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Sur quelques formules du calcul de Ricci global

par Izu VAISMAN

1. Introduction

Récemment, divers auteurs ont réalisé la globalisation du calcul différentiel absolu,
ou calcul de Ricci, en présentant sous une forme globale les tenseurs d’une variété
différentiable et leurs dérivées covariantes. On en trouve des exposés systématiques
dans les livres de S. HELGASON [2] (dans lequel on trouve aussi la bibliographie du
probléme) et M. M. PosTNIKOV [5] (voir encore le livre de NoMizu [3] et le mémoire
de J. ScumMmiID [7]).%)

Ici, nous nous proposons de donner certains nouveaux résultats concernant les
espaces a connexion linéaire, les dérivées de Lie, les espaces munis de deux connexions
linéaires et les groupes de cohomologie d’une variété différentiable.

Pour éviter les répétitions, convenons une fois pour toutes d’employer les notations
et les définitions de [2]. En particulier, nous notons par M une variété C *-différentiable
et 4 n dimensions, par § I’algébre des fonctions réelles de classe C® sur M, par D le
module des champs de tenseurs réguliers du type (r, s) (et aussi D =D,, Dy=D") et
par D P'algébre tensorielle de M, considérée comme algébre sur les nombres réeles
et avec < D.

2. Prolongements de champ de vecteurs

Tout d’abord nous allons nous occuper d’une catégorie d’opérateurs différentiels,
agissant sur les champs de tenseurs.*)

Définition. Appelons prolongement de champ de vecteurs ou p.c.v. une dérivation
de l'algébre ® qui garde le type des tenseurs, c’est-a-dire une application D: D7D,
qui garde le type des tenseurs et pour laquelle on a

10. D(Tl + T2)=DT1 +DT2,
20. D(T1®T2)=DT1®T2+T1®DT2,

(Ty, T, € D). Appelons restriction d’un p.c.v. D le champ de vecteurs Res D, défini
par la restriction de D a J.

*) Un autre exposé détaillé se trouve dans le livre de S. Kobayaschi et K. Nomizu - Foundations
of differential geometry Interscience Publ. New York 1963, qui m’est parvenu ultérieurement. Nous
signalons que les dérivations considérées par ces auteurs sont les p.c.v. de la premiére espéce en-
visagées dans la présente Note.
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On a done (ResD) (f)=Df (fe§). @.1)
On dit encore que D est un prolongement de Res D.

I1 est simple de voir que, si D, et D, sont des p.c.v., alors D; +D,, fD;(fe{) et
D;D,—-D, D, en sont également; le dernier sera noté encore par [D,,D,] et sera
appelé le crochet des deux p.c.v. donnés - il satisfait aux identités bien connues de
Jacobi. De méme, on a

Res (D; + D,) =Res D, + Res D,; Res(fD)=fRes D;

2.2
Res [D,, D,] = [Res Dy, Res D,]. (2.2)

Il en suit que I’ensemble des p.c.v. de M est un module sur § et une algébre de Lie
sur les réeles; nous le noterons par P (M) ou simplement par B. Les formules (2.2)
montrent que ’application Res: P - D' @.3)

est un homomorphisme. Plus tard, nous verrons qu’elle est un épimorphisme.

On sait [2] qu'un élément T € D peut s’identifier 3 une fonction, qui attache a
chaque point pe M un tenseur T, en ce point, celui-ci dépendant d’une maniére
différentiable de p. Il en suit qu’un p.c.v. peut s’identifier & une fonction, qui attache a
chaque point pe M une différentiation de ’algébre tensorielle de ce point D (p), celle-ci
dépendant d’une maniere différentiable de p, dans le sens que si T est un champ
différentiable de tenseurs, la méme chose a lieu pour D 7. La démonstration détaillée
de cette affirmation reprend les méthodes utilisées, dans les situations analogues par
[2] et c’est pourquoi nous ne la donnons pas.

