
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 41 (1966-1967)

Artikel: Enlacements de sphères en codimension supérieure à 2.

Autor: Haefliger, André

DOI: https://doi.org/10.5169/seals-31371

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-31371
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Enlacements de sphères en codimension supérieure à 2

par André Haefliger

1. Enoncé du résultat principal

1.1. Un enlacement des r sphères SPl, SPr dans Sm est une suite K(p) de r sous-
variétés disjointes orientées Kl9 Kr dans la sphère Sm, la /-ème composante Ki
étant difféomorphe à SPl. On dira aussi que Kip) est un enlacement de type (p) dans

S"\ en désignant par (/?) la suite (pu ...,/>r). Deux tels enlacements K(p) (Kl, Kr)
et A^'(p) (^!', K'r) dans 5m sont isotopes s'il existe un difféomorphisme h de degré
1 de 5m appliquant Kt sur K[ avec concordance des orientations données.

Nous supposerons dorénavant que toutes les codimensions m —pt sont supérieures
à deux. Dans ce cas, en utilisant un résultat de Smale, nous verrons (§ 2) que les

classes d'isotopie d'enlacements de type (p) dans Sm forment un groupe abélien. Dans
ce travail, nous nous intéresserons au sous-groupe L^ formé des classes d'isotopie
d'enlacements de type (p) dont chaque composante Kt est une sphère non nouée

différentiablement (c'est-à-dire isotope à la sphère standard SPlczSm). Les divers

groupes d'enlacements de sphères de type (p) dans Sm que l'on peut définir (en prenant
par exemple comme composantes des sphères d'homotopie, des sphères linéaires par
morceaux, des plongements de sphères avec ou sans champ de repères normaux, etc.)
sont somme directe du groupe L^ et de r sous-groupes correspondant aux classes

d'isotopie des composantes (cf. 2.6).

1.2. Soit(q)la suite (ql9 qr), où q. m—pt — 1. Nous désignerons aussi L^ par

Soit v S(q) le bouquet de sphères Sqi v v Sq% identifié à un sous-espace du produit

Sqi x x Sqr.

Posons

{£ noyau de l'homomorphisme naturel : nPi v S{q)) -> nPt (Sqi)

A\qp\ Somme directe des A[qPt)9 /=1, 2,..., r
niql j noyau de l'homomorphisme 7rm_ {( v S(q)) -+YJnm_l (Sqt)

Définissons un homomorphisme w:A\f)-+IIi*l1 comme suit. Soit it l'élément de

nPi(vSiq)) représenté par l'inclusion de Sqi dans v5(9). Soit wt l'homomorphisme
II%)_i défini par le produit de Whitehead H>f(a) [a, ij. Alors w Iwt.

Le théorème suivant ramène essentiellement le calcul de L{qp) à celui de w
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1.3. Théorème. Soit L((*} le groupe des classes d'isotopie des enlacements de type
(p) dans Sm dont chaque composante est non nouée et de codimension >2. On a une
suite exacte

(p-l) désigne la suitePi — 19 ...,/?r —1.

1.4. L'homomorphisme X est défini comme suit. Soit K(p) Kt u • • vj Xr un enlacement

de type (p) dans Sm représentant un élément de L(™} L^]. Il existe une application
h de v S(q) dans le complémentaire C de AT(/>) induisant un isomorphisme des groupes
d'homotopie jusqu'en dimension m—2 et dont la classe d'homotopie est caractérisée

par la propriété suivante : la restriction de h à Sqt a un nombre d'enlacement -f 1 avec

Kt et est homotope à zéro dans CkjK^
Soit vf un champ de vecteurs normaux à Kt qui peut s'étendre suivant un champ

de vecteurs normaux à un disque bordé par Kt. En poussant Kh qui est homéomorphe
à SPi, le long de vf, on obtient un élément de nPt(C) nP[( v S(q)) qui appartient au

noyau de l'homomorphisme de nPi(vS(q)) sur nPi(Sqt), car Kt est non noué. Cet
élément est appelé le /-ème élément d'enlacement de K(p\ II est indépendent de la
classe d'isotopie de Kip). On obtient ainsi un homomorphisme Xt: L$-+A^] et on
définit X comme la somme des Xt.

En résumé, X fait correspondre à un enlacement ses divers éléments d'enlacements

qui appartiennent à nPi(v Siq). Le noyau de w décrit toutes les relations de symétrie

que vérifient ces éléments.

1.5. L'homomorphisme \i de n%l.1 dans L^] peut être décrit comme suit. Soit

/: Sm~1 -» v S(q) une application différentiable représentant un élément de n(q)~ i. Soit

Nt c^'cv Siq) une valeur régulière de/(distincte du point base). Soient Vl=fl (Nt)9

Vr=f~l(Nr) considérées comme des sous-variétés avec champs de repères
normaux dans Sm"1. On montrera qu'il existe des sous-variétés disjointes Wi9..., Wr dans

le disque Dm, avec champs de repères normaux, telles que ôWt soit l'union de Vt et

d'une sous-variété Kt qui est difféomorphe à une sphère SPi non nouée. La classe

d'isotopie de l'enlacement K(p)=(Ki9..., Km)czDm<=:Sm est l'image par /* de la classe

d'homotopie de/.

1.6. Plan du travail. Dans le § 2, nous définissons les divers groupes d'enlacements.

Au § 3* nous définissons un groupeJ£?^ dont les éléments sont des classes d'homotopie
et nous construisonsun homomorphisme de L((^ dansJSP^. Dans le § 4, nous montrons

que c'est un isomorphisme. Ainsi le problème est ramené à un problème d'homotopie

qui est étudié au § 5, où la suite exacte est établie.

Enfin, dans le § 6, nous montrons comment la classification des variétés ayant le

type d'homotopie d'un bouquet de sphères peut se ramener à celle des enlacements de

sphères, sous certaines restrictions de dimensions.
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Dans l'appendice (§ 8-10), nous appliquons les résultats des § 4 et 5 au calcul de

^pupi PomPi ^Pi et Pi + 3/?2<3aw —6 (domaine 2-métastable). Nous montrons que
ce groupe est isomorphe à la somme directe de nPi(Sq2) et de nm-qi-q2(S0, S0qi).

2. Les groupes d'enlacements de sphères

2.1. Un enlacement des sphères Sp\ Spr dans Sm (on dira aussi un enlacement
de type (/?), où (p) désigne la suite (pu ...,/?r)) est une suite Kip) (Ku Kr) de r
sous-variétés differentiables orientées disjointes de Sm telles que Kt soit difféomorphe
à Spi. On dit que Kt est la /-ème composante de Kip).

Deux tels enlacements Kip) (Kt,..., Kr) et Kf(p) (K[,..., K'r) sont isotopes s'il
existe un difféomorphisme h de degré 1 de Sm tel que Ki=h(K() pour tout i, en
préservant les orientations (si c'est le cas, on pourra toujours trouver un h isotope à

l'identité). Ces deux enlacements sont concordants s'il existe dans Smxï une suite de

sous-variétés differentiables disjointes orientées Wu Wr telles que Wt soit
difféomorphe kSPixI et que Wt K[ x 1 - Kt x 0.

2.2. Théorème (Smale). Si les codimensions m—pi sont toutes supérieures à 2, les

relations de concordance et d'isotopie sont équivalentes.
Ce théorème se déduit de [7] comme le th. 1.2 de [4].

2.3. Définition du groupe L(™} (oulJfy). Soit Z™p) l'ensemble des classes de concordance

des enlacements de type (p) dans Sm9 et soit L™p) le sous-ensemble du précédent
formé des classes d'enlacements dont chaque composante est individuellement
concordante à l'inclusion naturelle de SPi dans Sm. Ainsi £™ est l'ensemble des classes de

concordance des sous-variétés orientés de Sm difféomorphes à SPi.

