Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 41 (1966-1967)

Artikel: Enlacements de sphéres en codimension supérieure a 2.
Autor: Haefliger, André

DOl: https://doi.org/10.5169/seals-31371

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-31371
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Enlacements de sphéres en codimension supérieure a 2

par ANDRE HAEFLIGER

1. Enoncé du résultat principal

1.1. Un enlacement des r sphéres S?', ..., S” dans S™ est une suite K»’ de r sous-
variétés disjointes orientées K, ..., K, dans la sphére S™, la i-éme composante K;
étant difféfomorphe a S”. On dira aussi que KP est un enlacement de type (p) dans
S™, en désignant par (p) la suite (py, ..., p,). Deux tels enlacements K»=(K|, ..., K,)
et K'P=(Kj, ..., K.) dans S™ sont isotopes s’il existe un difféomorphisme # de degré
1 de S™ appliquant K; sur K; avec concordance des orientations données.

Nous supposerons dorénavant que toutes les codimensions m — p; sont supérieures
a deux. Dans ce cas, en utilisant un résultat de Smale, nous verrons (§ 2) que les
classes d’isotopie d’enlacements de type (p) dans S™ forment un groupe abélien. Dans
ce travail, nous nous intéresserons au sous-groupe L, formé des classes d’isotopie
d’enlacements de type (p) dont chaque composante K; est une sphére non nouée
différentiablement (c’est-a-dire isotope a la sphére standard SP'<S™). Les divers
groupes d’enlacements de sphéres de type (p) dans S™ que I’on peut définir (en prenant
par exemple comme composantes des spheres d’homotopie, des sphéres linéaires par
morceaux, des plongements de sphéres avec ou sans champ de repéres normaux, etc.)

sont somme directe du groupe L}, et de r sous-groupes correspondant aux classes
d’isotopie des composantes (cf. 2.6).

1.2. Soit(g)lasuite (g4, ..., g,), ol g;=m—p;—1. Nous désignerons aussi L, par
L)
o
Soit v S? le bouquet de sphéres S?' v ... v ST, identifié & un sous-espace du pro-
duit 7' x ... x §.
Posons

Al =noyau de 'homomorphisme naturel: 7, (v S?) - r, (S%)
— "pi(v S(q); Sq:)

A =Somme directe des A{?), i=1,2,...,r

1@ | =noyau de 'homomorphisme n,,_; (v S?9) - Y r,,_, (8%)
=7, (S" x ... x §7; S v...v §%)

Définissons un homomorphisme w: A{)—~IT? ; comme suit. Soit ; I'élément de
n,, (v S@) représenté par Pinclusion de S% dans v .S@. Soit w; ’homomorphisme
AP 19 | défini par le produit de Whitehead w;(x) =[x, 1,]. Alors w=Zw,.

Le théoréme suivant ramene essentiellement le calcul de L{?) a celui de w
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1.3. THEOREME. Soit L) le groupe des classes d’isotopie des enlacements de type
(p) dans S™ dont chaque composante est non nouée et de codimension >2. On a une
suite exacte

u i w u
SIS LGS AG > L, > LE ) >

(p —1) désigne la suite p, —1, ..., p,— 1.

1.4. L’homomorphisme A est défini comme suit. Soit K*’= K, u---UK, un enlace-
mentdetype(p)dans S™représentant unélémentde L) = L((g}. Il existe une application
h de v S dans le complémentaire C de K induisant un isomorphisme des groupes
d’homotopie jusqu’en dimension m —2 et dont la classe d’homotopie est caractérisée
par la propriété suivante: la restriction de # & S? a un nombre d’enlacement + 1 avec
K; et est homotope a zéro dans CUK,.

Soit v; un champ de vecteurs normaux a K; qui peut s’étendre suivant un champ
de vecteurs normaux a un disque bordé par K;. En poussant K;, qui est homéomorphe
a S™, le long de v;, on obtient un élément de =, (C)=mn, (v S?@) qui appartient au
noyau de ’homomorphisme de 7, (v S@) sur =, (S%), car K; est non noué. Cet
élément est appelé le i-¢me élément d’enlacement de K®. Il est indépendent de la
classe d’isotopie de K‘». On obtient ainsi un homomorphisme 4;: L{%)—> A{}) et on
définit A comme la somme des 4;.

En résumé, 4 fait correspondre 4 un enlacement ses divers éléments d’enlacements
qui appartiennent a 7, (v S@. Le noyau de w décrit toutes les relations de symétrie
que vérifient ces éléments.

1.5. L’homomorphisme p de [137); dans L{%) peut &tre décrit comme suit. Soit
f: 8™ 15 v S@ une application différentiable représentant un élément de IT? ,. Soit
N;cS%c v §@une valeur réguliére de f(distincte du point base). Soient V, =f ~*(N,),
...y V,=f "1(N,) considérées comme des sous-variétés avec champs de repéres nor-
maux dans S™~ 1. On montrera qu’il existe des sous-variétés disjointes W;, ..., W, dans
le disque D™, avec champs de repéres normaux, telles que oW, soit 'union de V; et
d’une sous-variété K, qui est difféomorphe 3 une sphére S?” non nouée. La classe
d’isotopie de ’enlacement K =(Kj, ..., K,,)c D™= S™ est I'image par u de la classe
d’homotopie de f.

1.6. Plan du travail. Dans le § 2, nous définissons les divers groupes d’enlacements.
Au § 3, nous définissons un groupegfg} dont les éléments sont des classes d”’homotopie
et nous construisons un homomorphisme de L((,‘Z)’ dans,??;;. Dans le § 4, nous montrons
que c’est un isomorphisme. Ainsi le probléme est ramené  un probléme d’homotopie
qui est étudié au § 5, ou la suite exacte est établie.

Enfin, dans le § 6, nous montrons comment la classification des variétés ayant le
type d’homotopie d’un bouquet de spheéres peut se ramener a celle des enlacements de
sphéres, sous certaines restrictions de dimensions.



Enlacements de spheres en codimension superieure a 2 53

Dans I'appendice (§ 8-10), nous appliquons les résultats des § 4 et 5 au calcul de
L7 ,, pour p;<p, et p; +3p, <3m—6 (domaine 2-métastable). Nous montrons que
ce groupe est isomorphe a la somme directe de =, (§%*) etde =, _,, _,.(S0,S0,).

2. Les groupes d’enlacements de sphéres

2.1. Un enlacement des sphéres SP', ..., S? dans S™ (on dira aussi un enlacement
de type (p), ol (p) désigne la suite (p,, ..., p,)) est une suite K@ =(K,, ..., K,) de r
sous-variétés différentiables orientées disjointes de S™ telles que K, soit difféomorphe
a S?. On dit que K, est la i-¢me composante de KP.

Deux tels enlacements K®P=(K|, ..., K,) et K'®P=(K{, ..., K}) sont isotopes s’il
existe un diffomorphisme 4 de degré 1 de S™ tel que K;=h(K;) pour tout i, en pré-
servant les orientations (si c’est le cas, on pourra toujours trouver un k isotope a
I'identité). Ces deux enlacements sont concordants s’il existe dans S™ x I une suite de
sous-variétés différentiables disjointes orientées Wy, ..., W, telles que W, soit difféo-
morphe a S?" x I et que W,=K;/ x1—K;x0.

2.2. THEOREME (Smale). Siles codimensions m—p; sont toutes supérieures a 2, les
relations de concordance et d’isotopie sont équivalentes.
Ce théoréme se déduit de [7] comme le th. 1.2 de [4].

2.3. Définition du groupe Ly, (ou L((f,} ). Soit X, ’'ensemble des classes de concor-
dance des enlacements de type (p) dans S™, et soit L{}, le sous-ensemble du précédent
formé des classes d’enlacements dont chaque composante est individuellement con-
cordante a I'inclusion naturelle de S* dans S™. Ainsi X7 est ’ensemble des classes de
concordance des sous-variétés orientés de S™ difféomorphes a S?'.

