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Uber eine spezielle Klasse von Nabelpunkten und analoge

Singularitiiten in der zentroaffinen Fliichentheorie

von HANS FRIEDRICH MUNZNER

1. Einleitung und Ergebnisse

Es sei F eine Fliche der Klasse C* im dreidimensionalen euklidischen Raum; k,
und k, (k, >k,) seien die Hauptkriimmungen auf F. K. Voss [9] hat im AnschluB an
Untersuchungen von ST. COHN-VOSSEN und H. ScHILT [7] gezeigt:

Gilt aufer in einem Punkt P auf F iiberall (k, — c)(k, —c) <O fiir eine geeignete Kon-
stante c, so ist der Poincarésche Index des Kriimmungsliniennetzes in P nicht positiv.

Dieser Satz iiber den Index spezieller isolierter Nabel und der Vosssche Beweis
besitzen ,,lokalen* Charakter. Da sich aber bekanntlich jedem kompakten, stiick-
weise glatt berandeten Bereich, auf dessen Rand keine Nabel liegen, ein Index des
Kriimmungsliniennetzes zuordnen 14Bt, erhebt sich die Frage nach einer Verallge-
meinerung, bei der die Nabel nicht als isoliert vorausgesetzt werden.

Ist F eine offene Fldche, auf der die Menge aller Nabel kompakt ist, so bezeichnen
wir mit j(F) den Index des Kriimmungsliniennetzes in einem stiickweise glatt beran-
deten, kompakten Bereich B auf F, dessen offener Kern alle Nabel enthilt; j(F) hangt
offenbar nicht von der Wahl des Bereiches B ab. Wir zeigen

SATZ 1.1. Auf F gelte
(ky—¢c)(k,—c)<0 (1.1)

fiir eine geeignete Konstante c. Ist dann die Menge der Punkte von F, in denen (1.1) mit
dem Gleichheitszeichen erfiillt ist, kompakt und gestattet F eine regulire Parallelprojek-
tion, so gilt j(F)<0.

Die Projektion braucht dabei nicht einwertig zu sein; auch darf die Fliche Selbst-
durchdringungen besitzen. Wesentlich ist, daB die durch die Projektion vermittelte
differenzierbare Abbildung in jedem Punkt den Rang 2 hat; dies bedeutet regulir.
DaB der Satz falsch wird, wenn man die Voraussetzung der regulidren Projizierbarkeit
streicht, zeigen wir in Nr. 7 am Beispiel einer Rotationsfliche. Ein Korollar des obigen
Satzes ist

SATZ 1.2. Jede einfach zusammenhingende Rotationsfliche?l), die eine einwertige
Projektion gestattet und auf der (1.1) gilt, ist Stiick einer Kugel oder Ebene. Speziell

1) Im Begriff der Rotationsfliche sei enthalten, daB mit einem Punkt der ganze durch ihn be-
stimmte Breitenkreis zur Fliche gehort.
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sind die Kugeln die einzigen vollstindigen elliptisch gekriimmten Rotationsflichen mit
der Eigenschaft (1.1).

Wabhrscheinlich sind die Kugeln auch die einzigen Eiflichen, auf denen (1.1) gilt,
aber Satz 1.1 gibt keine Anhaltspunkte zu einem Beweis dieser Vermutung.

Wir wenden uns Analoga der genannten Resultate zu, die der zentroaffinen
Flichentheorie angehoren. Bekanntlich untersucht man dort Flichen im dreidimen-
sionalen Vektorraum, deren Tangentialebenen den Nullvektor (das Raumzentrum)
nicht enthalten und die entweder nur aus elliptischen oder nur aus hyperbolischen
Punkten bestehen. Wird die Flidche F der Klasse C* lokal als Vektorfunktion € («)
in den Parametern u' und u? dargestellt und ist & (‘) der durch (¢ €) =1 normierte
Kovektor, der die Tangentialebenen beschreibt, so lauten die zentroaffinen Ablei-
tungsgleichungen

Cie = 4’ € + G, €, (1.2)

Sije = — Al &+ G €. (1.3)

Dabei dient G;, als MaBtensor, und der Doppelstrich vor dem Index der Ableitung
bedeutet kovariante Differentiation.

Wenn nun die kubische Grundform a=4;,, du'du*du’ iiberall auf F in reelle
Linearfaktoren zerfillt, kann fiir das Tripelnetz ihrer Nullinien ein ganzzahliger Index
j(a, F) definiert werden in dhnlicher Weise, wie fiir das Netz der Kriimmungslinien
(vgl. Nr. 2,3). Zur Formulierung der Resultate, die j(a, F) betreffen, ist es zweck-
méBig, den Tensor

Pip=0e"e"P A1y Ap i (1.4)
und die Invariante
n = ¢ det (P) (1.5)

einzufiihren; dabei ist o =sign det (G;;), und e;, = —&,,; =|(det (G;)) |}, €11 =¢,,=0
sind die Komponenten des Diskriminantentensors. Gilt in einem Flidchenpunkt 7> 0,
so zerfillt dort a in drei paarweise linear unabhéngige reelle Linearformen; gilt n=0,
so ist « durch ein Linearformenquadrat teilbar; in den Nullstellen von P, ist « die
dritte Potenz einer Linearform. Die Stellung von P,, im Formelapparat der zentro-
affinen Flichentheorie wird verdeutlicht durch die Beziehung

S+1=-31G"*P,,

wobei S der Kriimmungsskalar zu G, ist.
Wir geben nun ein Analogon zu Satz 1.1 an.

SATZ 1.3. Auf F sei >0 (1.6)

erfiillt. Ist dann die Menge aller Nullstellen von P, kompakt und gestattet F eine reguldre
Parallelprojektion, so gilt j(x, F)<0.
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Elliptisch gekriimmte eigentliche Affinsphédren, deren Mittelpunkt im Raumzen-
trum liegt, geniigen der Bedingung (1.6); auf ihnen gilt nimlich 4, =0, und hieraus
kann man n=(4'*' 4;,,)%/4 schlieBen. Da in jenem Fall, auBer wenn es sich um eine
Quadrik handelt, die Nullstellen von A;,, isoliert liegen, kann die Blaschkesche Kenn-
zeichnung des Ellipsoids als geschlossene Affinsphire mit Hilfe von Satz 1.3 und der
Poincaréschen Indexsummenformel bewiesen werden?). Wir notieren eine weitere
Anwendung des Satzes.

