
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 40 (1965-1966)

Artikel: Slowly Growing Meromorphic Functions.

Autor: Anderson, J.M. / Clunie, J.

DOI: https://doi.org/10.5169/seals-30639

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-30639
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Slowly Growîng Meromorphic Functions

J. M. Anderson1) and J. Clunie

1. Introduction

This paper is concernée! with one aspect of the Nevanlinna theory of
functions meromorphic in the plane (referred to in the sequel simply as
meromorphic functions). We shall assume acquaintance with the standard termi-
nology of the Nevanlinna theory

T(r,f) T(r), m(r,a), ô(a,f)9 N{r,a)...

and with Nevanmnna's fundamental theorems (see e.g. [1]). If f(z) is
meromorphic, and in particular if / (z) is an intégral function, we define the maximum
modulus M (r, /), the minimum modulus L(r, f) and the spherical derivative
Q{f(z))0Îf(z)bj

M(r, f) M(r) max \f(z) | (| z \ r),

L(r,f) L(r) min\f(z)\ | z | r

-
respectively.

We shall be concerned with functions which are slowly growing, such growth
being measured by M(r, f), g(f (z)) or the characteristic function T(r, /).
The order A and lower order fi of f(z) are defined by

log T(r)X hm sup —f—^.^oo^ logr

u hm inf ~~——^ logr
Unless specifically stated we assume throughout the paper that the meromorphic

functions under considération are transcendental, i.e. that

\ogr o(T(r)) (r-^oo)

x) The first-named author gratefully acknowledges receipt of support from the National
Science Foundation (Contract NSF-GP-4807) during the préparation of this work.
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and hence that
limsup \z\Q(f(z)) ;>£, (1.1)
|2|~>00

by a well-known resuit of Lehto [3].
Analogously to the définition of the Nevanunna deficiency of a value a

we introduce the Valiron deficiency of a defined by

j. x m(r,a) rN(r,a)d(a) d{a9 f) lim sup - J, 1 — hm vt£±±L
1 (r)
J, 1 — hm vt£—±±-
1 (r) r^oo 1 (r)

If d(a) > 0 for a particular value of a then that value is said to be Valiron
déficient. A meromorphic fonction / (z) can hâve at most countably many
values a which are Nevanlinna déficient, but the best resuit known for
Valiron deficiencies is due to Ahlfors and Frostman ([5], p. 277). It states
that the set of Valiron déficient values of a meromorphic fonction has loga-
rithmic capacity zéro (in the sensé of Frostman). The best possible resuit is not
known. However it cannot be substantially improved since Valiron has

constructed an example of an intégral fonction of order one such that the set of
Valiron déficient values has the power of the continuum ([8], p. 126 and [9]).

2. Suppose f(z) is meromorphic and satisfies

)*) (r->oo). (2.1)

For any two complex numbers a, 6, we define

N(r, a, b) max {N(r, a), N(r, b)}.

Then Valiron has proved the following theorem [7].

Theorem A. // f(z) satisfies (2.1) then

N(r,a,b)~T(r) (r~>oo). (2.2)

In particular if f(z) is an intégral function

N(r, a) ~T(r)~ log M(r) (r -> oo)

for ail finite a.
Thus if f(z) satisfies (2.1) and possesses a Nevanunna déficient value a say,

(in particular if f(z) is an intégral function) then it possesses no other Valiron
déficient values i.e.

N(r, b) ~ T(r) (r -+ c») (6 # a).
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We note however that (2.2) does not preelude the possibility that a
meromorphic function satisfying (2.1) may hâve infinitely many Valeron déficient
values. Given any séquence {afc}J!Li» let {ock} be a séquence in which each ak

appears infinitely ofben. Consider the expression

S ck <xk z*k

We may choose the {ck} so small that f(z) is a meromorphic function satisfying
(2.1). Nonetheless, if {nk} is a sufficiently lacunary séquence of integers, f(z)
will hâve each ak as a Valiron déficient value.