Lorsqu'on voudra mettre l'accent sur les codimensions, L™p) sera aussi désigné par
^, où q est la suite (qu qr) avec qi m—pi--l. Cette notation est justifiée par la

forme de la suite exacte 1.3.

2.4. Théorème. Z™p) est naturellement un groupe abélien qui est somme directe

canonique des groupes L™p) et des groupes I™, i= 1,..., r.

2.5. Démonstration. Elle est tout à fait analogue à celle du théorème 1.7 de [4].
Définissons tout d'abord l'enlacement standard de type (p): S{p) (Sp\ SPr)

dans Sm. Soient al9..., ar des nombres réels compris entre -1/2 et 1/2 et formant une
suite croissante. La composante St de Sip) sera définie comme l'intersection de la
sphère unité Sm dans Rm+1 avec le (z^+l^plan défini par xPi + 1=0, ...,xm_1=0,
xm=ah où (x0,..., xm) sont les coordonnées de xsRm+1. On désignera par D+ (resp.
Dm_) l'hémisphère de Sm défini par xo^0 (resp. xo<0) et par D{? (resp. D(_p))

l'intersection de S(p) avec Z>+ (resp. D!!).
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Tout enlacement de type (p) dans Sm est isotope à un enlacement Kip)=(Kt, Kr)
tel que K(p)nD1 =/)(f) Si deux tels enlacements K(p) et A:/(p) sont concordants, il
existe une concordance Wip) qui les relie et dont l'intersection avec Dixl est D{E} x /

Etant donnés deux enlacements K{p) {Ku Kr) et K'ip) (Kfu Xr') tels que
Kip)nDi =D(I} et #'^nD™ £>{+P), l'enlacement Kip) + K'ip) est celui dont la i-ème

composante est (KlnD1)v(KïnD1)
Cette addition donne une loi de composition bien définie pour les classes de

concordance des enlacements de type (p) dans Sm Cette loi de composition est commu-
tative et associative L'élément neutre est la classe de S(p) L'inverse de la classe de

K^p) est celle de son symétrique par rapport au plan xt =0, avec l'orientation inversée

(cf [4], 1 4-6)
Un enlacement K{p) est concordant à 0 (c -à-d à 5(p)) si et seulement si les composantes

Kt bordent des disques plonges de manière disjointe dans le disque unité

La projection naturelle de Z™p) sur I™ s'obtient en faisant correspondre à la classe

de concordance de K{p) la classe de sa i-ème composante Un relèvement de cette

projection fait correspondre à la classe d'une /^-sphère KtczSm la classe de l'enlacement
dont la j-ème composante est Kt et dont les autres sont des sphères bordant des disques

disjoints entre eux et de Kt

2 6 Autres genres d'enlacements D'une manière analogue, nous pourrions définir
le groupe abélien C™p) des classes de concordance (ou d'isotopie en codimension

>2) des plongements différentiables de l'union disjointe de Sp\ SPr dans Sm,

le groupe FC™p) des classes de concordance de tels plongements avec un champ de

repères normaux,
le groupe 9™p) des classes de A-cobordisme des enlacements de type (p) dont les

composantes sont des sphères d'homotopie,
le groupe F0™p) des classes de tels enlacements avec champ de repères normaux
Les sous-groupes de ces groupes formés des enlacements dont chaque composante

est triviale sont tous isomorphes à LJ"p) De plus chacun de ces groupes est isomorphe
à la somme directe de I^p) et des r groupes des classes de chaque composante Ces

groupes C*, FC™, 0Pi9 F6Pi ont été étudiés dans [4] et [6] (avec une notation légèrement

différente)
Le groupe L^p) est également isomorphe au groupe des classes d'isotopie (en

codimension >2) des enlacements linéaires par morceaux de type (p) dans Sm Ceci

résulte du «unknotting theorem» de Zeeman [9]
Enfin le groupe des classes d'isotopie (lorsque m —pt > 2) des plongements linéaires

par morceaux de l'union disjointe des tubes SPi x Dm~Pi (i 1, r) dans Sm est

isomorphe au groupe F0^p)9 si p^ 5 Ceci résulte du théorème de Cairns-Hirsch [5] et

de Smale [7]
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3. Les groupes et l'homomorphisme ^\

3.1. On désignera par (q) la suite (gu ...,#r), où ql m—pl — l. Le bouquet de

sphères obtenu en attachant en leur pôle sud (0, 0, —1) les sphères Sq\ Sqr

sera noté v S(q\
Reprenons les notations du paragraphe précédent. Soit S"""1 l'intersection de Sm

avec l'hyperplan jco 0 et soit Sip'1} l'enlacement dans Sm~l qui est l'intersection de
S(p) avec Sm~l. On considère le voisinage tubulaire T~ de S(p)n/)™ =Z>(i° réunion
des voisinages tubulaires disjoints T~ définis par (xPi+1)2-\ h(xm_1)2 +
(xw —a,)2^82, où e<min(al+l—al)/2. Soit <p~ la projection naturelle du bord ôT~ de

T~ dans Sm~Pl~l=Sqi définie par <pr(x0, xm) (xPt + i/e xm.Je9 {xm-a^e). La
réunion des applications q>~y composées avec les inclusions de Sqi dans v S(q) définit
une application <p~ de dT~ dans v S(q).

>xn

L'intersection de T avec Sm 1 est un voisinage tubulaire Tde l'enlacement Sip X)
;

soit q> la restriction de q>~ à ôT; de même posons ôTt dT~nSm~l et ç>l ç

Soit X=Sm~l— int J"; c'est une variété dont le bord est réunion disjointe des

et ^ est i'appiiCation naturelle de ôT=8X sur v S(q).

3.2. Définition. ^{qp\ est l'ensemble des classes d'homotopie d'applications de X
dans v Sr(g) dont la restriction à 3X est q> (dites applications modulo cp).

3.3. Proposition. muni d'une structure naturelle de groupe abélien pour
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Démonstration Soit Y_=DZ-T~ L'application q>~ dT~=dY_-+ v Siq) peut
s'étendre d'une manière et d'une seule, à l'homotopie près, suivant une application de

F_ sur v S^q), une telle extension est une équivalence d'homotopie II en résulte que
les applications modulo q> de X dans v Siq) qui s'étendent suivant des applications
modulo </>_ de 7_ sont toutes homotopes Leur classe d'homotopie sera l'élément
neutre de Jt[*p]

Pour la même raison, les restrictions à X. =XnD1~l ou à X+ =XnD"l~l (Dm_~l

ou D+"1 sont définis par xx <0 ou xx >0) des applications mod cp de X dans v S{q)

sont toutes homotopes

Si/i et/2 sont deux applications mod <p, on peut donc toujours modifier l'une
d'elles par une homotopie mod q> de sorte G^ef2=fxa sur X_, où a est la symétrie
relative au plan xx =0 On définit la somme des classes d'homotopie de/t et/2 comme
étant la classe d'homotopie de

f/i sur X+

sur X.

