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On a class of conformal metrics, with application to
differential geometry in the large

by RoBERT FINN

To CuarLes LoEwNER, on the occasion of his seventieth birthday,
and in token of my esteem.

1. Introductory Remarks

One of the most striking justifications for the concept of a complete, open
two-dimensional surface, as introduced by Hopr and Rinow [1], is the theorem of
Conn-VossEN [2], that if S is such a surface, and if the Gaussian curvature K
is absolutely integrable over G, then

C <2y (1)

where C is the curvatura integra, or total curvature of G, and y is the EULER
Characteristic’'2). The theorem is best illustrated by some simple examples:
i) & isan infinite cylinder. Then C = 0, y = 0, so that equality is attained.
iil) & is a semi-infinite cylinder, closed at one end by a spherical cap. Then
C = 2x, y = 1. Again equality is attained.
iii) © is a circular cone of vertex half-angle «. Then C = 2x(1 — sin «),
x = 1. Strict inequality prevails.

In the last example, the loss of equality is not caused by the singularity at the
vertex, as ¢’ and y remain unchanged if S is smoothed near its vertex. In fact,
a little reflection shows that equality occurs only under special conditions, while
in general there is a wide divergence between the two sides of COEN-VOSSEN’s
inequality.

One of the objects of this paper is to characterize, in terms of elementary
intrinsic geometrical quantities on &, the difference between the two sides of
(1). To fix the ideas, consider example iii) above. Let £ (k) be the length of a
circular section at distance % from the vertex along the axis, and let UA(H ; k)
be the surface area on S bounded between two such sections, H < . One
computes (k) = 2xh tan o, W(H ; h) = n(h* — H?) sec « tan «.

1) A surface S is complete in the sense of Hopr-RiNow if every divergent path on & has infinite
length. A path on G is said to be divergent if it is the topological image p = p (t) of a half-open

interval 0 < t < 1, and if p ?) lies outside any given compact set on S for all ¢ sufficiently close
to 1.

%) ConN-VosseN’s theorem was later improved and clarified in important ways by HuBgr [3].
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2 RoserT FINN

L) . o L2(h)
Thus, A (H T) =ginx + o(1), as h—>oo. Hence, setting » _hllrgom ,

we obtain C = 2n(1 —sin«), y = 1, » = sin «, so that

C =2n(y —v)
in this case.

Another example is obtained by rotating about an axis a circular arc of
radius 1 whose center lies at distance 2 from the axis. If the arc is allowed to
turn through the angles «,, «, on each side of a perpendicular to the axis from
the center, and is then continued indefinitely by straight lines, the total
curvature of the resulting surface of revolution is easily computed. If r
denotes distance to the axis and ¢ is the angle through which the arc has

turned, then d¥W = 2ardd, K = — g8y , KdW = — 27 cos ? d¥, hence

C = — 2x(sin &, + sin «,). Computing the limits »,,», on each side, we
have as before, v, = sin«,, v, = sin«,. Here y = 0, hence we find the rela-
tion

C = 2n(y — Zv,). (2)

In § 2 T shall show that a relation of the form (2) holds for any abstract
surface of finite connectivity on which the metric has a property of rotational
symmetry near each ideal boundary component, and for which C exists
(finite or infinite) in the sense of a principal value. I had hoped, by suitably
defining the {»,;}, to obtain (2) without a symmetry requirement, for the
surfaces treated by ConN-VosseN and HUBER in their studies leading to
(1). I am at present able to do so only under the presumably superfluous
hypothesis that the region K > 0 has compact support on S. There is,
however, an interesting intermediate case which contains many of the essential
features of the problem. This is the case of normal metrics, which are conformal
metrics ds = e%?|dz|, such that when u(z) is represented as the potential of a
mass distribution, the additive harmonic function assumes a particular
degenerate form. Normal metrics are defined in § 3. Their significance for the
problem at hand is illustrated in § 4, in which the theory is worked out comple-
tely in the greatly simplified case for which the measure has compact support.

In § 5 inequalities from below for length and area are derived, which hold for
an arbitrary conformal metric over a plane region. They are very simple and
are based on known techniques, but — so far as I could determine — they are not
available in the literature. Some of this material is essential for subsequent
sections, in which normal metrics are studied under the single assumption that
the absolute variation of the measure is finite. It is necessary to extend the
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definition of the {»;} to the case of such a metric defined in a neighborhood of
an isolated boundary point p. This is done by enclosing p in concentric circum-
ferences I',y. £(y) is then taken to be the length, in the metric, of y, and
WU(I'; y) the area, in the metric, of the enclosed annular region. With this
definition, asymptotic formulas for £(y), A(I"; y) are derived, and the relation
(2) is then obtained for this case in the full generality in which (1) was derived
in the papers of CoEN-VossEN and of HuBER (Theorem 12).

When y =1, (2) exhibits a suggestive formal similarity with an isoperi-
metric inequality, due to HuBEr [4]. This is discussed in § 6, following the
statement of Theorem 12.

There is also a connection with the theory of minimal surfaces. R. OSSERMAN
has shown [7, p. 358] that if S is a complete minimal surface of total curvature

k
C and EurLer Characteristic y, then?) C = 2n[y — X (n;— 1)], where 7,
1

is the order of the pole of a certain analytic differential » at the conformal
image p; (necessarily a point) of a boundary component, and % is the number
of such components. By proving that 7; > 2, OsSERMAN obtained the relation
C <2n(y — k). The results of the present paper yield the geometric inter-

. . : 22(y) s
pretation, 7, = 1 4 lim A7)’ for the quantities {r,} of OSSERMAN.

r—>D;

General estimates on length and stretching ratio near the {p,} are given under
varying assumptions. They will be found in §§ 6, 7 and 8. A particular conse-
quence is the demonstration that, in a certain loose sense, the {y,} are approxi-
mate geodesic circles in the metric. This result permits an a posteriors inter-
pretation of (2) in terms of the explicitly given geometry. It seems, however,
remarkable that the {y,}, which evidently play a distinguished role in the
metric theory of complete surfaces, are themselves completely characterized
by the conformal geometry, in the determination of which the metric properties
are of subsidiary importance.

The estimates of §§ 6, 7, 8 show also that for complete metrics of the type
considered, the asymptotic growth of the length ratio is — at least in an average
sense — characterized completely by the quantities {»;} (Theorem 11). Under a
hypothesis on the rate of decay of curvature at a boundary component, this
characterization can be made considerably more precise (Theorem 14), and
under assumptions on the asymptotic sign of the curvature, pointwise bounds
from either side can be obtained (Theorem 16). However, local estimates both

above and below cannot in general be expected under assumptions of this sort,
as is pointed out in § 8.