In this paper we show that no restriction weaker than (2.1) permits us to
conclude that (2.2) holds. We hâve

Theorem 1. Given any continuons function q?(r) tending monotonicdlly to

infinity as r-> oo, no matter how slowly, and any set of numbers {a&}?=i then there

exists an intégral function F (z) having each ak as a Valiron déficient value and
satisfying

log M (r, F) O (<p (r) (log rf) (r -> oo). (2.4)

Even though no countable set of Valiron déficient values can restrict the
growth of an intégral function in any way apart from the négation of (2.1)
it may be that an uncountable set of such deficiencies would impose some
restriction on the growth. We hâve not been able to décide this question.

For convenience we split Theorem 1 into the following two theorems.

Theorem 2. Let <p(r) be as in Theorem 1. Then there exists an intégral function
satisfying (2.4) and such that d(0, f) 1.

Theorem 3. Let f(z) be an intégral function having 0 as a Valiron déficient
value. Then given any set of numbers {#fc}£Li there exists an intégral function F(z)
having each ak as a Valiron déficient value and satisfying

g \(^)\ (2.5)

T(r,F) O{T(r,f)} (r->oo). (2.6)

§ 3. Recently Osteovskh has shown [6] that if f(z) is meromorphic and of
lower order fi, 0 <, fz < \ then
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Ioq+ L(r)lim sup —B x > nii (cosec nfx) (cos np — 1 + ô(oo)).
f —>oo

In particular if ju 0

Km sup ^t-^LL ï>ô(oo).

It is an easy matter to conclude from this resuit that if a meromorphic function
f(z) has lower order ju, 0 then it can hâve at most one Nevanlinna déficient
value, i.e.

N(r,a) lhm sup Tlr\

for ail a with at most one exception; furthermore f(rei&) -> a uniformly in &

as r -> oo through a suitable séquence {rt}. Our function (2.3) shows that such
fonctions can hâve infinitely many Valeron déficient values. Moreover by
suitable sélection of the coefficients in (2.3) we can arrange that the function
defined by (2.3) satisfies T(r, f) 0 {(p{r) log r) (r-> oo) for any preassigned
monotonie increasing function <p (r) tending to infinity as r -> cxj

It is well-known that a meromorphic function / (z) may possess a Nevanlinna
déficient value without that value being an asymptotic value. The above resuit
of Ostbovskh, however, leads one to conjecture that for slowly growing
meromorphic functions (of order zéro or lower order zéro, say) Nevanlinna déficient
values are asymptotic. We prove this conjecture for function satisfying (2.1).

We need the following concept due to Hayman [2] : We call an c?-set any
countable set of circles not containing the origin and subtending angles at the

origin whose sum s is finite.

Theorem 4. Let f(z) be meromorphic and satisfy (2.1). Suppose ô(a, f) > 0

forsome a. Then

lo^g--^-^6(a) (3.1)

uniformly inê as z re1^ tends to infinity outside an <5-seL In particular a is

an asymptotic value of f(z). If a oo (3.l)istobeunderstoodas

The meromorphic function given in § 2 shows that for functions satisfying
(2.1) Valtron déficient values need not be asymptotic.
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§ 4. For transcendental functions Lehto has shown [3] that the inequality
(1.1) is sharp. We shall say that a (transcendental) meromorphic function
belongs to the class c5* if

1*1

This class of functions was introduced by Lehto and Virtanen [4]. They
showed (loc. cit.) that if f(z) c c5* then f(z) satisfies (2.1) and f(z) possesses no
asymptotic values. Since, by Iversen's theorem Picard exceptional values are
asymptotic values, Lehto and Virtanen concluded that such an f(z) can hâve
no Picard exceptional values. In view of Theorem 4 we hâve

Theorem 5. // f(z) e c? then f(z) possesses no Nevanlinna déficient values.

In other words, if a meromorphic function f(z) possesses a Nevanlinna déficient
value then

limsup \z\g(f(z)) + oo. (4.1)
|z|->oo

We shall give a direct proof of this theorem, i.e. one which is not based on
Lehto and Virtanen's theorem.

