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Uber eine spezielle Klasse von Nabelpunkten und analoge

Singularitâten in der zentroaffinen Flâchentheorie

von Hans Friedrich Mûnzner

1. Einleitung und Ergebnisse

Es sei F eine Flâche der Klasse C3 im dreidimensionalen euklidischen Raum; kx
und k2 (kl>k2) seien die Hauptkriimmungen auf F. K. Voss [9] hat im AnschluB an

Untersuchungen von St. Cohn-Vossen und H. Schilt [7] gezeigt:
Gilt aufier in einem Punkt P aufF ùberall {kx — c) (k2 — c) < Ofiïr eine geeignete Kon-

stante c, so ist der Poincarésche Index des Krummungsliniennetzes in P nient positiv.
Dieser Satz uber den Index spezieller isolierter Nabel und der Vosssche Beweis

besitzen ,,lokalen" Charakter. Da sich aber bekanntlich jedem kompakten, stûck-
weise glatt berandeten Bereich, auf dessen Rand keine Nabel liegen, ein Index des

Krummungsliniennetzes zuordnen lâBt, erhebt sich die Frage nach einer Verallge-
meinerung, bei der die Nabel nicht als isoliert vorausgesetzt werden.

Ist F eine offene Flâche, auf der die Menge aller Nabel kompakt ist, so bezeichnen

wir mit j (F) den Index des Krummungsliniennetzes in einem stûckweise glatt berandeten,

kompakten Bereich B auf F, dessen offener Kern aile Nabel enthâlt;y(F) hângt
offenbar nicht von der Wahl des Bereiches B ab. Wir zeigen

Satz 1.1. AufFgelte
(fc! - c) (fc2 - c) < 0 (1.1)

fur eine geeignete Konstante c. Ist dann die Menge der Punkte von F, in denen (1.1) mit
dem Gleichheitszeichen erfullt ist, kompakt und gestattet F eine regulâre Parallelprojek-

tion,sogiltj(F)<0.
Die Projektion braucht dabei nicht einwertig zu sein; auch darf die Flâche Selbst-

durchdringungen besitzen. Wesentlich ist, daB die durch die Projektion vermittelte
differenzierbare Abbildung in jedem Punkt den Rang 2 hat; dies bedeutet regulâr.
DaB der Satz falsch wird, wenn man die Voraussetzung der regulâren Projizierbarkeit
streicht, zeigen wir in Nr. 7 am Beispiel einer Rotationsflâche. Ein Korollar des obigen
Satzes ist

Satz 1.2. Jede einfach zusammenhângende Rotationsflâche1), die eine einwertige

Projektion gestattet und auf der (1.1) gilt, ist Stûck einer Kugel oder Ebene. Speziell

x) Im Begriff der Rotationsflâche sei enthalten, daB mit einem Punkt der ganze durch ihn be-

stimmte Breitenkreis zur Flâche gehôrt.
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sind die Kugeln die einzigen vollstàndigen elliptisch gekrummten Rotationsflàchen mit
der Eigenschqft (1.1).

Wahrscheinlich sind die Kugeln auch die einzigen Eiflâchen, auf denen (1.1) gilt,
aber Satz 1.1 gibt keine Anhaltspunkte zu einem Beweis dieser Vermutung.

Wir wenden uns Analoga der genannten Resultate zu, die der zentroaffinen
Flâchentheorie angehôren. Bekanntlich untersucht man dort Flâchen im dreidimen-
sionalen Vektorraum, deren Tangentialebenen den Nullvektor (das Raumzentrum)
nicht enthalten und die entweder nur aus elliptischen oder nur aus hyperbolischen
Punkten bestehen. Wird die Flâche F der Klasse C4 lokal als Vektorfunktion C(w')
in den Parametern ul und u2 dargestellt und ist £(«') der durch <^(£> 1 normierte
Kovektor, der die Tangentialebenen beschreibt, so lauten die zentroaffinen Ablei-
tungsgleichungen

Vt\\k Aiki<£l + GîkV, (1.2)

^{k -Aikl^ + Gik^ (1.3)

Dabei dient Gik als MaBtensor, und der Doppelstrich vor dem Index der Ableitung
bedeutet kovariante Differentiation.

Wenn nun die kubische Grundform a — Aikl du* du* du1 iiberall auf F in réelle

Linearfaktoren zerfâllt, kann fiir das Tripelnetz ihrer Nullinien ein ganzzahliger Index

j (ce, F) definiert werden in âhnlicher Weise, wie fur das Netz der Krummungslinien
(vgl. Nr. 2,3). Zur Formulierung der Resultate, die j (a, F) betreffen, ist es zweek-

mâBig, den Tensor
Pik <TBlmsnpAlniAmpk (1.4)

und die Invariante
n <j det (P?) (1.5)

einzufùhren; dabei ist cr sign det (Gik), und e12= — £21 1

sind die Komponenten des Diskriminantentensors. Gilt in einem Flâchenpunkt 71 >0,
so zerfâllt dort a in drei paarweise linear unabhângige réelle Linearformen; gilt n=0,
so ist a durch ein Linearformenquadrat teilbar; in den Nullstellen von Pik ist a die

dritte Potenz einer Linearform. Die Stellung von Pik im Formelapparat der zentroaffinen

Flâchentheorie wird verdeutlicht durch die Beziehung

wobei S der Krummungsskalar zu Gik ist.

Wir geben nun ein Analogon zu Satz 1.1 an.

Satz 1.3. Auf F set ^ (16)

erfulh. Ist dann die Menge aller Nullstellen von Pik kompakt undgestattet F eine regulâre

Parallelprojektion, so gilt j (a, F)<0.
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Elliptisch gekrûmmte eigentliche AfBnsphâren, deren Mittelpunkt im Raumzen-
trum liegt, geniigen der Bedingung (1.6); auf ihnen gilt nâmlich ^4^ 0, und hieraus
kann man n (Aiki Aikl)2/4 schlieBen. Da in jenem Fall, aufler wenn es sich um eine

Quadrik handelt, die Nullstellen von Aikl isoliert liegen, kann die Blaschkesche Kenn-
zeichnung des Ellipsoids als geschlossene Affinsphâre mit Hilfe von Satz 1.3 und der
Poincaréschen Indexsummenformel bewiesen werden2). Wir notieren eine weitere

Anwendung des Satzes.