Lorsqu’on voudra mettre ’accent sur les codimensions, L, sera aussi désigné par
L(‘g;, ou g est la suite (g4, ..., g,) avec ¢;=m—p;— 1. Cette notation est justifiée par la
forme de la suite exacte 1.3.

2.4. THEOREME. X7, est naturellement un groupe abélien qui est somme directe
canonique des groupes L{,, et des groupes X7, i=1, ..., r.

2.5. Démonstration. Elle est tout a fait analogue a celle du théoréme 1.7 de [4].

Définissons tout d’abord I'enlacement standard de type (p): S =(S?, ..., S/)
dans S™. Soient a,, ..., a, des nombres réels compris entre —1/2 et 1/2 et formant une
suite croissante. La composante S; de S® sera définie comme l’intersection de la
sphére unité S™ dans R™*! avec le (p;+1)-plan défini par x,,.;=0, ..., X,—; =0,
Xp=a;, O (Xo, ..., X,,) sont les coordonnées de xe¢ R"*!. On désignera par D7} (resp.
D™) ’hémisphére de S™ défini par x, >0 (resp. x,<0) et par DP (resp. D'?) l'inter-
section de S avec D% (resp. D™).
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Tout enlacement de type (p) dans S™ est isotope 4 un enlacement K» =(K,,..., K,)
tel que KPAD™ =D'P, Si deux tels enlacements K et K'® sont concordants, il
existe une concordance WP qui les relie et dont 'intersection avec D™ x [ est D'P x .

Etant donnés deux enlacements K'P =(K,, ..., K,) et K'P=(K{, ..., K) tels que
K®AD" =DV et K'®~D™ =D, I'enlacement K® + K’ est celui dont la i-eéme
composante est (K;nD"} )u(K;nD™).

Cette addition donne une loi de composition bien définie pour les classes de con-
cordance des enlacements de type (p) dans S™. Cette loi de composition est commu-
tative et associative. L’élément neutre est la classe de SP. L’inverse de la classe de
K® est celle de son symétrique par rapport au plan x, =0, avec I’orientation inversée
(cf. [4], 1.4-6).

Un enlacement KP est concordant 2 0 (c.-a-d. a SP) si et seulement si les compo-
santes K; bordent des disques plongés de maniére disjointe dans le disque unité
Dm+ 1 - Rm+ 1.

La projection naturelle de X7}, sur X7 s’obtient en faisant correspondre a la classe
de concordance de K la classe de sa i-éme composante. Un relévement de cette pro-
jection fait correspondre a la classe d’une p;-sphére K;=S™ la classe de I’enlacement
dont la i-éme composante est K; et dont les autres sont des sphéres bordant des disques
disjoints entre eux et de K.

2.6. Autres genres d’enlacements. D’une maniére analogue, nous pourrions définir:

le groupe abélien Cg,, des classes de concordance (ou d’isotopie en codimension
> 2) des plongements différentiables de I’union disjointe de S?', ..., S?" dans S™,

le groupe FC(,, des classes de concordance de tels plongements avec un champ de
repeéres normaux,

le groupe 6}, des classes de h-cobordisme des enlacements de type (p) dont les
composantes sont des sphéres d’homotopie,

le groupe FO7, des classes de tels enlacements avec champ de repéres normaux.

Les sous-groupes de ces groupes formés des enlacements dont chaque composante
est triviale sont tous isomorphes a L{},. De plus chacun de ces groupes est isomorphe
a la somme directe de L, et des r groupes des classes de chaque composante. Ces
groupes Cp, FCJ, 0, FO ont été étudiés dans [4] et [6] (avec une notation légerement
différente).

Le groupe L{,, est également isomorphe au groupe des classes d’isotopie (en codi-
mension >2) des enlacements linéaires par morceaux de type (p) dans S™. Ceci
résulte du «unknotting theorem» de ZEEMAN [9].

Enfin le groupe des classes d’isotopie (lorsque m —p;>2) des plongements linéaires
par morceaux de 'union disjointe des tubes S? x D" "% (i=1, ..., r) dans S™ est iso-
morphe au groupe F0,,, si p;>5. Ceci résulte du théoréme de CAIRNS-HIRSCH [5] et
de SMALE [7].
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(9)_, g(q)

3. Les groupes #%), ,?(‘;’,’) et Phomomorphisme v/ :L 7 )

3.1. On désignera par (q) la suite (¢4, ..., q,), ou g;=m—p;—1. Le bouquet de
spheéres obtenu en attachant en leur pole sud (0, ..., 0, —1) les sphéres S, ..., S%
sera noté v S9,

Reprenons les notations du paragraphe précédent. Soit S™~! I'intersection de S™
avec I’hyperplan x,=0 et soit S~ ’enlacement dans S™~! qui est I'intersection de
S® avec S™~!. On considére le voisinage tubulaire 7~ de S®®~D™ =D réunion
des voisinages tubulaires disjoints 7, définis par (x,,4)*+ -+ (Xp-1)*+
(x.n—a;)* <&? ol e<min (a;, ; —a;)/2. Soit ¢;” la projection naturelle du bord 67, de
T, dans S™~ 7~ ' =S§% définie par @; (Xo, ..., Xp)=(Xp+1/€ +es Xp—1/&, (xn—a;)[e). La
réunion des applications ¢;, composées avec les inclusions de S dans v S@ définit
une application ¢~ de 0T~ dans v S@.

L’intersection de T~ avec S™~ ! est un voisinage tubulaire 7'de I’enlacement S~ 1);
soit @ la restriction de ¢~ a 0T; de méme posons 0T;=0T; "S™ ! et ¢,=¢; |0T.

Soit X=S8""1—int T; c’est une variété dont le bord est réunion disjointe des
0T;=S""1x S% et ¢ est 'application naturelle de 0T=0X sur v S@.

3.2. Définition. 9?8’,} est ’ensemble des classes d’homotopie d’applications de X
dans v S dont la restriction a X est ¢ (dites applications modulo ¢).

3.3. PROPOSITION. (3} est muni d’une structure naturelle de groupe abélien pour
q,>1.
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e m—

Démonstration. Soit Y_=D" —T~. Lapplication ¢~ :0T " =0Y_—- v S@ peut
s’étendre d’une maniére et d’une seule, a I’homotopie prés, suivant une application de
Y_ sur v S?; une telle extension est une équivalence d’homotopie. Il en résulte que
les applications modulo ¢ de X dans v S@ qui s’étendent suivant des applications
modulo ¢_ de Y_ sont toutes homotopes. Leur classe d’homotopie sera 1’élément
neutre de H#°3).

Pour la méme raison, les restrictions 3 X_=XnD""'oua X, =XnD7"1 (D™"!
ou D%~ ! sont définis par x, <0 ou x, >0) des applications mod ¢ de X dans v S@
sont toutes homotopes.

Si fi et f, sont deux applications mod ¢, on peut donc toujours modifier I’'une
d’elles par une homotopie mod ¢ de sorte que f,=f;0 sur X_, ou o est la symétrie
relative au plan x, =0. On définit la somme des classes d’homotopie de f; et f, comme
étant la classe d’homotopie de

fi +fz={fl Ry

fa sur  X_

En suivant la méme méthode que pour le groupe L((:‘,}, on montre que 9?8’,{ est un
groupe abélien avec cette addition.

3.4. Définition du sous-groupe L. Sif: X— v SP est une application mod ¢, soit
f; l'application de X;=S™"!—int T, dont la restriction 4 X est le composé de f avec
’application de v S“W—S% qui contracte chaque sphére S% sur le point base pour
Jj#i et qui applique chaque voisinage tubulaire T}, j#1, sur le point base. Comme X;
est diffomorphe 4 D' x S et que f;| 0D x S¥ est la projection naturelle sur S, il
en résulte que f; représente un élément de 7, (G, +4), out G, 4, est I'espace des appli-
cations de degré 1 de S?.