?) To avoid confusion in notation, I have replaced OsSERMAN’s symbol v; by ;.
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In § 9 I apply the method to general abstract surfaces of finite connectivity,
which are complete and have finite curvatura integra. The definition and essen-
tial properties of such surfaces are only briefly indicated; for a more extended
discussion, cf. [3] and the references cited in that work. For purposes of grasping
the essential content of the result, it suffices to envisage a surface embedded in
3-space, which is of finite connectivity and which may have a number of
branches extending to infinity. I reduce the study of such surfaces to previous
considerations by showing that a neighborhood of infinity on each branch can
be mapped conformally to a plane domain so as to yield a normal metric at the
image of the ideal boundary. I am unfortunately able to do this only under an
additional supposition, as indicated above, and in this sense my result cannot
yet be considered to be established in its natural context.

As corollaries of the method, independent demonstrations are obtained, in the
cases considered here, of certain of HUBER’s results, notably his Theorems 1
and 15 in [3]. HUBER’s results hold, however, also in a more general situation.

It seems likely that the quantities {»;,} are extremal in the sense that the
corresponding inferior limit taken for any other system of curves surrounding
p; would be not less than »;. I have, however, not proved this. There are also
evidently connections with extremal length, which should be investigated.

In this paper I have deliberately avoided dwelling on questions of local
regularity, and I have chosen to assume at each step that all functions which
enter have the smoothness properties indicated in the context. All results hold,
however, under the conditions assumed by HUBER [3, p. 16], and an inspection
of the text will convince the reader that there is no danger in applying the
results to certain more general situations, e.g., to polyhedral surfaces. Appar-
ently this does not begin to exhaust the possibilities, as is indicated by the
recent profound investigations of RESETNJAK (see, e.g., [5]) on the existence
of isothermal parameters in a general case.

My thanks are due many of my colleagues for informal conversations which
have contributed much to my understanding in a subject with which I was
initially unfamiliar. I am indebted especially to Professor P. MALLIAVIN for
a suggestion which has led to a significant improvement of some of my original
results.

2. Rotationally Symmetric Metrics
Any function u(z, y) defined over a region ® in the (z, y) plane determines
a conformal metric
ds? = e (da? 4+ dy?) = e?|dz|2. (3)

If @ is of finite connectivity, one may always suppose that & lies interior to &
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circumference X, about the origin (which might consist of the single point at
infinity) and that ® is bounded by X, and by » other circumferences (or points)
21y ..., 2,. The metric (3) will be said to be rotationally symmetric if there is a
neighborhood 4, of each X, such that in a system of polar coordinates g, ¢ with
origin at the center of X, u(«, y) is independent of ¢ in 4,.

For points near the X, it is easy to compute the various geometrical quan-
tities associated with a rotationally symmetric metric. For the curvatura integra
of the annulus bounded by circular arcs Iy, y, of radii r, ¢, which lie in 4,
and are concentric with X, one has

C(Ig,70) = ~2njAu c0do = — 27 [ (0up)edo = — 2:(Qug (@) — 7 ue(7)) -

Let us suppose that C(I,, y,) remains bounded from below as ¢ tends to the
radius g, of X,. Thus, there holds lim pu, = @, = + co. It follows that if

2> Qo Qo

0o =00, then u <M <oo near X, so that [e¥dp <oco. A similar dis-
r

cussion applies to each of the other boundary components X, as one sees by
transforming by inversion with respect to the center of 2';,. We conclude:

Theorem 1. Let u(x,y) define a rotationally symmetric complete metric (3)
in a region ® bounded by a finite number of points or circular arcs {&;}. Let {y;}
be a system of concentric arcs tending to the {2}, and let ®,, be the corresponding
subregion determined by the {y;}. Suppose that the curvatura integra C(®,) =
=0,>0>—oc0 as y;~>2,,j=0,...,n. Then the metric (3) is conformally
parabolic, so that each X'; is a single point?).

Let us now discard the assumption @, # + oo, and assume instead that
lim gu, = @, exists and that the metric is complete and conformally parabolic.

@—>Qo
In ;articular, 2, as defined above is the point at infinity. One sees immediately
that if @, = — oo, the metric could not be complete. If @, £ + oo, then
e = Ap®*°M gome constant 4. Hence, completeness of the metric implies
D, > — 1. Repeating this discussion for each boundary point, we find @, > 1
if j £ 0, and we are led to the Conn-Vossex relation, C < 2my, where y is the
Evier Characteristic of ®.

The length of the circumference y, in the given metric is £,(¢) = 27 e¥.
The area of the annular region between I'y and y, is

e
Wo(r; 0) = 2x [ e do.

%) cf. HuBgR [3], Theorem 15, which this result overlaps. The essential character of the result is

really local, and shows that each boundary component at which the metric is complete must
degenerate to a point.
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We have, if @, 7% 4 oo, —die— B =4n(1 + D, + o(1)) —a(—zg— Ay

Since i— W, # 0, we may write

do
g?f, = 4n(1 + @, + o(1)) (4)

from which follows, since @, > — 1, that whenever W,—> oo, in particular
whenever @,> — 1, thelimit v, = lim (L3/47U,) exists,and vy = (1 + D).

Vo> L,
On the other hand, if &, = — 1 and Uy(r; o) > U, # oo, (4) implies that
2,(0) > L5 #oco. But 0
" — 1 1 2
U (r;0) = 5 | 5 Lolo)do

hence £, = 0, the limit », exists also in this case, and v, = (1 + @,) = 0.

Similarly one obtains the limit »;, = @, — 1 for each other boundary point
2 ;. Referring back to the determination of the curvatura integra in terms of the
quantities {®@,} and noting that if one of the {®,} is infinite, then C = — oo,
and we find the following result:

Theorem 2. Let u(x,y) define a rotationally symmetric complete metric (3)
i a region & bounded by a finite number of points. Let I';,y; be circular arcs
centered at the boundary point X;, let W, be the area of the corresponding annular
region and let £, be the length of y; in the given metric. Let ®, be the subregion
defined by the {y;} and C(®,) the corresponding curvatura integra. Suppose

2
C(®,)— C (finite or infinite) as each y;— Z;. Then v; = lim 4 exists for
vj—> 2]. 47'6915

cach j, and C = 2n(x —Zv,) in the sense that Zv, =oco whenever €' = —oo.
0

Remark. The significance of the hypothesis C(®,) - C is made evident by
considering a surface obtained by revolving a curve x = z(z) about the z-
axis in (z, ¥, 2) space. By introducing small irregularities in the function z(z),
the area of any part of the surface can be made arbitrarily large, without
appreciably changing the circumference of any section. In this way, any such
surface can be modified so that », = 0, each j, while C(®,) will remain
bounded without approaching a limit.

In the above result, the assumed completeness and parabolicity of the metric
were used only to show that &, > —1 and &, >1, j # 0, from which
followed the formulae for the {»,}. It is possible by the same methods to give an
analogous result under much more general conditions.
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Theorem 3. Let u(x,y), ®, {y;}, {Z,;}, ®,, C, be as in Theorem 1. Suppose
2

C,—C (finite or infinite) as all y,— %,. Then n;=—— lim 9 rigs for
4:75 ‘yj—y}:‘j d?—[,’

each j, and C = 2n(y — ;).
0

Here there is no restriction on the sign or finiteness of C or of the {»,}. It
should be noted, however, that , > 0 whenever U, - co.