Satz 1.4. F sei eine einfach zusammenhângende Affinrotationsflàche elliptischen
Typsz), deren Achse durch das Raumzentrum gehe. Gilt dann (1.6) und gestatîet F eine

einwertige Projektion, so ist F Stiïck eines Ellipsoids oder eines zweischaligen Hyper-
boloids.

Speziell ist jede eigentlich affinsphârische Affinrotationsflâche elliptischen Typs,
die von ihrer Achse getroffen wird, eine Flâche zweiter Ordnung; ferner folgt eine

Kennzeichnung der Ellipsoïde unter den geschlossenen Affinrotationsflâchen.
Der Satz 1.3 gilt fur elliptisch und fiir hyperbolisch gekriimmte Flâchen. Im fol-

genden sei F elliptisch gekrummt. Dann ist das Tripelfeld der Darbouxschen Rich-

tungen, welche sich als Nullrichtungen der Form

Ôt CiklàiJéukéul a -iG(ikVl)àuidukdul (F, \Alu)

ergeben, reell, und unter den Voraussetzungen von Satz 1.3 stimmen j (a, F) und

j(&, F) iiberein. Die durch a=0 und â 0 gegebenen Tripelnetze verhalten sich zuein-

ander, wie Asymptotenliniennetz und Kriimmungsliniennetz. Es erhebt sich die Frage
nach Bedingungen, diey^* F)<0 implizieren und nicht davon abhàngen, ob die

Nullrichtungen von a reell sind. In der Tat gilt j (ât, F)<0 auch fiir analytischen Flâchen,
auf denen die Bedingung

WlVl\^q\CiklCikl\ (1.7)

mit einer Konstanten q<\ erfiillt ist2). Dièses Résultat iiberschneidet sich mit Satz

1.3, da (1.6) die Ungleichung (1.7) mit q=l nach sich zieht. Eine gemeinsame Verall-
gemeinerung der beiden Ergebnisse scheint schwer zu beweisen.

Wir geben noch einige Hinweise zum Inhalt der folgenden Abschnitte. In Nr. 2

und 3 wird eine Théorie des Poincaréschen Index fur die Nullinien homogener Diffe-
rentialformen beliebigen Grades skizziert Dabei zeigt sich, daB die Berechnung dièses

Index auch bei Formen «-ten Grades, deren Nullinien sich ja im allgemeinen nicht

auf Kurvenscharen verteilen, auf die Berechnung des Index fur eine Linearform (Kur-
venschar) zuriickgefiihrt werden kann; fiir quadratische Formen benutzten dies schon

H. Hopf und H. Samelson [4]. Da wir nicht nur isolierte Singularitàten behandeln, ist

^ Vgl. [6].
8) d.h. eine affin verzerrte ubliche Rotationsflâche; vgl. [8] und FuÛnote 1).
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eine Définition des Index im GroBen erforderlich; wir verwenden hierfur in Nr. 3 eine

Integralformel4). In Nr. 4 geben wir die benôtigten Sâtze iiber Gradientenfelder und
Niveaulinien an; auch hier werden beliebig gestaltete Singularitàtenmengen zugelas-
sen. Die Sâtze 1.1-1.4 werden in den beiden folgenden Abschnitten auf die Ergebnisse
iiber Gradientenfelder zuriickgefùhrt; fiir Satz 1.4 wird noch eine lokale Kennzeich-

nung von Quadriken unter den Affinrotationsflâchen elliptischen Typs benôtigt, die
wir in Nr. 6 beweisen. Die letzten Abschnitte sind Beispielen gewidmet; so zeigen wir
in Nr. 8, daB jede négative ganze Zahl als Index einer isolierten Nullstelle der zentro-
affinen kubischen Fundamentalform vorkommt, und zwar sowohl aufelliptisch wie auf
hyperbolisch gekrûmmten Flâchen. Ferner wird eine geometrische Interprétation dièses

Index angedeutet, die dem Satz von St. Cohn-Vossen und H. Schilt analog ist, der den

Index eines isolierten Flachpunktes des Asymptotenliniennetz mit der Sattelordnungin
Beziehung setzt.

2. Der Index in der Ebene

Es sei a a(£, rç) oc(w, v, Ç, rj) eine reellwertige stetige Funktion der reellen Ver-
ânderlichen w, v, Ç und rj ; dabei variiere (m, v) in einem Gebiet G der (w, y)-Ebene, und
fur festes (w, v) sei a(£, rç) ein homogènes Polynom «-ten Grades (n>l) in f und rj,
welches in réelle Linearfaktoren zerfâllt oder das Nullpolynom ist. Die Punkte von G,

in denen das Letztere eintritt, nennen wir aus naheliegenden geometrischen Griinden
die Singularitâten von a. Wir untersuchen eine ganzzahlige topologische Invariante
der Gesamtheit aller Lôsungskurven des gewôhnlichen Differentialgleichungssystems

a(!i,t;,M) 0 (2.1)

in einem kompakten Bereich BczG, auf dessen Rand ôB keine Singularitâten von a

liegen, den Index y (a, B).
Zunâchst sei B einfach zusammenhângend und werde von einer geschlossenen

Jordanschen Kurve F berandet, die B im positiven Sinne umlâuft. Fiir eine Linear-
form a, Al(u, v)Ç + A2(u9 v)rj setzen wir

j(a, B) j(a, F) ^ j d arg (At + i A2). (2.2)