On définit ainsi un homomorphisme y, de #°(%) dans =, (G,,.,). On désignera par
£ le noyau de I’homomorphisme y=y, +7,+ -+, de #{) dans la somme directe

@iy, (Gyt1)-

3.5. Construction de I’homomorphisme y: L-Z®. Soit KP=(Kj, ..., K,) un
enlacement de type (p) dans S™. Supposons que K‘”~D" =D, Soit 7 un voisinage
tubulaire de K® dont I'intersection avec D™ est T~. Comme chaque K; est une p;-
sphére qui borde un disque dans D™*!, on peut trouver un difféomorphisme 7; de
S? x D™ P sur la i-me composante J ; de J tel que t; puisse s’étendre suivant un
difféomorphisme de -D%*! x D™ P sur un voisinage tubulaire d’un (p;+ 1)-disque 4;
plongé dans D™*! et bordé par K;. On peut supposer de plus que sur d7; , I’applica-
tion 7,(x, y)—y coincide avec ¢; .

Soit Tt =9 ND" et soit ¢* ’application du bord de T* dans v @ appliquant
7,(x, y) sur y. Le complémentaire Y, dans D" de l'intérieur de T* a le type d’homo-
topie de v S@ et I'application ¢ * s’étend, homotopiquement d’une maniére unique,
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suivant une application f, de Y, sur v S@, La restriction de f, 3 X=Y,nS™"!
donne une application f mod ¢ dont la classe d’homotopie est un élément du sous-
groupe Z(4 de #°{4). Ceci résulte du choix particulier de la trivialisation ;.

D’autre part, la classe d’homotopie de f ne dépend pas de I’arbitraire dans le choix
de t;, ni du choix de K dans sa classe de concordance. En effet, soit X’ ® un enlacement
concordant & K?; choisissons comme plus haut un difféomorphisme t; de $7 x D™~ ¥
sur un voisinage tubulaire de K; qui peut s’étendre suivant un difféomorphisme de
D”*! x D™~ sur un voisinage tubulaire d’un disque 4; dans D™*! bordé par K;. On
peut alors choisir une concordance W= W, u---UW, reliant K 3 K’'® et telle que,
pour chaque i, (4; x 0)uUW,u(4; x 1) borde un disque dans D™*! x I.

On obtient ainsi une application y: L{)—2@ qui est un homomorphisme. Pour
le vérifier, on choisit un représentant K® qui coincide avec I’enlacement trivial S®
sur le sous-espace x,<0 ou x, <0.

: i (@) ( _ (1)
4. L’isomorphisme de L)) (=Ly,) sur £

4.1. Interprétation de # f‘,’,} et ,Z’g’,% comme groupes de cobordisme. Nous allons voir
que chaque élément de #° ((g; peut &tre représenté par une sous-variété V< S™~ !, avec
un champ de repéres normaux, V étant la réunion disjointe de r sous-variétés V,,..., V,,
ou dim V;=p; et le bord dV, de V, étant la i-éme composante S, de I’enlacement trivial
S®=1 munie du champ de repéres naturels 8/0x,;4 1, ..., /0 X, (cf. 3.1).

Deux telles sous-variétés V et V'=V/u---UV, représentent le méme élément de
H g‘,; s’il existe dans S™~ ! x I une sous-variété M avec champ de repéres normaux qui
est réunion des sous-variétés disjointes M,, ..., M, telles que dM;=V,uV;U(S;xI)
avec les champs donnés.

Enfin une sous-variété V'=(V,, ..., ¥,) représente un élément de #{%) si et seulement
si chaque V; borde individuellement dans ’hémisphére D™ (défini par x,<0) une
sous-variété avec champ W,, dont le bord est 'union de V; et du disque D¥ avec le
champ normal standard (cf. 3.1). W; a une aréte le long de D' . En général W;nW,;#0
et V représente I’élément neutre de ff;‘,{ si et seulement s’il existe de tels W, disjoints.

Pour le voir, considérons une application f: X— v @ modulo ¢ représentant un
élément de #°(%); on peut supposer f différentiable et transversal sur le pole nord
N,eS%. Munissons la sous-variété f ~'(N,) d’'un champ de repéres normaux dont
'image par la différentielle de f est le repére tangent natural en N;. On peut étendre
radialement cette sous-variété a l'intérieur du tube T; pour obtenir une sous-variété
V; avec champ de repéres normaux dont le bord est S;. Alors V'=V,u-.-UV, vérifie la
condition précédente.

S représente un élément de Z’fg; si et seulement si I’application f;: X;—S% définie
dans 3.4 peut s’étendre suivant une application f;* de D™ —int T;” dans S qui étend
@; ;onpeutsupposer f;* différentiable et réguliére sur N;; ainsi (f;*) ™! (N;), prolongée
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radialement & l'intérieur de T;”, donne une sous-variété W, avec champ telle que
ow,=Vv,uD",

Réciproquement, si V' est une sous-variété avec champ normal comme ci-dessus,
on peut supposer, aprés une isotopie fixe sur S~V que VN T, est I'intersection de T;
avec le demi-espace x,.,=-=x,-1=0, x,>a; Par la construction de Thom-
Pontrjagin, il existe une application différentiable f: X— v S@ mod ¢ telle que
Y (N;)=V,nX. On vérifie que deux sous-variétés ¥ et ¥’ cobordantes au sens ci-
dessus donnent deux applications f et f' qui sont homotopes mod ¢.

4.2. Avec cette interprétation de fff,;, I’homomorphisme { peut étre décrit de la
maniére suivante. Soit K‘» un enlacement représentant 1'élément o de L{%), tel que
K@AD™ =DP. La sous-variété V=V, u-.-UV¥, avec champ normal représente (o)
si et seulement s’il existe des sous-variétés disjointes M,, ..., M, avec champs de
repéres normaux dans D7} telles que dM,;=V;u(D% nK,) avec la condition supplémen-
taire suivante: considérons le champ de repéres normaux de M, restreint & D"} nK; et
complété par le champ des vecteurs normaux au bord de M; et dirigés vers son inté-
rieur; étendons-le sur D™ n K, suivant le champ de repéres normaux naturel; alors ce
champ de repéres ainsi obtenu le long de K| peut s’étendre suivant un champ de repéres
normaux a un disque plongé dans D™*! dont le bord est K.

On peut construire M; en prenant I'image inverse de N, par I’application f, (cf. 3.5)

et en I’étendant radialement dans 7' *.

4.3. THEOREME PRINCIPAL. L homomorphisme : L) — %% est un isomorphisme en
codimensions >2.

Démonstration du théoréme

4.4. Surjectivité de Y. Soit V'=V,uU---UV, une sous-variété avec champ normal
représentant (cf. 4.1) un élément a de £{4). Par hypothése, chaque ¥; borde individuel-
lement une sous-variété avec champ W, D™ telle que d W,=V,uD"". Soit W;* <D’}
la sous-variété avec champ qui est 'image de W, par la symétrie relative au plan x,=0;
nous pouvons la considérer comme une sous-variété avec champ de repéres normaux
dans DY, N grand, les N—m derniers vecteurs du champ étant la restriction a W,* du
champ de repéres normaux naturel 3 D™ dans DY. En utilisant le lemme 3.3 de [4],
on peut modifier W;™ par des modifications sphériques pour obtenir une sous-variété
avecchamp W, = DY, de méme bord que W;*, et qui est union d’un voisinage tubulaire
V;x I de V, et d’anses d’indices <p,/2+1.