It isinstructive to compute the geodesic curvaturektofthe radial and circumfer-
ential lines in a complete rotationally symmetric metric for which C,,— C #ocoas
all y,—~ 2';. Evidently, k = 0 on each radial line®d = const., near 2';. From the
relation

k=g (ke + %;:—) (5)

where £, is the Euclidean curvature in the z-plane (see, e. g., [3, p. 13]), we find
for the geodesic curvature of y,,

ky, = Do+ o(1)] g~ ot o

with a similar result for each y,. Hence:

Theorem 4. In a rotationally symmetric metric, all radial lines are geodesics
near the {X;}. If the metric is complete, and if C,— C # foo as y;—~ X, then
near any boundary point for which v; # 0, the circumferential lines behave
asymptotically as geodesics.

Remark 1. Whenever C < 27y, at least one of the {r,} must differ from zero.

Remark 2. Also in the case », = 0 it is possible to give conditions ensuring
that the {y,} are asymptotically geodesic; however, the requirement »; 7 0
cannot simply be eliminated, as one sees from the example of the complete
conformal metric

ds |dz|

~ (2l + 1) log (J2] + 2)

The applications of the above results to surface theory are immediate, as any
surface of revolution®) can be mapped conformally to the z-plane so as to yield

, for which £ — — 1 (cf. HuBER [3, p. 61]).

%) This example is chosen in the interest of simplicity. It would be possible by these methods
to obtain an analogous result for any abstract surface which can be realized by a surface having a
finite number of ideal boundary components, near each of which a rotationally symmetric metric
is prescribed (cf. the considerations in § 8).



8 RoBErT FINN

a rotationally symmetric metric. Consider such a surface &:r = f({),
72 = £2 | 52, defined in the interval —oo < 4, < { < A4, <oo, and such
that f({) # 0 in the open interval 4; < { < 4,. On any such surface one has
either y =1 or y = 0. For the curvatura integra C({,, {,) of the part of ©
for which ¢, < ¢ < {,, there holds — 2x < C < 4n. Hence, by Theorem 1,
every complete surface of revolution vs conformally parabolic.

The hypothesis of completeness is evidently verified in the simply-connected
case (y = 1) if 4, = oo, and in the doubly-connected case (y = 0) if 4, = — oo,
Ay, = + oo.

In the mapping to a rotationally symmetric metric, the circles { = const.
correspond to the circles p = const. The length of such a circle is () =

¢
= 2xf({), and the area between (, and { is A({) = 27zj'fV1 + f2|d¢|. By
fo

Theorem 2, if S is simply connected and complete, and if C({)— C as {— A,,

2
then v = lim exists, and C = 2a(1 —v). If S is doubly connected and

C—)Az 4752[
complete, and if C(Ly, L)~ C as &y, {,— Ay, 4,, then the corresponding
limits v, v, exist,and C = —2n(v; + v,). By Theorem 4,if v, #0(j = lor 2),

then the corresponding level curves { = const. are asymptotically geodesic. This
will be the case, in particular, if a cone of non-zero vertex angle can be situated
interior to S.

One may also consider a piece Sp of & defined by inequalities
A, < B, <! < By,<A,. If {({) is smooth, S g will not be complete, however
7y :an;.—%—g—;— will exist at By, B,, and there will hold C(Sp) = — 27 (n, + 12)
(cf. Thegrem 3).

It should be emphasized that the essential features of all the above calcu-
lations are local in character; in particular the asymptotic estimates for length
and area (and hence the consequences of completeness) depend only on be-
havior of the metric near an isolated boundary component. These local esti-

n
mates are related by the formula O = 2x(y — X'v;), which requires for its
0

verification only that the various neighborhoods be joined together smoothly
in the given metric.
3. Normal Metrics

Let & be a region consisting of the (z, y) plane with » 4 1 points p,, ..., Pa
deleted. It will be convenient to assume that p, = point at infinity. A function
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u(z, y) defined over ® determines a conformal metric ds* = e*(da? + dy?) in
®. In what follows I shall assume that the positive and negative total curvatures
associated with u (z, y) are individually finite, that is,

T = [f|du|dxdy < oo.

In this case, u(x, y) can be represented as the potential of a mass distribution
over ® with density A, plus a harmonic function A(x, y).

In any conformal transformation which carries ® onto a domain of the same
type, the law of transformation of u (x, y) will be determined by the requirement
of invariance for ds?. Thus, after a transformation z = f({), the new function
u (&, ) is given by the relation u = u + log |f' (£)|, that is, » is changed by
an additive harmonic function. Since the only such transformations which
leave p, invariant are the linear transformations, it is clear that « can be
changed at most by an additive constant, in any transformation which leaves
invariant the intrinsic geometry and the conformal character of the metric.

A conformal metric defined over & by « (z, y) will be called normal whenever
the harmonic function % (z, y) has the form®)

h(z,y) =2 B,log |z — p;| = const.
)'=1

This definition is evidently invariant with respect to the transformations

considered. To make it precise, I shall assume given a measure u (%) defined

over ®, with the property that?) T = [f|du| <co. The conformal metric
&

ds = e*|dz| defined over & will be said to be a normal metric whenever

1—2

u(z) = .fg log z dug + ‘Fﬂj log |z — p;| + const. (6)

Here G consists of the complex z-plane with n 4 1 points p, =00, py, ..., P,
deleted.

n
Except in the particular case p + XB; = — 1, u = measure of ®, it is
1

possible to remove the constant from (6) by an admissible transformation. In
any event, it 18 of no importance for any of the considerations of this paper, and in
the interest of simplicity I shall neglect it in all that follows.

%) If none of the deleted points is at infinity, it would be necessary to give a more elaborate
definition. This is because the law of transformation of (2, y) is based on the metric properties
associated with the manifold described over ®, for which the point at infinity is distinguished.

" ’) The notation is to be interpreted to mean that the absolute variation of the measure is
nite.
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For any such metric one has for the total curvature, C = — 2nu; the EULER
Characteristic of ® is y = 1 —n.

It will be important to have also a local definition for normality. 4 metric
e%|dz| defined in a nerghborhood D of p, = oo will be said to be normal at p, if, in
D, u(x, y) admits the representation

u(z,9) = f log |1 — | dpg + Blog 2] + h(e) ™)

where h(z) is harmonic in D and at infinity. This definition is clearly invariant
with respect to transformations which leave the point at infinity unchanged
(cf. footnote 6).

A metric is said to be normal at a finite point if, after transforming the point
to co, the metric is normal at co. The definition is in this case formally similar
to (7).

For consistency, it is necessary to know that a normal metric over a region
of the type described above is mormal at each of the points {p,;}. This is seen by

transforming these points in turn to infinity { observing the transformation law

u = u + log

%z_—— ), and noting that the form of the representation is then
normal at infinity in the new coordinates.