Wenn a({, r\) vom Grade n>2 ist, kann man versuchen, a auf der «-fachen Ober-

lagerung der Randkurve, «F, als Produkt von n stetigen Linearformen darzustellen

n

a|nF= Y\cck9

4) Das Material der Abschnitte 2 und 3 ist ein Auszug aus Kapitel 1 in [6] und wurde zusammen
mit einem Spezialfall von Satz 1.3 auf der Geometrietagung in Oberwolfach 1964 vorgetragen.
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um daim zu definieren „

^V(a,,nr). (2.3)

Wir werdeny(a, B) im AnschluB an [4] auf andere Weise einzufiihren. Dazu be-

trachten wir a(^, ?/) fur festes (w, v) als Polynom in den komplexen Verânderlichen

a=I^rr-f (ai-*-i) (2.4)
i 0

und setzen

^aoC + âoC1, [a] a0. (2.5)

â ist in réelle Linearfaktoren zerlegbar, und die Figur der Nullrichtungen von â ist in
jedem Punkt invariant gegeniiber Drehungen um den Winkel n/n. Offenbar lâBt sich
& als das einzige Polynom mit den folgenden Eigenschaften charakterisieren: l.a — St

ist durch |C|2 teilbar; 2. (d2â/dÇ dÇ)=O. Da a reell zerfâllt, impliziert die Eigenschaft
1, da8 [a]=0 nur in den Singularitâten von a eintreten kann. Da [a] ferner in (w, v)

stetig ist, kônnen wir definieren :

j(a, B) =j(â,B) —\d arg [a]. (2.6)
Zn J

r
Dies steht im Einklang mit der Définition (2.2), da fiir eine Linearform [a]

\-iA2) gilt. Fiir je zwei homogène Polynôme a, P in f, rj gilt [a/?]==[a][/?].
Hieraus folgt, daB die Ansâtze (2.3) und (2.6) équivalent sind; auBerdem hat man
unter entsprechenden Voraussetzungen

j(*PfB)=j(*9B)+j<ft,B). (2.7)

Jetzt sei P Bi^ + B2rj, wobei Bt und B2 stetige Funktionen in G sind; ferner sei

der Grad n von a grôBer als Eins. Das Polynom

ô Bt (da/dÇ) + B2 (doLJdri) (2.8)

zerfâllt bekanntlich mit a in jedem Punkt von G in réelle Linearfaktoren. Denn nach

Durchfiihrung der Substitution Ç B1s—B2t,ri~B2s+Blt ergibt sich ô=da/ds;
setzt man dann t= 1, so hat man die Frage nach der reellen Zerfâllbarkeit von a und S

auf-dieselbe Frage fur ein Polynom einer Verânderlichen und seine Ableitung zuriick-

gefuhrt, die man mit Hilfe des Satzes von Rolle sofort iibersieht.
Eine zentrale Rolle in unseren Oberlegungen spielt die folgende Tatsache, die von

H. Hopf und H. Samelson [4] fiirn=2 und singularitâtenfreies P ausgesprochen wurde :

Satz 2.1. Wenn S aufF keine Singularitâten besitzt, gilt

j{ô9B)=j(*9B)-j(fi.B).
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Speziell gilt alsoy(a, ^«./((d""1»/^^). B) (/+fc=«-l), wenn dn'loc/
auf F keine Singularitâten besitzt.

Dem Beweis des Satzes schicken wir einen Hilfssatz voraus.

Hilfssatz. Es sei <x(£, rç) ein homogènes Polynom n-ten Grades (n^.1) und
P=AÇ2 + 2BÇri + Cri2 eine positiv definite quadratische Form. Dann verschwindet das

Polynom

nicht identisch; wenn a in réelle Linearfaktoren zerfâllt, gilt dies auch fur pi.

Beweis des Hilfssatzes: Da man P durch eine orthonormale Substitution auf Dia-
gonalgestalt transformieren kann, werde o.B.d.A. 2?=0 angenommen. Dann ist
ji=éO évident. Wir setzen/(£) a(<!;, 1) und

F(0 il& Ï) (A- C)çf'(O + nCf(Q. (2.9)

Es seien ^ < £2 < *• * < Çm diejenigen Nullstellen von/', in denen/nicht verschwindet;

ferner wàhle man £0 und £m+1 so, daB/(^)^0^F(<^)fur Ç£Ç0 und fèÇm+1 gilt.
Mit nt bzw. Nt bezeichnen wir die algebraische Anzahl der Nullstellen im offenen
Intervall ]Çh ^i+1[(O^i^m) von/bzw. F. Da/in jedem dieser Intervalle hôchstens
einmal verschwindet, folgt aus (2.9) iV^fy — l. Andererseits gilt, da A und C positiv
sind, sign F(£y) sign/(Çy) (J=0,..., m +1) und damit nt Nt (mod 2). Es folgt Nt ^ nt.
Wenn also/in réelle Linearfaktoren zerfâllt, gilt dies auch fur F, da/undFgleichen
Grad besitzen. Damit ist der Hilfssatz gezeigt.

Zum Beweis des Satzes bilden wir

j*(f) tna + (1 - t)pô (0 < t < 1). (2.10)

Bei Verwendung der Eulerschen Relation fur homogène Funktionen erhalten wir

Aus dem Hilfssatz folgt, dafi auf T fur *>0 [p(0]^0 gilt. Wegen der Ganzzahligkeit
des Index und der Beziehung (2.7) ergibt sich schlieBlich:

lj darg[/,(0)]=j(<5,

3. Der Index auf zweidimensionalen differenzierbaren Mannigfaltigkeiten

Wir skizzieren eine Verallgemeinerung der bisherigen Ûberlegungen, bei der das
ebene Gebiet G durch eine orientierte zweidimensionale differenzierbare Mannigfal-
tigkeit M ersetzt wird und B ein kompakter, von endlich vielen stiickweise glatten
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Kurven berandeter Bereich auf M ist. In einer Karte mit den lokalen Parametern