SATZ 1.4. F sei eine einfach zusammenhdngende Affinrotationsfliche elliptischen
Typs3), deren Achse durch das Raumzentrum gehe. Gilt dann (1.6) und gestattet F eine
einwertige Projektion, so ist F Stiick eines Ellipsoids oder eines zweischaligen Hyper-
boloids.

Speziell ist jede eigentlich affinsphérische Affinrotationsfliche elliptischen Typs,
die von ihrer Achse getroffen wird, eine Fliche zweiter Ordnung; ferner folgt eine
Kennzeichnung der Ellipsoide unter den geschlossenen Affinrotationsflichen.

Der Satz 1.3 gilt fiir elliptisch und fiir hyperbolisch gekriimmte Flidchen. Im fol-
genden sei F elliptisch gekriimmt. Dann ist das Tripelfeld der Darbouxschen Rich-
tungen, welche sich als Nullrichtungen der Form

& = Ciklduidukdul = 0 — %G(ikV,)duidukdul (I/l = '%Ai“)

ergeben, reell, und unter den Voraussetzungen von Satz 1.3 stimmen j(a, F) und
Jj (&, F) iiberein. Die durch =0 und =0 gegebenen Tripelnetze verhalten sich zuein-
ander, wie Asymptotenliniennetz und Kriimmungsliniennetz. Es erhebt sich die Frage
nach Bedingungen, die j(&, F)<0 implizieren und nicht davon abhingen, ob die Null-
richtungen von « reell sind. In der Tat gilt j(& F)<O0 auch fiir analytischen Flichen,
auf denen die Bedingung

V'Vl £ qICii CY| 1.7

mit einer Konstanten g <1 erfiillt ist2). Dieses Resultat iiberschneidet sich mit Satz
1.3, da (1.6) die Ungleichung (1.7) mit g=1 nach sich zieht. Eine gemeinsame Verall-
gemeinerung der beiden Ergebnisse scheint schwer zu beweisen.

Wir geben noch einige Hinweise zum Inhalt der folgenden Abschnitte. In Nr. 2
und 3 wird eine Theorie des Poincaréschen Index fiir die Nullinien homogener Diffe-
rentialformen beliebigen Grades skizziert. Dabei zeigt sich, daB die Berechnung dieses
Index auch bei Formen n-ten Grades, deren Nullinien sich ja im allgemeinen nicht
auf Kurvenscharen verteilen, auf die Berechnung des Index fiir eine Linearform (Kur-
venschar) zuriickgefiihrt werden kann; fiir quadratische Formen benutzten dies schon
H. HorF und H. SAMELSON [4]. Da wir nicht nur isolierte Singularitéiten behandeln, ist

?) Vgl [6].
3) d.h. eine affin verzerrte iibliche Rotationsfliche; vgl. [8] und FuBnote 1).
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eine Definition des Index im GroBen erforderlich; wir verwenden hierfiir in Nr. 3 eine
Integralformel4). In Nr. 4 geben wir die benétigten Sitze iiber Gradientenfelder und
Niveaulinien an; auch hier werden beliebig gestaltete Singularititenmengen zugelas-
sen. Die Sdtze 1.1-1.4 werden in den beiden folgenden Abschnitten auf die Ergebnisse
iiber Gradientenfelder zuriickgefiihrt; fiir Satz 1.4 wird noch eine lokale Kennzeich-
nung von Quadriken unter den Affinrotationsflichen elliptischen Typs benétigt, die
wir in Nr. 6 beweisen. Die letzten Abschnitte sind Beispielen gewidmet; so zeigen wir
in Nr. 8, daB} jede negative ganze Zahl als Index einer isolierten Nullstelle der zentro-
affinen kubischen Fundamentalform vorkommt, und zwar sowohl auf elliptisch wie auf
hyperbolisch gekriimmten Fldchen. Ferner wird eine geometrische Interpretation dieses
Index angedeutet, die dem Satz von St. CoHN-VOSSEN und H. SCHILT analog ist, der den
Index eines isolierten Flachpunktes des Asymptotenliniennetz mit der Sattelordnungin
Beziehung setzt.

2. Der Index in der Ebene

Es sei a=a(&, n)=a(u, v, &, n) eine reellwertige stetige Funktion der reellen Ver-
dnderlichen u, v, £ und n; dabei variiere (4, v) in einem Gebiet G der (u, v)-Ebene, und
fiir festes (u, v) sei a(&, n) ein homogenes Polynom #-ten Grades (n>1) in £ und 7,
welches in reelle Linearfaktoren zerfillt oder das Nullpolynom ist. Die Punkte von G,
in denen das Letztere eintritt, nennen wir aus naheliegenden geometrischen Griinden
die Singularititen von a. Wir untersuchen eine ganzzahlige topologische Invariante
der Gesamtheit aller Losungskurven des gewodhnlichen Differentialgleichungssystems

a(u, v, u,0)=0 (2.1)

in einem kompakten Bereich B< G, auf dessen Rand 0B keine Singularititen von «
liegen, den Index j(«, B).

