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Sur quelques formules du calcul de Ricci global

par Izu Vaisman

1. Introduction

Récemment, divers auteurs ont réalisé la globalisation du calcul différentiel absolu,
ou calcul de Ricci, en présentant sous une forme globale les tenseurs d'une variété
différentiable et leurs dérivées covariantes. On en trouve des exposés systématiques
dans les livres de S. Helgason [2] (dans lequel on trouve aussi la bibliographie du

problème) et M. M. Postnikov [5] (voir encore le livre de Nomïzu [3] et le mémoire
de J. Schmid [7]).*)

Ici, nous nous proposons de donner certains nouveaux résultats concernant les

espaces à connexion linéaire, les dérivées de Lie, les espaces munis de deux connexions
linéaires et les groupes de cohomologie d'une variété différentiable.

Pour éviter les répétitions, convenons une fois pour toutes d'employer les notations
et les définitions de [2]. En particulier, nous notons par M une variété C °°-différentiable
et à « dimensions, par g l'algèbre des fonctions réelles de classe C00 sur M, par T)rs le
module des champs de tenseurs réguliers du type (r, s) (et aussi X)° î)s, T)r0 î)r) et

par î) l'algèbre tensorielle de Af, considérée comme algèbre sur les nombres réeles

et avec gc=î).

2. Prolongements de champ de vecteurs

Tout d'abord nous allons nous occuper d'une catégorie d'opérateurs différentiels,
agissant sur les champs de tenseurs.*)

Définition. Appelons prolongement de champ de vecteurs ou p.c.v. une dérivation
de l'algèbre î) qui garde le type des tenseurs, c'est-à-dire une application D: D-*î),
qui garde le type des tenseurs et pour laquelle on a

1°.

2°. D 7\ ® T2 D 7\ ® T2 + 7\ ® D T2,

(Tu T2 e D). Appelons restriction d'un p.c.v. D le champ de vecteurs Res D, défini

par la restriction de D à gf«

*) Un autre exposé détaillé se trouve dans le livre de S. Kobayaschi et K. Nomizu - Foundations

of différential geometry Interscience Publ. New York 1963, qui m'est parvenu ultérieurement. Nous
signalons que les dérivations considérées par ces auteurs sont les p.c.v. de la première espèce
envisagées dans la présente Note.
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(ResD)(/) D/ (/eg). (2.1)

On dit encore que D est un prolongement de Res D.
Il est simple de voir que, si Dt et D2 sont des p.c.v., alors Dt + D2,/D1(/6(5) et

D1D2 —D2Dt en sont également; le dernier sera noté encore par [D^D^ et sera

appelé le crochet des deux p.c.v. donnés - il satisfait aux identités bien connues de

Jacobi. De même, on a

Res (Dt + D2) Res T>% + Res D2; Res(/D) =/Res D;
Res [Dls D2] [Res Dl9 Res D2].

Il en suit que l'ensemble des p.c.v. de M est un module sur 5 et une algèbre de Lie
sur les réeles; nous le noterons par ty (M) ou simplement par S$. Les formules (2.2)
montrent que l'application Res. <p ^ jji (2.3)

est un homomorphisme. Plus tard, nous verrons qu'elle est un épimorphisme.
On sait [2] qu'un élément T e î) peut s'identifier à une fonction, qui attache à

chaque point peM un tenseur Tp en ce point, celui-ci dépendant d'une manière
différentiable de p. Il en suit qu'un p.c.v. peut s'identifier à une fonction, qui attache à

chaque pointée M une différentiation de l'algèbre tensorielle de ce point T)(p)9 celle-ci

dépendant d'une manière différentiable de p, dans le sens que si T est un champ
différentiable de tenseurs, la même chose a lieu pour D T. La démonstration détaillée
de cette affirmation reprend les méthodes utilisées, dans les situations analogues par
[2] et c'est pourquoi nous ne la donnons pas.

Compte tenu de cette observation, nous avons maintenant:

Théorème. Un p.c.v. sur M est uniquement déterminé par ses restrictions à 2f,

î)1 et D1#

En effet, sur un voisinage de coordonnées, on a pour un champ T quelconque de

tenseurs
T ^^

°Ù
a^zie&co^e^ et ^

Alors par les conditions 1° et 2° de la définition d'un p.c.v., D T est uniquement
déterminé sur ce voisinage, donc sur M aussi.