Compte tenu de cette observation, nous avons maintenant:

THEOREME. Un p.c.v. sur M est uniquement déterminé par ses restrictions @ §,
bl et Dl'

En effet, sur un voisinage de coordonnées, on a pour un champ T quelconque de
tenseurs .
T=d'""0"®uw’"®..0"®X, ®X,®...® X,

iy iy i
ajll ...1,53, wjhebl et Xik€b .

N

ou

Alors par les conditions 1° et 2° de la définition d’un p.c.v., D T est uniquement
déterminé sur ce voisinage, donc sur M aussi.
D’ailleurs, on peut donner aussi la formule globale pour D T. Celle-ci est

(D7) (@, ..., 0" Xy, ..., X)) =D(T (@', ..., &', X4, ..., X)) —

- Y T(o', ..., Do ..., 0", Xy, .., X)) - (24
h=1

L
- k;:r(w‘, 0 Xy, ., DX, o, X,
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les champs de tenseurs T et D T étant congus ici comme des fonctions §-linéaires des
arguments o', ..., "€ Dy, Xy, ..., X,e D'. En effet, on vérifie sans difficulté que
D T donné par (2.4) est un champ de tenseurs et qu’il satisfait aux conditions de la
définition d’un p.c.v.

Appelons tenseur de Kronecker sur M le tenseur

I(w, X) =w(X). (2.5)
On trouve alors d’aprés (2.4)

(DI) (w, X) = D(0(X)) — (Dw) (X) — w(DX). (2.6)
Maintenant nous considérons la classification suivante des p.c.v.
Définition. On dit que le p.c.v. D est de la premiére espéce si ’on a

DI=0 2.7
ou, ce qui est la méme chose, si D commute avec les contractions [2]. Dans le cas
contraire D sera dit de la seconde espéce.

Les formules (2.6) et (2.7) montrent que, pour un p.c.v. de la premiére espéce, les
valeurs sur D, sont déterminées par les valeurs sur § et D', a I’aide de la formule

(Do) (X) = D((X)) - (D X), 2.8)

qui est un cas particulier de la formule (2.4). Le théoréme précédent revient maintenant
a un résultat, établi dans un autre contexte, par WILLMORE [11]: D est déterminé
uniquement par ses restrictions a ¥ et D'. Mais D est aussi déterminé dans ce cas
par ses restrictions a et D, car ses valeurs sur D' sont données alors par la formule

(DX) (@) = »(DX) = D(w(X)) - (Dw) (X). @9)

Il est évident que, si D, et D, sont des p.c.v. de la premiére espéce, alors D, +D,,
S Dy et [D,,D,] en sont également. Donc I’ensemble des p.c.v. de la premiére espéce,
que nous noterons par P!(M) ou P! est un sous-module (respectivement sous-
algebre de Lie) de P.

3. Définition d’une connexion linéaire

Maintenant, nous montrons que la définition donnée en [2] pour une connexion
linéaire sur M (définition due a J. L. Koszul) peut se reformuler d’'une maniére plus
naturelle. Nous considérons aussi la notion importante de fonction de connexion.

La définition d’une connexion linéaire [2] peut étre énoncée ainsi

Définition. On appelle connexion linéaire sur M une application §-linéaire
V: D' P!, pour laquelle on a

ResV(X)=X pourtout XeD'. (3.1)
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On voit donc que V est un homomorphisme des §-modules D' et P*. Le p.c.v.
V (X) est encore noté par Vy et il s’appelle dérivée covariante par rapport a X.

De la définition précédente il suit Vy /=0 et, en vue de (3.1), Vy f=X f. Il en suit
que Vy est uniquement déterminé par sarestrictiona D' oua D,. La dérivée covariante
d’un champ de tenseurs 7T, du type (r,s) est donnée d’aprés (2.4) par la formule

(VxT) (@, ..., @, Xy, ..., X)) = X (T (@, ..., 0, X{, ..., Xi)) —

- Z T(O)l, ceey wah, ceey (Dr, Xl’ ey XS) - (3.2)
h=1
- kzl T(o!, ..., 0", Xy, ..., Vi Xy ooy X3).