Conversely, «f a metric defined over (& is normal at each of the {p,}, then it is
normal in ®. For, without changing the form of the representation, it can be
arranged that %(z) has single valued conjugate. Then on transforming each
point in turn to infinity, one sees that A (z) (taken from any given configuration)
is harmonic at each of the {p,}. Hence A(z) is harmonic on the closed RIEMANN
sphere and therefore constant.

4. Measures with Compact Support

A considerable simplification arises whenever the measure u (#) has compact
support in ®, that is, whenever u(E) = 0 in a neighborhood of each p,, and I
shall consider this case first, in order to clarify the idea. Let I, y;, ®,, e, U
be as in Theorem 2. We then have

Theorem 5. Let u(z) determine a normal metric ds = e*|dz| in the form (6?,
corresponding to a measure u(E) having compact support in G . If the metric 18

complete, then f, <—1,j=1,...,n, and pu>=1—n=y. For eawh
n

j=0,...,n, the quantity v, = lim %/4a%; exists, and v, =1 + p + ZF;,
1

¥j=>P;



On a class of conformal metrics, with application to differential geometry in the large 11

while v, = — (1 + ;) of j = 0. There holds in this case
C = 2a(y — Zv,) (8)
0

and the curves y; are asymptotically geodesic in the given metric.
The proof requires little more than formal computation. Near p;,7 # 0,

there holds e*® = a,0f; + 0(0Pi), a; # 0, so that completeness implies
2

B; < — 1. Similarly, ,u-{—Zn'ﬂ,Z—l. Also, ijl&=47t(1—}—/3,.)—|~0(1)
1

aA;
2
near p;, so that whenever U, — oo there holds yl'imp 47?51, = — (14 B).
i~ Pj

If A, — A # oo, the above relation shows that L, tends to a finite limit €.
Since

[4
e 1 Q2
A, = !alda| §endd > 275[ 7;0) |do|

2
it follows that £ = 0, hence also in this case, lim £ = — (14 8;)=0.
vj—>D; 4%2[5

The point p, = oo is discussed similarly. The result (8) is now immediate, and
the asymptotic property of the {y,} follows directly from (5).

Note that under the hypotheses of the theorem, the curves y; are asympto-
tically geodesic without further assumption (cf. the remark under Theorem 4).
Note also that the {8;} are precisely the fluxes at the boundary points,

B— —@,—— lim - 2% dsifj£0,p,—= B, if j=0. Also, o — -+ ZB,.
1

yj>p; 27 y. an
7

5. Inequalities for Length and Area near a Boundary Component

I shall derive here estimates of length and area from below, which are valid
for an arbitrary conformal metric in a neighborhood ®, of a boundary component
2,. We may suppose X, to be a circumference or a point. It will be convenient
to place 2, at infinity, so that ®, is bounded in part by the interior of a circum-
ference, or by the point at infinity. Let I', be a concentric circumference of
radius R, which together with X, bounds a region lying entirely in (,, and let
7o be a concentric circumference of radius r > R. Let £,(r) be the length of y,
in the given metric, and denote by A,(R;r) the area corresponding to the
annular region 4, bounded by I'y and y,. Let e*® denote the local length ratio

1 ou
Igfoe“(z’ds. Set ¢, :%F T ds (exte-

in the mapping, and set wu, =

2n R
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rior directed normal), and let u(R;r) A_f Audxdy. (Then —2xu(R;r)
is the curvatura integra over 4,.) 0

Lemma 6. Under the above hypotheses, there holds

%o fﬂ(R;e)—!—%d}
Lo(r) = 2m evor exp [ﬁ/‘ o )

do.

e
Wo(R; r) = 2m e [ g exp {2f ”(R;?—'—% dv
E

R

Equality holds if and only if w(z) ts a function only of r in A,.

Proof. We have

2np(R; 7) = [f du dedy = %ﬁd— gi‘-d

Yo Iy

hence 2xn(u 4 @,) = r—~— § uwdd® and letting r vary in this inequality, there
follows

2nr
1 (44 Yo (9)

=——1~—§o etds — uy < lo e"ds—-uo
o g s y—

in consequence of the inequality between arithmetic and geometric means.
From this, the first inequality follows.
The second relation is proved similarly. In fact, we write

e
ﬂ(R;T) +¢0 . 1 on 1 9 .
f . dt =S § log e**ds — u, < } log 5o § eds — uy.
R
Thus,

Q
,, u(B37) + g, 1 1 dn
e exp {f - dr; < rT) §eds = —— 57 do
R

from which the result follows on a further integration.
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Theorem 7. Suppose 2, consists of the single point p, = co. Let C(R;r) be
the total curvature in A,, and suppose C(R;r)—Cy 7# 4+ o0 as r—>oo. If
Dy>—1, orif @y= —1 and C(R;r) <C, for sufficiently large r, then the
area associated with the metric (3) exterior to vy, will be infinite.

1 ou
an

since C(R;r) = — 2nu(R;r), one has by the hypotheses and by Lemma 6,

Proof. Observethat u(R;r) + @, = dr— @, as r— oo. Hence,

Wo(R;7) =2me* R? | p7'dp—>o0, Q.E.D.
R

Remark 1. If the metric is complete at 2, then X, is a single point and
@, > — 1. See HuBER [3], Theorems 1 and 15. For the cases considered in
this paper, independent demonstrations of these results will be given in later
sections.

Remark 2. The hypothesis C(R;r) < C, is satisfied in particular if the

region of negative curvature has compact support near X,. Compare HUBER
[3], Theorem 14.

Remark 3. There exist complete metrics with finite area, which satisfy all
the above hypotheses except the assumption C(R;r) < C,. An example is the
| dz|
(Iz] + 1) log (|| + 2)

conformal metric ds =

over the z-plane.

6. Normal Metrics; General Case

Consider again a metric ds? = e*(da® + dy®) defined by a relation

u(x,y) Gflog l du;+£ﬁ;10g |z — 4l (10)

where  is the (z,y) plane with n 4 1 points p,, ..., p,, p, = oo deleted, and
J f |du;| = T < co. No further assumptlon will be made, but one may already

Conelude that the quantities @; = lim ‘¢' —— ds (outer directed normal)

Pj—>D;j
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exist and are finite. Let {,(r), as above, be the length of y, in the given metric
and U, (R ; r) the area of the annular region 4; between y; and a fixed circum-
ference I'; centered at p;. One may always assume that the {I';}, and hence also
the {y,}, are non-intersecting.

The first results have a local character and depend only on the behavior of
the metric near one of the boundary points, which may be chosen to be p, = oo.
Accordingly I shall assume at first only that the metric is normal at p,, so that
we may write

u(e) = Jf og |1 —%| du; + plog |21 + (e (1)

where D, is a neighborhood of infinity, and A(z) is harmonic at infinity. Again

1 § e*?)ds, and define C(R;r), u(R;r) as above. Let Q(R;r) =

set uo: 271;R Iy

r

_—_-f ”(R;QQ) — %0 do. Tt is assumed that?)

