eigenschaft fiir die in Q harmonische Funktion

dv(e,).

dv(e) =u(z)— j log

i) - | tog

222

1__
{

1.2
4

Dies ist aber die Aussage von Satz 2.
Zum Beweise von (71) machen wir Gebrauch von Lemma 3. Die Darstellung (24)
kann auch in der Form

) = klog Wl + [ [g,(v ) — (v, Ol dhu(e) +dy ()
geschrieben werden. Es ist >
gx(w, @) — g,(w, 0) =log |1 R? log |1 —g (73)
fiir alle w, coeD',,. Aus (34), (72) und (73) folgt, dass fiir alle ze 2,
v,(2) = k log |9a(2)| + log lon(2)l + dy +
2O aiy(en) - f gt -2 g ey

+Jlog|

n
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(n=1,2, 3, ...). Wir diirfen annehmen, dass die Abbildungsfolge {¢,} in der endlichen
z-Ebene lokal gleichmissig konvergiert. Durch Ubergang auf eine geeignete Teilfolge
unter Anwendung eines Diagonalverfahrens kann man dies jedenfalls erreichen, denn
nach Lemma 5 ist die Folge {¢,} lokal gleichmissig beschrinkt. Da ¢,(0)=0 und
¢.(1)=1 fiir alle n, kann die Grenzfunktion ¢ der Folge {¢,} keine Konstante sein.
Aus dieser Tatsache und daraus, dass ¢ Limes der schlichten Funktionen ¢,:Q,—-D,
ist, schliessen wir, dass die endliche z-Ebene durch ¢ schlicht und konform auf die
endliche w-Ebene abgebildet wird. Da ausserdem ¢(0)=0 und ¢(1)=1 ist, folgt
¢(z)=z fiir alle zeC. Also gilt

limg,(z)=2z und lime¢,(z)=1, (75)
wobei die Konvergenz in C lokal gleichmissig erfolgt. Fiir alle auf C definierten, steti-
gen Funktionen f mit kompakten Tréger ist

tim [ £ @) dy(eo) = lim [ £ (0,0)du(e) = [ £ ©du(e).

d.h. mit n— oo konvergiert /i, schwach gegen pu.
Aus (75) folgt

lim [k log |@,(2)| + log |@,(2)]] = k log |z| (76)

fiir alle ze C. Die Abschidtzungen

g, (D)<a<3 (n=1,2,3,..)

und Lemma 4 implizieren

lim J log

Dy

0. (2) @
2

1—

dfiy(e) = 0 W)

fiir alle ze C. Wir verifizieren nun, dass

limj log (p,,a()z)} dii,(e,) = j log

Dy {-Ebene

zZ
1- 1-2

du(e;) (78)

fiir alle z aus der Menge E={z#0|v(z)<0}.

Damit wird (71) (und also auch Satz 2) bewiesen sein. Denn, da v,}v fiir nfoo,
schliesst man aus (74), (76), (77) und (78) — wobei man einen festen Punkt ze E be-
trachtet — auf die Konvergenz der Zahlfolge {d,}. Sei

limd,=d. (79

n-* o

Aus (74) und (76) bis (79) ersehen wir, dass (71) fiir alle ze E erfiillt ist. Da beide
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Seiten von (71) in C— {0} superharmonische Funktionen sind, kann daraus auf die
Giiltigkeit dieser Darstellung in ganz C — {0} geschlossen werden. Fiir z=0 ist schliess-
lich (71) trivialerweise richtig.