Dans cette formule on a d’aprés (2.8)
(Vx0) (Y) = X (@(Y)) — @(V, Y) (3.3)

si ’on suppose connue la restriction de V4 D?, ou la formule correspondante obtenue
de (2.9) si 'on connait la restriction a D,.

Une fois ces considérations faites, on développe la théorie des connexions linéaires
comme en [2] ou [5]. Rappelons seulement que les opérateurs de la torsion et de la
courbure de la connexion V sont définis respectivement par

T(X,Y)=VyY-Vy X —[X, Y], (3.4)
R (X, Y) = [VXa VY] - V[x, Y] (3-5)

Remarquons que R(X, Y) peut &tre considéré comme un p.c.v. de la premiére espéce,
a restriction nulle.

Dans la suite, nous allons attacher a la connexion V une fonction qui peut la
remplacer.

Définition. On appelle fonction de connexion de la connexion linéaire V, ’application

r:D, xd xd'->§
définie par
Fw,X,Y)=w(VyY) (0eD,;;X, YeD). (3.6)

Compte tenu des propriétés de Vy, on voit immédiatement que:
1°. La fonction I' est §-linéaire dans les deux premiers arguments;

2°, M@ X, Y, +Y,)=(0,X, Y,)+T(oX,Y,).
3. I X, fY)=fI(o X, Y)+(Xf)o(Y).

Par les méthodes employées en [2] pour les tenseurs, on trouve aisément que la
fonction I' induit, en vertu de 1°, 2°, 3°, une fonction de connexion I'/U pour toute
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sous-variété ouverte U de M — c’est la fonction de la connexion induite sur U par V.
Alors, si 'on prend pour U un voisinage de coordonnées et si X est le repére naturel
de celles-ci et @' son dual, on trouve que les coefficients de la connexion V sont

I, =r(@X,X;)) (jk=1,..n). (3.7

Ces coefficients vérifient la loi connue de transformation par changement de coor-
données.

On sait que les coefficients (3.7) déterminent la connexion V. On voit donc, qu’on
pourrait définir celle-ci par une fonction I'(w, X, Y), satisfaisant aux conditions 1°,
2°, 3°, énoncées plus haut. Nous avons donc obtenu le

THEOREME. Une connexion linéaire sur M est uniquement déterminée par sa fonction
de connexion.

Remarquons qu’a I’aide de la fonction de connexion, les tenseurs de torsion et de
courbure de V [2] s’expriment respectivement par

T(, X, Y)=o(T(X, Y))=I'(0, X, Y)-T'(o, ¥, X) - o(X, Y]), (38

R(w, X, Y, Z)= o(R(X, Y) (2)) = (o, X, V4 Z) —

—TI'(0, Y, V4Z) - I'(o, [X, Y], Z). (3.9)

Il est utile d’associer a la connexion V donnée deux autres connexions linéaires.
D’abord, la connexion transposée [7], définie par la dérivée covariante

VY=V, X —-[Y, X], (3.10)
dont la fonction de connexion est
o, X,Y)=T(0, Y, X)+ o(X, Y]). (3.11)
Puis, la partie symétrique de V, définie par la dérivée covariante
ViY =3(Vi Y + Vi Y), (3.12)
dont la fonction de connexion est
FX,Y)=3{(0, X, Y)+ (0, Y, X) - o(Y, X])}. (3.13)

Cette derniére connexion est évidemment sans torsion.

4. Formules pour les dérivées de Lie

Des définitions globales pour la dérivee de Lie d’'un champ de tenseurs sur une
varieté differentiable ont été données par R.S. PaLais [4] et T.J. WiLLMORE [11].
Nous allons reprendre cette derniére définition pour donner une expression de la dé-
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rivée de Lie des tenseurs dans un espace a connexion linéaire. Nous donnerons aussi
des formules globales pour la dérivée de Lie d’une connexion linéaire.