R
Ty = If |dug| < oo. (12)

Note that Q(R;r) = [D, + o(1)] log r, as r — co.

Theorem 8. For a conformal metric ds® = e**|dz|? determined by (11) and
satisfying (12), there holds as r — oo,

LQ(r) = 27 eto +0) . Q(R; 1) (13)
Also, for R, r— oo, there holds
r
W (R;7) = 27 eZto+o(D) j 0 e2C@(B;0) do. (14)
R

Note that if the area is infinite at p,, it is unnecessary to let R — oo in (14).

Proof. Let |z] = r and let D, be the intersection of D, with a disk of
radius 7 about the origin. Let €, be the exterior of D, and set

u(2) = w(2) + ua(2) + Blog |z| + h(2) (15)
where
_ z—{ _ z—1{
ul(z)-—-ID!mlOg R {d/t;, uz(z)——fefmlog 7 Id/u;-
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-1
I — —C— and

In D, we have log .

z = log

4
L .|
c] g

1
srldugl < Tlog=—+ ] log—1 o
1— Dyjp—Dyr }1____
z

jf log | du

2

where 0 <7< 1. In the last term on the right, the integrand is bounded,
hence for a suitable constant 4,

1
f§ Jog g7 duel < Tlogy—+ A [ |dul.

1._.._
2z

If we choose n = n(r) tending to zero but such that #r—oco, we see that
jlg log——— ldﬂgl = o0(1) as r—>oo. Thus, u,(z) has the form
r/2 l 1 —=

z

u (2) = f(r) + o(1). (16)

Also, since A (z) is harmonic at infinity, A(z) = h(co) + O(r'). Hence, for a
circumference y,(r) about the origin, there holds

1
Sy § [4(2) — up(2)] ds = log 2 —$ertds+o(l). (17)

Yo
Consider now the integral I, () 2—5;5—;j'log |z — | |dz|. If |{|>r, then
I, (£) is the mean value of a function oyf(3 z which is harmonic in D,, hence
equals the value of the function at z = 0, that is, if || > r then L, ()=
=log [{]. If |{| <7, then I, ({) is a harmonic function of { in D, which by
symmetry is constant on any concentric interior circumference. Hence
I, =const. for |{| <r. But I, (0)=logr, hence this is its value through-

out the interior of y,. We conclude that if || > , then —l—o—g—lTaI,.o(C )‘ <

log r
= Togr —Tlog 2’ and hence, in particular,
1 § (2)ds = o(1l) as r— (18)
Sy Uy (2)ds = of S oo .

2n
Finally, consider f [e“*® —1]d¢# for |z| =r and ¢ = argz. Let (M)
0
be the measure of the set By of # on which |u,(z)| > M. Then
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D)< S (1@< J HE)ldy] (19)

€,z

where H(C)zlflog 1——2—|d0|.
Eym

For fixed |¢|>—and z on Ey and outside the circle [z —(|=2¢, the

integrand in H ({) is uniformly bounded. But for z inside this circle, the inte-
grand increases in magnitude as |2 — (| decreases. Hence H ({) is maximized
when the part of Ey interior to the circle is an interval with its midpoint at
arg (. For this configuration we compute H({) <A(1 4 |logx(M)|)x (M)
for some constant 4, and hence from (19), M < (1 + | log x(M)|) e(r) where
e(r)=>0 as r->oo. We conclude (M) < Ae M/*™ for a suitable 4. But

}nle"*(z) Hdd < [ |eM —1|da(M) + [ |e™™ —1|dx(M)
0

M>0 M>0

from which there follows easily

2n
 |e“® —1|dd = o(1) (20)
0

as r—>oo.

We are now prepared to estimate £,(r). We have by (17) and (18)

=log 5 — §e"~ads 4 o(1).

2

Also, Ly(r) = §e*ds = §e* “2ds + §e“‘“2 (e¥* — 1)ds = §e* " “2dse’™® by (15),
(16) and (20). Hence 231” $uds = log 2 i!o(r) o(1).

Referring back to (9), we find immedlately the stated relation (13).
To prove (14), observe that the method of proof of (20) yields also

2n
| |e*® —1|dd = o(1).
0

Thus, as above,

1
= log—4-;t—7;—§ eds + o(1)

_ 1 4%,
= log dmr dr +o(l)

(21)

from which the result follows again from (9) by an integration.
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Theorem 9. Suppose Py > — 1. Then

U(R; ) =

_—w; e2uo+ 0(1) y2 @2Q(R; 7) (22)

as r—>oo.

Proof. By Theorem 7, the area associated with the metric is infinite at p,.
Hence by Theorem 8,

QI{,(R; T) — 27t82uo+0(1)fge20(3;9)d9
R

for any fixed B. We have

r 2 r r n
feeredo = [ﬁ—— ew;w] — [0 0 [u(y) — ZP]do
2 R 1
92 r 7 r
— [_2__ ezQ(R;o)] — D, [ pe R d g | [ e2QRid g(g)dp
R R R

where ¢(p)—> 0 as p-—>oco. Again using the fact that the area is infinite at
Do, We find

T 2
(1+ @y + o(1) [ oeaRiadg = - ea(®in (23)

and from this the result follows.

Theorem 10. Suppose @, >— 1. Then for any fixed sufficiently large R
there holds

o= lim B0

r>w 47Uy (R;7) =1+ %,

The assertion implies, in particular, that the indicated limit exists.

Proof. If &,> — 1 , the result is immediate from Theorems 8 and 9. If

@, = — 1 and the area is infinite at p,, the result may still be obtained from
(23). Suppose lim A (R; r) 5% oo. Since the integrand in (23) is positive, the
7T—>® r
integral is increasing in 7, hence lim f pe*?®®dy exists and is finite. There
holds r>o R
r 92 r T
Joetdfidde = [——2— e“’] + [ (1 + e(e)) g0 de (24)
R

2 CMH vol. 40
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where £(p) > 0 as g—>oco. By the above remarks, both integrals in (24) tend
to finite limits as r—>oco. We conclude therefore from (24) that r2e?¢®"
tends to a finite limit. Hence, by Theorem 8, £,(r)—~> €5 #% oo as r—oo.
Again using Theorem 8, one sees that

r

r
1 B0 gy ) g [ 00)
. —_— _ eoll) 0 —_ ___ @o(l) it UL S St
Ui r) =g [ ap— e 2 de.
R R

Since lim A, (R;r) < oo, there must hold £; = 0, and from this the result

r—>
follows.

Theorem 11. Let e%®)|dz| be a melric (3) which is normal at py = oo and
which satisfies (12). Then for any 6 > O there holds asymptotically for the length
L(r) of the image of a radial segment of length r from the origin in the z-plane,

r1+ =0 < L (r) < r*+®+% _L const. (25)

Proof. We follow, essentially, the proof of Theorem 8. Using the decompo-
sition (15), we find again

uy(2) = ff log

Dyso

2w + o)

whence, choosing D, to be the exterior of a circumference I (R),

uy(2) = u(B;r)logr + o (logr). (26)
Thus
——————1 1
gy § 0@)dz] = p(R;)logr + flogr + 5 — §ua(2)|dz| + o(log ).
By (18) the integral on the right iso(1) as 7 —oco. By (9), since u(R;7r) + ¢, =

= ¢0 + 0(1):

§ u(z)|dz| = uy + Dylogr+o(logr).