Remarks, a) It is an open question whether a function f(z) € c? can possess
a Valiron déficient value.

b) In view of Lehto's theorem ([3], Theorem 3) relating the growth of the
spherical derivative to the set in which Picard's theorem holds we conclude

immediately from (4.1) that a meromorphic function possessing a Nevanlinna
déficient value has a direction of Jtjlia.

§ 5, To prove Theorem 2 we shall construct an intégral function of the form

where the {bv} and {cv} are suitable lacunary séquences, bv > 0, cv > 0, the cv being
integers. We may assume without loss ofgenerality that <p (r) 0 (log r) (r->oo).
We define the séquences {bv} and {cv} inductively as follows : let bx cx 1,
and if b{ and ct are defined for i 1,2,..., v — 1 (v > 1) define bv by

y(6F) (271c,)». (5.2)

Since q>(r) is a continuous monotonie increasing function of r (5.2) détermines
bv uniquely and bv>bv_1. We let
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where [x] dénotes the intégral part of x.
For a given r let v dénote the integer such that bv <r < bv+l. Then

n(r, 0) n(r) n{bv) 2 c, er + [ç»(6r)]*
1 1

0(<p(bv) log bv) (v->oo)

O(<p{r)logr) (r->oo).

Thus the infinité produet (5.1) converges for ail finite z; i.e. /(2) is an intégral
function. Moreover f(z) has genus zéros and real négative zéros and so

log M(r, f) log f(r) Jlog (l +1) dn(t)

-'/¦ n(t)dt

+ r
r

f

f
We hâve

N(bv, 0) f*M* < n(b^) f± a\) log 6V

1

(5.3)

1 r

since we assumed that <p(r) O(log r) (r-> oo). Thus

log M(r, f) O(ç>(r)(log rf) + O((log rf)
O(ç?(r)(logr)2) (r->oo)

as required.

§ 6. We now show that d (0, /) 1, i.e. that

0. (6.1)

(6.2)
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Also, by a well-known inequality for intégral functions (see [1], p. 18),

for ail r > 0. Hence, by (5.3),

T(r,f)

Thus, since the integrand is positive, we hâve for ail r > 0

26,

But for bv <, r < 2bv, n(r) n(bv) Zct>cv [<p(bv) log 6J. Hence

2 6,

Now put r bv and make the substitution t bvu. We obtain
2

m, /) S: *(ç>(6r) log 6, + 0(1)) /t^tJJ- •

1

From (6.2) and (6.3) we conclude, since ç?(r) tends to infinity, that

and so (6.1) holds. This complètes the proof of Theorem 2.

§ 7. In this section we prove Theorem 3. We assume without loss of general-

ity that /(0) 1, since otherwise we can consider -^~- with suitable A and n
00

in place of f(z). If f(z) Zanzn set
o

Let {afc}J° be an infinité séquence in which each ak occurs infinitely often. Then
we shall prove that there is a séquence {nk}f of positive integers, a séquence
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numbers with Qk -> oo (k -> oo) and a séquence {Rk}f of real
numbers with i?*. -> oo (k -> oo) such that the following is true. Let -F0(z) 1

and define

Fk (z) *V, (z) snk (JL) - «, % (-£-) (k > 1).

Then 2^(z)->jF(z) where ^(z) is an intégral funetion satisfying (2.5) and
(2.6), and

Q Fliminf \ ***->-> o. (7.1)

Since each afc occurs infinitely often among the <xk it follows from (7.1) that each

ak is a Valeron déficient value of F(z).
We now assume that

and J?! < i?2 < < Rk^t hâve been defined. In the following it will be shown
how nk, qk and Rk are chosen.