«'(/«l, 2) besitzt das Differentialgleichungssystem (2.1) die Gestalt

wobei Ahin das Komponentenschema eines symmetrischen, stetigen Tensors auf M
darstellt und a, aufgefaBt als Polynom in den Koordinatendifferentialen, in jedem
Punkt reell zerfâllt. Um die Zuordnung oc-*<$, die den Kern des vorigen Abschnitts
bildet, zu bewerkstelligen, fûhren wir eine positiv definite Riemannsche Metrik
ds2 Gikduiduk ein. Wir definieren dann â=Âh induli...duin als die eindeutig be-

stimmte Form mit den folgenden Eigenschaften : 1. a — â ist durch ds2 teilbar; 2. es

gilt
GikÂikh^in 0. (3.1)

Offenbar sind es dieselben Eigenschaften, die wir im vorigen Abschnitt fur ât heraus-

gestellt haben. Die Koeffizienten von â sind rationale Funktionen in denen von a und
ds2 und bilden einen symmetrischen Tensor. Da a punktal reell zerfâllt, besitzen a

und â dieselben Singularitâten.
Jetzt gehôre der Koeffiziententensor von a zur Klasse C1 und besitze keine Null-

stellen auf dem Rand von B. Die der Formel (2.6) entsprechende Définition lautet

j(a, B) j(ât9 B) ~ (LuÂkh-in ^ Âli2^in\â\-2ds + n JSdoV (3.2)

dB B

wobei \&\2=Âh"inÂiUmAn gesetzt ist und T>jds die absolute Differentiation nach dem

Randparameter s, skl den Diskriminantentensor und S den Krummungsskalar zu

Gik bezeichnet.

Wenn a in B keine Singularitâten besitzt, giltj(a, B)=0; dies bestâtigt man leicht
mit Hilfe des Stokesschen Integralsatzes. Der Index ist stets eine ganze Zahl. Dièse

Tatsache lâBt sich auf den Fall isolierter Singularitâten zuriickfiihren; dann braucht
die Formel (3.2) wegen der vorher erwâhnten Eigenschaft nur auf Bereiche angewendet

zu werden, die sich allein mit einer Karte beschreiben lassen. Fur derartige Bereiche

kann man bei Benutzung isothermer Parameter die Formeln (3.2) und (2.6) ineinander

ûberfiihren.5)
Unmittelbar aus der Ganzzahligkeit folgt, da6 7'(a, B) nicht von der Wahl der

Metrik abhângt; denn je zwei positiv definite Metriken Gik und Gih lassen sich durch
die stetige ScharVGf/k + (l-/)(/ik(O<^l) verbinden, und die Koeffizienten von â

sowie die Intégrale in (3.2) hângen stetig von der Metrik ab.

5) Wir begnugen uns mit diesen Andeutungen, da die ïntegralformel (3.2) hier hauptsâchlich als

Hinweis dafiir dient, wie sich die in Nr. 2 dargestellten Ansâtze auch im GroBen durchfuhren lassen.
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Um die âllgemeine Giiltigkeit von (2.7) zu beweisen, untersuchen wir den Inte-
granden des Wegintegrals in (3.2). Die Bedingung (3.1) impliziert die Symmetrie des
Tensors ekilÂkh"in und die Identitât

Hieraus folgt

wobei die rikl die ChristoffelgrôBen zu Gik sind. Bei Verwendung isothermer Para-
meter (ds2 h ((du1)2 + (dw2)2)) làBt sich â wie in (2.4) und (2.5) konstruieren, und aus

aoln + â0C 4...indwfl... du1'" (C du1 + idu2)

gewinnt man durch Koeffizientenvergleich [a] a0=i(^ii...i + *^2i...i)« Benutzt man
die aus (3.1) folgende Identitât Âllh^in+Â22i^in=0 und die Symmetrie des Tensors,
so erhâlt man nach leichter Rechnung:

|,|-W,"" '" H Akh..,n ^ arg [a] - "- £/r,/ ^. (3.3)

Da a£ rç die Beziehung [a][jS] [f|] nach sich zieht, folgt aus (3.2) und (3.3), daB

(2.7) allgemein gilt.
Jetzt sei n>2 und p Biàui. Dem Ausdruck (2.8) entspricht

und Satz 2.1 lâBt sich auf den allgemeinen Fall iibertragen, d.h. es gilt wieder
j(ô, B)=j(a, B)—j((ï, B)y wenn auf dBkeine Singularitâten vonôliegen. Zum Beweis
betrachtet man die Homotopie (2.10). Man muB nur bestâtigen, daB fur jedes t mit
0< t<, 1 die Form (l(t) dieselben Singularitàten wie ô besitzt, und dies folgt nach Ein-
fiihrung isothermer Parameter wieder aus dem Hilfssatz in Nr. 2.

Ist M eine offene Mannigfaltigkeit und ist die Menge der Singularitâten von a
kompakt, so setzen wir y (a, M)=j(a, B), wobei B ein beliebiger stiickweise glatt be-
randeter kompakter Bereich ist, dessen offener Kern aile Singularitâten von a enthâlt.

4. Der Index von Gradientenfeldern

Es sei/eine Funktion der Klasse C2 auf der offenen orientierten Riemannschen

Mannigfaltigkeit M. Die Menge © der kritischen Punkte von / sei kompakt. Wir
untersuchen den Index der Form d/=/dwf, der mit dem Index des Gradientenfeldes
von/ ubereinstimmt.