Définition. Soit Y un champ de vecteurs. Alors on appelle dérivée de Lie des

champs de tenseurs de M, par rapporta Y, le p.c.v. de la premiére espéce Ly, déterminé
par les relations

ResLy=Y, LyX=[Y,X]. 4.1)
La formule (2.8) montre alors qu’on a
(Lyow) (X) =Y (o(X)) — o([Y, X]) 4.2)
et la formule (2.4) donne pour la dérivée de Lie d’un tenseur quelconque
Ly T) (0%, ...,0" X1, ... X)) = Y (T (0, ..., 0", X1, .., Xi)) —

- Y T(o...Lyd", ....,0", Xy, ..., X;) — (4.3)
h=1
—kZIT(wl,...,w’,Xl,...,LYX,,,...,Xs).

Sous une autre forme, cette formule a été établie par PALAIs [4].

1l est clair que la dérivée de Lie Ly est un p.c.v. qui peut étre construit pour tout
champ de vecteurs Y; il en résulte alors que I’homomorphisme (2.3) est un épimorphis-
me. Plus encore, L, étant de la premiére espéce, ’lhomomorphisme Res: P! —D! est
aussi un épimorphisme. Donc, le F-module D! est le quotient de P (ou de P*) par
rapport au module des p.c.v. qui sont des prolongements du champ de vecteurs nuls.

Supposons maintenant que la variété M est munie de la connexion linéaire V.
Alors, on peut attacher au champ de vecteurs Y un prolongement de la premiere
espéce du champ 0, noté L} et défini par les relations

Res LY =0, LYX=-VyY, (4.4)
car on a en effet
LYy(X; + Xp) = Ly X, + LY X,,

Ly(fX)=fLyX = fLY X + (LY f) X .
Avec les formules (2.8) et (2.4) on a alors
(LY o) (X) = - o (L} X), (4.5)
(Y 7T) (0, ...,0" Xy, .., X,) =

=- Y T(o',....L}o"...,0", X, ... X;) — (4.6)
K=1

s
- Y T(0"...,0 " X5, Ly Xiy oo, X)) -
k=1
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Les formules (3.2), (4.3) et (4.6) nous donnent immédiatement:

THEOREME. Dans un espace a connexion linéaire, la dérivée de LIE d’un champ de
tenseurs quelconque s’exprime par la formule

LyT=VY'I1+L’;T. (4.7)

D’ailleurs cette formule résulte aussi directement, car Vy,+ L} est un p.c.v. de la
premieére espéce satisfaisant a (4.1).

Envisageons maintenant la dérivée de Lie de la connexion elle-méme. Nous allons
la définir de la maniére suivante.

Définition. On appelle dérivée de Lie de la fonction de connexion I'(w,X;,X,),
par rapport au champ de vecteurs Y, la fonction

(Lyr) (CU, Xl’ Xz) = Y(F(CO, Xl’ Xz)) et F(LY , Xl’ Xz) -

4.8)
—I'(w,Ly Xy, X;) — I' (0, X, Ly X;),

ou Ly w et Ly X; sont les p.c.v. définis plus haut.

Un calcul direct montre que cette fonction est §-linéaire par rapport a o, X, X,,
donc elle est un champ de tenseurs du type (1.2).

En appliquant la formule (4.8) 4 un voisinage de coordonnées, muni de repéres
naturels, on trouve une des expressions connues pour la dérivée de Lie d’une connexion
linéaire [12], ce qui montre que notre définition est équivalente  la définition classique.

Maintenant, en explicitant les quantités du second membre de la formule (4.8),
on arrive finalement aux résultats suivants.

THEOREME. La dérivée de LIE d’une connexion linéaire est donnée par chacune des
Sformules:

(Lyr) ((D,Xl,Xz) = R((U, Y, Xl’ Xz) - T(w, Y,VXl Xz) +
+o(Vx, Vi, Y = Vy, 5, Y + Vx, T (Y, X)),
(LyT) (@, X1, X,) = R(@, Y, X, X;) — 0 (L5 Vg, X, — Vi, Ly X;).  (4.10)

(4.9)

Terminons ce paragraphe avec deux autres observations a I’égard du p.c.v. LY,
qui s’est montré important dans les formules antérieures.