Zunichst sei B einfach zusammenhingend und werde von einer geschlossenen
Jordanschen Kurve I" berandet, die B im positiven Sinne umlduft. Fiir eine Linear-
form a=4, (u, v)¢+ A4, (u, v)n setzen wir

j(e, B) = j(a, F)=£;fdarg (A, +i4,). 2.2)

r

Wenn « (&, 7) vom Grade n>2 ist, kann man versuchen, « auf der n-fachen Uber-
lagerung der Randkurve, nTI", als Produkt von n stetigen Linearformen darzustellen

n
anl = [] o,
k=1

4) Das Material der Abschnitte 2 und 3 ist ein Auszug aus Kapitel 1 in [6] und wurde zusammen
mit einem Spezialfall von Satz 1.3 auf der Geometrietagung in Oberwolfach 1964 vorgetragen.
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um dann zu definieren

. LA,
J@B) =1 ) JCun). 2.3)
k=1
Wir werden j(a, B) im AnschluB an [4] auf andere Weise einzufiihren. Dazu be-

trachten wir a(¢&, n) fiir festes (u, v) als Polynom in den komplexen Verinderlichen
{=¢+inund {=C—in: n

a= Y al'l"" (a=d,-) (2.4)

i=0

und setzen _
@=aol"+d,(", [a]=ao. (2.5)

& ist in reelle Linearfaktoren zerlegbar, und die Figur der Nullrichtungen von & ist in
jedem Punkt invariant gegeniiber Drehungen um den Winkel n/n. Offenbar 148t sich
& als das einzige Polynom mit den folgenden Eigenschaften charakterisieren: 1. a—&
ist durch |¢|? teilbar; 2. (6*&/d¢ 60)=0. Da a reell zerfillt, impliziert die Eigenschaft
1, daB [o] =0 nur in den Singularititen von « eintreten kann. Da [«] ferner in (u, v)
stetig ist, konnen wir definieren:

1
e, B) =@ B)= - j d arg [4]. 2.6)

r

Dies steht im Einklang mit der Definition (2.2), da fiir eine Linearform [a]=
3(A,+i4,) gilt. Fiir je zwei homogene Polynome «, § in &, 5 gilt [af]=[a][B].
Hieraus folgt, daBl die Ansdtze (2.3) und (2.6) dquivalent sind; auBerdem hat man
unter entsprechenden Voraussetzungen

j(«B, B) =j(a, B) +j(B, B). @.7)

Jetzt sei p=B, £+ B,n, wobei B, und B, stetige Funktionen in G sind; ferner sei
der Grad n von a gréfer als Eins. Das Polynom

0 = B, (0a/0&) + B, (0a/0n) (2.8)

zerfillt bekanntlich mit « in jedem Punkt von G in reelle Linearfaktoren. Denn nach
Durchfiihrung der Substitution {=B;s—B,t,n=B,s+ Bt ergibt sich d=0a/0s,
setzt man dann =1, so hat man die Frage nach der reellen Zerfillbarkeit von « und J
auf dieselbe Frage fiir ein Polynom einer Veridnderlichen und seine Ableitung zuriick-
gefiihrt, die man mit Hilfe des Satzes von Rolle sofort iibersieht.

Eine zentrale Rolle in unseren Uberlegungen spielt die folgende Tatsache, die von
H. Hopr und H. SAMELSON [4]fiir n =2 und singularititenfreies f ausgesprochen wurde:

SATZ 2.1. Wenn 6 auf I keine Singularitdten besitzt, gilt
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Speziell gilt also j(«, B)=j((0""'a/d'Ed*n), B) I+ k=n—1), wenn 9" '«/d'Ed*n
auf I" keine Singularititen besitzt.
Dem Beweis des Satzes schicken wir einen Hilfssatz voraus.

HILFssATZ. Es sei o(&, n) ein homogenes Polynom n-ten Grades (n=1) und
P=AE*+2BEn+Cn? eine positiv definite quadratische Form. Dann verschwindet das
Polynom

p = A&(00/0) + B(n(02/0%) + £(dat/n)) + Cn(det/On)

nicht identisch; wenn a in reelle Linearfaktoren zerfillt, gilt dies auch fiir pu.

Beweis des Hilfssatzes: Da man P durch eine orthonormale Substitution auf Dia-
gonalgestalt transformieren kann, werde 0.B.d.A. B=0 angenommen. Dann ist
pu#0 evident. Wir setzen f(¢)=a (&, 1) und

F@O=p(1)=-C)ef Q) +nCf (). 2.9)

Es seien &, <&, <--- <¢,, diejenigen Nullstellen von f*, in denen f nicht verschwin-
det; ferner wihle man &, und &,,, , so, daB f(&)#0 F(&) fir E< &y und €2 ¢, gilt.
Mit n; bzw. N; bezeichnen wir die algebraische Anzahl der Nullstellen im offenen
Intervall 1¢;, &, [ (0<i<m) von fbzw. F. Da fin jedem dieser Intervalle hochstens
einmal verschwindet, folgt aus (2.9) N;=n;—1. Andererseits gilt, da 4 und C positiv
sind, sign F(&,) = signf(¢,) (j=0, ..., m+1) und damit n,= N, (mod 2). Es folgt N; > n,.
Wenn also fin reelle Linearfaktoren zerfillt, gilt dies auch fiir F, da fund F gleichen
Grad besitzen. Damit ist der Hilfssatz gezeigt.

Zum Beweis des Satzes bilden wir

p(t)=tna+(1—-1)pdé (O<t<1). (2.10)
Bei Verwendung der Eulerschen Relation fiir homogene Funktionen erhalten wir

p(®) = (t + (1 — 1) B,?)E(0a/0E) +
+ (1 — t) B, B, (£(0w/0n) + n(0a/0E)) + (¢t + (1 — 1) B,*) 5 (0a/On)).