D'ailleurs, on peut donner aussi la formule globale pour D T. Celle-ci est

(DF) (co\ co\ Xu Xs) D(T(g>\ co\ Xu Xs)) -
- t T(co\ DoA et/, Xu Xs) - (2.4)

- t T((o\ co% Xu D4 Xs),
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les champs de tenseurs T et D T étant conçus ici comme des fonctions g-linéaires des

arguments co1, core D1? Xu ...,XseT)1. En effet, on vérifie sans difficulté que
D T donné par (2.4) est un champ de tenseurs et qu'il satisfait aux conditions de la
définition d'un p.c.v.

Appelons tenseur de Kronecker sur M le tenseur

I(œ,X) co(X). (2.5)

On trouve alors d'après (2.4)

(D /) (co, X) D (co (X)) - (D co) (X) - co (D X). (2.6)

Maintenant nous considérons la classification suivante des p.c.v.

Définition. On dit que le p.c.v. D est de la première espèce si l'on a

DJ 0 (2.7)

ou, ce qui est la même chose, si D commute avec les contractions [2]. Dans le cas
contraire D sera dit de la seconde espèce.

Les formules (2.6) et (2.7) montrent que, pour un p.c.v. de la première espèce, les

valeurs sur î)t sont déterminées par les valeurs sur 5 et T) S à l'aide de la formule

(D co) (X) D (co (X)) - co (D X), (2.8)

qui est un cas particulier de la formule (2.4). Le théorème précédent revient maintenant
à un résultat, établi dans un autre contexte, par Willmore [11]: D est déterminé

uniquement par ses restrictions à $ et D1. Mais D est aussi déterminé dans ce cas

par ses restrictions à 5 et Dl5 car ses valeurs sur D1 sont données alors par la formule

(D X) (co) co (D X) D (co (X)) - (D co) (X). (2.9)

II est évident que, si Dt et D2 sont des p.c.v. de la première espèce, alors Dt + D2,

fDt et [D1?D2] en sont également. Donc l'ensemble des p.c.v. de la première espèce,

que nous noterons par tyl(M) ou ^p1 est un sous-module (respectivement sous-
algèbre de Lie) de %

3. Définition d'une connexion linéaire

Maintenant, nous montrons que la définition donnée en [2] pour une connexion
linéaire sur M (définition due à J. L. Koszul) peut se reformuler d'une manière plus
naturelle. Nous considérons aussi la notion importante de fonction de connexion.

La définition d'une connexion linéaire [2] peut être énoncée ainsi

Définition. On appelle connexion linéaire sur M une application g-linéaire
V: î)1--^1, pour laquelle on a

ResV(X) X pour tout XeT)1. (3.1)
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On voit donc que V est un homomorphisme des ^-modules î)1 et ty1. Le p.c.v.
V (X) est encore noté par Vx et il s'appelle dérivée covariante par rapport à X.

De la définition précédente il suit Vx/=0 et, en vue de (3.1), Vxf=Xf. Il en suit

que Vx est uniquement déterminé par sa restriction à D1 ou à X^. La dérivée covariante
d'un champ de tenseurs T, du type (r9s) est donnée d'après (2.4) par la formule

(VXT) (œ\ co\ Xu Xs) X(T(co\ w\ Xl9 Xs)) -
û)r, Xl5 Xs) - (3.2)

- £ T(o)1, G>r, Xu VxXk, Xs).

Dans cette formule on a d'après (2.8)

X(a>(Y))-a>(VxY) (3.3)

si l'on suppose connue la restriction de V à X)1, ou la formule correspondante obtenue
de (2.9) si l'on connaît la restriction à Dx.

Une fois ces considérations faites, on développe la théorie des connexions linéaires

comme en [2] ou [5]. Rappelons seulement que les opérateurs de la torsion et de la
courbure de la connexion V sont définis respectivement par

T(X9 Y) V* Y - VYX - [X, Y] (3.4)

R(X9 y) [Vx,Vy]-V[J>y]. (3.5)

Remarquons que R(X, Y) peut être considéré comme un p.c.v. de la première espèce,

à restriction nulle.
Dans la suite, nous allons attacher à la connexion V une fonction qui peut la

remplacer.

