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Slowly Growing Meromorphic Functions

J. M. AxpERSON?) and J. CLUNIE

1. Introduetion

This paper is concerned with one aspect of the NEvANLINNA theory of
functions meromorphic in the plane (referred to in the sequel simply as mero-
morphic functions). We shall assume acquaintance with the standard termi-
nology of the NEVANLINNA theory

T(r,f) =T(r), m(r,a), 6(a,f), N(r,a)...

and with NEVANLINNA’S fundamental theorems (see e.g. [1]). If f(2) is mero-
morphic, and in particular if f(2) is an integral function, we define the maximum
modulus M (r, f), the minimum modulus L(r, f) and the spherical derivative

¢(f(2)) of f(z) by
M(r,f) = M(r) = max |f(z)| (Iz]=7),

L(r,f) = L(r) = min |f(z)| (lz] =7),

1f'(2)|
e(f@) = 7777 F

respectively.

We shall be concerned with functions which are slowly growing, such growth
being measured by M (r,f), o(f(z)) or the characteristic function 7'(r, f).
The order A and lower order u of f(z) are defined by

A= lim suplo—g—Tg)— ,
r—>o logr
u = lim inf 18 TC)

r—>o 10g7’

Unless specifically stated we assume throughout the paper that the meromor-
phic functions under consideration are transcendental, i.e. that

logr =0(T(r)) (r— o0)

!) The first-named author gratefully acknowledges receipt of support from the National
Science Foundation (Contract NSF-GP-4807) during the preparation of this work.
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and hence that
lim sup |21 ¢(f(2)) = }, (1.1)
jz] —>
by a well-known result of LenaTo [3].
Analogously to the definition of the NEVANLINNA deficiency of a value a
we introduce the VarLIRON deficiency of a defined by
. m(r, a) . ..o N(r,a)
Ha) =dl y=Hnswp —rgy =1 = gy
If d(a) > 0 for a particular value of a then that value is said to be VALIRON
deficient. A meromorphic function f(z) can have at most countably many
values @ which are NEVANLINNA deficient, but the best result known for
VALIRON deficiencies is due to AHLFORS and FrRosTMAN ([5], p. 277). It states
that the set of VaLroN deficient values of a meromorphic function has loga-
rithmic capacity zero (in the sense of FrosTMAN). The best possible result is not
known. However it cannot be substantially improved since VALIRON has
constructed an example of an integral function of order one such that the set of
VALIRON deficient values has the power of the continuum ([8], p. 126 and [9]).
2. Suppose f(z) is meromorphic and satisfies

T(r) = 0 ((logr)?) (r— o0). (2.1)
For any two complex numbers a, b, we define
N(r,a,b) = max {N(r,a), N(r,b)}.

Then VALIRON has proved the following theorem [7].

Theorem A. If f(z) satisfies (2.1) then
N(r,a,b) ~T(r) (r— o0). (2.2)
In particular if f(z) 18 an integral function

N(r,a) ~T(r) ~log M(r) (r—> o0)
for all finite a.
Thus if f(2) satisfies (2. 1) and possesses a NEVANLINNA deficient value a say,
(in particular if f(z) is an integral function) then it possesses no other VALIRON
deficient values i.e.

N(r,b)~T(r) (r—>o0) (b+#a).
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We note however that (2.2) does not preclude the possibility that a mero-
morphic function satisfying (2.1) may have infinitely many VALIRON deficient
values. Given any sequence {a,}y_,, let {x;} be a sequence in which each a,
appears infinitely often. Consider the expression

— 1(2) . k‘zlc’c o 2
f(z) = =
f2(2) X ¢, 2™

k=1

(2.3)

We may choose the {c,} so small that f(2) is a meromorphic function satisfying
(2.1). Nonetheless, if {n,} is a sufficiently lacunary sequence of integers, f(2)
will have each a, as a VALIRON deficient value.

In this paper we show that no restriction weaker than (2.1) permits us to
conclude that (2.2) holds. We have

Theorem 1. Given any continuous function @(r) tending monotonically to
infinity as r— oo, no matter how slowly, and any set of numbers {a,}s_, then there
exists an integral function F (z) having each a, as a Variron deficient value and
satisfying

log M(r, F) = O(¢(r) (logr)?) (r— o). (2.4)

Even though no countable set of VaLIRON deficient values can restrict the
growth of an integral function in any way apart from the negation of (2.1)
it may be that an uncountable set of such deficiencies would impose some
restriction on the growth. We have not been able to decide this question.