En suivant la même méthode que pour le groupe L[fY on montre que Jfj^ est un

groupe abélien avec cette addition

3 4 Définition du sous-groupe^[qp] Si/ X-* v SiP) est une application mod q>, soit

/ l'application de Xt=Sm~l -int Tx dont la restriction à X est le composé de /'avec
l'application de v Siq)-*Sqi qui contracte chaque sphère Sqj sur le point base pour

j^i et qui applique chaque voisinage tubulaire TJ9j^i, sur le point base Comme Xt
est difféomorphe à DPi x Sqi et que fx\dDPi x Sqt est la projection naturelle sur S*1, il
en résulte que/ représente un élément de nPi(G9t+l)9 où Gqi + l est l'espace des

applications de degré 1 de Sqi

On définit ainsi un homomorphisme yt de Jf?[qp) dans nPi(Gqi + l) On désignera par

$ le noyau de l'homomorphisme y yx -h y2 + 4- yr de ^Jj dans la somme directe

3 5 Construction de l'homomorphisme \j/ Lgj-^^g Soit A:(p) («"!, Xr) un
enlacement de type (/?) dans Sm Supposons que K^nDI =D{Î) Soite^" un voisinage
tubulaire de Kip) dont l'intersection avec D™ est T~ Comme chaque Kt est une pt-
sphère qui borde un disque dans Dm+l, on peut trouver un difféomorphisme t, de

SPixD^~pi sur la j-ème composante 9~{ de y tel que t, puisse s'étendre suivant un

difféomorphisme de DPi+1 xDm~pi sur un voisinage tubulaire d'un (/^ + l)-disque Ax

plongé dans Dm+1 et bordé par Xt On peut supposer de plus que sur dT~9 l'application

tf(x, y)-*y coïncide avec <pf

Soit T+ =&~nD1 et soit <p+ l'application du bord de T+ dans v Siq) appliquant
tt(x9 y) sur y Le complémentaire Y+ dans D+ de l'intérieur de T+ a le type d'homotopie

de v Siq) et l'application q>+ s'étend, homotopiquement d'une manière unique,
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suivant une application /+ de Y+ sur vS(q\ La restriction de/+ à X=Y+nSm~1
donne une application /mod q> dont la classe d'homotopie est un élément du sous-

groupe^^ de ^(J). Ceci résulte du choix particulier de la trivialisation xt.
D'autre part, la classe d'homotopie de/ne dépend pas de l'arbitraire dans le choix

de Tt-, ni du choix de A^dans sa classe de concordance. En effet, soit Kf(p) un enlacement
concordant à K{p) ; choisissons comme plus haut un difféomorphisme xrt de SPi xDm~pi
sur un voisinage tubulaire de K[ qui peut s'étendre suivant un difféomorphisme de
DPl + i x Dm~Pl sur un voisinage tubulaire d'un disque A\ dans Dm+l bordé par K[. On

peut alors choisir une concordance W=Wlv--vWr reliant K(p) à K'ip) et telle que,
pour chaque i, {Atx0)uW^u(zf| x 1) borde un disque dans Dm+1 xi.

On obtient ainsi une application ^:L((^->o£?((j^ qui est un homomorphisme. Pour
le vérifier, on choisit un représentant K(p) qui coïncide avec l'enlacement trivial Sip)

sur le sous-espace xo^0 ou xx ^0.

4. L'isomorphisme de L\% L?P

4.1. Interprétation de Jf [qp\ et5£{^p\ comme groupes de cobordisme. Nous allons voir
que chaque élément de ^{qp) peut être représenté par une sous-variété Va S"1'1, avec

un champ de repères normaux, Fêtant la réunion disjointe de r sous-variétés Flv.., Vr9

où dim Vi=Pi et le bord dV{ de Vi étant la /-ème composante St de l'enlacement trivial
Sf(p"1) munie du champ de repères naturels d/dxpi+u d/dxm-l (cf. 3.1).

Deux telles sous-variétés V et K' Fj'u-uFr' représentent le même élément de

Jf((^ s'il existe dans S"1'1 x / une sous-variété M avec champ de repères normaux qui
est réunion des sous-variétés disjointes Mi9 ...,Mr telles que ôM^FiuF/u^x/)
avec les champs donnés.

Enfin une sous-variété V=(Vi9..., Vr) représente un élément deJ£?$ si et seulement
si chaque Vt borde individuellement dans l'hémisphère Dm_ (défini par xo<0) une
sous-variété avec champ Wh dont le bord est l'union de Vt et du disque Dpl avec le

champ normal standard (cf. 3.1). Wt a une arête le long de ôDpl. En général WtnWjïQ
et V représente l'élément neutre de Jf^] si et seulement s'il existe de tels Wt disjoints.

Pour le voir, considérons une application/: X-+ v S(q) modulo q> représentant un
élément de Jf((^ ; on peut supposer / différentiable et transversal sur le pôle nord
NieSqt. Munissons la sous-variété/~f(iVf) d'un champ de repères normaux dont
l'image par la différentielle de/est le repère tangent natural en Nt. On peut étendre
radialement cette sous-variété à l'intérieur du tube Tt pour obtenir une sous-variété

Vt avec champ de repères normaux dont le bord est St. Alors F= VtKj"-uVr vérifie la
condition précédente.

/représente un élément deJS?^ si et seulement si l'application fi\Xi-+Sqi définie
dans 3.4 peut s'étendre suivant une application/f+ de Di -int Tf dans Sqi qui étend

<?r ;on peut supposer/* différentiable et régulière sur Nt; ainsi (fi+)"1(Ni)9 prolongée
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radialement à l'intérieur de 7]~, donne une sous-variété Wt avec champ telle que

Réciproquement, si V est une sous-variété avec champ normal comme ci-dessus,

on peut supposer, après une isotopie fixe sur S(p"1}, que VnTt est l'intersection de Tt

avec le demi-espace xp< + 1=-- xm_1=0, xm^af. Par la construction de Thom-
Pontrjagin, il existe une application différentiable f:X-+ v S(q) mod q> telle que
f~1{N^)—Vir\X. On vérifie que deux sous-variétés V et V cobordantes au sens ci-
dessus donnent deux applications/et/' qui sont homotopes mod (p.

4.2. Avec cette interprétation de &{% Phomomorphisme \j/ peut être décrit de la
manière suivante. Soit Kip) un enlacement représentant l'élément a de L\qp]9 tel que
K^nD1! D{H\ La sous-variété V=Vlu--vVr avec champ normal représente i^(a)
si et seulement s'il existe des sous-variétés disjointes Mi9 Afr avec champs de

repères normaux dans Z)+ telles que ôMt= ViKj(DfllnKi) avec la condition supplémentaire

suivante: considérons le champ de repères normaux de Mt restreint à D+nK^ et

complété par le champ des vecteurs normaux au bord de M, et dirigés vers son
intérieur; étendons-le sur DinKi suivant le champ de repères normaux naturel; alors ce

champ de repères ainsi obtenu le long de Kt peut s'étendre suivant un champ de repères

normaux à un disque plongé dans Dm+l dont le bord est Kt.
On peut construire Mt en prenant l'image inverse de Nt par l'application/+ (cf. 3.5)

et en l'étendant radialement dans T+.

4.3. Théorème principal. L'homomorphisme ifr: L^-*!?^ est un isomorphisme en

codimensions >2.

Démonstration du théorème

4.4. Surjectivité de \j/. Soit F=K1u-uFr une sous-variété avec champ normal

représentant (cf. 4.1) un élément a de^((^. Par hypothèse, chaque Vx borde individuellement

une sous-variété avec champ W^DZ telle que dW^V^D*!. Soit Wf cDÏ
la sous-variété avec champ qui est l'image de Wt par la symétrie relative au plan x0 0 ;

nous pouvons la considérer comme une sous-variété avec champ de repères normaux
dansD+, N grand, les N—m derniers vecteurs du champ étant la restriction à W* du

champ de repères normaux naturel à D+ dans D+. En utilisant le lemme 3.3 de [4],

on peut modifier W* par des modifications sphériques pour obtenir une sous-variété

avec champ W( cD+, de même bord que W*, et qui est union d'un voisinage tubulaire
V( x I de Vt et d'anses d'indices ^pJ2+1.