Définition. On appelle/onction de connexion de la connexion linéaire V, l'application

r : Di x î)1 x D1 - g
définie par

r(co,X, Y) œ(VxY) (coe^tiX, Yeî)1). (3.6)

Compte tenu des propriétés de VX9 on voit immédiatement que:
1°*. La fonction F est ^-linéaire dans les deux premiers arguments;

2°. r(û>, X, Yt + Y2) r(co, X, Yt) + r(œ9 X9 Y2).

3°. r(œ9 X9 f Y) f r(œ9 X, Y) + (Xf)co(Y).

Par les méthodes employées en [2] pour les tenseurs, on trouve aisément que la

fonction F induit, en vertu de 1°, 2°, 3°, une fonction de connexion r/U pour toute
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sous-variété ouverte U de M - c'est la fonction de la connexion induite sur U par V.

Alors, si l'on prend pour U un voisinage de coordonnées et si Xf est le repère naturel
de celles-ci et œl son dual, on trouve que les coefficients de la connexion V sont

rku r(œ\ Xh Xj) (i, U k 1, n). (3.7)

Ces coefficients vérifient la loi connue de transformation par changement de
coordonnées.

On sait que les coefficients (3.7) déterminent la connexion V. On voit donc, qu'on
pourrait définir celle-ci par une fonction r(œ,X, Y), satisfaisant aux conditions 1°,

2°, 3°, énoncées plus haut. Nous avons donc obtenu le

Théorème. Une connexion linéaire sur M est uniquement déterminée par sa fonction
de connexion.

Remarquons qu'à l'aide de la fonction de connexion, les tenseurs de torsion et de

courbure de V [2] s'expriment respectivement par

T(œ9 X, Y) œ(T(X, Y)) r(œ, X, Y) - r(co, F, X) - co([X, Y]), (3.8)

R(œ, X, 7, Z) co(R(X, Y) (Z)) T(co, X, VyZ) -
- r(o>, y, vxz) - r(co, [x, y], z).

(3.9)

II est utile d'associer à la connexion V donnée deux autres connexions linéaires.

D'abord, la connexion transposée [7], définie par la dérivée covariante

V^7 VyX-[7,X], (3.10)

dont la fonction de connexion est

r(co, x, y) />, y, x) + œ([x, y]). (3.ii)

Puis, la partie symétrique de V, définie par la dérivée covariante

VxY HVxY + VxY), (3.12)

dont la fonction de connexion est

f(œ, x, y) !{r(co, x, y) + />, y, x) - o>([y, x])}. (3.13)

Cette dernière connexion est évidemment sans torsion.

4. Formules pour les dérivées de Lie

Des définitions globales pour la dérivée de Lie d'un champ de tenseurs sur une
variété differentiable ont été données par R.S. Palais [4] et T. J. Willmore [U].
Nous allons reprendre cette dernière définition pour donner une expression de la dé-
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rivée de Lie des tenseurs dans un espace à connexion linéaire. Nous donnerons aussi

des formules globales pour la dérivée de Lie d'une connexion linéaire.

Définition. Soit Y un champ de vecteurs. Alors on appelle dérivée de Lie des

champs de tenseurs de M, par rapport à Y, le p.c.v. de la première espèce LY, déterminé

par les relations
Res LY Y, LYX [7, X]. (4.1)

La formule (2.8) montre alors qu'on a

(LYco) (X) Y(co(X)) - co([7, X]) (4.2)

et la formule (2.4) donne pour la dérivée de Lie d'un tenseur quelconque

(LYT)(œ\...,œ\X1,...,Xs)~Y(T(œ\...9a>\Xu...,Xs))--

- £ T(œi,...9LYœh9...,œr9Xu...9Xs)- (4.3)

- £ T(a>1,...,œr,Xl,...,LïXk,...,Xs).

Sous une autre forme, cette formule a été établie par Palais [4].
Il est clair que la dérivée de Lie LY est un p.c.v. qui peut être construit pour tout

champ de vecteurs Y; il en résulte alors que l'homomorphisme (2.3) est un épimorphis-
me. Plus encore, LY étant de la première espèce, l'homomorphisme Res: ^-^D1 est

aussi un épimorphisme. Donc, le 3r-m°dule D1 est le quotient de ty (ou de ^J1) par
rapport au module des p.c.v. qui sont des prolongements du champ de vecteurs nuls.

Supposons maintenant que la variété M est munie de la connexion linéaire V.