Aus dem Hilfssatz folgt, daB auf I' fiir £>0 [u(¢)]#0 gilt. Wegen der Ganzzahligkeit
des Index und der Beziehung (2.7) ergibt sich schlieBlich:

{1
r r

@)= [due = [dus [0 -i6. B+, )

3. Der Index auf zweidimensionalen differenzierbaren Mannigfaltigkeiten

Wir skizzieren eine Verallgemeinerung der bisherigen Uberlegungen, bei der das
ebene Gebiet G durch eine orientierte zweidimensionale differenzierbare Mannigfal-
tigkeit M ersetzt wird und B ein kompakter, von endlich vielen stiickweise glatten
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Kurven berandeter Bereich auf M ist. In einer Karte mit den lokalen Parametern
u'(i=1, 2) besitzt das Differentialgleichungssystem (2.1) die Gestalt

x=A ndui‘...dui"=0,

i1...1

wobei A4;, ; das Komponentenschema eines symmetrischen, stetigen Tensors auf M
darstellt und «, aufgefaBt als Polynom in den Koordinatendifferentialen, in jedem
Punkt reell zerfillt. Um die Zuordnung a— &, die den Kern des vorigen Abschnitts
bildet, zu bewerkstelligen, fiihren wir eine positiv definite Riemannsche Metrik
ds?=G,,du'du* ein. Wir definieren dann &=4, ; du'...du™ als die eindeutig be-
stimmte Form mit den folgenden Eigenschaften: 1. a—& ist durch ds? teilbar; 2. es
gilt

Gikffiki;...in =0. (3.1

Offenbar sind es dieselben Eigenschaften, die wir im vorigen Abschnitt fiir & heraus-
gestellt haben. Die Koeffizienten von & sind rationale Funktionen in denen von « und
ds? und bilden einen symmetrischen Tensor. Da o punktal reell zerfillt, besitzen «
und & dieselben Singularititen.

Jetzt gehore der Koeffiziententensor von « zur Klasse C! und besitze keine Null-
stellen auf dem Rand von B. Die der Formel (2.6) entsprechende Definition lautet

1 ~ 2 D ~
j(, B)=j@ B)=—| | 45" —~A4,, ;18 *ds+n | Sdo), (3.2)
2n ds "
oB

B

wobei |82 = 4" 4, , gesetzt ist und D/ds die absolute Differentiation nach dem
Randparameter s, ¢! den Diskriminantentensor und S den Kriimmungsskalar zu
G, bezeichnet.

Wenn « in B keine Singularititen besitzt, gilt j(«, B)=0; dies bestétigt man leicht
mit Hilfe des Stokesschen Integralsatzes. Der Index ist stets eine ganze Zahl. Diese
Tatsache 14Bt sich auf den Fall isolierter Singularitdten zuriickfiihren; dann braucht
die Formel (3.2) wegen der vorher erwdhnten Eigenschaft nur auf Bereiche angewendet
zu werden, die sich allein mit einer Karte beschreiben lassen. Fiir derartige Bereiche
kann man bei Benutzung isothermer Parameter die Formeln (3.2) und (2.6) ineinander
iiberfiihren.5)

Unmittelbar aus der Ganzzahligkeit folgt, daB j(a, B) nicht von der Wahl der
Metrik abhingt; denn je zwei positiv definite Metriken G;, und G, lassen sich durch
die stetige Schar tG;;+(1—1)G;(0<t<1) verbinden, und die Koeffizienten von &
sowie die Integrale in (3.2) hidngen stetig von der Metrik ab.

5) Wir begniigen uns mit diesen Andeutungen, da die Integralformel (3.2) hier hauptsichlich als
Hinweis dafiir dient, wie sich die in Nr. 2 dargestellten Ansitze auch im GroBen durchfiihren lassen.
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Um die allgemeine Giiltigkeit von (2.7) zu beweisen, untersuchen wir den Inte-

granden des Wegintegrals in (3.2). Die Bedingung (3.1) impliziert die Symmetrie des
Tensors g, A***» und die Identitit

I‘fjiz"'i"f‘fkiz...i,. = 1|4 G-
Hieraus folgt

du |

T O I o d
ajkAjtz...z,.___Akizmin=SjkAjlz... s A I&lzgljrjn a“"’
S

ds ds k-
wobei die I';;' die ChristoffelgroBen zu G;, sind. Bei Verwendung isothermer Para-
meter (ds®=h((du')? +(du?)?)) 14Bt sich & wie in (2.4) und (2.5) konstruieren, und aus

a, "+ d,("= A4, du"...du" ({=du' + idu?)

gewinnt man durch Koeffizientenvergleich [a]=a,=4%(4,,. {+iAd,, ;). Benutzt man
die aus (3.1) folgende Identitét A, ;, ; +4,,;, ; =0 und die Symmetrie des Tensors,
so erhdlt man nach leichter Rechnung:

d n . du’

- ik Ji2...i D
|or} 2g kA:i " '(I;Akiz...i,, = (—1; arg [a] — 5 sljrjil Tis— (3.3)

Da af=n die Beziehung [o][f]=[#n] nach sich zieht, folgt aus (3.2) und (3.3), daB
(2.7) allgemein gilt.
Jetzt sei n>2 und f=B;dw’. Dem Ausdruck (2.8) entspricht

6 = nAy, . Bdu... du™,

und Satz 2.1 laBt sich auf den allgemeinen Fall iibertragen, d.h. es gilt wieder
j(6, B)=j(a, B)—j(B, B), wenn auf 8B keine Singularititen von ¢ liegen. Zum Beweis
betrachtet man die Homotopie (2.10). Man muB nur bestitigen, daB fiir jedes ¢ mit
0<t<1 die Form fi(¢) dieselben Singularititen wie ¢ besitzt, und dies folgt nach Ein-
filhrung isothermer Parameter wieder aus dem Hilfssatz in Nr. 2.

Ist M eine offene Mannigfaltigkeit und ist die Menge der Singularititen von o
kompakt, so setzen wir j(x, M)=j(a, B), wobei B ein beliebiger stiickweise glatt be-
randeter kompakter Bereich ist, dessen offener Kern alle Singularitéiten von o enthilt.

4. Der Index von Gradientenfeldern

Es sei f eine Funktion der Klasse C? auf der offenen orientierten Riemannschen
Mannigfaltigkeit M. Die Menge & der kritischen Punkte von f sei kompakt. Wir
untersuchen den Index der Form df=f,du!, der mit dem Index des Gradientenfeldes
von f iibereinstimmt. ’

Ein stiickweise glatt berandeter kompakter Bereich B heiBle ein ,, f-Bereich*, wenn
jede Zusammenhangskomponente von 0B entweder eine geschlossene Niveaulinie zu
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einem nichtkritischen Wert von f oder ein Polygonzug ist, der aus Niveaulinienstiicken
zu nicht kritischen Werten von f— den ,,N-Kanten von B*‘ —und aus in M\S gelegenen
Stiicken von Orthogonaltrajektorien der Niveaulinienschar — den ,,T-Kanten von B*‘ -
besteht. Eine N-Kante k heifle I-Kante bzw. A-Kante, wenn die durch k gehende
Niveaulinie an beiden Endpunkten von k in das Innere von B eintritt bzw. aus B
austritt. Bezeichnet man die Anzahl der I-Kanten bzw. A-Kanten von B mit i(B) bzw.
a(B), so wird der Index eines f~-Bereiches dargestellt durch

j(df, B)=14(i(B) — a(B)) + x(B), 4.1

wobei x (B) die Eulersche Charakteristik von B ist. (Vgl. HAMBURGER [2].)