La premiére remarque concerne les vecteurs de Killing d’un espace de Riemann
[12]. Si g(X, Y) est le tenseur métrique de celui-ci et V la connexion riemannienne
correspondante [2], les champs de vecteurs de Killing seront les champs £, carac-
térisés, en vertu de (4.7), par

(Lg) (X,Y)=0 (pour tout X et Y). 4.11)
En d’autres mots, si nous remarquons que 1’application

K:D'(M)-D,(M),
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définie par
K(¢)=Lig,

est un homomorphisme de groupes abéliens, alors les champs de vecteurs de Killing
constituent le noyau de cet homomorphisme.

Il est simple de voir, compte tenu de (4.7) et de la symétrie du tenseur g, que la
relation (4.11) équivaut a

g(X,L5X)=0, pourtout XeD'. (4.12)
Nous avons ainsi:

THEOREME. Le champ de vecteurs & est un champ de vecteurs de Killing dans un
espace de Riemann si et seulement si I’opérateur L;" attribue a chaque vecteur un vecteur
qui lui est orthogonal.

La seconde remarque que nous voulons faire concerne les espaces a connexion
projective. En analysant les définitions qui introduisent ces espaces a 1’aide d’une
connexion linéaire & une dimension supplémentaire (voir par exemple [10]), on arrive
a la définition globale suivante. Soit M une variété différentiable. Appelons variété
associée de M la variété M x R (ou R est la droite réelle), munie du groupe de trans-
formations & un parameétre induit par les translations de R. Puis, notons par £ le
champ de vecteurs induit sur M x R par ce groupe [2]. Alors on a:

Définition. Une connexion projective sur M est une connexion linéaire V sur la
variété associée M x R, qui satisfait aux conditions
LI (w, X3, X;)=0, LiX=X, (4.13)
pour tous w et X de D(M x R).

5. Courbure mixte de deux connexions linéaires

Considérons maintenant une variéte différentiable M, munie de deux connexions
1 2 1 2

linéaires V et V a fonctions de connexion I" et I'. Dans la littérature géométrique, on
trouve beaucoup de choses traitant de paires particuliéres de connexions (voir par
exemple [6]), mais peu de choses pour le cas général. Nous voulons nous intéresser a
ce cas général. Dans ce paragraphe, nous allons définir une courbure mixte de deux
connexions linéaires quelconques.

1 2
Définition. On appelle opérateur de la courbure mixte de V et V I'opérateur

(X, Y)=4+{[Vx, Vy] + [Vx, Vy] — Vix,v1— Vix, Y]} . (5.1)

On voit donc, qu'on peut considérer ¢(X,Y) comme un p.c.v. de la premiere
espéce, tel que Res g(X, Y)=0.
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Par des calculs directs on démontre que la fonction
o(0, X, Y, Z) = w(e(X, Y)Z) (5.2)

est §-linéaire dans tous ses arguments; elle est donc un champ de tenseurs du type
(1.3), évidemment antisymétrique en X et Y. Celui-ci sera appelé le tenseur de la
courbure mixte des deux connexions.

En considérant un voisinage de coordonnées U, muni des repéres naturels dans
les espaces D' (U) et D, (U), on trouve la formule

Q(a)h, X, Xj; Xk)=Q?jk=%{F’}k,i"r?k,j'}-rjl'k"‘_r?k'f_*— (5.3)

2 1 2

2 1 1 1 2
N h s h S h s h
+ D50y = T T+ T Tig — T3 T}

qui donne les composantes du tenseur de la courbure mixte (les notations sont
analogues a ceux qu’on fait en [2] pour le tenseur de courbure).
Nous voulons aussi signaler les formules de commutation de la forme suivante