Ein stûckweise glatt berandeter kompakter Bereich B heiBe ein ,,/-Bereich", wenn
jede Zusammenhangskomponente von dB entweder eine geschlossene Niveaulinie zu
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einem nichtkritischen Wert von/oder ein Polygonzug ist, der aus Niveaulinienstiicken
zu nicht kritischen Werten von/- den ,,N-Kanten von B" - und aus in M\Q gelegenen
Stiicken von Orthogonaltrajektorien der Niveaulinienschar - den ,,T-Kanten von 2?" -
besteht. Eine N-Kante k heiBe I-Kante bzw. A-Kante, wenn die durch k gehende
Niveaulinie an beiden Endpunkten von k in das Innere von B eintritt bzw. aus B
austritt. Bezeichnet man die Anzahl der I-Kanten bzw. A-Kanten von B mit i(B) bzw.

a (B), so wird der Index eines/-Bereiches dargestellt durch

j(d/, B) i(i(B) - a (B)) + X(B), (4.1)

wobei %{B) die Eulersche Charakteristik von B ist. (Vgl. Hamburger [2].)
Dièse Beziehung kann aus der Formel (3.2) hergeleitet werden. Denn lângs des

Randes eines/-Bereiches ist der Gradient von/tangential oder normal; bei Beachtung
der Formeln von Frenet und GauB-Bonnet geht (3.2) also iiber in

dB B

wobei c die geodâtische Krummung lângs der glatten Randstiicke und die œt die

AuBenwinkel von dB bedeuten. Die einer N-Kante anliegenden AuBenwinkel er-

gânzen sich im Falle einer I-Kante zu — n, einer A-Kante zu +n und sonst zu Null;
also folgt (4.1).

Die in Nr. 1 angegebenen Sâtze lassen sich aufdas folgende Ergebnis zuriickfuhren :

Satz 4.1. Es sei B ein f-Bereich, und es gelte

j(df,B)~n>0. (4.2)

Dann sind in B mindestens n paarweise disjunkte einfach zusammenhàngende Be-

reiche enthalten, diejeweils durch eine geschlossene Niveaulinie berandet werden, welche

Punkte aus dB enthàlt.

Folgerung. Es sei C eine kompakte Teilmenge von M, die S umfafit. Giltj (d/, M)>0,
so gibt es einen einfach zusammenhângenden Bereich auf M, der Punkte aus M\C ent-

hâlt unddessen Rond eine Niveaulinie vonf ist.

Der Ûbergang vom Satz zur Folgerung wird vermittelt durch den

Hilfssatz. Es sei C eine kompakte Teilmenge von M, die S umfafit. Dann gibt es

ein System endlich vieler f-Bereiche, deren offene Kerne C ilberdecken und paarweise

disjunkt sind.

Beweis des Hilfssatzes: Da nach M. und A. P. Morse [5] die Menge der nicht

kritischen Werte von / im Wertebereich dicht liegt, kann man jedem Punkt P aus

M\C einen ihn enthaltenden/-Bereich K(P)9 etwa ein ,,Rechteck", zuordnen, das ganz
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in M\C liegt. Es sei W eine kompakte Umgebung von C. Das Mengensystem

{K(P)°\PeôW}s) bildet eine offene Oberdeckung der kompakten Menge dW. Also
ist d W schon in der Vereinigung von endlich vielen Elementen dièses Mengensystems,
etwa K^, ...,XS°, enthalten. Die kompakten Zusammenhangskomponenten von
(M\ U \Ki)~ ergeben dann endlich viele/-Bereiche, deren offene Kerne die Menge C
uberdecken.

Beweis zu Satz 4.1 : Es sei k eine I-Kante von B und g der Wert von/auf k. Wir
setzen l?(e)= {PeM|/(/>)<#}. Da / lângs jeder T-Kante monoton und q ein nicht
kritischer Wert von/ist, besitzt die Menge (BonB(Q))~~ bzw. (B\B(q))~ nur endlich
viele Komponenten Bu Bk bzw. Bk+i Bt. Die Bj(j=l, /) bilden eine Zer-

legung von B in zusammenhângende /-Bereiche. Jede N-Kante eines Bj9 die in ô B (q)
liegt, ist eine A-Kante dièses Bereiches, da in ihren Endpunkten die Niveaulinie zu q

aus Bj austritt; aile anderen N-Kanten von Bi gehôren schon B als Randkanten an.
Es folgt Yïj=ii(Bj)<i(B); wir haben gewissermaBen die zu q gehôrenden I-Kanten,
unter ihnen k, durch Zerlegung von B beseitigt. Wir zerlegen nun jedes Bp welches

I-Kanten besitzt, in der eben beschriebenen Weise und wiederholen diesen Prozess so

oft, bis wir eine Zerlegung von B in zusammenhângende/-Bereiche Cl9 Cr mit

Tritt in ihr ein Bereich Ck auf, dessen Rand eine geschlossene Niveaulinie von / ist,
die keine Punkte von ôB enthâlt, so gehen wir zu einer neuen Zerlegung von B tiber,
indem wir Ck mit seinem einzigen Nachbarbereich Ck> verschmelzen. Da jede T-Kante
eines C, schon in dB enthalten ist, gilt d(CkyjCk>) dCk\dCk9 und der /-Bereich

QuQ' besitzt ebenso wie Ck> keine I-Kanten. Wenn wir diesen Verschmelzungspro-
zess hinreichend oft durchfiihren, erhalten wir schlieBlich eine Zerlegung von B in
zusammenhângende/-Bereiche Dl9 Dm mit YïïKDj)—®* ^n der jeder Bereich, dessen

Rand aus einer geschlossenen Niveaulinie besteht, Punkte mit dB gemeinsam hat.

Wenn (4.2) gilt, gibt es wegen YaJW> Dy)=y(d/, B) einige D,-, etwa ri Stûck, mit
positivem Index. Aus y'(d/, Ds)>0 und i'(Ds)=0 folgt bei Beachtung von (4.1)

x(Ds)=l und a(Ds)=0, da die Eulersche Charakteristik eines zusammenhângenden
Bereiches auf M nicht grôBer als Eins sein kann und der Index eine ganze Zahl ist.

Ds ist dann also ein einfach zusammenhângender Bereich, dessen Rand eine Niveaulinie

von/ist, die nach Konstruktion der D^ mit dB einen nicht leeren Durschnitt
besitzt. Ferner folgt j (d/ D;)<1 und also wegen (4.2) ri>n.