Par des arguments de position générale (cf. 3.6 de [4], c’est ici que ’hypothése
q;>1 est essentielle), nous pouvons compresser les sous-variétés W, sur des sous-
variétés disjointes W’ D™ munies de champs de repéres normaux, telles que o W
soit 'union de V; (avec son champ) et d’un p-disque K;" = D" qui est tangent a D¥
le long de son bord.
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Soit W;= S™'union de W, et de W,"; c’est une sous-variété avec champ dont le bord
R; est 'union de D” et de K,;"; a priori, K, pourrait &tre une sphére nouée. On va
modifier W, en faisant la somme connexe avec sa symétrique de la maniére suivante.
Pour chaque i=1, ..., r, soit 4; un petit disque de dimension m plongé dans D™ et
coupant W, suivant un demi-disque standard; on suppose que les 4; sont assez petits
pour étre disjoints et pour que 4,nW;=0 pour i#j. Soit o; un difféomorphisme de
S™—A; sur 4; qui est I'identité sur d4,. Soit M; la sous-variété avec champ dans D™
égale 3 W,” en dehors de 4, et a o,(W;— 4,) dans 4, (si o; est choisi convenablement,
ces deux morceaux se raccordent bien le long de d 4)).

Le bord de M; est I'union de V; et d’un p-disque K,;" = D™. Soit K® I’enlacement
dont la i-éme composante est K,=DPUK;". Les sous-variétés M, avec champs de
repéres normaux vérifient toutes les conditions de 4.2. Ainsi I'image par ¥ de la classe
de concordance de K? est «.

4.5. Injectivité de . Soit K’ =(K,, ..., K,) un enlacement de type (p) dans S™
dont la classe a une image nulle par . Il existe alors des sous-variétés disjointes M;
avec champs de repéres normaux dans S™ telles que 0 M;= K.

Supposons en effet que K®nD™ =D® et soit M, des sous-variétés disjointes
dans D"} avec champs normaux telles que dans 4.2. Par hypothese, la sous-variété
V=V,u---UV, représente I’élément neutre de £{4), ot V,=M;"nS™"'. D’apres 4.1,
il existe des sous-variétés avec champs de repéres normaux W, dans D" telles que
OW,=V,uD!. Les sous-variétés M, sont les réunions de W, et M,".

En remplagant au besoin M; par sa somme connexe avec son symétrique comme
ci-dessus (cf. 4.4) et K® par un enlacement concordant, on peut se ramener au cas
ou chaque M, est stablement cobordant a un disque. Cela signifie que, si M, est con-
sidérée comme une sous-variété avec champ normal de S, N grand (par linclusion
de S™ dans SV), il existe dans D¥*! une sous-variété Z, avec champ de repéres nor-
maux (et une aréte le long de K,) telle que 0Z; soit 'union de Z,nS¥=M; et d’un
(pi+1)-disque 4, D¥*! dont le bord est K;. Aprés des modifications sphériques con-
venables (cf. 3.3 de [4]), on peut supposer que Z; est 'union d’un voisinage M; x I de
M; et d’anses d’indices <p;/2+3/2. Par position générale, on peut compresser les
sous-variétés Z; sur des sous-variétés disjointes Z; dans D™*!, Z, étant égal & Z; sur
M;. Les images 4; des disques 4, sont disjointes et sont bordées par les K;. L’enlace-
ment K est donc concordant a zéro.

5. La suite exacte fondamentale

5.1. Rappelons que f{g; est défini comme la groupe des classes d’homotopie
d’applications mod ¢ de X dans v S@, oli X est le complémentaire dans S™~! d’un
voisinage tubulaire T'=T,U---UT, d’un enlacement trivial S~ 1, et ¢ la réunion des
applications ¢;:0T;=S” 1 x §%—S%c v S@ (cf. 3.1 et 3.2).
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Soit X le quotient de X par la relation d’équivalence identifiant les points de 8 T,
ayant la méme image par ¢;. Alors X est homéomorphe a la somme connexe

X=S8""14(S" x S") # ... # (8" x §%)

et les éléments de Jffg peuvent s’interpréter comme les classes d’homotopie modulo
@ de X dans v S@, ol ¢ est la réunion des applications @,:z;x S¥—S%< v §?, ou
z;€ S*. Dans ce modele, on peut considérer que les tores S? x S% sont tous attachés a
S™~! comme suit: on choisit r (m—1)-disques 4; disjoints dans S™~ ! et dans chaque
tore un disque 4;: on enléve I'intérieur de ces disques et on identifie 04; 4 04! par un
difféomorphisme de degré —1.

Nous utiliserons ces deux descriptions de (3.

5.2. Définitions des homomorphismes A, p et w. On définit un homomorphisme
l,-:%”f%—»nm( v §@) en faisant correspondre i la classe d’homotopie d’une applica-
tion mod ¢ de X dans v S@ sa restriction 3 S x y,= X, o y; est le pdle sud de S%.
Soit A: -3 n, (v S@) la somme directe des 4;.

L’homomorphisme p:,,_, (v S@)—#) est défini comme suit. Soit g une appli-
cation mod ¢ (ou mod &) de X (ou X) dans v S@ représentant I’élément neutre de
H (D et telle que g applique un disque plongé D™~ ' dans X sur le point base. Soit
h:D""'— v S@ une application envoyant D™~ ! au point base. L’homomorphisme
u fait correspondre a la classe d’homotopie de A celle de I’application f: X— S@ égale
h sur D"~ 1 et 4 g en dehors de D™ 1,

Enfin soit ¢; la classe d’homotopie de I'inclusion de S% dans v S@. L’homo-
morphisme w;:n, (v S@)-n,_,(v S@) fait correspondre a a le produit de White-
head [o, 1;] et w:Y 7, (v S@)»m,,_,(v S@) est la somme des w;.

5.3. PROPOSITION. La suite des homomorphismes
w " A
- an+ (v S(")) =y (V S@) 4 fg?’; 5 an (v S@) -
‘ i
est exacte.

5.4. Démonstration. Soient g;: S”' x y;— v §@ des applications représentant les
éléments a,em,, (v S@). Soit £; une application de S” x S —int 4, (cf. 5.1) dans v S
égale a g, sur S? x y; et 4 'inclusion sur z; x S¥; alors la restriction de f; & 04, repré-
sente le produit de Whitehead [a;, 7;]. Les applications f; peuvent s’étendre suivant
une application fde X¥=S™"14 S” x S% si et seulement si les restrictions des f; aux
04;=04;peuvent s’étendre 3 S™~ ' — U int 4;, c’est-a-dire si ) [a;, 1;]=0. Ceci prouve
I’exactitude en Y 7, (v S@).

L’exactitude en s#{% découle des définitions de 1 et .

Il reste & montrer I’exactitude en 7,,_, (v S@). Soit Y le complémentaire dans S™
d’un voisinage tubulaire de ’enlacement standard S®; on peut le représenter comme
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I'union de Y_ (cf. 3.3) et de son symétrique Y, relativement au plan x,=0; on a
Y_nY,=X. Soit §:0Y— v §@ Papplication qui est réunion de ¢_ et de son symé-
trique ¢, . Soit A™ un petit disque dans I’'intérieur de Y et symétrique relativement au
plan x,=0 qui partage son bord en deux hémisphéres 4™ !cY_et 4" 'cY,. On
posera A" =A"ND", A" =A"ND".

Soit a un élément de 7,,_, (v S@). Il est dans I'image de w si et seulement s’il
existe une application continue F:Y—int 4™— v §@ modulo ¥, dont la restriction a
0 4™ représente o. On peut supposer que F(4™~')=point de base. Soit F* (resp. F~)
une extension de F au demi-disque A7 (resp. 4"). L’image de a par u est la classe
d’homotopie de F*|X; elle est nulle puisque F*|X peut s’étendre 3 Y*. Donc
w-w=0.