1 2
(01 = @ipd; 5 + (0 D — i)y = 2041508 + T vise + Tjivygs s (5.4)
1 2.
ou «/» et «;» notent les dérivées covariantes par rapport a V, respectivement V,
formules qui peuvent &tre généralisées pour des tenseurs quelconques.
On peut donner une interprétation géométrique locale de la courbure mixte a
l’aide des cycles infinitésimaux de E. CARTAN [1]. A ce but considérons d’abord les
Jformes de connexion

1 1 2 2
. __ . "
w] =Tj,dx", o]=1r>I;;dx

et écrivons les équations de connexion de Cartan
s dp = dx'X;, dp =dx'X;,
1 2 .

Puis, considérons dans le point pe M deux déplacements d et 0 et déterminons le
développement du repére X; sur I’espace tangent en p, d’abord le long de d par rapport

1 2
a Vet le long de 0 par rapport 4 V, puis en changeant le role de d et 0. La différence
des résultats obtenus donne un certain déplacement. En changeant maintenant le

1 2
role de V et V et en additionnant le nouveau déplacement obtenu au précédent, on
trouve que le déplacement total est donné par les valeurs pour d et 0 des formes
exterieures quadratiques de la courbure mixte

2 1 1 2 2 1
k k Pk ik
= 2J[f = do} + dof — o] A 0] — o] A ], (5.5)
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ou d est la différentielle extérieure. Les équations (5.5) peuvent étre appelées équations
de structure pour la paire de connexions. De ces équations, on trouve immédiatement

[Ti = 4ahiidx" A dx', (5.6)

ce qui donne I'interprétation annoncée.
Pour obtenir un autre résultat sur la courbure mixte, envisageons la connexion

m 1 2
moyenne V de V et V, définie par la fonction

['(o, X, Y)=3{T' (@, X, Y) + (@, X, Y)}, 5.7)

qui est évidemment une fonction de connexion.
A T’aide de cette connexion on démontre par des calculs directs le résultat suivant:

1 2 m

THEOREME. Entre les courbures des connexions V, V, V et la courbure mixte de la
1 2
paire (V, V) il y a la relation
o(X, Y)=2R(X, Y) - }{R(X, Y) + R(X, Y)}. (5.8)

1 2
Il en suit que si les connexions V et V coincident, alors ¢(X, Y) se réduit a R(X, Y).

Il en suit aussi la possibilité d’obtenir, pour la courbure mixte, des identités de Bianchi.

6. L’algébre de déformation de deux connexions linéaires

1 2
Considérons de nouveau les deux connexions linéaires V et V sur M. On sait que

la différence de ces deux connexions est un tenseur, appelé tenseur de déformation [6].
En effet la fonction

2 1
S, X,Y)=T(w, X,Y)-TN(w, X, Y) (6.1)
est -linéaire en tous ses arguments et nous donne le tenseur annoncé.
Si, au lieu de considérer les fonctions de connexion, on considére les dérivées
covariantes, on arrive a un p.c.v. de la premiére espéce Sy défini par
2 1
SX = Vx fand Vx N (6.2)
d’ou ‘évidemment Res Sy=0. Celui-ci sera appelé opérateur de déformation de la
1 2
paire (V, V) et il est lié au tenseur de déformation par la relation
S(w, X, Y)=w(SxY). (6.3)

Dans la suite, nous allons employer I’'opérateur Sy pour définir D*(M) comme
algtbre sur 'anneau § et nous allons étudier cette algébre. Rappelons qu’une ideé
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analogue a éte suivie par Gh. VRANCEANU dans I’étude des espaces a connexion
constante [9].

En effet, si 'on définit le produit de deux champs de vecteurs par
X*Y =8,7, 6.4)

les propriétés de distributivité de ce produit par rapport a la somme des champs de
vecteurs sont immédiates et on obtient donc I’algébre annoncée.