277 yo(r)

Hence, u(R;r) + f = @, + o(1), as r—>oo, and we find
u(z) = (By 4 0(1)) log 7 + u,(2). (27)

Choose |z| = r in the range 7, < |2| < 27,. In the given metric, the length
7

L(r) of a radial line is L(r) = [e*®|dz|, and for any 6 >0 we have, for
large r,, 0
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j9¢o— e dp < j'e“(z’dg SIQ%H e dy . (28)

To

For any g we have

{oP e“@dg = [oBdp + foP[e™® — 1]dp (29)
o To To

and for r < 2r, we may write

|fePle® — 1]do| < rBf|e"® —1|dp. (30)
Let Ep be the set on [r,, r] where |u,(z)] > M and let «(M) be its measure.

Then

log|1 —

() M < Pn@lds <[ Vduel § ds,.  (31)

Gro/Z

¢
¢

We may clearly assume that the given radial line is the positive z-axis. Then

for { to the left of the line |{ — 27y = |{| and outside the circumference
|£| = 7y, the integrand on the right in (31) will be bounded. For { to the right
of |{ — 2ry| = |{| but interior to || = r < 2r,, the integrand is increased

if { is replaced by a point of the same magnitude, but on the given radial line.
The integral will then be maximized if that part of Ky is replaced by a segment

of length « (M) and containing . Setting v = I 2 l and letting K, be the image

log

of the modified Ey, we find | ds, < |¢| j |log |1 —7||dr and
Eym

-t

j' |log |1 —z||d~ <Aa*(M)[l+log *(M)] ‘zicx(M)[l—{—log I(alf)].

Thus, x(M)-M < e(r) - « (M) [1 + log ]where e(r)—> 0 as r—>oo, from

. (M )
which « (M) < Cre o M Hence, for r < 27,,
|J e —1]ds| <| [ [eM—1]dx(M)|+]| f [e™ —1]da(M)| <C - e(r) -7
To M>0 M>0
for some constant C'. Hence in this case (30) becomes
|f ePle™® —1]do| < C - &(ro) - rp*". (32)
To

Consider now an arbitrary r > r, and let n be the smallest integer, for
which 277, > r. Then r < 27, < 2r, and we find from (32)
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| fPle® —1]do| < C - e(ry) - rg*P[1 + 21*P 4 ... 4 270+5)]

2n+1) (148) __

= (. 8(7.0) . 7-‘1)-*'5 SITE ]

(33)

P if B> —1
<C'8(r°){rﬁ+” if§<——1.

Using this inequality, the theorem follows easily from (28) and (29).

Remark 1. The example of the complete conformal metric
ds = log (2 4 |z|)|dz| spread over the z-plane, shows that the constant ¢
cannot in general be removed from the exponent in (25). In this case @, = 0
and L(r) =rlogr + O(r).

Remark 2. A particular consequence is thatif @,> — 1, the circumference
7o 18 essentially a geodesic circle, that is, it is a locus of points approximately
equidistant in the metric from a fixed point.

Corollary 11. Suppose the given metric is complete at p,, that is, every path
tending to infinity has, in the given metric, infinite length. Then®) @, > — 1.

We are now prepared to discuss the situation described at the beginning of
this section, of a normal metric defined over a region ® consisting of the complex
plane with » 4 1 points deleted. The function u(x, y) is then given by (10),
and it is supposed that (12) holds. The fluxes {®,} are then related to the total
measure u = u(®) by GREEN’s formula, and one has

/L=Z¢j.
0

On the other hand, the curvatura integra is
C=—2nu.
By Corollary 11, if the metric is complete at p,, then @, > — 1. Similarly, as
one sees by transforming p; to co, completeness at p, implies @; > 1, j =1,
...,n. By Theorem 10, »,= lim £o(r)

n—>py 27Wo(B;7)
ilarly, »; = @, — 1. Collecting these results, we obtain:

exists, and v, = @, + 1. Sim-

8) This result is also a consequence of the more general Theorem 1 of HuBER [3].
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Theorem 12. Suppose the metric determined by (10) s complete and that (12)

holds. Then for each j, v, = lim £,(r) exists and ts tndependent of R,
and vi->; 4nW,(R; )

C = 2n(y —Z”'v,). (34)

In the case » = 0 there is an evident formal connection of Theorem 12 with

a theorem of A. HUBER [4], who proved that for any simple closed curve y the
inequality

L Ct(y)

1 —
47N = 2%

(35)

holds for the length £ of y and area U bounded by v in the given metric. Here
C+ is the curvatura integra, evaluated over that part of the region bounded by
y, in which the curvature is non-negative. The inequality (35) is in general
not sharp, and it is incorrect if C'+ is replaced by C'. However, if y is chosen to
be a large circumference, then by Theorem (12), (35) becomes

@ ., C
2n

,l_l,n;lo 4n W, (R; ) -

that is, for the selected curves v,(r) a result which is stronger than (35) holds
asymptotically with equality sign.

The following estimate is again local and refers to the behavior of the metric
near an isolated boundary component.

Theorem 13. Under the assumptions of Theorem 11, let o, be a divergent path
tending to p, = oo. Let L,(o,) bethe length of that part of a, which lies interior to a
circumference y,(r) of radius r about the origin. Then for any 6 > O there holds
asymptotically L,(o,) = r*+®% as r—>co.

Comparing this result with Theorem 11, we see that the images of the radial
lines behave asymptotically as approximations to geodesics in the given metric.

Proof. Setting |{| = o, we have
Ly(0)) = J e*®]dl| = [ e“©[dp].
G0N Yo esr

This inequality will not be weakened if we omit all arcs of o, on which values of
o are repeated; that is, if the maximum value of g attained on g, for all arc
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lengths s <s, is g,, all arcs on o, for which s > s,, ¢ < p, are to be omitted
in the integration. In this case the integration is monotonic in ¢ and the esti-
mates in the proof of Theorem 11 are easily seen to apply, so that for the length
L,(0,) of that part of o, for which ¢ <r we obtain L,(g,) > r**®~% by (25)
for any 6 > 0, the stated result.

7. A Geometrical Assumption; Sharpening of the above Estimates

The asymptotic estimates for length and area derived above can be improved
under a suitable assumption on the decay of the curvature at the singular
points {p,}. Such an assumption, if it is to be meaningful, should involve only
quantities which can be determined a priori in terms of the intrinsic geometry
of the surface and should not depend on properties of the representation over
the z-plane (although it will still be assumed that the metric is normal). The
simplest hypothesis available to us involves the rate of decay of curvature as
the point of evaluation moves along a divergent path. To make this concept
precise, select a fixed point P and define the distance (@) from P to @ as the
greatest lower bound of lengths (in the given metric) of paths which join P to
@. I shall assume in this section?) that there are fixed constants C and 6 > 0
such that uniformly for all Q near p,= oo, there holds |K| < Cd—2-3, where K
18 the G4ussian curvature associated with the metric.