Alors, on peut attacher au champ de vecteurs Y un prolongement de la première
espèce du champ 0, noté L* et défini par les relations

£ 0, L*YX -\7'xY9 (4.4)

car on a en effet

Ly (Xi + X2) LY Xj -f LY X2,

L*Y(fX) fL*rX fL*YX + (L* f)X.
Avec les formules (2.8) et (2.4) on a alors

(L*Ya,)(X) -a>(L*rX), (4.5)

(L*ïT){col,...,œ\X1 X,)

-t 7V L%a>\...,m\Xu...,Xs)- (4.6)

- t T(o)1 a)',X1,...,L*yXk Xs).



Sur quelques formules du calcul de Ricci global 79

Les formules (3.2), (4.3) et (4.6) nous donnent immédiatement:

Théorème. Dans un espace à connexion linéaire, la dérivée de Lie d'un champ de
tenseurs quelconque s'exprime par la formule

LYT VYT + L*T. (4.7)

D'ailleurs cette formule résulte aussi directement, car VY + L* est un p.c.v. de Ja

première espèce satisfaisant à (4.1).
Envisageons maintenant la dérivée de Lie de la connexion elle-même. Nous allons

la définir de la manière suivante.

Définition. On appelle dérivée de Lie de la fonction de connexion r(œ,XuX2%
par rapport au champ de vecteurs F, la fonction

(LYr) (co,XuX2) Y(r(co9XuX2)) - r(LYœ,Xl9X2) -
- r(co,LYXuX2) - r(œ,Xl9LYX2)9

où LY œ et LY Xt sont les p.c.v. définis plus haut.
Un calcul direct montre que cette fonction est JÇ-linéaire par rapport à co, XUX2,

donc elle est un champ de tenseurs du type (1.2).
En appliquant la formule (4.8) à un voisinage de coordonnées, muni de repères

naturels, on trouve une des expressions connues pour la dérivée de Lie d'une connexion
linéaire [12], ce qui montre que notre définition est équivalente à la définition classique.

Maintenant, en explicitant les quantités du second membre de la formule (4.8),
on arrive finalement aux résultats suivants.

Théorème. La dérivée de Lie d'une connexion linéaire est donnée par chacune des

formules:

(LYr) (a>9Xl9X2) R(œ, Y9Xl9X2) - T(œ9 Y9VXlX2) +

+ co(VXi VXl Y - VVxiX2 Y + VXl T(Y9X2))9

(LYT) (œ9Xl9X2) R(œ9 Y9Xi9X2) - co(L*VXlX2 - VXiLYX2). (4.10)

Terminons ce paragraphe avec deux autres observations à l'égard du p.c.v. L*9

qui s'est montré important dans les formules antérieures.
La première remarque concerne les vecteurs de Killing d'un espace de Riemann

[12]. Si g(X, Y) est le tenseur métrique de celui-ci et V la connexion riemannienne

correspondante [2], les champs de vecteurs de Killing seront les champs £,

caractérisés, en vertu de (4.7), par

(L*ig) (X, Y) 0 (pour tout X et F). (4.11)

En d'autrçs mots, si nous remarquons que l'application
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définie par

est un homomorphisme de groupes abéliens, alors les champs de vecteurs de Killing
constituent le noyau de cet homomorphisme.

Il est simple de voir, compte tenu de (4.7) et de la symétrie du tenseur g, que la
relation (4.11) équivaut à

g(X,L*çX) 0, pour tout XeX)1. (4.12)
Nous avons ainsi :

Théorème. Le champ de vecteurs £ est un champ de vecteurs de Killing dans un

espace de Riemann si et seulement si Vopérateur L* attribue à chaque vecteur un vecteur

qui lui est orthogonal.
La seconde remarque que nous voulons faire concerne les espaces à connexion

projective. En analysant les définitions qui introduisent ces espaces à l'aide d'une
connexion linéaire à une dimension supplémentaire (voir par exemple [10]), on arrive
à la définition globale suivante. Soit M une variété différentiable. Appelons variété

associée de M la variété MxR (où R est la droite réelle), munie du groupe de

transformations à un paramètre induit par les translations de R. Puis, notons par £ le

champ de vecteurs induit sur MxR par ce groupe [2]. Alors on a:

Définition. Une connexion projective sur M est une connexion linéaire V sur la

variété associée MxR, qui satisfait aux conditions

L^F(œ, Xl9 X2) 0, L* X X, (4.13)

pour tous œ et X de Î)(M x R).

