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Bilinear Forms on k-Vectorspaces of Denumerable Dimension
in the Case of char (k) =2

by HErBERT GRrOSS and RoBERT D. ENGLE, Bozeman (Mont.)

Introduction. The classification, up to metric isomorphism, of finite di-
mensional k-vector spaces K, supplied with a symmetric bilinear form
@: E X E— k, is a rather difficult problem; it has been solved for particular
fields k, such as the field of rationals, reals, p-adic numbers or function fields
in one variable over a finite constant field. KapLaNskY has shown that for
k-vector spaces (H,®P) of a denumerable (algebraic) dimension, these prob-
lems vanish in a large number of cases, £ admitting an orthonormal basis
for an extensive class of underlying fields ([4]; for an investigation of such
fields see [3]). In the denumerable case, an exceptional role is once more

played by the fields of characteristic 2. For perfect fields of characteristic 2
Karransky has proved the following

Theorem. For every y,-dimensional k-space (E,®), @ a non degenerate
bilinear form, precisely one of the following four possibilities holds: (1) E
possesses an orthonormal basis, (2) £ possesses a symplectic basis, (3) Z is an
orthogonal sum E = E; @ L where E, is spanned by a symplectic basis and
L is one-dimensional, (4) E is an orthogonal sum E, @ L, where E, has a
symplectic basis and L is two-dimensional, spanned by an orthogonal basis
([4] p. 15). KarLaNSKY has asked what becomes of this theorem if the as-
sumption that every element in the coefficient field be a square, is dropped.

In the following, we investigate the case of an arbitrary field of character-
istic 2. Complete results as regards the classification problem are obtained for
all fields k of finite dimension over their subfields %2 (Theorem 2). As a side-
result we obtain an invariant characterization of the k-spaces (£, @) of de-
numerable dimension which admit of orthogonal bases, k£ an arbitrary field
of characteristic 2 (Theorem 3).

1. Notations and Results

Let k& be a commutative field. A k-vector space (E, @) is a k-vector space
E supplied with a symmetric bilinear form @:E X E— k. (E, ®) is called
semisimple if & ~ B+ = (0). In the following, an isomorphism (&, ®) ~ (G, y)
I3 a vector space isomorphism ¢: E — G such that y(dz,dy) = P(x, y)
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for all =, y e E. If there is no risk of confusion, we simply talk about % instead
of (£, P) and, we write (x,y) and ||z|| respectively for @ (z,y) and the
“length” @ (z, ) of z e E. A subspace H of (B, D) is always considered
as being supplied with the restriction @/y of @ to H. The radical of H (rad H)
is defined as H ~ H+. A subspace H c E is said to be closed if H++ = H.
If H is a closed subspace of (£, ®) and F a finite dimensional subspace of
(B, ®) then H + F is closed.

2. The following lemma, proved by KaprLANSKY in [4], will be used in the
proof of Lemma 4 below. Lemma: Let (B, @) be a semi-simple k-vector space
of infinite dimension over an arbitrary field k. Let furthermore F be a finite
dimensional subspace of &, spanned by the basis f,, ..., f,, V a subspace of
E with V+ = (0). Then there exists a vector x e £ with ze¢V, x¢ VA~ F
and @(z, f;) = B, for arbitrarily prescribed f; ¢ k.

3. Bases being the central object below, the following notations prove con-

venient. If «,...,x,€ek then (x,...,x,> is an nm-dimensional k-space
(E, @) possessing an orthogonal basis e;,e,, ...,e, with ||e;|| = «;. “P”
invariably denotes a hyperbolic plane, i.e., a two-dimensional space (E, @)
having a basis e, e, with ||e;|]| = ]| e]] =0 and (e, ) =1. 2P is an

orthogonal sum of hyperbolic planes (i.e., a space spanned by a symplectic
basis). 2'<«) is a space (E, @) spanned by an orthogonal basis (finite or in-
finite), each basis vector of length «,x # 0. If 2{«) is of denumerable di-
mension, we denote it by £, .

4. In the following investigations, k will always be a field of characteristic 2
unless stated otherwise. Every such field is a vector space over its subfield 4*
of squares.

5. If (E, ®) is a semi-simple k-vector space with dim £ < y, then E is
an orthogonal sum X' P @ E,, where E, is spanned by an orthogonal basis.

6. Let (E, ®) be a k-vector-space. We have ||z + y|| = ||z]|| + ||yl
for all z,y ¢ £ as char k = 2. Thus, if H is a subspace of £, then the range
of the restriction ||H|| is a subspace of the k2-vector space k. This range will
be denoted by ¢||H||” throughout. In particular, the set of all isotropic
vectors x in E (|| z|| = 0) is a vector space. This subspace of E is invariably
denoted by E, . (The subspace of vectors satisfying condition (7') in [1] p. 66.)
The subspaces E,, E}, E++, rad E, etc. will play an important role since
they are invariant subspaces under orthogonal transformations. We notice that
rad (EL) c E, by thedefinition of E,, hence rad(E}) c rad (B)~ B, = rad £ .
Therefore rad E: = rad E,, the converse inclusion being trivial. This means
in particular that rad E, (= rad(E%) = (B4 + E)*) is a closed space.
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I1. Bases