Seien ze E und &£>0 vorgegeben. Sei N, eine natiirliche Zahl so, dass zeQ, fiir
n> N,. Es existiert eine positive Zahl R(>|z|) mit folgenden Eigenschaften:

p({¢l1¢1 = R}) = 0; (a)

z ea(2)|| €
12 £ b
cl c 1< ®)

fiir n=Ny+1, No+2, ... und alle { aus der Menge G={{||{|>R}. Da p(G)<% und
f.(G nD,)<4% fiir alle n, folgt

log 1-—

log

£
<-— d
4 un

jlog 1—-‘21} dy(e) <-§ (80)
G
und
logll —"’"a()z) dii, (e,) <-§ (n=No+1,Nog+2,..). (81)
Gn Dy

Wir fiihren die Bezeichnung D(z; r)={{||z—{| <r} ein. Es gibtein §, 0<6 < R—|z],
mit der Eigenschaft, dass (a) u({{||z—{|=6})=0 und (b) die Ungleichungen

€ &
[ ol —tidue) <5, | [ togleiduted) < 8
D(z;9) D (z;9)
und
~ €
| 1o810.@ - aldmite)| <.
4 D(z;8)NDn (83)
log |l dfis(e,) <5 (n=No+1,No+2,..)
| |P(2;6) N Dn
erfiillt sind.

Zur Verifikation dieser Aussage bemerken wir zunidchst, dass die Voraussetzung
v(z)< o dquivalent ist mit der Existenz des Integrals

f log |z — (| du(e)
B

fiir beschrinkte Borelmengen B. Es kann daher §, >0 so klein gew#hlt werden, dass
die erste der Abschitzungen (82) fiir 0<d <4, erfiillt ist. Durch die Bedingung
v(z)< oo wird auch u({z})=0 impliziert. Daraus schliessen wir, dass fiir geniigend
kleine & (0<d<J,) die zweite der Ungleichungen (82) ebenfalls befriedigt ist.
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Da die Massenbelegungen i, unendlich oft differenzierbare Dichtefunktionen be-
sitzen, gibt es zu jeder endlichen Menge I von natiirlichen Zahlen (> N,) ein §;>0
derart, dass (83) fiir ne/ und 0 <d < d, giiltig ist. Es geniigt daher, noch zu beweisen,
dass ein Index N und ein §,> 0 existieren so, dass (83) fiir n> N und 0 <6 <d, erfiillt
ist.

Es gibt ein n, 0 <n <4, mit den Eigenschaften

log |z — (| du(ep)

D(z;2n)

< i% (a)

und
,u(D(z;Zn))<§2—. (b)

Es bezeichne p, die Einschrinkung des Masses u auf die Kreisscheibe D(z; 27) (defi-
niert durch p, (€)= (e D(z; 2n)) fiir alle Borelmengen e). Fiir alle n> N, =[1/5] gilt
(da,= Fldachenelement in der 7-Ebene)

[ 108 1z = Cldunted =
D(z;m)

= I f da, log |z — 1 fa..(f = duy ()

t-Ebene

f da,o,(z — 1)

t-Ebene

f log |z — {] dit,(e;)

84

<

f log It — £l du, (¢)

e
é <16’

wobei «, hier die durch (6) definierte Funktion bezeichnet. Dabei wurden beniitzt die
Eigenschaft (a) der Zahl 5, die Kommutativitit des Faltungsproduktes sowie die Tat-
sache, dass die Funktion

U log |t — ¢ldu,(e)] in  D(z;1n)

superharmonisch ist. Eigenschaft (b) von n impliziert
€
(D (z3 M) < 35 (85)

Aus (75) folgt die Existenz einer Zahl N, so, dass
lpn ()l 2 % (86)
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fiir n>N, und {eD(z;n). Schliesslich existieren ein Index N; und eine Zahl §,,
0<d4<1, mit der Eigenschaft, dass ¢, ' (D(z; 6,))= D(z; ) fiir alle n> N;. Aus (84)
bis (86) schliessen wir, dass fiir > N=max (N,, N;, N,, N;) und 0<§<é, die Un-
gleichung

[ 10810, - o0 g’ [ 10210, - 0,01 dun(e) s
D(z;d) on~1(D(z;4))
é‘ f log Iz;a du, (e;) é’ f log lz;a dp,(e)| =
on=1(D(z;6)) D(z;m)
&
< (log 2) (D (z; n))+l f log |z — ¢l dpa(er)| < g
D(z;n)

erfiillt ist. Dieselbe Methode liefert auch die zweite der Abschidtzungen (83). In diesem
Falle seien jedoch die Details dem Leser iiberlassen.
Es gibt einen Index M, = N, derart, dass
€
| log |z — {| — log |@,(2) — (|| <Z
fiir n> M, und alle { aus der Menge H=C— (Gu D(z; 9)). Da ji,(Hn D,) <4, gilt fiir

n>M,
l f log l‘fi dﬁn(eco)— f log
w

HﬁDn HnDn

1 —

dfl, (e.)