Under this hypothesis we find:

Theorem 14. Under the hypotheses of Theorem 11 and the additional hypothesis
| K| < Cd—2-3, there holds, for any & < min [4, 1],

L(r) = Ar'*®[1 + O(r™*)]

for some positive constant A, whenever D, > — 1.

Remark. The assumption |K|< Cd—2-% cannot be deleted, and even an
assumption |K| < C(dlog d)~2 is not sufficient. This can be seen from the

%) This assumption assures a sufficient rate of decay so that the curvature is absolutely inte-
grable. An assumption | K| < d~2 would not suffice.
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example (which we have already considered in another context) of the con-
formal metric ds = log (2 4 |z|) |dz| spread over the z-plane. For this metric
there holds 7' << oo, u =0, K = (r log?r)2 ~ (d log d)~2, L(r) = rlogr + O(r).

Proof of Theorem 14. We may clearly assume that P is the origin in the
z-plane. Consider a radial segment from P and let ¢ be a point on this segment
such that |zg| =r. Consider a smooth path joining P to ¢, whose length
approximates the distance 4(Q). Applying Theorem 11 to this path, we obtain,
for given 6> 0 and large r, d(Q) + ¢ > +"*%~?% for any &> 0. Hence
d(Q) = rT%"?% ag r—oo.

By assumption, |K(Q)| <d~*7°. Hence |K(Q)| < r 2@*+%)=% (§ not the
same in all contexts), as » —co. In the notation of the proof of Theorem 8,

fef ldu| = fg | K |e* ododd
where €, is the exterior of the disk D,, while from the above estimates

[f1K|e*ododd < [ 072 '"%dp § ®®d9.
€, r

@ Uy

The circuit integral on the right equals p! do

Theorem 8, we find from (21) and from (9)

. Returning to the proof of

gﬁem(z)dﬁ — 2ne2un+0(1)92¢0+0(1).

Thus,
[J1K| €0 gdodi < 2me™ [ g7'="dg = o ¢ior=?
c, r
for some § > 0. We have proved:
j(! |du| = jé[ | K |e* odod® = O(r~°) as r—>oo. (36)
T T

Consider now the definition (15) of «,(2), the region D, being chosen as the
exterior of I'y(R). We have

= [ log |2

Dr/z

= u(B;)log 2| + [ log |

Dr/z

24 du— i tog|¢ldug.
r/2
(37)
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Set || =0, |2] =r. Then |log z—z_i’ 10g(1————;> for o< r. Thus,
setting u(R) = lim u(R; r), integrating by parts and using (36),
— r/2
jj log|* ldugl log (1 —2) - (u(®) — e (Rs )| +
Dyp

r/2 1
— . -3
+ @) —p(Bs )| —de < 4r

for some constant 4, provided J < 1. Similarly, we estimate

ff log |Z]| |duy] < Ar-3logr.

Dr/2
Thus, we have from (37) u,(z) = u(R) log |z| + O(r—%log r). The reasoning
which led to (27) shows that

p(R) + B = @,. (38)

Thus u(2) = u(2) + up(2) + B log |2]| + h(2) = Dy log |z]| + uy(2) 4 O ()
for some 6 > 0.

An examination of the reasoning which led to (32) shows that the quantity
¢(r,) in (32) can be chosen in the form

1
o) < Cn(ry) log ——
&(ro) 7n(r,) log 7 (o)
where 7(r,) = [f |du|. By (36) we have in the present case 7(r) = O(r-

&70/2 =

Hence we will have an estimate of the form (33) with g replaced by g — 9,

V

for any 8<4. Placing this result in (29) and using (38) yields
L(r) = e47*% [1 4 O (r~*)]
which was to be proved. Such an estimate holds for any ¢ < min (§, 1), as one

sees by retracing the steps in the derivation.
Similarly one may prove:

Theorem 15. Under the assumptions of Theorem 14 there holds (cf. Theorem
8 and 9)
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L(r) = 2metort+2o[1 4 O ()]

Ws(B;r) = T—ETD],_ 2o 21+ [1 4 O (r—*)]
2 (r)

47[%(R; 1‘) = (1 + ¢0) + O(r—-a)

for any & < min [4, 1].
We omit details.

8. Asymptotic Estimates for the Length Ratio

I shall denote the local length ratio by A(z) = e%(?).,

Theorem 16. For a conformal metric defined by (11) for which (12) ts satisfied,
suppose the region tn which K > 0 (that is, the region wn which u < 0) has
compact support. Then there is a constant A such that A(z) < Ar® as r—oo. If
the region on which K <0 is compact, then A(z) > Ar®® as r—>oco, for some A.

Proof. Let us again use the decomposition (15). Suppose K < 0 outside the
circumference y(r,). By the material leading to (16),

(z)—-jlé' log

r/2

278 dug =g 1og

Dyya

%] g+ o) = f tog

2| duct ot

. 2
since log

I3

is bounded when 1 < l—z_—l < 2. Integrating by parts yields

r

R; o)
ul(z) pa— _If_g____g_dg + 0(1)
T

_ [u(R;0) "w®) [ [u(R) — p(B; 0)]
1;[___9 de+;[—~—9 do r‘.,[ . do + o(1)

for any (fixed) r, in the range R < r, < r.
By assumption, the last integral on the right is non-positive, hence
U() <A+ u(R)logr as r—>oo. But, repeating the derivation of (27),
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one sees that u(R) + f = @,. Thus, u(z) <4 + D,logr 4 o(1) from which
the first assertion follows. The corresponding inequality, when K > 0 outside
D, , is proved similarly.

Corollary 16. If in addition @, > — 1, then L(r) < Ar®, L(r) > Ar®,
respectively, in the two cases constdered. If @Dy= — 1, then L(r) < Alogr,
L(r) > A log r, respectively.

Note that by Corollary 11, &,> — 1 whenever the metric is complete at p,.

Remark. If the curvature has compact support, then one obtains
A= Ar®[1 4 O@1)] (cf. Theorem 16). Estimates of this type cannot be
expected, however, in a general case, even under assumptions of the type intro-
duced in § 7. One may imagine, for example, a situation in which the measure
u is concentrated at a sequence of points tending to infinity. Such a measure
can be constructed such that ([ |du| tends to zero as rapidly as desired, but 4

[

r
will nevertheless be singular at each point of the sequence. This situation may

occur, for example, when the measure u arises from the conformal represen-
tation of a polyhedral surface. In order to obtain asymptotic estimates for
A(z) in a general case, it would be necessary to introduce a new postulate on the
local smoothness of the curvature with respect to the given metric.