Satz 4.2. Es seienfundg Funktionen der Klasse C2 aufM9 und es gelte dort iiberall

0.7) (4.3)

6) A° bzw. A- sei der offene Kern bzw. die abgeschlossene Hiille einer Menge ACM.
7) Die Bedingung (4.3) ist definiert, wenn man auf M nur orientierungstreue Kartentransforma-

tionen zulâBt.
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Dann hat man injedem kompakten Bereich B, dessert Randaus endlich vielen Niveau-
linien vonfbesteht,

O. (4.4)

Ist ferner die Menge C der Punkte, in denen (4.4) erfullt ist, kompakt, so gilt
j(àf9M)<0.(Vgl [4], S. 756.)

Beweis: Wird B durch endlich viele Niveaulinien von/berandet, so folgt aus dem
Stokesschen Satz

jeiJftgjdo j/
B SB

und (4.3) impliziert (4.4). Wârey(d/, Af)>0, so gâbe es nach der Folgerung zu Satz
4.1 einen kompakten Bereich B', der von einer Niveaulinie von/berandet wùrde und
Punkte aus M\C enthielte. In B' mûBte dann (4.4) gelten, und hieraus folgt B'cC.
Das ergibt einen Widerspruch.

5. Die Beweise der Sâtze 1.1 und 1.2

Es sei (£(*/)(/= 1, 2) der Ortsvektor einer orientierten Flâche F der Klasse C3 im
dreidimensionalen euklidischen Raum und £(wf) der Normalenvektor, ferner

7 Gffcdwfdw*undjS 5lkdMidM*dieersteunddiezweite Grundform auf F. Wir setzen

oc f}—Hy, wobei H die mittlere Kriimmung ist. Anstelle des Krummungsliniennetzes
untersuchen wir das durch die Differentialgleichung a=0 gegebene Netz seiner Win-
kelhalbierenden; die beiden Netze sind fur Indexbetrachtungen gleichwertig, da die

zugehôrigen Richtungsdoppelfelder stetig ineinander ûberfiihrbar sind.
Jetzt gelte (1.1); wir setzen â=Âikduidif p — cy. Wegen

det (A!) K - 2 if c + c2 {kx - c) (k2 - c) < 0

zerfâllt â in réelle Linearfaktoren; da ferner â=a gilt (vgl. Nr. 4), hat many*(â, F)
y (a, F), wenn dièse Zahl existiert.

Wenn F eine regulâre Parallelprojektion zulâBt, gibt es Vektoren a, b so, daB die

Funktionen jt <a(£> und j=<b(£> iiberall auf Fder Bedingungsl"fcX|^k>Ogenugen.

Wegen der Weingartenschen Ableitungsgleichungen ^= —B/dj gilt fiir die Funktio-

J u (5.1)
Es folgt

Wenn nun die Menge der Nullstellen von det(J*/) kompakt ist, liefert der Satz 4.2

F)<0. Wegen (5.1) lâfit sich der gemâfl Abschnitt 3 verallgemeinerte Satz 2.1
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anwenden, und man erhâlt, wenn man noch beachtet, daB die Form dx singularitâten-
frei ist,

7(a, F) j(â, F) j(â, F)-j(dx, F) j(df, F) < 0.

Wir beweisen Satz 1.2. Dazu nehmen wir an, es gâbe auf der Rotationsflâche F
einen Punkt mit det(J"/)<0. Dann ist dièse Ungleichung auf einem ganzen Breiten-
kreise erfiillt, der unter den Voraussetzungen von Satz 1.2 ein einfach zusammen-
hângendes FlâchenstUck F' mit regulârer Projektion abschneidet, auf dem die Menge
derNullstellenvondet(vl/) kompaktist. Da jeder Breitenkreis Kriimmungslinie ist,

folgty(a, F') 2, und dies widerspricht Satz 1.1. Also gilt auf Fin (1.1) das Gleich-
heitszeichen. Eine regulâre Rotationsflâche, die von der Rotationsachse durchstoBen
wird und auf der eine der Hauptkrummungen konstant ist, ist aber ein Kugelstuck,
wie sich in Nr. 7 beilâufig ergibt.

6. Die Beweise der Sâtze 1.3 und 1.4

Wir betrachten eine Flâche F der Klasse C4 im dreidimensionalen Vektorraum
(zentroaffinen Raum), deren Punkte wir jetzt zweckmâBig durch ihre Koordinaten
xx(ui)(X l, 2, 3) beziiglich einer festen Basis darstellen. Beziiglich der dualen Basis

habe der Normalenkovektor die Koordinaten £M(wl)(ju=i, 2, 3). Das lineare Glei-

chungssystem
g) ^ ^^ fc) ^

liefert Funktionen TXfl der Klasse C2 auf F. Die Reziprocitât der Flâchen xk und ^
impliziert die Symmetrie des Schémas TXfi. Differenziert man (6.1a), so erhâlt man
bei Beachtung von (6.1b) Xfl „„.

Durch kovariante Differentiation von (6.1b) gewinnt man bei Beachtung der Ab-
leitungsgleichungen (1.2) und (1.3)

Jetzt gestatte F eine regulâre Parallelprojektion; dann gibt es feste Kovektoren

ax und bx so, daB die Funktionen y xxax und z xkbx iiberall auf F der Bedingung
£lkyt zk>0 geniigen. Wegen (6.2) kann man ansetzen:

T\ax CkVu, T\bx DkVu. (6.4)

Die Tensoren CkJ und Dkj lassen sich berechnen, indem man (6.4) mit £M,, ùberschiebt,

(6.3) heranzieht und x^y^^ -Gn beachtet:

2AnJyj - Cki, 2Aikjij - Dkt. (6.5)

8) Wir verwenden auch fur die griechischen Indizes die Einsteinsche Summenkonvention.
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Wir fûhren die Funktionen

/ - \T^aka^ g - \Tx»akb^ h -\Tk»bkb, (6.6)

ein. Dann folgt aus (6.4) und (6.5)

ft ~iCikzk - iDikyk Aikjzky\
fi AikjykyJ9 h^A^zK

Nun zerfalle die Form 0L Aikl du'du* du* punktal in réelle Linearfaktoren. Dann
gilt dies wegen (6.5) auch fur die Formen C^dw'dw* und Dik dulduk9 und es folgt

*sikftgk i det (Cik)eljyizj < 0,
*«'***** i det (DiJefJytZj < 0 (a sign det (Gl4)).