Pn (Z)I

()

<: (87)
;-

Da die Folge {/i,} schwach gegen u konvergiert, folgt mit Beriicksichtigung der Eigen-
schaften (a) von R und 6 die Existenz einer Zahl M, > N, derart, dass

M log

fiir alle n> M,. (Der Singularitdt des Integranden im Ursprung braucht hier keine
Beachtung geschenkt zu werden, da die Triger der Massenbelegungen p und f, -
letztere fiir geniigend grosse n — zu einer festen Umgebung des Ursprungs disjunkt
sind). Aus (80) bis (83), (86) und (87) schliessen wir unter Anwendung der Dreiecks-
ungleichung, dass

@x(2)

log |1 — dji - 1
Jog - fin(e,) J og

D, {-Ebene

fiir alle n>max (M,, M,). Damit ist (78) bewiesen. Q.E.D.

1- %l dﬂ(@;) - f log 1 - (%‘ dﬁ'n(ew) <§ (88)
HND,

<¢

z
| —21 du(e;)
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4. Beweis der iibrigen Siitze
BEWEIS VON SATZ 3

1. Behauptung: Die Bedingungen (a) und (b) sind hinreichend.
Beweis: Die Funktion

1
v(z) = u(—) — (o + 2) log |z
Z
ist d-subharmonisch im Gebiet
Q={z|Ry <zl <o}, R,>1/R,

und erfiillt die Voraussetzungen von Satz 2. Das Mass 4v entsteht nimlich aus dem
Mass 4u durch Verpflanzung bei der Abbildung

1
Pz,
z

besitzt also eine endliche totale Variation. Ist ferner y irgend ein ins Unendliche
fiihrender Weg, so fiihrt der Weg 7' =¢(y) in den Ursprung, und es ist

fe”(z)ldzl = fe“<z>|z|“|dz| =00.

b Y

Also gilt nach Satz 2 die Darstellung

o(2) = | ot

wobei v=A4v/2n, ¢ eine Konstante und 4 eine in Q und im Unendlichen harmonische
Funktion ist. Bezeichnet g, die Greensche Funktion des Gebietes Q+ {0}, so ist

1 ——Z dv(e) + c log |z] + h(z), (89)

[ 1 =2 dv(e) = - [ oz, Ovte)
? ? 2 (90)
+v(Q) log |2| +Jlog R —z¢ dv(ey).

Da der letzte Summand auf der rechten Seite von (90) in Q und im Unendlichen har-
monisch ist, folgt aus (89) und (90) die Darstellung

v(z) =— fgo(z, {)dv(e) + ¢y log |z| + hy(2),

Q

wobei ¢, eine Konstante und 4, eine in  und im Unendlichen harmonische Funktion
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bezeichnen. Daraus folgt, dass die Funktion u im Gebiete G, ={z|0<|z|<1/R,} die
Darstellung

u(z)=-— fg(z, O)du(e) — (x + ¢y +2) log |z] + hy G) (2))

Gy

zulisst, wobei u=4 u/2 7 und g die Greensche Funktion des Gebietes G, + {0} bezeich-
net. Die Funktion A, (1/z) ist in G; harmonisch. Man kann deshalb der Darstellung
(91) entnehmen, dass u in G, d-subharmonisch ist. Q.E.D.