Since Fk_1(z) is a polynomial in z and /(z) is transeendental it follows that
for ail large R,

(£) (7-2)

Also for ail large R,

l*w.il + l«» K-tf(|,/) (r^JÎ). (7-3)

If we define, with n ;> 1,

J() (^"j ~ ** <^n

then

(2) - J1*-! (z) «r. (^) {J^*-! (z) - «*}

and so, for | z | <, q^R^ <, R,
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where K dépends only on / (z). Hence, by taking R large enough, we can ensure
that

\9(*)-F*-A*) I < ^f e-^<•*-!•/> (\z | < ?wJlw). (7.4)

We now choose as 2?fc a value of R > Rk_1 + 1 for which (7.2), (7.3) and

(7.4) are satisfied.
Since 0 is a Valeron déficient value of f(z) there is a séquence of £->oo,

which we dénote by or, and constants l > r] > 0, ô> 0 so that

\f(gei&)\ <e-r*T{Q>1) (7.5)

with Q€G for a set of ê in [0, 2tz], depending on q, of measure at least <5.

On the other hand, since F^^z) —ak is a polynomial, for ail sufficiently
large g we hâve

l*V-i(*) I + l**l< e^r('i/} (\z\= QRk) • (7.6)

We choose as çk a value @ eo* such that q> Qk-i and (7.5) and (7.6) are satisfied

with g gk.
We now choose nk so that

\fiBhei*)-8nkU>tet*)\<e-'>TW (0<ê<2n). (7.7)

Hence with n nk, R Rk in g(z) we obtain F^z), and, from (7.5),
(7.6) and (7.7), for z QkRke%9 and ¦& in a set of measure at least ô contained
in [0,2«],

To sum up, assuming nx,..., nk_x; qx £fc_! and jRx,..., Rk^ to be

defined we can choose nk, Qk, Rk so that Qk > çfc_x > 1 and Qk-> oo(Jc-+oo),
Rk > jR&_1 and Rk -> oo (k -> oo) and

in) \Fk(z)-Fk_1(z)
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iv) \Fk(z)—ock\<2e-TT(Q*'f)

for z gk Rk ei& and ê belonging to a set of measure at least ô in [0,

v) T(çkRk, Fk) < KT(Qk9 /) (from (7.6) and (7.7) and the définition of Fk)

Hence, by induction, there are séquences {nk}f, {gk}f and {Rk}f for which
i)—v) are satisfied and gk -> oo (k ~> cx>), Rk -> oo (k ~> oo).

We shall now show that Fk (z) -> F (z) (k -> cx>) where F (z) is an intégral
fonction satisfying (2.5), (2.6) and (7.1). From iii), together with £fc->oo,

00

Rk-> oo(k-> oo), it is clear that E {Fk+1(z) — Fk(z)} converges uniformly in
Jfc=0

Iz | <; J? for any fixed R and so Fk(z) -+F(z) (k -> oo), where F(z) is an intégral

fonction.

Lemma 1. We hâve

(r= (7.8)

(7.9)

where K is a constant depending only on f(z).

Proot We hâve

\Fk(z)\^\Fk_1(z) 1** (7.10)

(7-n)

from i) and ii). Also if i?fc > 3 then, for ail r,

(7.12)

by a straightforward application of Cauchy's inequality and Paesbval's
Theorem. From (7.11) and (7.12) we get (7.8).
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If we now apply ii) and (7.8) with k — 1 in place of k to (7.10) we obtain

S(£)ji <l* !**«>• C-13)

From (7.12) and (7.13) we get (7.9).
Now consider Rk< \z\ < R^x and

F (z) - Fk+l (z) + Z {Fv+1 (z) - Fv (z)}. (7.14)

From (7.9) we hâve

From iii) we hâve

(7.15)

(Rk<\z\<Rk+1) (7.16)

From (7.14), (7.15) and (7.16) it follows that F{z) satisfies (2.5) and hence

(2.6).
Consider now F(z) —<xk on | z | gk Rk. We hâve

F(z) -*k Fk (z) -ock + i: {Fv+1 (z) - Fv (z)}

From iii),

sinee T(r,f) is an inereasing function of r, Fromiv),

(7.17)