Diese Beziehung kann aus der Formel (3.2) hergeleitet werden. Denn ldngs des
Randes eines f~-Bereiches ist der Gradient von ftangential oder normal; bei Beachtung
der Formeln von Frenet und GauB-Bonnet geht (3.2) also iiber in

j@df, B)-—-:;;("\cds +J‘Sdo>=x(B)—§%Xwi,

wobei ¢ die geoditische Kriimmung lings der glatten Randstiicke und die w; die
AuBenwinkel von 0B bedeuten. Die einer N-Kante anliegenden AuBenwinkel er-
ginzen sich im Falle einer I-Kante zu —r, einer A-Kante zu + 7 und sonst zu Null;
also folgt (4.1).

Die in Nr. 1 angegebenen Sétze lassen sich auf das folgende Ergebnis zuriickfiihren:

SATZ 4.1. Es sei B ein f-Bereich, und es gelte
jdf,B)=n>0. 4.2)

Dann sind in B mindestens n paarweise disjunkte einfach zusammenhdngende Be-
reiche enthalten, die jeweils durch eine geschlossene Niveaulinie berandet werden, welche
Punkte aus 0B enthiilt.

Folgerung. Es sei C eine kompakte Teilmenge von M, die S umfapt. Giltj(df, M)>0,
so gibt es einen einfach zusammenhdngenden Bereich auf M, der Punkte aus M\C ent-
hdlt und dessen Rand eine Niveaulinie von fist.

Der Ubergang vom Satz zur Folgerung wird vermittelt durch den

HILFSSATZ. Es sei C eine kompakte Teilmenge von M, die S umfaft. Dann gibt es
ein System endlich vieler f-Bereiche, deren offene Kerne C iiberdecken und paarweise
disjunkt sind.

Beweis des Hilfssatzes: Da nach M. und A. P. MoRrsE [5] die Menge der nicht
kritischen Werte von f im Wertebereich dicht liegt, kann man jedem Punkt P aus
M\C einen ihn enthaltenden f-Bereich K(P), etwa ein ,,Rechteck*, zuordnen, das ganz
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in M\C liegt. Es sei W eine kompakte Umgebung von C. Das Mengensystem
{K(P)°|PedW}$) bildet eine offene Uberdeckung der kompakten Menge dW. Also
ist W schon in der Vereinigung von endlich vielen Elementen dieses Mengensystems,
etwa K,°, ..., K;°, enthalten. Die kompakten Zusammenhangskomponenten von
(M\U 1K;)” ergeben dann endlich viele f/~Bereiche, deren offene Kerne die Menge C
iiberdecken.

Beweis zu Satz 4.1: Es sei k eine I-Kante von B und ¢ der Wert von fauf k. Wir
setzen B(g)={PeM|f(P)<p}. Da flings jeder T-Kante monoton und ¢ ein nicht
kritischer Wert von fist, besitzt die Menge (B°nB(g))~ bzw. (B\B(g))~ nur endlich
viele Komponenten By, ..., B, bzw. B, ..., B,. Die B;(j=1, ..., [) bilden eine Zer-
legung von B in zusammenhingende f-Bereiche. Jede N-Kante eines B, die in 0 B(g)
liegt, ist eine A-Kante dieses Bereiches, da in ihren Endpunkten die Niveaulinie zu g
aus B; austritt; alle anderen N-Kanten von B; gehoren schon B als Randkanten an.
Es folgt Y- ,i(B;)<i(B); wir haben gewissermaBen die zu ¢ gehdrenden I-Kanten,
unter ihnen k, durch Zerlegung von B beseitigt. Wir zerlegen nun jedes B;, welches
I-Kanten besitzt, in der eben beschriebenen Weise und wiederholen diesen Prozess so
oft, bis wir eine Zerlegung von B in zusammenhéngende f-Bereiche C,, ..., C, mit
Y.1i(C;)=0 erhalten.

Tritt in ihr ein Bereich C, auf, dessen Rand eine geschlossene Niveaulinie von f ist,
die keine Punkte von 0B enthilt, so gehen wir zu einer neuen Zerlegung von B iiber,
indem wir C, mit seinem einzigen Nachbarbereich C,- verschmelzen. Da jede T-Kante
eines C; schon in 0B enthalten ist, gilt 0(C,uCy)=0C,/\0C;, und der f-Bereich
C.UC, besitzt ebenso wie C- keine I-Kanten. Wenn wir diesen Verschmelzungspro-
zess hinreichend oft durchfiihren, erhalten wir schlieBlich eine Zerlegung von B in
zusammenhéngende f-Bereiche Dy, ..., D,, mit Y 1i(D;)=0, in der jeder Bereich, des-
sen Rand aus einer geschlossenen Niveaulinie besteht, Punkte mit 0B gemeinsam hat.

Wenn (4.2) gilt, gibt es wegen ) 7j(df, D;)=j(df, B) einige D;, etwa n’ Stiick, mit
positivem Index. Aus j(df, D,)>0 und i(D,)=0 folgt bei Beachtung von (4.1)
x(Dy)=1 und a(D,)=0, da die Eulersche Charakteristik eines zusammenhéngenden
Bereiches auf M nicht groBer als Eins sein kann und der Index eine ganze Zahl ist.
D, ist dann also ein einfach zusammenhingender Bereich, dessen Rand eine Niveau-
linie von f'ist, die nach Konstruktion der D; mit 0B einen nicht leeren Durschnitt be-
sitzt. Ferner folgt j(df, D;)<1 und also wegen (4.2) n'>n.