Réciproquement, soit h:94™— v S@ représentant « et tel que h(4™ ')=point
base. Soit g_ une application mod ¢_ de Y_ —int 4™ dans v S@ envoyant 4™~ ! sur
le point base. Si u(x)=0, il existe une application g, mod ¢, de Y, —int 4™— v §@
qui étend k| A" "' et g_| X—A4™. Alors la réunion de g, et g_ est une application
F:Y—int 4™— v S®, mod , qui étend h; donc o appartient 4 'image de u.

5.5. Formons le diagramme commutatif suivant:

0 0 0
T

- 28 S A L ~
R

- HG AT (v SN myy(v S
VEv \ v

- an (GlIH’ 1) - an (Sqi) - an—Z (Sq‘) -
y y v
0 0 (o)

Les groupes A{%) et [T, sont par définition les noyaux des homomorphismes surjec-
tifs, sommes des homomorphismes induits par les applications v .S@—S% qui con-
tractent les sphéres S%, j#i, au point base. Ainsi par définition les suites verticales
sont exactes et le diagramme est commutatif.

La derniére ligne horizontale est exacte, car c’est une somme de suites qui sont
exactes par la proposition précédents. La premiére ligne est donc aussi exacte.

En identifiant #{%) a L{%) par I'isomorphisme i, on obtient le

5.6. THEOREME. On a une suite exacte pour q;>1
@ Pr@* @ qp@ Ar@
I~ = LGy = Ay = IIyZ 2 = Lip-1) =~

5.7. On vérifie aisément qu’aprés lidentification de £{4 a L{%, les homomor-
phismes A et 4 sont, au signe prés, ceux qui sont décrits dans 1.4 et 1.5.
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6. Classification des variétés ayant le type d’homotopie de v SP* D

6.1. Nous allons généraliser la méthode utilisée dans [4], 5.1-4, pour classer les
variétés de dimension m+1 ayant le type d’homotopie du bouquet de sphéres
SEPrD=grt+ly ...y §7*! (p,<p; si j>i) avec certaines restrictions de dimensions.

Soit V™1 (v S®* V) I’ensemble des classes (V, f) de variétés différentiables orien-
tées compactes V' de dimension m+1 avec bord simplement connexe, munies d’une
équivalence d’homotopief: V' — v S®*D; deux tels couples(V, f)et(V’, f')sont équiva-
lents s’il existe un difféomorphisme H: V- V' tel que f' - H soit homotope a f (cf. [8]).

Soit d’autre part FC(j, le groupe des classes de concordance (ou d’isotopie) des
plongements différentiables de ’union disjointe des tubes S?'x D™~ 7" dans S™ con-
servant I’orientation. Ce groupe est la somme directe du groupe L, et des groupes
FCp,~? étudiés dans [4], § 5.

A tout plongement ¢ de 'union des S¥'x D™~ P dans S™ correspond une variété
différentiable ¥ orientées obtenue en collant au disque D™*! r anses h;= D" *! x D™ P
atachées simultanément par les plongements ;= ¢@| S? x D™~ P, 1l existe naturellement
une équivalence d’homotopie f: V— v S?* 1) qui contracte D™* ! au point base et dont
la restriction A ’anse h; envoie D”*! x 0 sur S+ <SP+ D avec le degré 1. Deux
plongements isotopes donneront des variétés difféomorphes. On obtient ainsi, si
g;=m—p;—1>1, une application FCj,—»V™*!(vSF*D)

6.2. THEOREME. L’applicationde FC[,— V™' (v S®* V) est surjective si2p;—p;+
2<met2p,—p;=1 et injective si 2p;—p;+2<m et 2p;,—p;>1 pour touti,j=1,...,r.

6.3. Démonstration. Surjectivité. Soit (V, f) un couple représentant un élément de
ymtl(y S®+D) D’aprés SMALE [7], V est difféomorphe A I'union de D™*! et de r
anses h;=D"*! x D™~P attachées successivement: V'=D"*'Uh;U---Uh,. De plus, f
est homotope & une application envoyant D *! x 0 sur S7*! avec degré 1 et son bord
sur le point base. Nous devons montrer que nous pouvons choisir cette décomposition
en anses de sorte qu’elles soient attachées simultanément a D™*!.

Supposons que c’est le cas pour les k—1 premiéres anses et posons V,_;=
D™*YUhyU--Uhy_ . Soit f,Z1:Vi_(=SP'*lv...v §P-! une équivalence d’homo-
topie qui est homotope 2 la restriction de £ 4 V,_,, qui est réguliére sur le pdle nord
N; de chaque S”**!, et telle que f,_,(N;) soit le disque 0 x D" P ch,c V,_,. Soit
@r:0DP* 1 x D"~ P9V, _, Dlapplication d’attachement de I’anse #,. Remarquons
que 0V, _, est s-connexe, ol s<p;,+1 et s<m—p;+1, i<k.

L’élément d’intersection de ¢@f =¢,| S x0 avec chaque 0x D™ "<V, est
nul (cf. [3] ou 6.5), car la classe d’homotopie de f,_ " @y est nulle, puisque @y est
homotope a zéro dans V,_,. D’aprés le lemme 6.5 ci-dessous, ¢; est homotope dans
0V, _ 4 une application ne rencontrant pas 0 x D™~ 7, Ainsi le produit de @y par l'in-
clusion de 0 x @D™ P dans 0V, _, est une application dans 0V, _; x d¥V,_; homotope
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a une application ne rencontrant pas la diagonale. En appliquant le théoréme 4.11 de
[2], on voit qu’il existe une isotopie dans 0V, _, qui déforme ¢_ en un plongement ne
rencontrant aucun des 0 x D™ P\, On pourra donc s’arranger, aprés une isotopie
convenable, pour que ¢, ne rencontre aucune anse h;, i <k.

6.4. Injectivité. Soient (V, f) et (V',f") des couples représentant des éléments de
ym+i(v §®* D). On suppose que V (resp. V') est difféomorphe a I'union d’un (m +1)-
disque D™*! et de r anses h;=D"*!x D™ 7 (resp. h;=D'"*' x D'™"P) attachées
simultanément a ce disque par des plongements ¢, (resp. ¢)).

Supposons qu’il existe un difféomorphisme de V sur V', préservant ’orientation,
et dont la composition avec f' est homotope a f. En utilisant la méme méthode que
dans [4], 5.3 et que ci-dessus, on peut supposer apres une isotopie que ce difféomor-
phisme est I'identité sur le disque 1/2D™*! concentrique 3 D™*"! et de rayon 1/2, que
H|DP* 1 x1/2 D™ P est 'application naturelle sur D'”**! x 1/2D'™ P et enfin que H
envoie dans D™*! I’ensemble des points xe D™*! tels que x/|x|e (D" x 1/2D™"P),
Il en résulte que les enlacements ¢ =(¢4, ..., ¢,) et ' =(@1, ..., @,) sont concordants.

6.5. Rappel sur l'intersection. Comme les démonstrations des propositions de [3]
ne sont pas explicites (cf. en particulier p. 7), nous donnons ci-dessus ce qui est néces-
saire pour la démonstration de 6.2.

Soit M une variété différentiable orientée de dimension m et soit ¥ une sous-
variété orientée compacte de codimension g. Supposons que ¥ soit (n— g)-connexe. On
définit un homomorphisme i:7,(M; M-V)—n,(S?) comme suit. Soit f: D"—M une
application représentant un élément o de (M; M—V); on peut supposer que f est
transverse sur V; ainsi J=f(D")nV est de dimension <n—gq. Comme V est (n—q)-
connexe, on peut construire au voisinage de J un champ de reperes normaux a Vv
donnant I’orientation normale; I'image inverse de ce champ par f donne un champ de
repéres normaux le long de la sous-variété f ~!(V)cint D", et par la construction de
Thom-Pontrjagin un élément de 7, (S?). Cet élément 1(a) est bien défini et sera appelé
Iintersection de f ou de o avec V.