5. Courbure mixte de deux connexions linéaires

Considérons maintenant une variété differentiable M, munie de deux connexions

12 12linéaires V et V à fonctions de connexion F et F. Dans la littérature géométrique, on

trouve beaucoup de choses traitant de paires particulières de connexions (voir par
exemple [6]), mais peu de choses pour le cas général. Nous voulons nous intéresser à

ce cas général. Dans ce paragraphe, nous allons définir une courbure mixte de deux

conaexions linéaires quelconques.
1 2

Définition. On appelle opérateur de la courbure mixte de V et V l'opérateur

q(X, Y) i {[Vx, Vr] + [Vx, Vy] - V[jr,n - V[X,r]}. (5.1)

On voit donc, qu'on peut considérer q(X, Y) comme un p.c.v. de la première

espèce, tel que Res q(X, 7)=0.
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Par des calculs directs on démontre que la fonction

q(o), X, Y, Z) co(q(X, Y)Z) (5 2)

est 5-hnéaire dans tous ses arguments, elle est donc un champ de tenseurs du type
(1.3), évidemment antisymétrique en X et Y Celui-ci sera appelé le tenseur de la
courbure mixte des deux connexions

En considérant un voisinage de coordonnées U, muni des repères naturels dans
les espaces î)l(£/) et Di(£/), on trouve la formule

q(w\ xl9 xJ9 xk) QhlJk !{/%, - rhlk
J + r)k, - rhlk +

2 1 2 1 12 12 V • /
+ rsjkris — rslkrjs + rsJkrls — r^krJS},

qui donne les composantes du tenseur de la courbure mixte (les notations sont
analogues à ceux qu'on fait en [2] pour le tenseur de courbure).

Nous voulons aussi signaler les formules de commutation de la forme suivante

K,U - (Viiuh + OO/fc ~ (v> k),j 2QhklJvh + TJkvlt9 + T>I/S, (5 4)

1 2

où «/» et «,» notent les dérivées covanantes par rapport à V, respectivement V,
formules qui peuvent être généralisées pour des tenseurs quelconques.

On peut donner une interprétation géométrique locale de la courbure mixte à

l'aide des cycles infinitésimaux de E Cartan [1] A ce but considérons d'abord les

formes de connexion

et écrivons les équations de connexion de Cartan

dp dxËXl9

Puis, considérons dans le point peM deux déplacements d et d et déterminons le

développement du repère Xt sur l'espace tangent en/?, d'abord le long de d par rapport
1 2

à V et le long de d par rapport à V, puis en changeant le rôle de d et d La différence
des résultats obtenus donne un certain déplacement. En changeant maintenant le

1 2

rôle de V et V et en additionnant le nouveau déplacement obtenu au précédent, on
trouve que le déplacement total est donné par les valeurs pour d et d des formes
extérieures quadratiques de la courbure mixte

dœ) + dcoÇ - œ{ a w) - œf a œkJ9 (5 5)
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où rfest la différentielle extérieure. Les équations (5.5) peuvent être appelées équations
de structure pour la paire de connexions. De ces équations, on trouve immédiatement

nî-irfn^Adx1, (5.6)

ce qui donne l'interprétation annoncée.

Pour obtenir un autre résultat sur la courbure mixte, envisageons la connexion
m 1 2

moyenne V de V et V, définie par la fonction

(co, X, Y) i {F(o>, X9 Y) + f (a), X, Y)} (5.7)

qui est évidemment une fonction de connexion.
A l'aide de cette connexion on démontre par des calculs directs le résultat suivant:

12m
Théorème. Entre les courbures des connexions V, V, V et la courbure mixte de la

1 2

paire (V, V) il y a la relation

q(X9 Y) 2R(X, Y) -i{R(X9 Y) + R(X9 Y)} (5.8)
1 2

II en suit que si les connexions V et V coïncident, alors q(X9 Y) se réduit à R(X9 Y).
Il en suit aussi la possibilité d'obtenir, pour la courbure mixte, des identités de Bianchi.