Définition. L’algébre définie par (6.4) sera nommée algébre de déformation de la

1 2 1 2
paire de connexions (V, V) et sera notée par W(M, V, V), ou simplement par .
Pour obtenir des propriétés de I’algébre U, définissons encore la courbure de

déformation de la paire (V, V), a I'aide de I"opérateur
K(X, Y)=1%[Sx, Syl, (6.5)

opérateur qui est un p.c.v. de la premiére espéce, prolongement du champ de vecteurs
nuls. On peut considérer aussi le tenseur de la courbure de déformation, donné par la

fi
ormule K(o, X, Y, Z) = o(K(X, Y) (2)) (6.6)
Maintenant nous allons énoncer les résultats suivants:

THEOREME. Pour toute paire de connexions linéaires sur M on a les formules:
1 2
20X, Y)+4K(X,Y)=R(X,Y)+ R(X, Y), (6.7)

o(X, Y) + K(X, Y) = R(X, Y). (6.8)

En effet, la formule (6.7) peut s’obtenir par des calculs directs et la formule (6.8)
se déduit de (6.7) et de (5.8).

Maintenant on trouve sans difficulté les propriétés suivantes: L

a) L’algébre U est commutative si et seulement si les connexions V et V ont la
méme torsion. . s

b) L’algebre U est anticommutative si et seulement si les connexions V et V ont
la méme partie symétrique.

¢) Dans l’algébre U on a la loi

X*(Y*Z) = Y*(X+Z),

(U K(X,Y)= 0) si et seulement si la courbure mixte de la paire (V, V) est la moyenne
1 2

arithmétique des courbures de V et V.
d) L’algebre 9 est simultanément commutative (anticommutative) et associative
si les conditions de a) (respectivement b)) et de c) sont simultanément vérifiées.
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e) L’algébre UA est une algébre de Lie si et seulement si
1 2
—V et V ont la méme partie symétrique;

—R(X, Y)(2) + R(Y, Z) (X) + R(Z, X) (V)=
= 0(X, Y)(Z)+ o(Y, Z) (X) + o(2Z, X)(Y),

pour tout X,Y,Z e D'.
Une autre conséquence immédiate des formules (5.8), (6.7) et (6.8) est:

THEOREME. Parmiles quatre propriétés suivantes, chaque paire implique I’autre paire:

1 2
1. R(X, Y)+R(X, Y) =0,
2°, R(X,Y)=0,
3°, (X, Y)=0,
%, K(X, Y)=0.

Terminons ce paragraphe en énongant un probléme qui nous semble intéressant
et difficile: trouver des courbes de M et des familles de directions le long de ces
courbes, telles que les directions respectives soient simultanément paralléles dans les

1 2
deux connexions de la paire (V, V), le long des courbes en question.

7. Les groupes de cohomologie d’un espace a connexion linéaire plane

Dans ce dernier paragraphe, nous allons introduire un opérateur, agissant sur les
champs de tenseurs covariants quelconques et qui, dans le cas d’un espace a connexion
linéaire plane (c’est-a-dire sans courbure et sans torsion) généralise dans un certain sens
la différentielle extérieure des tenseurs antisymétriques. Ceci nous permettra d’intro-
duire les groupes de cohomologie d’une variété différentiable M, paracompacte et
munie d’une connexion linéaire plane, a ’aide des tenseurs covariants quelconques.

Si A(X,, ..., X,) est un champ de tenseurs covariants, totalement antisymétriques
(C’est-a-dire que la fonction A est anti-symétrique dans ces arguments), alors la
différentielle extérieure de celui-ci est le champ de tenseurs, encore antisymétriques,
donné par [2.4]

r+1
(r+ 1) ([dA(Xy, .o Xoiy) = ; (= DX (AKX, oos Ry oo Xy p)) + -
r+1 .
+ Y (U)YACX, X1, Xy oo Kty oo Xy s Xow1) s

i<j=1

ou le signe « A» montre que ’argument respectif est supprimé.
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Maintenant, pour un espace a connexion linéaire V, introduisons I’opérateur qui
nous intéresse.