6.6. LEMME. Supposons que M soit (n—q+ 1)-connexe, que V soit (n—q)-connexe
et que n<2q-—2. Alors 1:n,(M, M—V)—mn,(S?) est un isomorphisme.

Démonstration. Soit T un voisinage tubulaire fermé de V et soit My=M —int T;
ainsi MyNT est le bord 0T de T. La paire (T, 9T) est (g—1)-connexe et la paire
(My, 0T) est (n—q+1)-connexe. D’aprés le th. de BLAKERS-MASSeY [1], on a
n,(M; My, T)=0. Donc Iapplication n,(T, dT)-n,(M, M,) est surjective. Or
n,(T, 0T) est isomorphe, par relévement des homotopies, a n,(D?, dD?), ou D? repré-
sente une fibre de T. La composition des applications =,_;(S?"!)=mn,(D?, 0D?)=
(T, 0T)-n,(M, M,)>n,(S?) est ’homomorphisme de suspension. Comme 7,_;
(8771) est un groupe stable, 7 est un isomorphisme.
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6.7. Remarque. Rappelons qu’il résulte de ce lemme et du th. 4.11 de [2], que si
fest un plongement de D" dans M dont l'intersection avec V est nulle et si en plus des
hypothéses ci-dessus on a n<m— g, alors f'est isotope, modulo son bord, a un plonge-
ment ne rencontrant pas V.

6.8. Cas des variétés semi-linéaires (ou linéaires par morceaux), le théoréme 6.2
et sa démonstration sont aussi valables dans ce cas. On doit naturellement remplacer
le groupe FC7, par le groupe des classes d’isotopie des plongements semi-linéaires de
I’union disjointes des tubes S” x D™~ P* dans S™. On a remarqué dans 2.6 que ce
groupe est isomorphe a F@,,, lorsque p;>35.

7. Classification des plongements de S” dans S7x R™ ™1

Il existe un difféomorphisme H de S?x R™™? sur le complémentaire de la sous-
sphére S™ 171 dans S™. Ainsi, 4 tout plongement différentiable fde S dans S?x R™ ™1
nous pouvons faire correspondre le plongement ¢ de I'union disjointe de S? et
S™~4~1 dans S™, @ étant égal & H, fsur S” et 4 I'identité sur S™"7~ ', A deux plonge-
ments f isotopes correspondent des enlacements ¢ isotopes.

Nous obtenons ainsi une application de I’ensemble des classes d’isotopie de plonge-
ments de S¥ dans S7x R™ ™1 dans le sous-groupe (pour m—p>2etg>1)de C;, _,_;
formé des classes d’isotopie d’enlacements dont la seconde composante est triviale
(cf. 2.6). Ce sous-groupe est canoniquementisomorphe a la somme directe L,;",,_,_ ;®
C,, ou C; désigne le groupe des classes d’isotopie de plongements différentiables de
S? dans S™.

7.1. THEOREME. Supposonsm—p>2etq>1. L'application définie ci-dessus de [’en-
semble des classes d’isotopie de plongements de S* dans S?x R™™% dans le groupe
L g1 ®DC} est bijective.

Par exemple, dans le domaine 1-métastable, c’est-a-dire si 2m >3 p+ 3, les classes
d’isotopie des plongements de S? dans $?x R™™? correspondent bijectivement aux
éléments de n,(S9)Pn,_,.,(S0, SO,,_,_,) pour 3g>p+3, d’apres le théoréme 10.7
de 'appendice.

Démonstration. D’aprés le théoréme d’extension des isotopies, tout plongement
¢ de SPUS™™1"! dans S™ dont la restriction & S™ 97! est isotope a I'identité, est
isotope 4 un plongement dont la restriction 3 S™ "7~ ! est I'identité. Donc ’application
est surjective.

Soient f,, f1:SP—>S7x R™~? deux plongements tels que les plongements associ€s
@, et @, sont isotopes. Pour montrer que I’application est injective, il faut montrer
qu’il existe une isotopie k,: S™—S™, fixe sur S™"971 et telle que A, soit I'identité et
hy - fo=f1, ol f; désigne le composé H - f,.
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Comme ¢, et ¢, sont isotopes, nous savons qu’il existe un difféomorphisme 4 de
degré 1 de S™, fixe sur S™ 7171, tel que hf,=f;. Soit g un plongement du disque D™
dans S™, de degré 1, tel que g(D™)>f,(S?) et g(D™)NS™ 1" '=g(D™ 27 1). Les deux
plongements g et hg coincident sur le sous-disque D™ 77 1; il est bien connu qu’il
existe une isotopie h, de S™, fixe sur la sous-variété S™ 17! telle que h,=id. et
h,g=hg. Donc h, f,=f;.

7.2. Remarque. Il est clair que le méme résultat est valable dans le cas linéaire par
morceaux si I’on remplace C;' par 0.

Appendice

La classification des enlacements dans le domaine 2-métastable

Lebutdecet appendice est de donner une expression explicite du groupe L}, dans
le domaine 2-métastable (cf. déf. 9.1) en termes de groupes d’homotopie de sphéres et
de variétés de Stiefel. Pour cette section, I’auteur a grandement profité de conversa-
tions avec B. Steer.

8. Rappel de théorémes de P. Hilton et B. Steer. Nos calculs seront basés sur le
théoréme de HiLToN [11] donnant une décomposition de 7, (v S@) comme somme
directe de groupes d’homotopie de sphéres et sur un théoréme de B. STEeR [14] don-
nant une expression de w.

8.1. Comme précédemment, soit 1; I’élément de n, (v S@) représenté par I'inclu-
sion de S? dans le bouquet v S@=8"v...v ST,

Les produits de Whitehead basiques sont définis comme suit.

Les produits basiques de poids 1 sont les éléments 1y, ..., 7, et sont ordonnés de
sorte que 1;<1; si i<j.

Supposons ordonnés et définis les produits basiques de poids <k. Alors ceux de
poids k sont de la forme [a, b], ol a et b sont des produits basiques tels que a>b et
que la somme des poids de a et b soit k. De plus si a=][c, d], alors d<b. Les produits
basiques de poids k sont ordonnés arbitrairement et sont supérieurs a ceux de poids
inférieur.

Ainsi les produits basiques de poids 1, 2 et 3 sont:

1y, 13y «.:s 1,
Lo, 1;), i>
[[lb lj]a Ik]’ i >.] et .]S k

Si I’élément 1, intervient «, fois dans le produit basique w, alors we my(,,, (v S@),
ou d(w)=Ya;(q;—1)+1.
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8.2. THEOREME (Hilton): Le groupe m,(v S9) est isomorphe a la somme directe
Yo m(S?™), our w parcourt les produits basiques, linclusion de m,(S*™) dans
(v S@) étant donnée par composition avec w.

On suppose comme toujours que les g; sont supérieurs & 1. Suivant B. STEER [14,
p. 37, 3.2}, soit X une suspension, dans notre cas le bouquet v S@. Soit wen,, ,(X),
1€y, (X) etaem,, (S*).

8.3. THEOREME (Steer): On a la formule

[woo, =) +6,(w, 1) E'h,_,a
s21

ou O,(w, 1)=[[[1, wlw]---w] avec s facteurs w
heoy i my4 (s** - Tp+1 (s**1

est un invariant de Hopf généralisé et E? la suspension itérée q fois.
Ainsion a [woa, 1]=4[1, w] E9%a+[[1, wlw] E7ha+.... Les signes sont précisés
dans [14].

9. Le domaine k-métastable

9.1. Pour les enlacements de type (p) dans S™, le domaine k-métastable est celui
ou, dans z,,_,(v S@), tous les produits basiques de poids k+2 s’annulent. Cette
condition équivaut a

pi,+ ..+ p.,,<(k+1)(m-2)

pour tout 1 <iy, ..., iy, <reti;#i,.