6. L'algèbre de déformation de deux connexions linéaires
1 2

Considérons de nouveau les deux connexions linéaires V et V sur M. On sait que
la différence de ces deux connexions est un tenseur, appelé tenseur de déformation [6].
En effet la fonction

S(co, X, Y) f (û>, X, Y) - r(œ, X9 Y) (6.1)

est 3-linéaire en tous ses arguments et nous donne le tenseur annoncé.
Si, au lieu de considérer les fonctions de .connexion, on considère les dérivées

covariantes, on arrive à un p.c.v. de la première espèce Sx défini par

S* VX-V*, (6.2)

d'où évidemment Res Sx=0. Celui-ci sera appelé opérateur de déformation de la
1 2

paire (V, V) et il est lié au tenseur de déformation par la relation

S(o)9X9 Y)=:œ(SxY). (6.3)

Dans la suite, nous allons employer l'opérateur Sx pour définir Î)1(M) comme

algèbre sur l'anneau $ et nous allons étudier cette algèbre. Rappelons qu'une ideç
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analogue a été suivie par Gh. Vrânceanu dans l'étude des espaces à connexion
constante [9].

En effet, si l'on définit le produit de deux champs de vecteurs par

X*Y SXY, (6.4)

les propriétés de distributivité de ce produit par rapport à la somme des champs de

vecteurs sont immédiates et on obtient donc l'algèbre annoncée.

Définition. L'algèbre définie par (6.4) sera nommée algèbre de déformation de la
12 12

paire de connexions (V, V) et sera notée par 91 (M, V, V), ou simplement par 31.

Pour obtenir des propriétés de l'algèbre 31, définissons encore la courbure de
1 2

déformation de la paire (V, V), à l'aide de l'opérateur

K(X, Y) i[S*,Sy], (6.5)

opérateur qui est un p.c.v. de la première espèce, prolongement du champ de vecteurs
nuls. On peut considérer aussi le tenseur de la courbure de déformation, donné par la

f°mule
K(œ, X, Y, Z) co(K(X, Y) (Z)) (6.6)

Maintenant nous allons énoncer les résultats suivants :

Théorème. Pour toute paire de connexions linéaires sur M on a les formules:

2q(X, Y) + 4K(X, Y) R(X, Y) + R(X9 Y), (6.7)

q (X9 Y) + K (X, Y) R (X, Y). (6.8)

En effet, la formule (6.7) peut s'obtenir par des calculs directs et la formule (6.8)
se déduit de (6.7) et de (5.8).

Maintenant on trouve sans difficulté les propriétés suivantes :
t 2

a) L'algèbre 31 est commutative si et seulement si les connexions V et V ont la
même torsion.

t 2

b) L'algèbre 31 est anticommutative si et seulement si les connexions V et V ont
la même partie symétrique.

c) Dans l'algèbre 91 on a la loi

Y*(X*Z),
1 2

(où K (X, Y) 0) si et seulement si la courbure mixte de la paire (V, V) est la moyenne
1 2

arithmétique des courbures de V et V.

d) L'algèbre 31 est simultanément commutative (anticommutative) et associative
si les conditions de a) (respectivement b)) et de c) sont simultanément vérifiées.
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e) L'algèbre 9t est une algèbre de Lie si et seulement si
1 2

— V et V ont la même partie symétrique;

- R(X, Y) (Z) + R(Y, Z) (X) + R(Z9 X) (Y)=

q(X, Y) (Z) + q(Y, Z) (X) + q(Z9 X) (Y),

pour tout X, Y.Zet)1.
Une autre conséquence immédiate des formules (5.8), (6.7) et (6.8) est:

Théorème. Parmi les quatrepropriétés suivantes, chaquepaire implique l *autre paire :

1°. R{X, Y) + R(X, 7) 0,

2°. R(X, Y) 0,

3°. q(X9Y) 09

4°. K(X, Y) 0.

Terminons ce paragraphe en énonçant un problème qui nous semble intéressant
et difficile: trouver des courbes de M et des familles de directions le long de ces

courbes, telles que les directions respectives soient simultanément parallèles dans les
1 2

deux connexions de la paire (V, V), le long des courbes en question.