For convenience we split Theorem 1 into the following two theorems.

Theorem 2. Let ¢(r) be as in Theorem 1. Then there exists an integral function
satisfying (2.4) and such that d(0, f) = 1.

Theorem 3. Let f(z) be an integral function having O as a Variron deficient
value. Then given any set of numbers {a,}5_, there exists an integral function F (z)
having each a, as a Variroxn deficient value and satisfying

logM(r,F)=0§logM(—;—,f)§ (r = o0), (2.5)
8o that
T(r,F)=O0{T(r, )} (r—> o). (2.6)

§ 3. Recently OsTROVSKII has shown [6] that if f(2) is meromorphic and of
lower order 1, 0 < u < } then
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+
lim sup log* L{r) >y (cosec wu) (cos nu — 1 4 8(o0)).
r>w  1(r)
In particular if 4 = 0
. log* L(r)
Li e .
v TR

It is an easy matter to conclude from this result that if a meromorphic function
f(z) has lower order u = O then it can have at most one NEVANLINNA deficient
value, i.e.

for all @ with at most one exception; furthermore f(re*®)—>a uniformly in ¢
as r — oo through a suitable sequence {r,}. Our function (2.3) shows that such
functions can have infinitely many VArLmroN deficient values. Moreover by
suitable selection of the coefficients in (2.3) we can arrange that the function
defined by (2.3) satisfies 7'(r, f) = O (¢(r) log r) (r > oo) for any preassigned
monotonic increasing function ¢ (r) tending to infinity as r — oo.

It is well-known that a meromorphic function f (2) may possess a NEVANLINNA
deficient value without that value being an asymptotic value. The above result
of OsTrOVSEI, however, leads one to conjecture that for slowly growing mero-
morphic functions (of order zero or lower order zero, say) NEVANLINNA deficient
values are asymptotic. We prove this conjecture for function satisfying (2.1).

We need the following concept due to Hayman [2]: We call an C-set any
countable set of circles not containing the origin and subtending angles at the
origin whose sum s is finite.

Theorem 4. Let f(z) be meromorphic and satisfy (2.1). Suppose d(a, f) >0
for some a. Then

lim inf ”‘1°gf'pf(‘f))_“' > 8(a) 3.1)

uniformly in & as z = re*® tends to infinity outside an C-set. In particular a 18
an asymptotic value of f(z). If a = oo (3.1) 18 to be understood as

¢ loglf (2)|

() > d(c0).

lim in

The meromorphic function given in § 2 shows that for functions satisfying
(2.1) VaLIRON deficient values need not be asymptotic.
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§4. For transcendental functions LEATO has shown [3] that the inequality
(1.1) is sharp. We shall say that a (transcendental) meromorphic function
belongs to the class <5 if

1
e(®) =0 (457) 210

12 ]

This class of functions was introduced by LerTO and VirTaNEN [4]. They
showed (loc. cit.) that if f(z) e <J then f(2) satisfies (2.1) and f(z) possesses no
asymptotic values. Since, by IVERSEN’s theorem P1cArD exceptional values are
asymptotic values, LEETO and VIRTANEN concluded that such an f(z) can have
no PIcARD exceptional values. In view of Theorem 4 we have

Theorem b. If f(z)e S then f(z) possesses no NEvANLINNA deficient values.
In other words, if a meromorphic function f(z) possesses a NEvANLINNA deficient
value then

lim sup |2] ¢ (f(2)) = + oo. (4.1)
|z| >
We shall give a direct proof of this theorem, i.e. one which is not based on
LenTo and VIRTANEN’S theorem.

Remarks. a) It is an open question whether a function f(z)e S can possess
a VALIRON deficient value.

b) In view of LEHTO’s theorem ([3], Theorem 3) relating the growth of the
spherical derivative to the set in which PicaArRD’s theorem holds we conclude
immediately from (4.1) that a meromorphic function possessing a NEVANLINNA
deficient value has a direction of JuL1A.