Elle équivaut également a ’annulation des produits basiques de poids k+1 dans
les groupes 7, . (v S@).

Voici un exemple d’un théoréme général.

9.2. PROPOSITION. Dans le domaine k-métastable, un enlacement a r composantes
est isotope a I’enlacement trivial si et seulement si chacun de ses sous-enlacements a k + 1
composantes est trivial.

Démonstration. Soit (p’) une sous-suite de la suite (p). L’opération faisant cor-
resporidre 3 un enlacement de type (p) dans S™ le sous-enlacement correspondant a
la sous-suite (p’) induit un homomorphisme de la suite exacte 1.3 dans la suite exacte
1.3 ot (p) est remplacé par (p’). Sur =,,_, (v S@), cet homomorphisme est induit par
I’application rétractant v S@ sur v S,

Soit ¢ ’homomorphisme de la suite exacte 1.3 dans la somme directe des suites
exactes relatives A toutes les sous-suites de (p) contenant k+1 éléments, et qui est la
somme des homomorphismes précédents. D’aprés la definition du domaine k-méta-
stable, ¢ est injectif sur 7, ., (v S@) et n,,_, (v S@), donc aussi sur L,
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9.3. D’une manié¢re générale, le groupe L), est la somme directe des groupes
0 0 Lot
L. . ...p OU iy, ..., iy parcourt les sous-suites k de (1, 2, ..., r) et o °L{,, désigne
le sous-groupe de L, formé des enlacements dont tous les sous-enlacements ar—1
composantes sont triviaux. La suite exacte 1.3 se scinde en somme directe correspon-
dant & cette décomposition. Voici ce que donne le cas particulier du domaine 2-méta-

stable.

9.4. THEOREME. Dans le domaine 2-métastable, on a

=2 Lnn® X mn(S*U).
i<j<k

Démonstration. Soit °L{,, le sous-groupe de L{,, formé des enlacements dont tous
les sous-enlacements a4 deux composantes sont triviaux (cette notation concorde avec
celle introduite ci-dessus dans le domaine 2-métastable vu la proposition 9.2). Définis-
sons de maniére analogue les sous-groupes °A{) et °I1? | de A et MY,

L’homomorphisme ¢ envoyant la suite exacte 1.3 dans la somme directe des suites
exactes relatives aux sous-enlacements & deux composantes (cf. 9.2) est surjectif. On
a le diagramme commutatif exact suivant:

0 0 0
O\L O\L 0
- LG, - 4G - Ifff.”-z—*
v y
ORI e
! v
= L Ly~ X AR~ X 5~
l<1J' 1<J¢ 1<1\l(
0 0 0

En fait la deuxiéme suite exacte horizontale est somme directe des deux autres.

D’aprés 8.2, A0 =Yn, (SY**7"), i#j, k et k>j, chaque composante étant
plongée dans 7, (v S@) par composition avec [1, 1;].

On a aussi °[[,=Ym, _ ,(S#*¥*~9"2), j<k et j<i, chaque composante étant
plongée dans n,,_,( v S@) par composition avec [[, 1,1, ;]

D’apres 8.3, w;(produit de Whitehead par ;) applique [ 5, 1,] o #, ot aem, (S%* 47 1),
sur [[1, 1], 1,]o E¥~'a. Ainsi w restreint & °A{%) est surjectif et son noyau est iso-
morphe a °L7,.

Supposons que i<j<k. Si aen, (S¥*%"1), Ben, (SU**71) et yem,, (S¥TVTY),
d’aprés 8.3 et I'identité de Jacobi, a+ f+7y est dans le noyau de w si et seulement si
E% lg= 4 E%~'B= 4 E% !y avec des signes convenables (comparer avec le résultat

principal de [10]). Ainsi °L(p) est isomorphe a la somme directe des groupes stables
T (SUHU*I) <k,
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10. Enlacements a deux composantes dans le domaine 2-métastable

Nous commengons par une remarque générale. (Cf. [15]).

10.1. THEOREME (Zeeman). Supposons quep,<p,.SoitAy:L}, , —n, (S**)I’homo-
morphisme faisant correspondre a un enlacement K, UK, = S™ le premier élément d’en-
lacement représenté par K, dans S™—K,x~S%. Il existe un homomorphisme
L:m, (S)-L;, ,, qui est un relévement de 1.

Démonstration. Dans S™, soit SP? la sous-sphére définie par x;=0 pour i>p, et
soit S”* la sous-sphére définie par x;=0 pour p, <i<m—1 et x,,=/2/2. Identifions le
sous-espace de S™ défini par (x,,.()?+ - +(x,)*=1/2 au produit D">*' x §%, de
sorte que SP' est identifié 4 S”' x e, ot S est la sous-sphére de D”**! définie par
'intersection de S7* et du plan x;=0 pour i>p,.

Soit o un élément de n, (S%) représenté par une application différentiable
@: 87" —>S%, Soit f:S?' > DP** 1 x S22 = S™ le plongement défini par f(x)=(x, ¢ (x)).
Considéré comme un plongement de S¥* dans S™, fest isotope a I'inclusion naturelle;
il peut en effet s’étendre suivant un plongement du disque D' *! en utilisant le graphe
d’une application différentiable de DP**! dans D***! qui étend o.

La classe d’isotopie de I’enlacement formé de f et de I’inclusion de S?* dans S™ ne
dépend que de la classe d’homotopie de ¢. On a ainsi défini une application L qui est
un relevement de A,. On vérifie que L est un homomorphisme en représentant les
éléments a, et a; de m,, (S?) par des applications ¢, et ¢, envoyant respectivement
DP' et D% sur le point base e, et en représentant a,+ o, par ’application ¢ égale a
@, sur DY et 4 ¢, sur D',

10.2. PROPOSITION. Pour p;<p, et p,+3p,<3m—6, on a la suite exacte:

— 1\ M A w - 5 . .
T (STHETDSLE | B, (S9) 411, (S%) B (ST ) 0l w restreint G
chaque composante est la suspension itérée au signe prés.

Démonstration. Partons de la suite exacte 1.3. Dans la décomposition de Hilton

(8.2), seuls figurent les termes qui sont la composition avec

1, et [1,1,] dans AW
1y, et [i,1,] dans AP
(12, 1] [[12> 1], 14] et [[12, 14],12] dans M2,

D’aprés 8.3, w envoie isomorphiquement par suspension les composantes [1,, 7,] de
A sur les composantes [[1, 151, 1;] et [[15, 1,], 1,] de AL ,.

On peut donc remplacer dans la suite exacte 1.3 les termes Aff,; et I1'9 , par les
quotients obtenus en négligeant les composantes, d’ou la proposition.

Il faut encore remarquer que si p;+3p,=3m—6, on a des composantes dans
9 | correspondant a des produits basiques de poids 4, mais qu’elles sont I'image

par w des composantes correspondant a des produits basiques de poids 3 dans AE‘,’,)+ 1)
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Soit N le noyau de ’homomorphisme 1,:L7 , —n, (5%). D’aprés 10.1, on a

Ly, ., =N®m, (5.
D’autre part, la proposition 10.2 donne le
10.3. COROLLAIRE. Avec les hypothéses de 10.2, on a la suite exacte:
Ty (ST P2 5 N B, (S%) > 7y (S92

ou le dernier homomorphisme est la suspension itérée.

Soit F? ’espace des applications de degré 1 de S laissant fixe le pole nord de S°.
Par suspension itérée, F? s’envoie dans F4** et F désigne la limite des F9. Rappelons
que ,(F9) =, (7).