7. Les groupes de cohomologie d'un espace à connexion linéaire plane

Dans ce dernier paragraphe, nous allons introduire un opérateur, agissant sur les

champs de tenseurs covariants quelconques et qui, dans le cas d'un espace à connexion
linéaire plane (c'est-à-dire sans courbure et sans torsion) généralise dans un certain sens

la différentielle extérieure des tenseurs antisymétriques. Ceci nous permettra d'introduire

les groupes de cohomologie d'une variété différentiable M, paracompacte et

munie d'une connexion linéaire plane, à l'aide des tenseurs covariants quelconques.
Si A(Xl9 Xr) est un champ de tenseurs covariants, totalement antisymétriques

(c'est-à-dire que la fonction A est anti-symétrique dans ces arguments), alors la

différentielle extérieure de celui-ci est le champ de tenseurs, encore antisymétriques,
donné par [2.4]

(7.D
~^~ Lj \ / ^vL^i' ^/J> ^1» "•' ^»» "•» **-J9 •"' -X-r+1/9

où le signe « a » montre que l'argument respectif est supprimé.
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Maintenant, pour un espace à connexion linéaire V, introduisons l'opérateur qui
nous intéresse.

Définition. Soit A(XU Xr) un champ de tenseurs covariants quelconque. On
appelle cofrontière de A le champ de tenseurs dA donné par

(r + l)(ÔA)(Xl9 ...,^r+1) "E(-iy + 1(Vx^)(X1, ...,*„ ...9Xr+1). (7.2)

II est évident que l'application ô: X)r-»Dr+1 ainsi obtenue est un homomorphisme
de groupes abéliens.

Si, en particulier, A est antisymétrique, alors on vérifie par un calcul direct et
compte tenu de la formule (3.2) la formule suivante

(dA) (Xl9 X,+ l) (dA) (Xi9 Xr+1) -
t rfî (7.3)

\ a(t(y y\ y St it y }J /iyi ^A,-, Aj), Ab Af, Aj, Ar+1y,r ht

qui exprime la différentielle extérieure à l'aide de la connexion V. Il en suit que, pour
une connexion V sans torsion et pour un tenseur antisymétrique A, la cofrontière ôA

se réduit à la différentielle extérieure dA.

Remarquons maintenant une propriété importante de la cofrontière. On sait que,
à tout tenseur A(Xl9 Xr), on peut associer, par alternation, un tenseur
antisymétrique A'(XU Xr), donné par

1

A'(XU ...,Xf) -Y sign Y[(hi-hj)A(Xhi, ...9Xhr)9 (7.4)
ri j<i

où (hl9 hr) est une permutation de (1, r), la somme prise sur toutes ces

permutations. On trouve

(dA)'(Xl9 ...9Xr+l) (dA')(Xu ...9Xr+1)9 (7.5)

qui est la propriété annoncée.
Nous allons maintenant calculer d2 A. Dans ce but on établit d'abord la formule

(r + 1) (VY(ÔA)) (Xl9 Xr+i) 'iV l)l+1(VyVXf A) (Xl9 tu Xr+1)~^ i
(7.6)

i=l
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et à l'aide de celle-ci on obtient finalement

(r + 2)(r+l)(Ô2A)(Xu...9Xr+2)

I (- Di+J(R&i, XS)A){XU Xi9 #„ Xr+l) - (7.7)

r + 2

{yT(XX)A)(Xl9 A,-, Aj, Xr+l).

Donc, si la connexion V est sans courbure et sans torsion on a

d2A 0, (7.8)

pour un champ de tenseurs covariants quelconque A.
Il en suit que, dans ce cas, le système (35r,9) constitue un complexe de cochaînes,

qui sera noté par Kv. Nous sommes maintenant arrivés au résultat annoncé au début,
qui est le suivant:

Théorème. Les groupes de cohomologie à coefficients réels, d'une variété M para-
compacte et munie d'une connexion linéaire plane sont les groupes de cohomologie du

complexe Kv.
En effet, soit K le complexe de cochaînes défini par les tenseurs antisymétriques et

par la différentielle extérieure. Dans notre cas et compte tenu de la formule (7.3), K
est un sous-complexe de Kv. On a donc la suite exacte de cohomologie [8] :)^(.. (7.9)

où Ky/K est le complexe facteur et Hq sont les groupes de cohomologie correspondants.

Puis, pour tout tenseur A on a une formule de la forme

A A' + B (7.10)

et, en vertu de la propriété (7.5) si dA e K, alors dA dAr et on trouve dB=0.
Il en suit que tous les groupes Hq(K^/K) sont triviaux et la suite (7.9) montre que

les groupes Hq(K) et Hq(Kv) sont isomorphes. Donc, notre théorème est une
conséquence du théorème bien connu de G. de Rham [8].
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Université «Al. I. Cuza»

Jassy, Roumanie
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