Par des arguments de position générale (cf. 3.6 de [4], c'est ici que l'hypothèse

qi>\ est essentielle), nous pouvons compresser les sous-variétés W{ sur des sous-

variétés disjointes W{ czDi munies de champs de repères normaux, telles que dW{'

soit l'union de Ff (avec son champ) et d'un /?rdisque K? <zDi qui est tangent à Dpl

le long de son bord.
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Soit Wtc:Sm l'union de Wx et de W{' ; c'est une sous-variété avec champ dont le bord
Kt est l'union de Dvl et de K* ; a priori, Kt pourrait être une sphère nouée. On va
modifier ffît en faisant la somme connexe avec sa symétrique de la manière suivante.
Pour chaque j'=l, r, soit At un petit disque de dimension m plongé dans Z)+ et
coupant W{ suivant un demi-disque standard; on suppose que les At sont assez petits
pour être disjoints et pour que Ainffij 0 pour /#/ Soit at un difféomorphisme de
Sm — Ai sur Ai qui est l'identité sur ô At. Soit Mf la sous-variété avec champ dans D+
égale à Wï en dehors de A{ et à ai{Wi — A^) dans Jf (si at est choisi convenablement,
ces deux morceaux se raccordent bien le long de d At).

Le bord de M, est l'union de Vt et d'un /?rdisque X,+ cD+. Soit Kip) l'enlacement
dont la /-ème composante est K^DÏÏuK*. Les sous-variétés M, avec champs de

repères normaux vérifient toutes les conditions de 4.2. Ainsi l'image par \j/ de la classe

de concordance de Kip) est a.

4.5. Injectivité de \p. Soit K(p) (Kl, Kr) un enlacement de type (p) dans Sm

dont la classe a une image nulle par ^. II existe alors des sous-variétés disjointes M,
avec champs de repères normaux dans Sm telles que dM^K^

Supposons en effet que K(p)nDnL=DiI) et soit Mf+ des sous-variétés disjointes
dans D+ avec champs normaux telles que dans 4.2. Par hypothèse, la sous-variété

F=F1u-.-uFr représente l'élément neutre deJSPg}, où V^M^nS"'1. D'après 4.1,
il existe des sous-variétés avec champs de repères normaux Wt dans D1 telles que
dWi^V^Df1. Les sous-variétés Mf sont les réunions de Wt et M*.

En remplaçant au besoin Mt par sa somme connexe avec son symétrique comme
ci-dessus (cf. 4.4) et K(p) par un enlacement concordant, on peut se ramener au cas
où chaque Mt est stablement cobordant à un disque. Cela signifie que, si Mt est
considérée comme une sous-variété avec champ normal de SN, N grand (par l'inclusion
de Sm dans SN), il existe dans DN+l une sous-variété Zf avec champ de repères
normaux (et une arête le long de Kt) telle que dZt soit l'union de ZtnSN Mi et d'un

(a+ l)-disque AiaDN+1 dont le bord est Kt. Après des modifications sphériques
convenables (cf. 3.3 de [4]), on peut supposer que Zt est l'union d'un voisinage Mt x / de

Mi et d'anses d'indices ^pt/2 + 3/2. Par position générale, on peut compresser les

sous-variétés Zf sur des sous-variétés disjointes Z[ dans Z)w+1, Zf étant égal à Z[ sur
Mf. Les images A\ des disques At sont disjointes et sont bordées par les Kt. L'enlacement

K(p) est donc concordant à zéro.

5. La suite exacte fondamentale

5.1. Rappelons que Jf[l] est défini comme la groupe des classes d'homotopie
d'applications mod q> de X dans v Siq\ où X est le complémentaire dans S""""1 d'un
voisinage tubulaire T= TtU"-uTr d'un enlacement trivial Sip~l\ et ç la réunion des

applications <pi:d7>Sp'-1 xSqi-+Sqicz vSiq) (cf. 3.1 et 3.2).
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Soit 1 le quotient de X par la relation d'équivalence identifiant les points de ô Tt

ayant la même image par <pt. Alors X est homéomorphe à la somme connexe

X= S"1"1 # (SPl x Sqi) # # (SPr x S*)

et les éléments de Jf$ peuvent s'interpréter comme les classes d'homotopie modulo
ip de JTdans v S(q\ où <p est la réunion des applications (pt:zi x Sq'-*Sq'c v Siq\ où
ZieSPl. Dans ce modèle, on peut considérer que les tores SPl x S*1 sont tous attachés à

gm-i comme sujt: on choisit r (m — l)-disques A'i disjoints dans Sm~l et dans chaque
tore un disque At: on enlève l'intérieur de ces disques et on identifie dAt à dA\ par un
difféomorphisme de degré — 1.

Nous utiliserons ces deux descriptions de

5.2. Définitions des homomorphismes A, jx et w. On définit un homomorphisme
Ài:Jtf?(if)-+nPt(v Siq)) en faisant correspondre à la classe d'homotopie d'une application

mod cp de X dans v Siq) sa restriction à SPi x^czX, où y\ est le pôle sud de Sqt.

Soit ^^(p)-->IX(( v5(<j)) la somme directe des A,.

L'homomorphisme /i : 7rm_ t v S(€))-*«#^ est défini comme suit. Soit ^ une
application mod cp (ou mod q>) de Z (ou X) dans v *S(€) représentant l'élément neutre de

J?lf) et telle que g applique un disque plongé D"1"1 dans X sur le point base. Soit
h:Dm~x-+ vSiq} une application envoyant Dm~l au point base. L'homomorphisme
ix fait correspondre à la classe d'homotopie de h celle de l'application/: X->S(q) égale
A sur Dm~l et à g en dehors de If'1.

Enfin soit it la classe d'homotopie de l'inclusion de Sqi dans v S(q).

L'homomorphisme H'i:7rPi(v5r(€))~>7Em_2(vS(€)) fait correspondre à a le produit de White-
head [a, ïj et w:J]/7rPf(v5'(€))->7rm_2(v5(4)) est la somme des wt.

5.3. Proposition. La jwiïe des homomorphismes

est exacte.

+1 v Sw) -^ »«_ x v 5«) A jf*) i X^p, v

5.4. Démonstration. Soient gi'.SPi xjf-> v5(4) des applications représentant les

éléments o^en^ v 5r(€)). Soit/, une application de SPf x S* -int J£ (cf. 5.1) dans v Siq)

égale à gt sur 5Pl x ^ et à l'inclusion sur zi x SPi ; alors la restriction de/f à dAt représente

le produit de Whitehead [oef, ij. Les applications /4 peuvent s'étendre suivant

une application/de JP=Sm~1#Sl"x5*< si et seulement si les restrictions des/f aux

dAi=d j; peuvent s'étendre à Sm~x - u int J{, c'est-à-dire si £[at, fj =0. Ceci prouve
l'exactitude en ^wf v 5'(€))-

L'exactitude en «^[^ découle des définitions de X et \i.
Il reste à montrer l'exactitude en %m^ t v 5(9)). Soit 7 le complémentaire dans Sm

d'un voisinage tubulaire de l'enlacement standard S(p); on peut le représenter comme
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l'union de F_ (cf. 3.3) et de son symétrique F+ relativement au plan xo 0; on a

Y_nY+=X. Soit ^:dF-> vSiq) l'application qui est réunion de <p_ et de son
symétrique (p+. Soit Am un petit disque dans l'intérieur de F et symétrique relativement au
plan *0=0 qui partage son bord en deux hémisphères Jm"1cF_ et Am~iczY+. On

posera AI AmnD1, Am+ =AmnD1.
Soit a un élément de nm_i(vS(q)). Il est dans l'image de w si et seulement s'il

existe une application continue F: F—int Am-+ v S(q) modulo \j/, dont la restriction à
dAm représente a. On peut supposer que F(AnL~1) point de base. Soit F+ (resp. F")
une extension de F au demi-disque A\ (resp. AI). L'image de a par p est la classe

d'homotopie de F + \X; elle est nulle puisque F+\X peut s'étendre à F+. Donc

Réciproquement, soit h:dAm-+vS(q) représentant a et tel que h{AnL~1) — point
base. Soit g_ une application mod cp_ de F_ —int Am dans v S^ envoyant A1~l sur
le point base. Si ^(a) 0, il existe une application g+ mod cp+ de Y+ —int Jm-> v 5(€)

qui étend h\ J+"1 et g_\X—Am. Alors la réunion de g+ et g_ est une application
F:F—int Am-+ v Siq\ mod ^, qui étend h; donc a appartient à l'image de ji.