Définition. Soit A(X|, ..., X,) un champ de tenseurs covariants quelconque. On
appelle cofrontiére de A le champ de tenseurs 64 donné par

r+1

(r+1)(@4) (X, ..., X,41) = i; (= )" (Vy,A) (X, o Riy oy Xoiy). (7.2)

Il est évident que I’application 0: D,— D, ,, ainsi obtenue est un homomorphisme
de groupes abéliens.

Si, en particulier, 4 est antisymétrique, alors on vérifie par un calcul direct et
compte tenu de la formule (3.2) la formule suivante

(dA) (Xls gt Xr+1) = (aA) (Xl’ teey Xr+1) -

r+1

E A(T (X X))y Xy coos Rir s Xy oy Xt )

i<j=1

(7.3)

r+1

qui exprime la différentielle extérieure a ’aide de la connexion V. Il en suit que, pour
une connexion V sans torsion et pour un tenseur antisymétrique A, la cofrontiére 64
se réduit a la différentielle extérieure dA4.

Remarquons maintenant une propriété importante de la cofrontiére. On sait que,
a tout tenseur A(X, ..., X,), on peut associer, par alternation, un tenseur antisy-
métrique 4'(X,, ..., X,), donné par

S
A Xy, o X)) = r_'z sign [](h; —h)A(Xy,, ..., X,,), (7.9

j<i

ol (hy, ..., h,) est une permutation de (1, ..., r), la somme prise sur toutes ces
permutations. On trouve

A) (X1 oves Xon ) = (04) (X1, ooy Xotr), (7.5)

qui est la propriété annoncée.
Nous allons maintenant calculer 8> 4. Dans ce but on établit d’abord la formule

(r+1) (Vy(04)) (X1, ..., Xopy) = r_Z (= )1 (VyVx, A) (Xgy oo Xy ooy X y)—
i=1 (7.6)

r+1

- Z (— 1)i+1(VVyXiA) (Xl, ceey Xl’a ceey Xr+1)
i=1
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et a I'aide de celle-ci on obtient finalement

(r+2)(r+1)(0*4) (X, ..., X,45) =
r+2
- .;:1(“ DR, X)A) (X ooy Xy s By oy Xpp1) — )
r+2

- Y ()Y (Vrxaxp DXy oo Xy oo £y oy Xoiy).

j<i=1

Dongc, si la connexion V est sans courbure et sans torsion on a
0’A=0, (7.8)

pour un champ de tenseurs covariants quelconque A.

I1 en suit que, dans ce cas, le systéme (D,,0) constitue un complexe de cochaines,
qui sera noté par Ky. Nous sommes maintenant arrivés au résultat annoncé au début,
qui est le suivant:

THEOREME. Les groupes de cohomologie a coefficients réels, d’une variété M para-
compacte et munie d’une connexion linéaire plane sont les groupes de cohomologie du
complexe Ky.

En effet, soit K le complexe de cochaines défini par les tenseurs antisymétriques et
par la différentielle extérieure. Dans notre cas et compte tenu de la formule (7.3), K
est un sous-complexe de Ky. On a donc la suite exacte de cohomologie [8]:

D HT Y (KG/K) S HY(K) S HY(Ky) S HY(Ky/K) > ... (1.9)

ou Ky/K est le complexe facteur et H? sont les groupes de cohomologie correspon-
dants.
Puis, pour tout tenseur 4 on a une formule de la forme

A=A +B (7.10)

et, en vertu de la propriété (7.5) si 04 € K, alors 0A=0A' et on trouve 0B=0.

Il en suit que tous les groupes H?(Ky/K) sont triviaux et la suite (7.9) montre que
les groupes H(K) et H?(Ky) sont isomorphes. Donc, notre théoréme est une con-
séquence du théoréme bien connu de G. DE RHAM [8].

Séminaire Mathématique «A. Myller»
Université «Al. I. Cuza»
Jassy, Roumanie
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