Nous allons montrer que N est isomorphe a n,,_, _,,(F, F?'). Plus précisément,
ona:

10.4. PROPOSITION. Si p;<p, et p,+3p,<3m—6 on a le diagramme commutatif
(au signe prés) exact:

nm—l(sql+q2—1) LA N—}i npz(sql) 5
v v b
- 7T"l—‘ll‘tlz (F) - nm—m"qz (F’ F‘“) = Tm—q1-g2—1 (Fql) =

ou la deuxiéme ligne est la suite exacte de la paire (F, F') et ou les fléches verticales
sont des isomorphismes.

La démonstration sera basée sur I'interprétation comme groupe de cobordisme
des groupes du diagramme précédent, et sur une définition de I'invariant de Hopf qui
généralise celle de [10].

Rappelons (cf. [13]) tout d’abord que les éléments de n,(F?)=m,,,(S% peuvent
étre représentés par des sous-variétés compactes ¥ avec champ de repéres normaux
dans R"*4, la codimension de V étant q. Deux telles sous-variétés V, et V, représentent
le méme élément de 7, (F9) s’il existe dans 7 x R"*? une sous-variété W avec champ de
reperes normaux telle que 0 W=(0x V,)u(1 x V;).

10.5. LeMME. Tout élément de m,(F, F) peut étre représenté par une sous-variété
compacte V de dimension n dans R"*1*N, N grand, avec un champ de repéres normaux
et un bord 0V < R"*1, les N—1 derniers vecteurs du champ le long de 0V étant les N—1
derniers vecteurs de base de R"T1*N. Deux telles sous-variétés V, et V, dans R"*1*N
représentent le méme élément de n,(F, F9) s’il existe dans I x R"*9*N une sous-variété
W avec un champ de repéres normaux telle que 0 W=(0x Vy)u(1 x V,)UV, ou V est
une sous-variété dans Ix R"*1 le long de laquelle les N—1 derniers vecteurs du champ
sont les derniers vecteurs de base.

Démonstration. Les éléments de =, (F, F?) peuvent étre représentés par des appli-
cations différentiables f du disque D" *9*N*! dans D?*¥* 1, N grand, dont la restriction
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a S"*9*N est la suspension itérée d’une application de $”*4~! dans . Soit R"t7*N*!1
le demi-espace défini par x, ., 454, >0; la paire (R, 47V *1 R"*471) est identifiée au
complémentaire d’un point dans la paire (D"*9*V*1 §"*+4~1) [’image inverse par f
d’une valeur réguliére est une sous-variété V'’ avec un champ de repéres normaux dans
R1*N*1 dont le bord dV' est contenu dans R"*97!, les N+ 1 derniers vecteurs du
champ le long de 0V’ étant les derniers vecteurs de base. Inversement, par la construc-
tion de Thom-Pontrjagin, une telle sous-variété V' peut étre induite par une applica-
tion différentiable f.

Soit ¥<= R"***N une sous-variété telle que dans I’énoncé du lemme. Considérons
R 1*¥ comme le bord de R 4*¥*! et ¥ comme une sous-variété avec un champ de
repéres normaux dans R"*9*¥*! en complétant le repére avec le dernier vecteur de
base. Par une isotopie de R"*?*N¥*! fixe sur R"*7”! nous pouvons pousser V—3dV
dans I'intérieur de R"*7*N*! pour obtenir une sous-variété ¥’ comme ci-dessus.

10.6. Démonstration de la proposition. Nous avons vu (cf. 4.1) que les éléments de

0y =23 peuvent &tre représentés par les classes de cobordisme de paires de sous-
variétés disjointes V, et V, dans S™ !, avec un champ de repéres normaux, et 8V, = S,
dV,=S, avec le champ naturel, ou (S;, S,) est ’enlacement trivial de type (p, —1,
p,—1) dans S™ !, De plus V; et ¥, bordent dans D" des sous-variétés avec champ
W, et W, telles que d W;=D?'UV,. En général, ces deux sous-variétés se rencontrent.
Cependant si (V;, V,) représente un élément du sous-groupe N, alors on peut con-
struire W, et W, de sorte que W,no W, =0.

En effet V, et V, sont les images inverses des pdles nord de S et $% par une
application différentiable £ de S™~ ' —(S,uUS,) dans $7' v S% dont la restriction aux
voisinages tubulaires de S, et S, est naturelle (cf. 4.1 et 3.2-4). Soit f,: 8™ "1 -5, »S%
I’application qui étend f composé avec la rétraction de S v §% sur S, Désignons
par D, et D, les disques D?' et D”2. Par hypothése, I’application f, peut s’étendre
suivant une application f,: D™ — D,—S% dont la restriction a un voisinage tubulaire
de D, est naturelle. Comme I’élément « de L,  ,, représenté par f est dans N, on peut
construire ’extension f, telle que f,(D,) soit le point base de S; en effet, I'élément
de n, (S?) représenté par I'application égale a I'application constante sur D, et 4 f,
sur un disque bordé par S; dans S™ ! est justement ’élément 4, («) qui est nul. Ainsi
I'image inverse W, du pdle nord de S par f, ne rencontre pas le bord d W; =V, UD;.

Remarquons en passant qu’il en résulte que si K; UK, est un enlacement de type
(p) dans S™ dont'le premier coefficient d’enlacement est nul, il existe des sous-variétes
avec champ de repéres normaux M, et M, bordées par K, et K, et telles que
OM,NM,=0.

Nous pouvons supposer que W, et W, se coupent transversalement. Ainsi
V=W,nW, est une sous-variété avec un champ de repéres normaux dans I'intérieur
de D™ et un bord dans D,. Aprés identification de la paire (int D™, int D,) 4 la paire
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(R™, R"?), en vertu du lemme 10.5, la sous-variété J représente un élément de
Tom—gy —g, (Fs F').

Cet élément est indépendent du choix particulier des sous-variétés V; dans leur
classe de cobordisme et des W,. Si V' et W, est un autre choix et si M est un cobordisme
reliant V' a V' (cf. 4.1), en recollant W/ a W, a 'aide de M, on obtient dans S™ deux
sous-variétés N, et N, avec un champ de repéres normaux dont le bord est I’enlacement
trivial de type (p); de plus d N;nN, =0 et N, N, représente la différence des éléments
de 7m,,_,, —q,(F, F"') obtenus a partir des W, et W,. Mais N;nN, est cobordant a 0,
car on peut séparer N, de N, par des isotopies fixes sur N, et N, qui les poussent
dans deux hémisphéres complémentaires.

On a ainsi défini une application de N dans n,,_,, _,,(F, F**) qui sera la deuxi¢me
fleche verticale de 10.4. On vérifie aisé ment que c’est un homomorphisme. La troisieme
fleche verticale est ’'isomorphisme naturel. Le deuxiéme carré du diagramme commute,
car I’élément A, (o) est représenté par D,nW,.

La premiére fléche verticale est aussi 'isomorphisme naturel (r,,_; (S?*%71) est
stable). L’homomorphisme de n,,_,(S%*%27!) dans N est défini par a—pu([1,1,] - o)
ou u est défini en 5.2. La construction de I’invariant de Hopr donnée dans [10] et dont
la construction précédente est une généralisation, montre que le premier carré du
diagramme est commutatif. Le lemme des cinq montre donc que N est isomorphe a
Ton—gy —gp (F> F).

Finalement, en utilisant I’'isomorphisme

Ton—gi-qs(Fs F") R Ty, -,(80, SO,,) pour 3p,+p,<3m-—6

démontré par JAMES [12], on obtient le

10.7. THEOREME. Dans le domaine 2-métastable: p, <p, et p; +3p, <3m—6,

Ly, 5, =75, (S7) @ Mp—g,-4,(SO, SO,,)
avec g;=m—p,—1.
Les enlacements du premier facteur sont construits explicitement dans 10.1 et ceux

du second dans [4], 8.13.
Université de Genéve
Institut de Mathématique
Genéve
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