5.5. Formons le diagramme commutatif suivant:

I I I
0 0 0

Les groupes Afy et i7JfL 2 sont par définition les noyaux des homomorphismes surjec-
tifs, sommes des homomorphismes induits par les applications v S(q)~+Sqt qui
contractent les sphères Sqj,j^i, au point base. Ainsi par définition les suites verticales

sont exactes et le diagramme est commutatif.
La dernière ligne horizontale est exacte, car c'est une somme de suites qui sont

exactes par la proposition précédents. La première ligne est donc aussi exacte.

En identifiant j2P((J] à L[f} par l'isomorphisme \j/, on obtient le

5.6. Théorème. On a une suite exacte pour qi>l

5.7. On vérifie aisément qu'après l'identification de JSP$ à L[f)9 les homomorphismes

A et n sont, au signe près, ceux qui sont décrits dans 1.4 et 1.5.
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6. Classification des variétés ayant le type d'homotopie de v Sip+l)

6.1. Nous allons généraliser la méthode utilisée dans [4], 5.1-4, pour classer les

variétés de dimension m + 1 ayant le type d'homotopie du bouquet de sphères
gip+u.-SPi + i v vsPr+l (Pi^Pj siy>i) avec certaines restrictions de dimensions.

Soit Vm+l(vS(p+1))l'ensemble des classes (F,/) de variétés différentiables orientées

compactes F de dimension m + 1 avec bord simplement connexe, munies d'une
équivalence d'homotopie/: F-> v S(p+l); deux tels couples F,/)et( F',/') sont équivalents

s'il existe un difféomorphisme H: V-+ V tel que /' • H soit homotope à / (cf. [8]).
Soit d'autre part FC™p) le groupe des classes de concordance (ou d'isotopie) des

plongements différentiables de l'union disjointe des tubes SPtxDm~Pi dans Sm

conservant l'orientation. Ce groupe est la somme directe du groupe L™p) et des groupes
FC^~Pi étudiés dans [4], § 5.

Atout plongement <p de l'union des SPlxDm~Pt dans Sm correspond une variété
différentiable Forientées obtenue en collant au disque Dm+l r anses A, Z)PI +1 xDm~Pi
atachées simultanément par les plongements <pf (p\ SPi x Dm ~ Pl. Il existe naturellement
une équivalence d'homotopie/: F-> v Sip+l) qui contracte Dm+1 au point base et dont
la restriction à l'anse ht envoie DPt + l xO sur SPl + 1 cS(p+1) avec le degré 1. Deux

plongements isotopes donneront des variétés difféomorphes. On obtient ainsi, si

q.^m-pi-l> 1, une application FC?p)->Fm+1 vSip+i)).

6.2. Théorème. L'application de FC™p)-> Vm +1 v Sip +1}) est surjective si 2pt -pi +
2 ^ m et 2pi ~pj ^ 1 et injective si 2pt —pj + 2<m et 2pt —pj> 1 pour tout /, j 1,..., r.

6.3. Démonstration. Surjectivité. Soit (F,/) un couple représentant un élément de

Fm+1(vS(p+1)). D'après Smale [7], F est difféomorphe à l'union de Dm+i et de r
anses /Ef DPf+1 xDm~~Pi attachées successivement: F=Z>m+1u/i1u---u/*r. De plus,/
est homotope à une application envoyant DPt + l x 0 sur SPi +1 avec degré 1 et son bord

sur le point base. Nous devons montrer que nous pouvons choisir cette décomposition
en anses de sorte qu'elles soient attachées simultanément à dDm+1.

Supposons que c'est le cas pour les A: —1 premières anses et posons Vk.l
Dm+1uh1Kj"-uhk.1. Soit fkZ\:Vk-t-+Spl + i v -~v SPk-1 une équivalence d'homotopie

qui est homotope à la restriction de/à Ffc_l9 qui est régulière sur le pôle nord

Nt de chaque Spt+1, et telle que A-^N-) soit le disque OxIT^c^cF^!. Soit

(pk:dDPk+1 xDm~Pk-+dVk^l l'application d'attachement de l'anse hk. Remarquons

que dVk_l est s-conhexe, où s<pt-\-l et s<m—pt+l9 i<k.
L'élément d'intersection de ^ ^15^x0 avec chaque 0xdDm~PtczdVk-.1 est

nul (cf. [3] ou 6.5), car la classe d'homotopie defk-1-(p% est nulle, puisque <pk est

homotope à zéro dans Vk^v D'après le lemme 6.5 ci-dessous, q>k est homotope dans

d Ffc_ à une application ne rencontrant pas 0 x Dm"p\ Ainsi le produit de cpk par
l'inclusion de 0 x dDm~pt dans dVk.x est une application dans dVk_ixdVk^i homotope
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à une application ne rencontrant pas la diagonale. En appliquant le théorème 4.11 de

[2], on voit qu'il existe une isotopie dans ôVk^t qui déforme <p£ en un plongement ne
rencontrant aucun des OxôDm~Pi. On pourra donc s'arranger, après une isotopie
convenable, pour que (pk ne rencontre aucune anse hh i<k.

6.4. Injectivité. Soient (F,/) et (F',/') des couples représentant des éléments de

Fm + 1(vS(p+1)). On suppose que F(resp. F') est difféomorphe à l'union d'un {m + 1)-

disque Dm+Î et de r anses /^ /)Pl + 1 xDm~Pl (resp. h[ D/pi + 1 xD'm"Pl) attachées

simultanément à ce disque par des plongements (pt (resp. cp't).

Supposons qu'il existe un difféomorphisme de F sur F', préservant l'orientation,
et dont la composition avec/' est homotope à/ En utilisant la même méthode que
dans [4], 5.3 et que ci-dessus, on peut supposer après une isotopie que ce difféomorphisme

est l'identité sur le disque l/2Dm+1 concentrique à Dm+1 et de rayon 1/2, que
H\DPl + l x i/2Dm~Pi est l'application naturelle sur D'Pl + 1 x l/2D'm"Pl, et enfin que H
envoie dans Z)m + 1 l'ensemble des points xeDm+l tels que x/|x|e<pi(DPl + 1 x l/2Dm~Pl).
Il en résulte que les enlacements <p=((Pi, (pr) et (p/=(cp\y..., cp'r) sont concordants.

6.5. Rappel sur l'intersection. Comme les démonstrations des propositions de [3]
ne sont pas explicites (cf. en particulier p. 7), nous donnons ci-dessus ce qui est nécessaire

pour la démonstration de 6.2.