§ 6. To prove Theorem 2 we shall construct an integral function of the form

fa) = 1T (1 - —3—)% (5.1)
oo 5,
where the {b,} and {c,} are suitable lacunary sequences, b,> 0, c, > 0, the ¢, being
integers. We may assume without loss of generality that ¢ (r) = O (logr) (r— o).
We define the sequences {b,} and {c,} inductively as follows: let b, =¢, =1,
and if b, and ¢, are defined for ¢ =1,2,...,v —1 (v > 1) define b, by

r—1

¢ (b)) = (2 ¢ (5.2)

Since ¢(r) is a continuous monotonic increasing function of r (5.2) determines
b, uniquely and b, > b, ,. We let

y—1-
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C, = [‘P (bv) log bv]’

where [2] denotes the integral part of x.
For a given r let v denote the integer such that b, <r <b,,,. Then

n(r,0) =n(r) =n(b,) = Lo, = c, + [p(b,)]t

— O(p(b,) logh,) (v oo)
= O0(p(r)logr) (r— o).

Thus the infinite product (5.1) converges for all finite z; i.e. f(2) is an integral
function. Moreover f(z) has genus zeros and real negative zeros and so

log M (r, f) = log f(r) = [log (1 +—§) an )

2]

. n(t) dt
- [t -3

1 4 -}

< [rod ., frox

1] r

<0(1)(p(r)flogtdt +0(r)f (logtt)zdt ,

14

since we assumed that ¢(r) = O(log ) (r > oo). Thus

log M (r, f) = O (g (r)(log r}*) + O ((log r)?)
= O(p(r)(log rf) (r—> o)

as required.

8§ 6. We now show that d (0, f) =1, i.e. that
N(r,0) _

lim inf = 0. 6.1
m i =) (6.
We have
by b,d L
N(bv’ 0) = f n(tt) at <n (bv—l) % = (2 ci) IOg bv
=1
0 1

= [p (5,)]t log b,. (6.2)
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Also, by a well-known inequality for integral functions (see [1], p. 18),

T(r,f)zé-logM(—;:, )

for all » > 0. Hence, by (5.3),
’ f)zgrf-.’l-‘f)_d}_..
Y t(t+§)

Thus, since the integrand is positive, we have for all r > 0

') =4r f n(t dt

But for b, <r < 2b,, n(r) =n(,) = Z'c,- >c, = [p(b,) log b,]. Hence
i=1
2by

dt

J t(t+-;-) '

Now put r = b, and make the substitution ¢ = b,u. We obtain

(r,f) = #(p(d,)log b, + O(1)) r

T(b,, f) = $(p(b,) log b, +o<1)f (6.3)

t (¢ + 1)
From (6.2) and (6.3) we conclude, since ¢ (r) tends to infinity, that

. N(b,,0)
li el =2 )
o TT(b,)

and so (6.1) holds. This completes the proof of Theorem 2.

§ 7. In this section we prove Theorem 3. We assume without loss of general-

ity that f(0) = 1, since otherwise we can consider L(:i with suitable 4 and n
[}

in place of f(z). If f(z) = X a,2z" set
0

n n
8,2) =2 a,z* o,(z)=2a,z*.
k=0 k=1

Let {x,}® be an infinite sequence in which each a, occurs infinitely often. Then
we shall prove that there is a sequence {n,}? of positive integers, a sequence
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{ox} of real numbers with g, — co (k — oco) and a sequence {R,}? of real
numbers with R, — oo (k — oo) such that the following is true. Let Fy(z) = 1
and define

Fy(2) = Fur(2) 8, (-1—%) — 040, (7;:) (k=>1).

Then F,.(z)— F(z) where F(z) is an integral function satisfying (2.5) and
(2.6), and
1
m (QkRka “F-*“—*)

. . — &g _
b R F) (7.1)

Since each a;, occurs infinitely often among the «, it follows from (7. 1) that each
a, is a VALIRON deficient value of ¥ (z).
We now assume that

Mgy ooy Mpys 1 <0< < ool <@g

and B, < R, < ... < R,_, have been defined. In the following it will be shown
how n,, 0, and R, are chosen.

Since F,_,(2) is a polynomial in z and f(z) is transcendental it follows that
for all large R,

M(r,Fk_1)<M(-g-, f) (r=R). (7.2)
Also for all large R,
I“k+11+lakl<M<%,f) (r > R). (7.3)
If we define, with » > 1,

1) = Fra @ (5) —naa ().
then

06 — Fra () = 00 () Faa () — )

and so, for |2| <o, R, ; <R,

-1 R k—1

19(2) — Faa ()| < K B2 (M (g0 1 By y, i) + I}
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where K depends only on f(z). Hence, by taking R large enough, we can ensure
that

1
lg () —Fru(2) 1 < ok e Tlk—1-1 (12| < gy Bypy) - (7.4)

We now choose as R, a value of R> R, ; + 1 for which (7.2), (7.3) and
(7.4) are satisfied.