SATZ 4.2. Es seien fund g Funktionen der Klasse C* auf M, und es gelte dort iiberall
e f,g;<0.7 4.3)

8) A° bzw. A~ sei der offene Kern bzw. die abgeschlossene Hiille einer Menge 4ACM.

) Die Bedingung (4.3) ist definiert, wenn man auf M nur orientierungstreue Kartentransforma-
tionen zulafBt.
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Dann hat man in jedem kompakten Bereich B, dessen Rand aus endlich vielen Niveau-
linien von f besteht,

¢’ f,g;,=0. 4.4)

Ist ferner die Menge C der Punkte, in denen (4.4) erfiillt ist, kompakt, so gilt
Jj(df, M)<0. (Vgl. [4], S. 756.)

Beweis: Wird B durch endlich viele Niveaulinien von f berandet, so folgt aus dem
Stokesschen Satz

iy dg
dB

B

und (4.3) impliziert (4.4). Wire j(df, M)>0, so gibe es nach der Folgerung zu Satz
4.1 einen kompakten Bereich B’, der von einer Niveaulinie von f berandet wiirde und
Punkte aus M\C enthielte. In B’ miifite dann (4.4) gelten, und hieraus folgt B’ = C.
Das ergibt einen Widerspruch.

5. Die Beweise der Sitze 1.1 und 1.2

Es sei € (u4')(i=1, 2) der Ortsvektor einer orientierten Fliche F der Klasse C* im
dreidimensionalen euklidischen Raum und ¢(w') der Normalenvektor, ferner
y =G, du'du* und B = B;, du' du* die erste und die zweite Grundform auf F. Wir setzen
a=f— Hy, wobei H die mittlere Kriimmung ist. Anstelle des Kriimmungsliniennetzes
untersuchen wir das durch die Differentialgleichung o=0 gegebene Netz seiner Win-
kelhalbierenden; die beiden Netze sind fiir Indexbetrachtungen gleichwertig, da die
zugehorigen Richtungsdoppelfelder stetig ineinander iiberfiihrbar sind.

Jetzt gelte (1.1); wir setzen &= A4, dw’'du*=p—cy. Wegen

det (AY)=K—-2Hc+c*=(k;—c)(k; —c)<0

zerfillt & in reelle Linearfaktoren; da ferner &=a gilt (vgl. Nr. 4), hat man j (& F)=
Jj(a, F), wenn diese Zahl existiert.

Wenn F eine regulire Parallelprojektion zuliBt, gibt es Vektoren a, b so, daB die
Funktionen x=<{a®) und y=(bQ®) iiberall auf F der Bedingung &** x; y, > 0 geniigen.
Wegen der Weingartenschen Ableitungsgleichungen &= — B €, gilt fiir die Funktio-
nen f= —<a(é+cG)y, g=—<b(¢+cE))

fiszijxj, giz"{ijyj° 5.1
Es folgt
g fig = det (A7) x, y1 < 0.

Wenn nun die Menge der Nullstellen von det (4,/) kompakt ist, liefert der Satz 4.2
i(df, F)<0. Wegen (5.1) 148t sich der gemdB Abschnitt 3 verallgemeinerte Satz 2.1
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anwenden, und man erhélt, wenn man noch beachtet, daf3 die Form d x singularitdten-
frei ist,

j(a,F)=j(&,F)——=j(6z',F)—j(dx,F)=j(df,F)g(),

Wir beweisen Satz 1.2. Dazu nehmen wir an, es gibe auf der Rotationsfliche F
einen Punkt mit det(4;”)<0. Dann ist diese Ungleichung auf einem ganzen Breiten-
kreise erfiillt, der unter den Voraussetzungen von Satz 1.2 ein einfach zusammen-
hingendes Fldchenstiick F’' mit reguldrer Projektion abschneidet, auf dem die Menge
der Nullstellen von det (4;/) kompakt ist. Da jeder Breitenkreis Kriimmungslinie ist,
folgt j(«, F')=2, und dies widerspricht Satz 1.1. Also gilt auf F in (1.1) das Gleich-
heitszeichen. Eine regulidre Rotationsfliche, die von der Rotationsachse durchstofen
wird und auf der eine der Hauptkriimmungen konstant ist, ist aber ein Kugelstiick,
wie sich in Nr. 7 beildufig ergibt.

6. Die Beweise der Sitze 1.3 und 1.4

Wir betrachten eine Fliche F der Klasse C* im dreidimensionalen Vektorraum
(zentroaffinen Raum), deren Punkte wir jetzt zweckmiBig durch ihre Koordinaten
x*(#)(A=1, 2, 3) beziiglich einer festen Basis darstellen. Beziiglich der dualen Basis
habe der Normalenkovektor die Koordinaten &,(«')(u=1, 2, 3). Das lineare Glei-
chungssystem a) x* = T £, b xali — Tk Ei®) (6.1)
liefert Funktionen T#* der Klasse C? auf F. Die Reziprocitiit der Flichen x* und ¢,
impliziert die Symmetrie des Schemas T**. Differenziert man (6.1a), so erhilt man
bei . .

ei Beachtung von (6.1b) T“‘“\&“ _o. 6.2)

Durch kovariante Differentiation von (6.1b) gewinnt man bei Beachtung der Ab-
leitungsgleichungen (1.2) und (1.3)
24, % ;=T & (6.3)

Jetzt gestatte F eine regulidre Parallelprojektion; dann gibt es feste Kovektoren
a, und b, so, daB die Funktionen y=x"a, und z=x"b, iiberall auf F der Bedingung
&'y, z,>0 geniigen. Wegen (6.2) kann man ansetzen:

T*,a,=C’x";, T™ub, =D x";. (6.4)

Die Tensoren C,’ und D,’ lassen sich berechnen, indem man (6.4) mit £, iiberschiebt,
(6.3) heranzieht und x*;£,;= — G;; beachtet:

240’y = - Cui, 2457 2; = — Dy (6.5)

8) Wir verwenden auch fiir die griechischen Indizes die Einsteinsche Summenkonvention.
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Wir fithren die Funktionen
f=—4T"*aza,, g=-%T**a;b,, h=—-3T*"b,b, (6.6)
ein. Dann folgt aus (6.4) und (6.5)

gi=—%cikzk=—%Dikyk_'A:kakyj’ (67)
fi=Aikjykyjs h;=A ikjZ 2.