Soit M une variété différentiable orientée de dimension m et soit F une sous-
variété orientée compacte de codimension q. Supposons que F soit (n — ^r)-connexe. On
définit un homomorphisme i:nn(M; M-V)-*nn(Sq) comme suit. Soit f:Dn-*M une
application représentant un élément a de (M; M—V); on peut supposer que /est
transverse sur F; ainsi J=f(Dn)nV est de dimension ^n — q. Comme F est (n — q)-

connexe, on peut construire au voisinage de / un champ de repères normaux à F
donnant l'orientation normale; l'image inverse de ce champ par /donne un champ de

repères normaux le long de la sous-variété/"1 (F)cint D", et par la construction de

Thom-Pontrjagin un élément de nn(Sq). Cet élément *(a) est bien défini et sera appelé
l'intersection de / ou de a avec F.

6.6. Lemme. Supposons que M soit (n — q+\)-connexe, que V soit (n — q)-connexe
et que n<2q — 2. Alors i:nn(M9 M— V)->nn(Sq) est un isomorphisme.

Démonstration. Soit T un voisinage tubulaire fermé de F et soit M0 M—int T;
ainsi MonT est le bord dT de T. La paire (T, dT) est (^r-l)-connexe et la paire
(M0,dT) est (/î-<7 + l)-connexe. D'après le th. de Blakers-Massey [1], on a

nn(M; Mo, T)=0. Donc l'application nn(T, dT)-±nn(M, Mo) est surjective. Or
7tn(T, dT) est isomorphe, par relèvement des homotopies, knn{Dq, dD% où Dq représente

une fibre de T. La composition des applications nn-i(Sq~î)-nn(Dq, dDq)

nn(T, dT)-+nn(M, M0)-^nn(Sq) est l'homomorphisme de suspension. Comme 7rn_1

(Sq~l) est un groupe stable, i est un isomorphisme.
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6.7. Remarque. Rappelons qu'il résulte de ce lemme et du th. 4.11 de [2], que si

/est un plongement de Dn dans M dont l'intersection avec Kest nulle et si en plus des

hypothèses ci-dessus ona«<m-^, alors/est isotope, modulo son bord, à un plongement

ne rencontrant pas V.

6.8. Cas des variétés semi-linéaires (ou linéaires par morceaux), le théorème 6.2

et sa démonstration sont aussi valables dans ce cas. On doit naturellement remplacer
le groupe FC™P) par le groupe des classes d'isotopie des plongements semi-linéaires de

l'union disjointes des tubes SPi x Dm~Pi dans Sm. On a remarqué dans 2.6 que ce

groupe est isomorphe à F0™p), lorsque/?^5.

7. Classification des plongements de Sp dans SqxRm~q

II existe un difféomorphisme H de SqxRm~~q sur le complémentaire de la sous-
sphère S"1'9'1 dans Sm. Ainsi, à tout plongement différentiable/de Sp dans SqxRm~q

nous pouvons faire correspondre le plongement <p de l'union disjointe de Sp et
Sm~q~* dans Sw, q> étant égal à Hof sur Sp et à l'identité sur Sm~q~{. A deux
plongements/isotopes correspondent des enlacements q> isotopes.

Nous obtenons ainsi une application de l'ensemble des classes d'isotopie de plongements

de Sp dans Sq x Rm~~q dans le sous-groupe (pour m-/?>2 et q> 1) de Cpntfn.q-1

formé des classes d'isotopie d'enlacements dont la seconde composante est triviale
(cf. 2.6). Ce sous-groupe est canoniquement isomorphe à la somme directe Lpmm_q.l®
Cp, où C™ désigne le groupe des classes d'isotopie de plongements différentiables de

Sp dans Sm.

7.1. Théorème. Supposons m —p > 2 etq> 1. L'application définie ci-dessus de

l'ensemble des classes d'isotopie de plongements de Sp dans SqxRm"q dans le groupe

L;m-ri0C; est bijective.
Par exemple, dans le domaine 1-métastable, c'est-à-dire si 2 m > 3p + 3, les classes

d'isotopie des plongements de Sp dans SqxRm~q correspondent bijectivement aux
éléments de np(Sq)®np_q+i(S0, SO^p.^ pour 3#>/? + 3, d'après le théorème 10.7

de l'appendice.
Démonstration. D'après le théorème d'extension des isotopies, tout plongement

cp de SpuSm~q~l dans Sm dont la restriction à S"1'9'1 est isotope à l'identité, est

isotope à un plongement dont la restriction à Sm~q~ * est l'identité. Donc l'application
est surjective.

Soient fo,fl:Sp-+SqxRm~q deux plongements tels que les plongements associés

(p0 et <px sont isotopes. Pour montrer que l'application est injective, il faut montrer

qu'il existe une isotopie ht:Sm^>Sm,fixe sur Sm'q~1, et telle que h0 soit l'identité et

ht 'fo=fu °bfi désigne le composé Hmf(.
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Comme (p0 et cp1 sont isotopes, nous savons qu'il existe un difféomorphisme h de

degré 1 de Sm, fixe sur sm~~q~l9 tel que hfQ=f1, Soit g un plongement du disque Dm

dans Sm, de degré 1, tel que g(Dm)z>f0(Sp) etg(zr)nSm-«-1=g(Z)m-«-1). Les deux

plongements g et h g coïncident sur le sous-disque Dm~q"1\ il est bien connu qu'il
existe une isotopie ht de Sm, fixe sur la sous-variété sm~q~1, telle que ho id. et

htg==hg.

7.2. Remarque. Il est clair que le même résultat est valable dans le cas linéaire par
morceaux si l'on remplace C™ par 0.

Appendice

La classification des enlacements dans le domaine 2-métastable

Le but de cet appendice est de donner une expression explicite du groupe L™p) dans
le domaine 2-métastable (cf. déf. 9.1) en termes de groupes d'homotopie de sphères et
de variétés de Stiefel. Pour cette section, l'auteur a grandement profité de conversations

avec B. Steer.

8. Rappel de théorèmes de P. Hilton et B. Steer. Nos calculs seront basés sur le

théorème de Hilton [11] donnant une décomposition de nk(vS(q)) comme somme
directe de groupes d'homotopie de sphères et sur un théorème de B. Steer [14] donnant

une expression de w.

8.1. Comme précédemment, soit it l'élément de nPt( v S(q)) représenté par l'inclusion

de Sqi dans le bouquet v S{q) Sqi v ••• v Sqr.

Les produits de Whitehead basiques sont définis comme suit.
Les produits basiques de poids 1 sont les éléments ii9 ir et sont ordonnés de

sorte que /,</; si i<j.
Supposons ordonnés et définis les produits basiques de poids <k. Alors ceux de

poids k sont de la forme [a, 6], où a et b sont des produits basiques tels que a>b et

que la somme des poids de a et b soit k. De plus si a [c, d\ alors d^b. Les produits
basiques de poids k sont ordonnés arbitrairement et sont supérieurs à ceux de poids
inférieur.

Ainsi les produits basiques de poids 1, 2 et 3 sont:

*i> hi •••» lr

bh */]> i>J
[lh> ij]> lk]> l > J et J^k

Si l'élément it intervient <x( fois dans le produit basique w, alors we nd(yv) v Siq)),
ob d(w)
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8.2. Théorème (Hilton): Le groupe nk(v S(q)) est isomorphe à la somme directe
Y<yvnk(Sdiw)\ ou w parcourt les produits basiques, l'inclusion de nk(Sd(w)) dans

nk( v S(q)) étant donnée par composition avec w.

On suppose comme toujours que les qt sont supérieurs à 1. Suivant B. Steer [14,

p. 37, 3.2], soit A"une suspension, dans notre cas le bouquet v S(q). Soit wenk+l(X)9

8.3. Théorème (Steer): On a la formule

[woa, /] £ ±6s(w,i)'Eqhs.l0L

où 0s(w, i) [[[*, wJh^-'-w] avec s facteurs w

est un invariant de Hopfgénéralisé et Eq la suspension itérée qfois.
Ainsi on a [n>o a, i\= ±[/, w] Eq<x±[[i, w]w] Eqha±.... Les signes sont précisés

dans [14].