Since 0 is a VALIRON deficient value of f(z) there is a sequence of ¢ — oo,
which we denote by o, and constants 1> %> 0, § > 0 so that

[fee'?)| < e Tl (7.5)

with peo for a set of ¢ in [0, 2x], depending on p, of measure at least 4.
On the other hand, since F, ,(z) — «, is a polynomial, for all sufficiently
large o we have

2 pig, 1)

| Froa(@) | + log | <e? (Iz] = oRy). (7.6)

We choose as g, a value geo such that ¢ > g,_; and (7.5) and (7.6) are satis-
fied with ¢ = g,.
We now choose 7, so that

(o) — s (ere™) | <e ™M (0<d < 2m). (7.7)

Hence with n =n,, R = R, in ¢(z) we obtain F,(z), and, from (7.5),
(7.6) and (7.7), for z = p, R, e'® and ¥ in a set of measure at least § contained

in [0, 2n],
s (2=
nk -Rk

To sum up, assuming n,,...,7 35 0,..-, 052 and Ry, ..., B, , to be
defined we can choose n;, o, B, so that g, > g;,_; =1 and g, — co(k— o),
R,> R, , and R, - oo (k— o0) and

n
?T(ri f) .

| By (2) — o | = |F () —o | < 2e”

i) M, Fo)<M(5.f) =E),
i o+ Lol < M (5. 1) (=R,

1
i) | Fr(2) — Fra(2) | < ok e~ Tr-1" (12| < 0p—y Bra),
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n
iv) | Fy(2) —o ) < 2¢” 3 T ”

for z = g, R, e’ and & belonging to a set of measure at least ¢ in [0, 2x],

v) T(ox Ry, Fy) < KT (o1, f) (from (7.6) and (7.7) and the definition of F}).
Hence, by induction, there are sequences {n;}7y, {0;}7 and {R,}7 for which
i)—v) are satisfied and g, — oo (kK — o0), R, —> oo (k— 00).

We shall now show that F,(z) — F(z)(k— oo) where F(z) is an integral
function satisfying (2.5), (2.6) and (7.1). From iii), together with g, — oo,

@
R, — oco(k — o0), it is clear that X {F,,,(z) — F\(z)} converges uniformly in
k=0

lz] < R for any fixed R and so F,(z) - F(z) (k — o0), where F (z) is an inte-
gral function.

Lemma 1. We have
F.@ 1 <KM(5. 1) ¢ =121> Ry, (7.5)
Fo@ 1< KM (5. f) =121> Ry, (7.9)
where K is a constant depending only on f(z).
Proof. We have

1P (@) < 1 Foy ()18, (-R"—’;N + 1ol | 0, (‘1‘%;) (1.10)

<3(5 )lloalz)| + o (2)

from i) and ii). Also if R, > 3 then, for all r,

2 r
()| = K (5 1)
oul )| = K2 (5

by a straightforward application of CAUCHY’s inequality and PARSEVAL'S
Theorem. From (7.11) and (7.12) we get (7.8).

-

g (z|=R) (1.11)

(7.12)
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If we now apply ii) and (7.8) with £ — 1 in place of k to (7.10) we obtain

z
8"k -—R:

From (7.12) and (7.13) we get (7.9).
Now consider R, < |z| < R;,, and

R@ <K (5 0)]

+

ak(j%)}; (1z1=Rpy). (7.13)

F(2) = Fau(2) + Z {F.or(z) — F, (). (7.14)

y=k+1

From (7.9) we have

Fra@ < KM (5. 1) (RBe<izl< Reo), (7.15)

From iii) we have
.,j ! F,.(2) —F,(2)| =0(1) (R,<|z|<R,,) (7.16)
From (7.14), (7.15) and (7.16) it follows that F(z) satisfies (2.5) and hence
¢ go);lsider now F(z) —«x, on |z|=p,R,. We have
Fo) —m = Fole) =+ £ (B, () — F, ).