Nun zerfalle die Form a= 4;,, d«'du*du' punktal in reelle Linearfaktoren. Dann
gilt dies wegen (6.5) auch fiir die Formen C;, dw'du* und D;, du'du*, und es folgt

asikftgk %det (Ctk)eljylz <0

6.8
oe*g =% det (D )e”y,z; <0 (o =sign det (G;p)). 68)

In den Nullstellen von g; hat man wegen (6.5), (6.7) und (1.4)
2P,y Y =det (CY=0=det (D} =2P,z'z* (6.9)

und damit P;,=0, da P;, semidefinit ist. Ist also die Menge der Nullstellen von P;;,
kompakt, so folgt aus (6.7) und dem geméB Nr. 3 verallgemeinerten Satz 2.1

j(a9 F)=j(dg’ F)

Der SchluB beruht auf der Nullstellenfreiheit von y' und z' und ist auch fiir hyper-
bolisch gekriimmte Flidchen giiltig.

Wir nehmen jetzt j(dg, F)>0 an. Dann existiert nach der Folgerung von Satz 4.1
ein kompakter Bereich B, der Punkte mit P;, # 0 enthélt und von einer glatten Niveau-
linie von g berandet wird. Aus Satz 4.2 und (6.8) folgt aber, daB f;, g; und 4; iiberall in
B paarweise linear abhiingig sind und damit dort (6.9) erfiillt ist. Der Widerspruch
beweist j(dg, F)<0 und damit Satz 1.3.

Wir beweisen Satz 1.4. Dazu zeigen wir zunichst, daB auf einer Fliche, die den
Voraussetzungen des Satzes geniigt, P;, =0 gilt. Wir nehmen an, es gibe einen Punkt
mit P, # 0. Dann gilt diese Ungleichheit lings einer ganzen Parallelen?), die ein einfach
zusammenhingendes Flichenstiick F’ abschneidet. Da die Fliche von ihrer Achse
durchsetzt wird, ist sie elliptisch gekriimmt. Da die Achse das Raumzentrum trifft,
zerfallen ldngs jeder Parallelen die Nullrichtungen von « in stetige Felder, die mit der
Tangente an die jeweilige Paraliele einen konstanten Winkel beziiglich G;, einschlies-
sen. Es folgt j(«, F')=3, im Widerspruch zu Satz 1.3.

Der Satz 1.4 ergibt sich nun aus folgendem lokalen Resultat.

%) Die Parallelen entsprechen den Breitenkreisen bei den iiblichen Rotationsflichen. Vgl. [8],
S. 190.
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SATZ 6.1. Jede Affinrotationsfliiche elliptischen Typs, deren Achse durch das Raum-
zentrum geht und auf der iiberall P;.=0 gilt, ist eine Zentralquadrik.

Beweis: Zu zeigen ist 4;,,=0. Da die Achse durch das Raumzentrum geht, ist die
Affinentfernung vom Zentrum, g, auf jeder Parallelen konstant. Es sei U die Menge
der Punkte, in denen V,;=(Ing),#0 gilt. Wegen P;, =0 hat « die Gestalt «=(4, du')?,
und es gilt 2 V,= A’ 4; 4;. Da der Ubergang von (6.6) zu (6.7) fiir beliebige Kovektoren
a; und b; moglich ist, sind die Gradienten ¢, und T*#, fiir alle 4,  linear abhéngig.
Also ist in U auch T** auf jeder Parallelen konstant, d.h. bei der Darstellung

x!'=f(@)cosv, x*>=f(u)sinv, x*=gu),
&, =F)cosv, & =F(u)sinv, & =G(u)

der Fliche und ihres Konormalenbildes hingt 7** nicht von v ab. Aus (6.1a) folgt
dann T'?2=T7T13=T7T2'=T23=0 und, bei Beachtung der Symmetriec von T**
T3'=7T32=0 in U. Setzt man die so bestimmten T** in (6.2) ein, so erhilt man
T**,=0 und damit wegen (6.3) 4;,,=0 und ¥;=0in U; U ist also leer.

Auf elliptisch gekriimmten Flichen mit a=(4;d«’)® impliziert ¥,=0 sofort
A;;,=0; auf hyperbolisch gekriimmten Flichen ist auch moglich, daB A° Asymptoten-
richtung ist. Aber die durch (6.10) gegebene Fldche geht bei einer Spiegelung ¢ an
einer Ebene E, die die Achse enthilt, in sich iiber. Lings eines Schnittmeridians von
F mit E gilt fiir die induzierte Abbildung ¢* der Tangentialebenen o* A'= + 4'. Hier-
aus folgt, daB A4’ entweder an den Meridian oder an den Breitenkreis tangential ist,
und das kann bei Asymptotenrichtungen nur in parabolischen Punkten eintreten.

(6.10)

7. Die Bedeutung der reguliren Parallelprojektion

Wir geben eine einfach zusammenhédngende Rotationsfliche F im euklidischen
Raum an, die kein Kugelstiick ist und auf der alle Voraussetzungen von Satz 1.1 er-
fiillt sind auBer der Forderung der reguldren Projektion; offenbar gilt j(F)=2.