9. Le domaine A>métastable

9.1. Pour les enlacements de type (p) dans 5m, le domaine /r-métastable est celui

où, dans ^^(v^), tous les produits basiques de poids /c + 2 s'annulent. Cette
condition équivaut à

pour tout K*!,..., iu+2^r et h^h-
Elle équivaut également à l'annulation des produits basiques de poids k 4-1 dans

les groupes nPi + l(v Siq)).
Voici un exemple d'un théorème général.

9.2. Proposition. Dans le domaine k-métastable, un enlacement à r composantes
est isotope à l'enlacement trivial si et seulement si chacun de ses sous-enlacements à k +1
composantes est triviaL

Démonstration, Soit (/?') une sous-suite de la suite (p). L'opération faisant cor-
resporidre à un enlacement de type (p) dans 5"" le sous-enlacement correspondant à

la sous-suite (p') induit un homomorphisme de la suite exacte 1.3 dans la suite exacte

1.3 où (p) est remplacé par (/?'). Sur nm^1(v S(q)), cet homomorphisme est induit par
l'application rétractant v S(q) sur v S(q\

Soit q l'homomorphisme de la suite exacte 1.3 dans la somme directe des suites

exactes relatives à toutes les sous-suites de (p) contenant k -f 1 éléments, et qui est la

somme des homomorphismes précédents. D'après la définition du domaine &-méta-

stable, q est injectif sur npt + i( v S(q)) et nm-t(vS(q)), donc aussi sur Lfp).
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9.3. D'une manière générale, le groupe L™p) est la somme directe des groupes
°L?lPi fPt }, où /j, ik parcourt les sous-suites k de (1, 2,..., r) et où °L™P) désigne
le sous-groupe de L™p) formé des enlacements dont tous les sous-enlacements à r — 1

composantes sont triviaux. La suite exacte 1.3 se scinde en somme directe correspondant

à cette décomposition. Voici ce que donne le cas particulier du domaine 2-métastable.

9.4. Théorème. Dans le domaine 2-métastable, on a

Démonstration. Soit °L™P) le sous-groupe de L™p) formé des enlacements dont tous
les sous-enlacements à deux composantes sont triviaux (cette notation concorde avec
celle introduite ci-dessus dans le domaine 2-métastable vu la proposition 9.2). Définissons

de manière analogue les sous-groupes °A{iqp) et °n(qll de A\qp\ et Tï^y.
L'homomorphisme q envoyant la suite exacte 1.3 dans la somme directe des suites

exactes relatives aux sous-enlacements à deux composantes (cf. 9.2) est surjectif. On
a le diagramme commutatif exact suivant :

ooo
i i i
0 0 0

En fait la deuxième suite exacte horizontale est somme directe des deux autres.

D'après 8.2, °^)) Z7TP,(5'^+€k~1)' l^k et k>h chaque composante étant
plongée dans npi{ v Siq)) par composition avec [/fc, /;].

On a aussi °fl^2 ^7rm_2(S^+^+"^"2),7<Â:etj</, chaque composante étant
plongée dans 7rm_2(v S(q)) Par composition avec [[ik, ij]9 ij.

D'après 8.3, wt (produit de Whitehead par it) applique [/*, ij] o a, où ae nPi (Sqj +qk "A),
sur [[ik, ij]9 ii"]oEqi~l(x. Ainsi w restreint à °A[P)) est surjectif et son noyau est
isomorphe à °Lfp).

Supposons que i<j<k. Si <x€nPi(Sqj+qk'1)9 Pen^S91^'1) et yen^iS***'1),
d'après 8.3 et l'identité de Jacobi, a + /? + y est dans le noyau de w si et seulement si

E^'1^^ ±Eqj~lp=z ±Eqh~ly avec des signes convenables (comparer avec le résultat
principal de [10]). Ainsi °L™P) est isomorphe à la somme directe des groupes stables

(Sq++
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10. Enlacements à deux composantes dans le domaine 2-métastable

Nous commençons par une remarque générale. (Cf. [15]).
10.1. Théorème (Zeeman). Supposons quepx^p2. Soit Xt: ITPU P2-+npl(Sq2) l'homo-

morphisme faisant correspondre à un enlacement KxKjK2czSm le premier élément
d'enlacement représenté par Kt dans Sm — K2^Sq2. Il existe un homomorphisme
L:nPl(Sq2)-+ntpuP2 qui est un relèvement de kt.

Démonstration. Dans Sm, soit SP2 la sous-sphère définie par ^ 0 pour i>p2 et
soit SPl la sous-sphère définie par xt 0 pour pl<i<m — l et xm yjlj2. Identifions le

sous-espace de Sm défini par (xP2 + 1)2+---+(^m)2^l/2 au produit DP2+l xSq2, de

sorte que SPl est identifié à SPl xe, où SPl est la sous-sphère de DP2+i définie par
l'intersection de SP2 et du plan xt Q pour i^pt.

Soit a un élément de nPi(Sq2) représenté par une application différentiable
q>:SPl->Sq2. Soitf:SPi-+DP2 + lxSq2czSm le plongement défini par/(;c) (;c, <p(x)).
Considéré comme un plongement de SPi dans 5"",/est isotope à l'inclusion naturelle;
il peut en effet s'étendre suivant un plongement du disque DPl +1 en utilisant le graphe
d'une application différentiable de DPl + x dans Dq2+1 qui étend cp.

La classe d'isotopie de l'enlacement formé de/et de l'inclusion de SP2 dans Sm ne

dépend que de la classe d'homotopie de cp. On a ainsi défini une application L qui est

un relèvement de Àt. On vérifie que L est un homomorphisme en représentant les

éléments a0 et oct de npl(Sq2) par des applications cp0 et cpt envoyant respectivement
Dpl et Dp+ sur le point base e, et en représentant ao + ai Par l'application cp égale à

(p0 sur D^ et à q>x sur Dp_ï.

10.2. Proposition. Pour Pi<p2 et /?1 + 3/72<3rn-6, on a la suite exacte:

*«-i(Sfl+fa-^L»,Mi*^ où w restreint à

chaque composante est la suspension itérée au signe près.
Démonstration. Partons de la suite exacte 1.3. Dans la décomposition de Hilton

(8.2), seuls figurent les termes qui sont la composition avec

h et [/2, /J dans A™

h et [z2, ij dans Apq]

il'i] et [[h>iil>h] dans n(ql2

D'après 8.3, w envoie isomorphiquement par suspension les composantes \i2, ii\ de

A[*] sur les composantes [[/2, h], h] et [[/2, ij, /2] de Aiql2.
On peut donc remplacer dans la suite exacte 1.3 les termes A$ et n^l 2 par les

quotients obtenus en négligeant les composantes, d'où la proposition.
Il faut encore remarquer que si p1 + 3p2 3m — 6, on a des composantes dans

II^l j correspondant à des produits basiques de poids 4, mais qu'elles sont l'image

par w des composantes correspondant à des produits basiques de poids 3 dans Aqp+1>.
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Soit N le noyau de Phomomorphisme X1:I?lpuP2->nPt(Sq2). D'après 10.1, on a

D'autre part, la proposition 10.2 donne le

10.3. Corollaire. Avec les hypothèses de 10.2, on a la suite exacte:

où le dernier homomorphisme est la suspension itérée.
Soit Fq l'espace des applications de degré 1 de Sq laissant fixe le pôle nord de Sq.