(7.18)

when z QkRkeiû and ê belongs to a set of measure at least ô in [0, 2tî\.
Henee, from (7.17) and (7.18),

(7.19)

when z gkRkei& and & belongs to a set of measure at least ô in [0, 2tz],
Consequently



278 J. M. Andebson and J. Clunie

|| T(6k, f) + 0(1). (7.20)

Since, from v),
T(QkRk,Fk)<KT(Qk9f)

it follows that, when account is taken of (7.17),

T(QkRk,F)<KT(Qk,f). (7.21)

From (7.20) and (7.21) we obtain (7.1).
This complètes the proof of the theorem.

§ 8. In the proof of Theorem 4 we need the following resuit of Hayman [2] :

Theorem B. If an intégral function \p(z) satisfies

*) (r->oo) (8.1)
then

log \tp(z)\ ~log M(r,ip)

uniformly inêas z re%& -» oo outside an <5-set.

We note the following two facts about c?-sets.

a) The union of two c?-sets is again an c?-set.

b) Given any c?-set then for almost ail fixed ê and r > ro(ê), z relâ lies

outside the c?-set.

If f(z) satisfies the hypothèses of Theorem 4 then it is easy to see that we

may write f(z) (/i(z)) / (/2(z)) where jx(z) and f2(z) are intégral functions

having no zéros in common and both satisfying (8.1). Thus using (a) above we

see that

gf1)-\ogM(r,f2)) (8.2)

uniformly as z reiû -> oo outside on c?-set.

By performing a bilinear transformation if necessary we may assume that

infinity is the déficient value of f(z) i.e. <5(oo) > 0. The functions f(z), /i(z)
and /2(z) ail satisfy the conditions of Theorem A. Thus
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log U(r, /,) ~ N(r, 0, /,) (r-* ex.) (/ =1,2)

and moreover since ô(oo, f)> 0

N{r,O,f)~T(r,f) (r->oo)

N(r, oo, /)<(!— 5(oo, /) + o(l)) T(r, f) (r > r0).

But N{r,O,t) N(r,O,f1) and N{r, oo, /) N(r, 0, /,). Thus, by substi-
tuting into (8.2) we obtain, as z reid-> oo outside an <?-set,

log | /(z) | (1 + o(l)) (N(r, 0, f) -N(r, oo, /))

Thus we obtain

uniformly in ê as z re%& tends to infinity outside an cf?-set as required.
By using the property (b) above and the fact that the characteristic T(r)

is unbounded we hâve that f(rei0)->a as (r->oo) for almost ail fixed
^(0 < & < 2n). Thus a is a fortiori an asymptotic value.

To prove Theorein 5 we suppose again that ô (oo, /) > 0 and that for ail z

\z\Q{f{z))<K.

Then, since f(z) is transcendental and satisfies (2.1) it must hâve infinitely
many zéros. Suppose we are given e > 0. Then there exists a séquence
zv Bvei&v of zéros of f(z) such that each dise \z — zv \ < eRv contains a
point zv where | / (zfv) | > 1. Otherwise the set outside ofwhich (3.1) holds would
need to subtend angles at the origin whose sum diverges (i.e. would not be an
<?-set). Now consider the images of / (zv) and / (zfv) on the Riemann sphère.
We hâve

$Q(f(*))\dz\>~

for any path joining zv to zv. Thus
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by the définition oî z'v. This holds for ail e > 0, and a contradiction follows
on letting s -> 0. This complètes the proof of Theorem 5.

Note added in proof. Mr. D. Shea has pointed out to us that the resuit of
Theorem 4 is stated in § 5 of [7], However, although Vauron may hâve seen
how to prove Theorem 4 from the appropriate resuit of § 1 of [7], it is clear that
Theorem 4 does not follow directly from this resuit as Vauron seems to assert.

Cornell University, Ithaca, New York, USA
Impérial Collège, London S. W. 7, U. K.
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