Es seien x, y, z die rechtwinkligen Koordinaten eines Punktes im dreidimensiona-
len euklidischen Raum. Eine Fliche F' entstehe durch Rotation der Kurve x=x(s),
=0, z=z(s) um die Achse x=y=0; s sei der BogenmaBparameter. Bekanntlich sind
Breitenkreise und Meridiane Kriimmungslinien; die zugehorigen Hauptkriimmungen
seien mit k, und k,, bezeichnet. Auf dem erzeugenden Meridian gilt

i=—k,z, %=ky%, (1.1)

Z=kyx. (7.2)
Die Funktion k,, (s) sei definiert fiir —n/2<s und von der Klasse C*; sie besitze fol-
gende Eigenschaften:

kn(s)=1 fir —-<s<a, k,(s)>1 fir s>a <OSa<g). (7.3)
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Wir losen (7.1) mit den Anfangsbedingungen x(—n/2)=2(—n/2)=0, z(—=n/2)=
—x(—m/2)= —1. Die entstehende Fliche enthilt fiir s <a eine Kugelkalotte, die eine
Halbkugel umfaBt. Es sei b die kleinste von —n/2 verschieden Nullstelle von Z(s).
Wir zeigen, daB auf der durch —=n/2<s<b gegebenen Fliche F die Bedingung
(kw—1) (ksy—1) <0 erfiillt ist; fiir a<s<b tritt hier das Gleichheitszeichen nie auf.

Da der Meridian fiir s<a ein Bogen des Einheitskreises ist, gilt x(a)=2(a)=
cos a>0und % (a)= —sin a<0. Im folgenden sei a <s <b. Man hat (s)> 0, also wegen
(7.1) %(s)<0 und damit x(s)<0. Hieraus und aus (7.3) schlieBt man

Z(s)=cos a + jk,,,)&da <cosa+ f)‘cda = x(s).

Aus (7.2) folgt dann k,(s)<1 und damit (k,(s)—1)(k,(s)—1)<O.

Man erreicht mit dhnlichen Uberlegungen dasselbe Ziel, wenn man in (7.3)
k. (s)<1 fiir s>a fordert. Ferner kann man auf diese Weise geschlossene Rotations-
flichen vom Geschlecht Null konstruieren, die von der Kugel verschieden sind und
der Bedingung (1.1) geniigen; diese enthalten hyperbolische Punkte.

Fiir Flichen mit K<0 gilt Satz 1.1 auch dann, wenn man die Voraussetzung der
reguldren Projizierbarkeit streicht. Der Beweis hierfiir stiitzt sich auf die Integralfor-
mel (3.2) und soll zusammen mit anderen Anwendungen dieser Formel veroffentlicht
werden.

Um den Beweis von Satz 1.2 abzuschlieBen, zeigen wir noch, daB eine einfach
zusammenhidngende Rotationsfliche F, auf der (1.1) mit dem Gleichheitszeichen gilt,
ein Kugelstiick ist (vgl. Nr. 5). Ist k,, konstant, so ist die Meridiankurve ein Kreis-
bogen, der senkrecht auf die Achse st68t, und damit F eine Kugel. Ist andererseits k,
konstant, so folgt durch Differentiation von (7.2) und Vergleich mit (7.1) k,,=k;.

8. Isolierte Nullstellen von A, mit vorgeschriecbenem negativem Index

Wir wenden uns wieder der zentroaffinen Flichentheorie zu und zeigen, daB es
auBer Quadriken noch andere elliptisch oder hyperbolisch gekriimmte Fldchen gibt,
auf denen die kubische Grundform o« auBerhalb der Singularititen reell zerfillt;
hierbei kann jede negative ganze Zahl als Index einer isolierten Singularitit von a
auftreten.

Es seien x (i), y(«#'), z(#) die Koordinaten des Flichenstiickes F; wir wihlen
speziell u' =x, u* =y in einer Umgebung des Punktes P (' =0). Ferner gelte z(0,0)=1.
Dann ergeben sich fiir die Fundamentaltensoren der zentroaffinen Theorie die folgen-
den Ausdriicke in den partiellen Ableitungen von z nach den u':

Gix="0 "z, Ai=%(— p lzy,+3p7? ZaxPp) »
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wobei p=z—xz; —yz, gesetzt ist und die runde Klammer um die Indizes Symmetri-
sierung bedeutet.

In der beschriebenen Weise sei durch Z(x, y) ein Stiick einer Zentralquadrik F
gegeben; Z(x,y) ist analytisch, und es gilt 4;,,=0. Wir betrachten die Fliche
F:z=Z+q, wobeiqein homogenes Polynom m-ten Grades in x und y sei (m>4). Die
Potenzreihenentwicklungen der Grundtensoren in P beginnen offenbar so:

Gix=Gix(0,0) + -+,  Ajy=—4qu,+ . (8.1
Wir wihlen fiir ¢ das harmonische Polynom g=2Re(x+iy)". Dann gilt
0*qi1 = (Aq), =0 (5% sei das Kroneckersymbol).

Alsoist mita’= —g;,,du' du*du' auch ain den von P verschiedenen Punkten einer hin-
reichend kleinen offenen Umgebung U von P das Produkt von drei paarweise linear
unabhingigen reellen Linearformen, und es gilt j(«, U) = j(o, U). Als Polynom in
den Variablen w=x+iy, w, dw={ und  besitzt a’ die Gestalt

o« =—Im(m—1)(m=2)(W" 3 +w" 3.
Aus (2.5) und (2.6) folgt daher

jla, U)=j(@,U)y=3-m. (8.2)

Wegen (8.1) kann U so klein gewihlt werden, daB sie nur elliptische oder nur hyper-
bolische Punkte enthélt, je nachdem, wie die Quadrik F beschaffen ist.

Die Zahl 2m 148t sich auffassen als die Anzahl der vom Punkt P ausgehenden
Kurven, in denen F von F, d.h. von der in P oskulierenden Zentralquadrik geschnitten
wird. Die Vermutung liegt nahe, daB die Formel (8.2) mit dieser Interpretation von m
im Hinblick auf isolierte Singularititen von « allgemein gilt. Man gewdnne dann ein
plausibles Analogon zum Resultat von StT. CoHN-VOsSEN und H. ScHILT [7], das den
Index j eines isolierten Flachpunktes in einem reellen Asymptotenliniennetz mit der
Sattelordnung s19) in der Formel j=1—s verbindet. In der Tat 148t sich ein dhnliches
Resultat beweisen; hierauf soll in einer weiteren Arbeit eingegangen werden.
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