2. Behauptung: Die Bedingungen (a) und (b) sind notwendig.
Beweis: Die Notwendigkeit von (a) ist klar. Zur Verifikation der Notwendigkeit
von (b) stiitzen wir uns auf den folgenden Hilfssatz:

LEMMA 6. Sei v ein Radonsches Mass endlicher totaler Variation mit dem Trdger
Q={z|Ry<|z| <0}, Ry>0. Es bezeichne

1 _LZ dv(e,). (92)

w(z) = J log

Dann existieren eine reelle Zahl k und eine Menge positiver Zahlen E von endlichem
linearem Lebesgueschem Mass derart, dass

inf w(z) >k log r (93)

|zl =r
fiir alle nicht zu E gehdrenden positiven Zahlen r.

ANMERKUNG. Sei v=v;—v, die Jordansche Zerlegung von v. Es ist (nach Defini-
tion) w(z)=w;(z)—w,(z), wobei

w;(2) =J‘ log dvi(e) (j=1,2). (94)
2

Z
1 ==
¢

Die Funktion w bleibt also undefiniert auf der Menge A= {z|w, (z)=w,(z)= —}.
Diese ist aber von der Kapazitit 0 und fiir uns nicht von Belang. Bei der Bildung des
Infimums in (93) sind in A liegende Punkte auszunehmen.

BEWEIS VON LEMMA 6. Wir definieren

M;(r) =maxw;(z) und m;(r) = inf w;(z) (95)
. lz]=r |zl=r
(j=1, 2; r>0). Es gilt (Satz 5, p. 100 in [7])
M
im M0 _ @) (=12 (96)

roc0 lOg T
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Ferner wurde bewiesen (Satz 6, p. 100 in [7]): Zu jedem &> 0 gibt es eine Menge posi-
tiver Zahlen L(e) von endlichem linearem Mass mit der Eigenschaft, dass

my(r) 2 (1 —e) M, (r) 07

fiir alle im Komplement von L(¢) liegenden r.
Nach (96) gibt es einen Radius R, so, dass

M;(r)
log r

—v,(Q) <1 (98)

fiir r> R, und j=1, 2. Definieren wir nun
E=L(%)U{r|r§R1},
so gilt wegen (95), (97) und (98) fiir alle r¢ E die Ungleichung

inf w(z)zm(r)= M,(r)2iM;(r) — M,(r) 2

|z|=r
v (Q 3
g( ‘2 ) _ v2(Q) - :3_) log r.
Wihlen wir etwa k= — v,(Q)—2, so ist (93) fiir r¢ E erfiillt. Q.E.D.

Zum Beweis der Notwendigkeit von (b) betrachten wir die Funktion v(z)=u(1/z)
in einem Gebiete Q={z| R, <|z|] <0}, R;>1/R. Sie besitzt dort die Darstellung (vgl.
(90))

v(z) = *Jgo(z, {)dv(e) + ¢y log |z| + hy(2) =

Q

=J log

Q

1 -——Z; dv(e) + clog |z| + h(z).

Dabei bezeichnen ¢, und ¢ Konstante, #; und 4 in Q+ {co} harmonische Funktionen,
8o die Greensche Funktion des Gebietes Q+ {00}, und v=4u/2n. Unter Anwendung
von Lemma 6 schliessen wir: Es existieren zwei reelle Zahlen o und t sowie eine Menge
positiver Zahlen E von endlichem linearem Mass derart, dass
inf v(z)Zologr+r+ 99)
lz|=r
fiir alle im Komplement von E liegenden positiven Zahlen r.
Sei nun y irgend ein in den Punkt 0 fiihrender Weg, 7’ sein ins Unendliche fiihren-
des Bild bei der Transformation z—1/z. Wihlen wir a<o—1, so erhalten wir aus
(99) - man beachte auch Fussnote$) —
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JIZI“e“"’IdZI =JIZ!“'2e""’ |dz| 2
Y Y’
e o]