In den Nullstellen von gt hat man wegen (6.5), (6.7) und (1.4)

2P.,// det (d*) 0 det (D,*) 2 Plik z1 zfc (6.9)

und damit Pik=0, da Pf& semidefinit ist. Ist also die Menge der Nullstellen von Pik

kompakt, so folgt aus (6.7) und dem gemâB Nr. 3 verallgemeinerten Satz 2.1

;(a,F)=j(dg,F).
Der SchluB beruht auf der Nullstellenfreiheit von y1 und zi und ist auch fur hyper-
bolisch gekriimmte Flàchen giiltig.

Wir nehmen jetzt7*(dg, F)>0 an. Dann existiert nach der Folgerung von Satz 4.1

ein kompakter Bereich B, der Punkte mit Pik#0 enthâlt und von einer glatten Niveau-
linie von g berandet wird. Aus Satz 4.2 und (6.8) folgt aber, daB/f, gt und ht iiberall in
B paarweise linear abhângig sind und damit dort (6.9) erfûllt ist. Der Widerspruch
beweist/(dg, F)<0 und damit Satz 1.3.

Wir beweisen Satz 1.4. Dazu zeigen wir zunâchst, daB auf einer Flâche, die den

Voraussetzungen des Satzes genûgt, Pik=0 gilt. Wir nehmen an, es gâbe einen Punkt
mit Pik # 0. Dann gilt dièse Ungleichheit lângs einer ganzen Parallelen 9), die ein einfach

zusammenhângendes Flâchenstûck F' abschneidet. Da die Flâche von ihrer Achse

durchsetzt wird, ist sie elliptisch gekrùmmt. Da die Achse das Raumzentrum trifft,
zerfallen lângs jeder Parallelen die Nullrichtungen von a in stetige Felder, die mit der

Tangente an die jeweilige Parallèle einen konstanten Winkel beziiglich Gik einschlies-

sen. Es folgt y (a, ~F')=3, im Widerspruch zu Satz 1.3.

Der Satz 1.4 ergibt sich nun aus folgendem lokalen Résultat.

9) Die Parallelen entsprechen den Breitenkreisen bei den iiblichen Rotationsflâchen. Vgl. [8],
S. 190.
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Satz 6.1. Jede Affinrotationsflâche elliptischen Typs, deren Achse durch das Raum-
zentrum geht und aufder iiberall Pik 0 gilt, ist eine Zentralquadrik.

Beweis: Zu zeigen ist Aikl 0. Da die Achse durch das Raumzentrum geht, ist die

Affinentfernung vom Zentrum, q, auf jeder Parallelen konstant. Es sei U die Menge
der Punkte, in denen Fi (ln^)^0 gilt. Wegen Pik 0 hat a die Gestalt a (4, dw1)3,

und es gilt 2 Vl — AiAiAi. Da der tîbergang von (6.6) zu (6.7) flir beliebige Kovektoren
ax und bk môglich ist, sind die Gradienten qt und JA/i,I flir aile A,/i linear abhângig.
Also ist in U auch TXfl auf jeder Parallelen konstant, d.h. bei der Darstellung

xl=f(u)cosv, x2=f(u)sinv, x3 g(u),
€lS=F(u)cosi;, {2 F(i#)sini>, £3 G(u) {' }

der Flâche und ihres Konormalenbildes hàngt TXfl nicht von v ab. Aus (6.1a) folgt
dann T12 Tl3 T21 T23 0 und, bei Beachtung der Symmetrie von TXfl,
r31 r32 0 in U. Setzt man die so bestimmten TA/i in (6.2) ein, so erhâlt man
rA",, 0 und damit wegen (6.3) Aikl 0 und K, 0 in U; U ist also leer.

Auf elliptisch gekriimmten Flâchen mit <x (Aidui)3 impliziert Vt 0 sofort
Aikl — 0; auf hyperbolisch gekriimmten Flâchen ist auch môglich, da8 A1 Asymptoten-
richtung ist. Aber die durch (6.10) gegebene Flâche geht bei einer Spiegelung a an
einer Ebene E, die die Achse enthàlt, in sich uber. Lângs eines Schnittmeridians von
F mit E gilt fur die induzierte Abbildung a* der Tangentialebenen cr*^4f= ±A\ Hier-
aus folgt, daB A1 entweder an den Meridian oder an den Breitenkreis tangential ist,
und das kann bei Asymptotenrichtungen nur in parabolischen Punkten eintreten.

7. Die Bedeutung der regulâren Parallelprojektion

Wir geben eine einfach zusammenhângende Rotationsflâche F im euklidischen
Raum an, die kein Kugelstiick ist und aufder aile Voraussetzungen von Satz 1.1 er-
fullt sind auBer der Forderung der regulâren Projektion; offenbar giltj(F) 2.