Par suspension itérée, Fq s'envoie dans Fq+k et F désigne la limite des Fq. Rappelons

Nous allons montrer que N est isomorphe à nm.qi_q2(F, Fqi). Plus précisément,.qi_q2
on a:

10.4. Proposition. 57 Pi^p2 et pi + 3p2<3rn — 6 on a le diagramme commutatif
(au signe près) exact:

où la deuxième ligne est la suite exacte de la paire (F, Fqi) et où les flèches verticales

sont des isomorphismes.
La démonstration sera basée sur l'interprétation comme groupe de cobordisme

des groupes du diagramme précédent, et sur une définition de l'invariant de Hopf qui
généralise celle de [10].

Rappelons (cf. [13]) tout d'abord que les éléments de nn(Fq) Kn+q(Sq) peuvent
être représentés par des sous-variétés compactes F avec champ de repères normaux
dans Rn+q, la codimension de Fêtant q. Deux telles sous-variétés Fo et Ft représentent
le même élément de nn(Fq) s'il existe dans IxRn+q une sous-variété W avec champ de

repères normaux telle que d JF=(0 x F0)u(l x Fj).

10.5. Lemme. Tout élément de 7tn(F, Fq) peut être représenté par une sous-variété

compacte V de dimension n dans Rn+4 + N, N grand, avec un champ de repères normaux
et un bord BVcz Rn+q, les N— 1 derniers vecteurs du champ le long de dV étant les N— 1

derniers vecteurs de base de Rn+q+N. Deux telles sous-variétés Fo et Ft dans Rn+^N
représentent le même élément de nn(F, Fq) s'il existe dans Fx Rn+<i+N une sous-variété
W avec un champ de repères normaux telle que d W=(0 x F0)u(l x Ft)uF, où V est
une sous-variété dans IxRn+q le long de laquelle les N— 1 derniers vecteurs du champ
sont les derniers vecteurs de base.

Démonstration. Les éléments de nn(F, Fq) peuvent être représentés par des
applications différentiables/du disque Dn+q+N+l dans Dq+N+1,Ngrand, dont la restriction
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à sn+q+N est la suspension itérée d'une application de Sn+q~l dans S*. Soit Rn+«+N+1

le demi-espace défini par xn+q+N+l^0; la paire (/J++*+N+\ Rn+q~i) est identifiée au
complémentaire d'un point dans la paire (/)n+«+w+1) s***"1). L'image inverse par/
d'une valeur régulière est une sous-variété V avec un champ de repères normaux dans

jrç+f+N+i dont le bord ôv> est contenu dans Rn+q~\ les tf+1 derniers vecteurs du
champ le long de dV étant les derniers vecteurs de base. Inversement, par la construction

de Thom-Pontrjagin, une telle sous-variété V peut être induite par une application

différentiable/.
Soit VcRn+q+N une sous-variété telle que dans l'énoncé du lemme. Considérons

gt+q+N comme je bord de jr^+«+n+ * et F comme une sous-variété avec un champ de

repères normaux dans Rn+(i+N+l en complétant le repère avec le dernier vecteur de

base. Par une isotopie de Rn+q+N+1, fixe sur Rn+q~l, nous pouvons pousser V—dV
dans l'intérieur de Rn+<i+N+l pour obtenir une sous-variété V comme ci-dessus.

10.6. Démonstration de la proposition. Nous avons vu (cf. 4.1) que les éléments de

Lj"p) =<&\qp\ peuvent être représentés par les classes de cobordisme de paires de sous-
variétés disjointes Vx et V2 dans Sm~ *, avec un champ de repères normaux, et dVt Sl9

dV2 S2 avec le champ naturel, où (Su S2) est l'enlacement trivial de type (/^ — l,
p2 — 1) dans S"""1. De plus Vx et V2 bordent dans Z>!1 des sous-variétés avec champ
Wt et W2 telles que dW^DÎÏvVi. En général, ces deux sous-variétés se rencontrent.
Cependant si (Vi9 V2) représente un élément du sous-groupe N, alors on peut
construire Wx et W2 de sorte que W2ndWi=Q.

En effet Vx et V2 sont les images inverses des pôles nord de Sqi et Sq2 par une

application différentiable/de Sm"1-(5'1u5'2) dans Sqiv Sq2 dont la restriction aux
voisinages tubulaires de St et S2 est naturelle (cf. 4.1 et 3.2-4). Soit/2 : Sm~1 - S2->Sq2

l'application qui étend/composé avec la rétraction de S91 v Sq2 sur Sq2. Désignons

par Dt et D2 les disques Dpl et Dpl. Par hypothèse, l'application f2 peut s'étendre

suivant une application f2\Dm—D2-+Sq2 dont la restriction à un voisinage tubulaire
de D2 est naturelle. Comme l'élément a de l?PuP2 représenté par/est dans N, on peut
construire l'extension f2 telle que/2(/>1) soit le point base de Sq2; en effet, l'élément
de nPl{Sqi) représenté par l'application égale à l'application constante sur Dx et à/2
sur un disque bordé par St dans S"1'1 est justement l'élément At(a) qui est nul. Ainsi

l'image inverse W2 du pôle nord de Sq2 par/2 ne rencontre pas le bord ôWt Vx^jDv
Remarquons en passant qu'il en résulte que si KtuK2 est un enlacement de type

(p) dans Sm dont'le premier coefficient d'enlacement est nul, il existe des sous-variétés

avec champ de repères normaux Mx et M2 bordées par Kt et K2 et telles que

Nous pouvons supposer que Wx et W2 se coupent transversalement. Ainsi

j/= WtnW2 est une sous-variété avec un champ de repères normaux dans l'intérieur
de D"L et un bord dans D2. Après identification de la paire (int D™, int D2) à la paire
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(i?m, RP2), en vertu du lemme 10.5, la sous-variété V représente un élément de

Cet élément est indépendent du choix particulier des sous-variétés Vt dans leur
classe de cobordisme et des Wt. Si V- et W{ est un autre choix et si M est un cobordisme
reliant VkV (cf. 4.1), en recollant W[ kWtk l'aide de hft, on obtient dans Sm deux
sous-variétés Nt et N2 avec un champ de repères normaux dont le bord est l'enlacement
trivial de type (/?); de plus dNt nN2 0 et NlnN2 représente la différence des éléments
de 7rOT_€l_,2(F, Fqi) obtenus à partir des Wt et W{. Mais NlnN2 est cobordant à 0,

car on peut séparer Nt de N2 par des isotopies fixes sur dNl et ôN2 qui les poussent
dans deux hémisphères complémentaires.

On a ainsi défini une application de N dans nm_qi_q2(F9 Fqi) qui sera la deuxième
flèche verticale de 10.4. On vérifie aisément que c'est un homomorphisme. La troisième
flèche verticale est i'isomorphisme naturel. Le deuxième carré du diagramme commute,
car l'élément A2(a) est représenté par D2nWt.

La première flèche verticale est aussi I'isomorphisme naturel (nm-l(Sqi+q2~1) est

stable). L'homomorphisme de nm^l(Sqi+q2~1) dans N est défini par a-»fi([i2, i^] • a)
où \x est défini en 5.2. La construction de l'invariant de Hopf donnée dans [10] et dont
la construction précédente est une généralisation, montre que le premier carré du
diagramme est commutatif. Le lemme des cinq montre donc que N est isomorphe à

nm^_q2(F,F"').
Finalement, en utilisant I'isomorphisme

*m-€l-€2(F, F11) « nm_qi_q2{SO, SOqi) pour 3Pl + p2 < 3 m - 6

démontré par James [12], on obtient le

10.7. Théorème. Dans le domaine 2-métastable: Pi^p2 et/?1

avec qi m—pi—\.
Les enlacements du premier facteur sont construits explicitement dans 10.1 et ceux

du second dans [4], 8.13.
Université de Genève
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