gjexp{inf v(z)— (¢ +2)logr}drz J %r:oo. Q.E.D.
I

z|=r
ro (ro, ©)NCE

BEWEIS VON SATZ 4

1. Behauptung: Die Bedingungen (a) und (b) sind hinreichend.

Beweis: Nach Satz 3 folgt aus der Giiltigkeit von (a) und (b), dass u é-subharmo-
nisch ist im Gebiete G+ {0}. Es bleibt zu verifizieren, dass das Mass u= —4u/2n in
G+ {0} nicht negativ ist. In G erfiillt u diese Bedingung jedenfalls, denn nach Voraus-
setzungist # in G superharmonisch. Daher ist nur noch zu beweisen, dass u({0})=0 ist.

Nehmen wir an, es sei u({0})= —a<0. Es gibt einen Radius R,, 0<R; <R, mit
der Eigenschaft, dass

(G)=p<min(2,
=f<min(=, -],
H Gy = 55
wobei G, ={z|0<|z|<R,}. Fiir alle ze G, gilt

u(2) = [ 8@ Ddu(e) + alog Izl + h ), (100)
Gy
wobei g die Greensche Funktion von G, + {0} und 4 eine in G, + {0} harmonische

Funktion bezeichnen. Da

2R,
’ él T E

schliessen wir aus (100) auf die Existenz einer Zahl ¢ mit der Eigenschaft, dass
1
u(z) Sc+oaloglz| + f log H—w dp(e;) (101)
z —
Gy

R
fiirallezaus G, = (zl O0<|z|<Ry= ~2—1> . Diese Abschétzung wird uns auf die Aussage

£ eu(r)
J‘ . dt <oo (102)

0

fiihren. Da diese im Widerspruch zur Bedingung (b) steht, wird damit die Behauptung
bewiesen sein. Das Integral in (102) soll von nun an zur Abkiirzung mit I bezeichnet
werden.
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Betrachten wir zundchst den Spezialfall, wo die Masse u(G,)=p ganz in einem
Punkte {, konzentriert ist. Dann gilt

Ro

I< e°ft““lt-|g'o||'ﬂdth, (103)
0

unterscheiden wir zwei Fille:

wobei M eine von {, unabhingige endliche Zahl bedeutet. Zum Beweise von (103)
(I) a=1. Dann ist

Ro Ro/2 %
R.I-
I§e°R3”1j|t—|Col|_”dt§2e‘R"5'1 J t — —29 dt. (104)
0 0
(I 0<a<1. Eine Anwendung der Hélderschen Ungleichung
_a- 2 2—«
P= 2002 A= o
ergibt
Ro Ro
' _1- 1
rse(Jreval ([
° 0 (105)
Ro " ) Ro/2
2 ca”“ R z
ée"( 12 1dt)“‘2 (2[ t-——292 dt)z““.
[} 0

Da die rechten Seiten von (104) und (105) von {, unabhingige Zahlen sind, ist damit
(103) bewiesen.

Betrachten wir nun den Fall, da die Einschrankung von u auf G, aus endlich vielen
Einzelmassen besteht:

plﬁ in Cls pZﬁ in CZa veey pmﬁ in Cma

Ypi=L, p;>0(=12, .. m).
j=1
Aus der Holderschen Ungleichung [4, p. 140] und (103) schliessen wir

Ro

I<e Jexp{(a*l)log’“L ZI”'Blogl —ICH}

Ro Ro
m pj
JH . 1|t——|Cj||'”)”fdt§e"H(Jt“_llt—-l'g'jll‘ﬁdt) <M.
=1 j=1
0

0
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Ein naheliegender Grenziibergang liefert schliesslich < M fiir beliebiges u, und damit
(102). Q.E.D.

2. Behauptung: Die Bedingungen (a) und (b) sind notwendig.

Beweis: Die Notwendigkeit von (a) ist klar. Da superharmonische Funktionen
lokal nach unten beschridnkt sind, ergibt sich die Notwendigkeit von (b) leicht durch
direkte Abschitzung des in Frage stehenden Integrals. Q.E.D.
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