Es seien x, y, z die rechtwinkligen Koordinaten eines Punktes im dreidimensiona-
len euklidischen Raum. Eine Flâche F' entstehe durch Rotation der Kurve x=x(s)9
y=09 z=z(s) um die Achse x=y=0; s sei der BogenmaBparameter. Bekanntlich sind

Breitenkreise und Meridiane Krummungslinien; die zugehôrigen Hauptkriimmungen
seien mit kb und km bezeichnet. Auf dem erzeugenden Meridian gilt

x -kmz, z kmx, (7.1)

i fc,x. (7.2)

Die Funktion km(s) sei definiert fur -njl^s und von der Klasse C°° ; sie besitze fol-
gende Eigenschaften :

fcm(s)=l fur ~-<s<a, km{s)>\ fur s>a fo<a<^J. (7.3)
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Wir lôsen (7.1) mit den Anfangsbedingungen x( — n/2) z( — 7r/2) 0, z( —tc/2)

—x( — n/2)= — 1. Die entstehende Flàche enthâlt fur s<a eine Kugelkalotte, die eine

Halbkugel umfaBt. Es sei b die kleinste von — rr/2 verschieden Nullstelle von z(s).
Wir zeigen, daB auf der durch — n/2<s<b gegebenen Flâche F die Bedingung

(km-l)(kb-l)<0 erfullt ist; fur a<s<b tritt hier das Gleichheitszeichen nie auf.
Da der Meridian fur s<a ein Bogen des Einheitskreises ist, gilt x(a) z(a)

cos a > 0 und x (a) — sin a < 0. Im folgenden sei a < s < b. Man hat z (s) > 0, also wegen
(7.1) x(,s)<0 und damit :x:(s)<0. Hieraus und aus (7.3) schlieBt man

s s

z(s) cos a + kmxàa < cos a + ido* x(s).

Aus (7.2) folgt dann kb(s)<\ und damit (fcw(s)

Man erreicht mit âhnlichen Oberlegungen dasselbe Ziel, wenn man in (7.3)

km{s)<\ fur s>a fordert. Ferner kann man auf dièse Weise geschlossene Rotations-
flâchen vom Geschlecht Null konstruieren, die von der Kugel verschieden sind und
der Bedingung (1.1) genûgen; dièse enthalten hyperbolische Punkte.

Fur Flâchen mit K^O gilt Satz 1.1 auch dann, wenn man die Voraussetzung der

regulâren Projizierbarkeit streicht. Der Beweis hierfiir stiitzt sich auf die Integralfor-
mel (3.2) und soll zusammen mit anderen Anwendungen dieser Formel verôffentlicht
werden.

Um den Beweis von Satz 1.2 abzuschlieBen, zeigen wir noch, daB eine einfach

zusammenhângende Rotationsflâche F, auf der (1.1) mit dem Gleichheitszeichen gilt,
ein Kugelstiick ist (vgl. Nr. 5). Ist km konstant, so ist die Meridiankurve ein Kreis-

bogen, der senkrecht auf die Achse stôBt, und damit F eine Kugel. Ist andererseits kb

konstant, so folgt durch Differentiation von (7.2) und Vergleich mit (7.1) km kb.

8. Isolierte Nullstellen von Aikl mit vorgeschriebenem negativem Index

Wir wenden uns wieder der zentroaffinen Flâchentheorie zu und zeigen, daB es

auBer Quadriken noch andere elliptisch oder hyperbolisch gekrûmmte Flâchen gibt,
auf denen die kubische Grundform a auBerhalb der Singularitaten reell zerfâllt;
hierbei kann jede négative ganze Zahl als Index einer isolierten Singularitât von a

auftreten.
Es seien x{u% y(î/)9 z{ul) die Koordinaten des Flâchenstiickes F; wir wâhlen

speziell ul x, u2 =y in einer Umgebung des Punktes P{ul=0). Ferner gelte z (0,0) 1.

Dann ergeben sich fur die Fundamentaltensoren der zentroaffinen Théorie die folgenden

Ausdriicke in den partiellen Ableitungen von z nach den u1:

Gik p'1 zik9 Aikl i (- p~lzikl
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wobei p z-xzl —yz2 gesetzt ist und die runde Klammer um die Indizes Symmetri-
sierung bedeutet.

In der beschriebenen Weise sei durch f(x, y) ein Stùck einer Zentralquadrik F
gegeben; f(x,y) ist analytisch, und es gilt Âikl==0. Wir betrachten die Flâche
F:z z + q9 wobei q ein homogènes Polynom m-ten Grades in x und y sei (m>4). Die
Potenzreihenentwicklungen der Grundtensoren in P beginnen offenbar so :

Gik Gik(0, 0) + .- Aikl - iqiki + ••• • (8.1)

Wir wâhlen fur q das harmonische Polynom q 2Re(x + iy)m. Dann gilt

àik<liki (&<l)i 0 (ôik sei das Kroneckersymbol).

Also ist mit a' — qikl dw1 âukdu1 auch a in den von P verschiedenen Punkten einer hin-
reichend kleinen offenen Umgebung U von P das Produkt von drei paarweise linear
unabhângigen reellen Linearformen, und es gilt y (a, U) -y" (a', U). Als Polynom in
den Variablen w x + iy9 w, dw Ç und £ besitzt a' die Gestalt

a' -\m{m - 1) (m - 2) (wm"3C3 + wm"3C3).

Aus (2.5) und (2.6) folgt daher

y (a, [/)=j(a',l/) 3-m. (8.2)

Wegen (8.1) kann U so klein gewâhlt werden, da8 sie nur elliptische oder nur hyper-
bolische Punkte enthâlt, je nachdem, wie die Quadrik F beschaffen ist.

Die Zahl 2 m lâBt sich auffassen als die Anzahl der vom Punkt P ausgehenden
Kurven, in denen Fvon F, d.h. von der in P oskulierenden Zentralquadrik geschnitten
wird. Die Vermutung liegt nahe, daB die Formel (8.2) mit dieser Interprétation von m
im Hinblick auf isolierte Singularitâten von a allgemein gilt. Man gewônne dann ein
plausibles Analogon zum Résultat von St. Cohn-Vossen und H. Schilt [7], das den
Index y eines isolierten Flachpunktes in einem reellen Asymptotenliniennetz mit der

Sattelordnung510)inder Formel y 1—s verbindet. In der Tat làBt sich ein âhnliches
Résultat beweisen; hierauf soll in einer weiteren Arbeit eingegangen werden.
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