From iii),

o 1
l-_’_‘:"k{E'+1 () —F, (2)}| < ok1 e Ty D (jz] = g, Ry) (7.17)

since T'(r, f) is an increasing function of r, From iv),

Ty,

| Fy(2) — o | < 2¢” (7.18)

when z = g, R,e'’® and ¢ belongs to a set of measure at least 4 in [0, 2x].
Hence, from (7.17) and (7.18),

+Tleg. )

|F(2) —og | < 3e (7.19)

when z = g, R,¢® and ¥ belongs to a set of measure at least & in [0, 27].
Consequently
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m (esFus ) > 4% Tlews ) + O(1). (7.20)

T 4z

Since, from v),
T(oxRBy, Fy) < KT (04, f)

it follows that, when account is taken of (7.17),
T(QkRk: F)<KT(Qkaf)' (721)

From (7.20) and (7.21) we obtain (7.1).
This completes the proof of the theorem.

§ 8. In the proof of Theorem 4 we need the following result of Hayman [2]:

Theorem B. If an integral function y(z) satisfies

log M (r, y) = O((log r)?) (r—> oo) (8.1)
then
log |p(2) | ~log M (r,y)

unisformly in 9 as z = re® - oo outside an &-set.
We note the following two facts about &-sets.
a) The union of two &-sets is again an C-set.

b) Given any &-set then for almost all fixed & and r > r(9), z == re'® lies
outside the &-set.

If f(z) satisfies the hypotheses of Theorem 4 then it is easy to see that we
may write f(z) = (fi(2)) / (f2(z)) where f,(z) and f,(z) are integral functions
having no zeros in common and both satisfying (8.1). Thus using (a) above we
see that

lbg 1f (2)] =log | f, (z)| —log | fs(2)| = (1 + o (1)) (log M (r,f,) —log M (r, f,)) (8.2)

uniformly as z = re'® - oo outside on &-set.

By performing a bilinear transformation if necessary we may assume that
infinity is the deficient value of f(z) i.e. 8(co) > 0. The functions f(z), f,(2)
and f,(z) all satisfy the conditions of Theorem A. Thus
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log M(r,f;) ~N(r,0,f;) (r—>o0)(j=1,2)
and moreover since 8(oo, f) > 0
N(@r,0,f)y ~T(r,f) (r— oo)
N(r,oo0,f) <(I —6(co,f) +0(1)) T(r,f) (r>ry).

But N(r,0,f)=N(r,0,f;) and N(r,oc0,f) = N(r, 0, f,). Thus, by substi-
tuting into (8.2) we obtain, as z = re'® > co outside an &-set,

log 1{(2)| = (1 4+ 0(1)) (N(r,0,f) —N(r, o, )
> @1 +o@) T(r,f) — (L —d(o0, f) + 0(1)) T'(r, f)
= (8(o0,f) +0(1)) T(r, ).

Thus we obtain

lim inf—li’—g%{;%z-)i > 8 (o0, f)
uniformly in & as z = re'® tends to infinity outside an &-set as required.

By using the property (b) above and the fact that the characteristic 7' (r)
is unbounded we have that f(re!®)—>a as (r— oo) for almost all fixed
?(0 < # < 2x). Thus e is a fortiori an asymptotic value.

To prove Theorem 5 we suppose again that & (oo, f) > 0 and that for all 2

lzlo(f(2)) < K.

Then, since f(z) is transcendental and satisfies (2.1) it must have infinitely
many zeros. Suppose we are given &> 0. Then there exists a sequence
2, = R,e'® of zeros of f(z) such that each disc |z — z,| < eR, contains a
point z, where |f(z.)| > 1. Otherwise the set outside of which (3. 1) holds would
need to subtend angles at the origin whose sum diverges (i.e. would not be an

C-set). Now consider the images of f(z,) and f(z,) on the RIEMANN sphere.
We have

!

Je(f(a)) 1dz) > 2

for any path joining z, to z,. Thus
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2y

7 |dz|
TSK‘[ ] < Klog (1 + &)

Zy

by the definition of z,. This holds for all ¢ > 0, and a contradiction follows
on letting &£— 0. This completes the proof of Theorem 5.

Note added in proof. Mr. D. SeEA has pointed out to us that the result of
Theorem 4 is stated in § 5 of [7]. However, although VALIRON may have seen
how to prove Theorem 4 from the appropriate result of § 1 of [7], it is clear that
Theorem 4 does not follow directly from this result as VALIRON seems to assert.

Cornell University, Ithaca, New York, USA
Imperial College, London S.W. 7, U.K.
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