9. Applications to Differential Geometry in the Large

The significance of the preceding developments for the general theory of
abstract surfaces consists in the fact that for an important class of such sur-
faces, the associated metrics, when represented in terms of conformal para-
meters over a plane domain, turn out to be normal in the sense of § 3. It seems
likely that this result is true for arbitrary complete open surfaces of finite
connectivity, over which the curvature is absolutely integrable. I am, however,
presently able to prove it only by invoking an additional supposition.

Hypothesis S. The region of positive curvature has compact support on the
surface.

Under this assumption I shall show first that a neighborhood of each bound-
ary component can be mapped conformally onto the (open) exterior of a disk
in the complex z-plane. This result follows alternatively from more general
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results of HUuBER [3] (esp. Theorem 15); however, in the case which I consider
it is possible to provide a somewhat simpler demonstration, and it seems desir-
able to do so. Thus it is possible to speak of normal metrics in the sense of § 3,
and the remainder of this section will then be devoted to proving that under any
such mapping the metric becomes a normal metric at p, = co in the form (11).
Thus all results derived in §§ 6-8 will apply.

By an abstract surface S I shall mean a finitely connected, open RIEMaNN
surface on which a conformal metric e“? |dz| is defined. Every such surface is
homeomorphic to a closed surface from which a finite number of points
Pos - - - » Pn has been deleted (KEREKJARTO [6], Chapter 5). A doubly-connected
annular region surrounding p, can be mapped conformally onto a plane annulus
bounded by inner and outer circumferences I'((R), y,(r), such that vy4(r)
corresponds to p,. In terms of conformal parameters there holds K = —e2*Au,

ff{KdA = — f{ Audxdy, and we may introduce, as before, a measure u
corresponding to u(x, y).

Theorem 17. Suppose S is complete at p, and that the curvature is absolutely
integrable over S in a neighborhood of this point. Assume also Hypothesis S. Then
Yo consists of the single point at infinity.

Proof. Suppose the theorem were false, so that y, is an entire outer circum-
ference. In the annular region D we have

u(z) = fflog | —z|du, + Blog z + h(2) (39)
D
where 4 (2) is harmonic in D. We may choose f so that %(z) has single-valued
conjugate h*(z). Because of Hypothesis S, the integral over the measure is
bounded above near y, (cf. the proof of Theorem 16). Evidently, 8 log z is bound-
ed at y,. We may write, because of the choice of 8,

h(z) = ho(2) + Py (2)
where #,(z) is harmonic interior to v,, h;(2) is harmonic exterior to I.
Consider the mapping!?)

2 .
w(z) = [etotito dz.
0

1%) The underlying idea in the ensuing discussion is due to HUBER [3, p. 53].
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The function w(z) carries the interior of y, onto an unbranched RIEMANN sur-
face over the w-plane. Let 2 denote a disk centered at the origin in the w-plane,
whose radius is the least upper bound of all values for which X' lies interior to a
sheet of the surface. The inverse mapping z(w) is by the monodromy theorem
analytic and single valued in 2'. Under this mapping the image of 2’ cannot be
compact in the interior of y,, for each point of the boundary image would then
lie interior to a circle of analyticity, and one then could conclude that £ could
be enlarged. Hence there is a sequence of points in X', tending to a boundary
point ¢,, whose inverse images tend to y,.

Consider a radius ¢, joining g, to w = 0. If its inverse image were compact
interior to y,, one could conclude that ¢, would be interior to a circle of ana-
lyticity, which we have just shown cannot happen. Hence the inverse image
of o, corresponds to a divergent path on &. We have

i
dz

00> f |dw| = { |dz] = [ et |dz| > A | e*® |dz| = oo
ag(w) ap(2) ) 0o (2)

ooz

by the above estimates on the terms in (39). From this contradiction it follows
that the radius of X' is infinite, that is, one sheet of the RIEMANN surface must
cover the entire w-plane. But the inverse function is 1-valued on this sheet and
achieves only values interior to y,. Hence y, has infinite radius, which was to be
shown.

Theorem 18. Under the hypotheses (and hence also the conclusion) of Theorem
17, u(z) admits near p, = co a representation of the form

w(e) = [f log |1 —% | du; + plog |2] + b () (40

where h(z) is harmonic at infinity, that s, the metric defined by w(z) is normal
at p,.

Proof. We need only establish that for suitable choice of 8, k(z) is har-
monic at infinity. We may write h(z) = hy(z) + h,(2), where h,(2z) is entire
and %,(z) is harmonic at infinity. Because of Hypothesis § (cf. again, the proof
of Theorem 16), there is a positive integer N such that, near p, = oo,

j'g'log 1—%|d,ug+,310gz < N log |z].
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Consider the mapping defined for all finite z,
w(z) = [ 2N ehotitg dz, (41)
0

This mapping is unbranched except at the origin, where the simply covered
z-plane is taken to an (N + 1) sheeted surface over the w-plane. As in the proof
of Theorem 17 above, one finds as a consequence of completeness that there are
no finite boundary points. Hence the (N -+ 1) sheeted w-plane corresponds
1 — 1 with the simply covered z-plane, and z =0« w=0. Hence w = A42¥*!,
from which it follows from (41) that Ay(z) = const., Q. E. D.

The main results

The material of §§ 6-8 implies the following general properties of abstract
surfaces.

Theorem 19. Let S be an abstract surface which is complete and has finite total
curvature in a doubly-connected neighborhood R of ome of its ideal boundary
components, and suppose S satisfies Hypothesis S in N. Then N can be mapped
conformally onto a neighborhood D of p, = oo in the complex z-plane. Let I'y(R),
Yo(r) be conmcentric circumferences of radiv R, r > R in D. Let £,(r) denote the
length on S corresponding to y,(r), let Wo(R; r) be the area corresponding to the
annulus between Iy, v,. Then relations (13), (14) kold for 530, Wy, and Ly(r) tendstoa

limit as r—>oo, which is infinite whenever @y = lim —— f — d8> — 1.
r—>

The quantity @, exists and is finite, and Py, > — 1. If Dy> — 1, then (22)

L (r)
holds. Also, rlin; T, (R 7)
through y, are asymptotically geodesic in the sense of Theorem 13, and their lengths
can be estimated by (25). The curves y,(r) are, in the corresponding sense, asym:pto-
tically geodesic circles on S. Under the additional assumption of Theorem 14 at p,,
correspondingly improved estimates hold.

= v, exists, and vy = 1 + D,. The radial lines

Theorem 20. Let S be a complete abstract surface satisfying Hypothesis S and

: . : L;(r)
which has finite total curvature C. Th .Th 12 = lim 1
fi otal curvature en (cf. Theorem 12) v, S TR, (R 7)
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exists at each boundary component p;, there holds v, = 1 + @,, and
C=2n(y—2v,).
0

Hypothesis S can be deleted for any case in which it is known that the metric
is normal at each boundary component.

This work was supported in part by Air Force contract AF 49 (638) 135 at Stanford Univer-
sity.
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