Let us mention a few words about the fields. When describing k-spaces
(E, @) in terms of orthogonal bases, it is clear that the non-square elements
of k play an important role. Let g, be the multiplicative group of non-zero
elements in £ modulo square factors. If g, is finite, then its order is a power of
2 since every element of g, is of order 2. If char £ = 2 then one can find, for
every natural n, fields with g, of order 2" (even among the denumerable
fields, [3]). On the other hand, if char k = 2 then k? is a subfield of & and
the elements of g, are precisely the straight lines through the origin of the
k2-vector space k. In other words, the order of g, is either 1 or equal to card
(k). In particular, since g, is of order 1 for finite fields, g, is either of order 1
or infinite. In the following discussion of isomorphisms between y,-dimensional
k-spaces the fields with finite dimension [k: k%] over their subfields %* are
seen to play a special role. Since a simple characterization of all non isomorphic
spaces over such fields can be given (Theorem 2), let us mention a few ele-
mentary facts about these fields. _

Clearly, if [k: k?] is finite, then [k:%?] is a power of 2. Furthermore, if £ is
a finite algebraic extension of k, [k: £?] finite, then [k: k%] = [k: k*] ([k: k%] =
= [k: k2] [k?: k*] = [k: k] [k: k*] and [k*: k*] = [k: k]). From this follows
that [k: k%] < [k: k2] for an arbitrary algebraic extension k of k. (< is
witnessed by the transition to the algebraic closure.) On the other hand, if

k=Fke,...,¢&,), where &, ..., &, are independent transcendentals over k,
we have [I; : k] = [k: ¥*]- 2" (a basis for k over k? is given by the elements
x; P ER .. &M g, =0,1 and «; running through a 4% basis of k). In
particular:

If k 13 a field of characteristic 2 with finite [k:k?], then [k:k?] is finite for
an arbitrary over field k of k, provided its transcendence degree over k is finite.
The fields k with finite [k:k?] form thus a considerable class.

Let again k be an arbitrary field of characteristic 2. It is well known that
Wrrr’s Cancellation Theorem does not hold for bilinear forms in the case of
char k = 2. Instead, we have the following orthogonal isomorphisms:

Lemmal. () @<(x,0) =<{ax)@DP (0 #ax ek, P a hyperbolic plane and
all the sums orthogonal ).

Lemma 2. (x,a) ® ® B> = <x,a) & @ {B;> provided that the elements
i€l i€l

{0, B:};e; are independent over k* and span the same subspace of k (over k*)
a8 the elements {x, f;};ex (card I is finite or infinite; all sums are orthogonal).

17 CMH vol. 40
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Proofs. 1. Let e¢,,e,,e; be an orthogonal basis of (&) @ <{«, «) with
[le;]] = o. Introduce a new basis e,, €,, €3 by €, = ¢, + €, + €;, €3 = ¢, + ¢,,
e; = o (e + €).

2. Let ey, €, ¢;(t € I) be an orthogonal basis of <(«,a) ® @ <B,> with

iel
llewll = ll€ll =, |le:]| =pB;. Since {«,pB;};e; and {«,pB;};c; span the
same subspace of k¥ we have o = A2« 4 X A28, for suitable 4, 4, ..., 4,.
1

Since the elements {x, 8;},c; are independent over k* we have A, # 0. For
a fixed choice of 4y, 4,, ..., 4, introduce the following basis

eg = loaem+(1°+lo )eo+2:'}~iei

ey = }'060+§Aiei
2Si$n5=iiﬂi(eoo+eo) + e
oa

n<i:ie;, =e.
We shall list a few consequences some of which will be of importance later.

Corollary 1. (i) @ E,, 02 P = @ K, (all sums orthogonal).
1€l
(i) {ogoyqogog .. Oy 2 {0404 00 ... &, 0,,> provided the elements
Kps o ooy Oy QTe mdependent over k2 and span the same subspace of k (over k?)
as the elements Kpy ooy Oy

(iii) @ Cojoi> & @ () =~ @ (oj ;) ® @ {B;> provided the elements

j=1 i€l 1€l

{15 -+ s &y Bitier are mdependent over k® and span the same subspace of k as
the elements {&;, ..., &, Bi}ier (card I is finite or infinite, m is a natural
number, all sums are orthogonal ).

We remark that the transformation of Lemma 2 does not lend itself to a
generalization of (i) and (iii) to the case of infinite m. (We have not succeded
in proving or disproving the infinite analogue of (ii) by any other means;
cf. Proposition 3.)

Another lemma which we shall use is the following:

Lemma 3. Let (B, D) be a k-vector space of denumerable dimension, semi-
simple with respect to the bilinear form @ : E X E— k and k a field of arbitrary
characteristic. Let furthermore R be a closed, totally isotropic subspace of E(R++ = E
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and B c R*'). There exists a basis (r,);c; of R and a subspace R’ of K admitting

an orthogonal basis (r;);c; such that R @® R' decomposes into an orthogonal

sum of semi-simple planes K; = k(r,, r;),

RoR = @K, card] = dim R = dim R’

i€l
and, furthermore, such that R @ R' admits of an orthogonal supplement in
E:E=R®PR)DPH,H]| ROR.

In the case of char k # 2, the planes K, are hyperbolic and R @ R’ thus
possesses a sympletic basis (cf. BourBak1, Formes Sesquilinéaires p. 78).

Proof. Let S and T be finite dimensional semi-simple subspaces with the
following properties:

SIT, TcR,S=@®K,, K, =k(r,,7}) and r,eR (1)
i=1
(T@)S)“R:k("i)lgign‘ (2)

Let (e,)m~1 be some fixed basis of the space E and let e,, be the first basis
vector not contained in 8§ @ 7'. We construct finite dimensional spaces K
and L in (S@®T)* such that §' =S P K and 7' =T @ L satisfy the
properties (1) and (2) with S’ and 7" in lieu of S and 7 and such that
en €S @T'. In this fashion we obtain a decomposition of £ of the required
form:

E=US®T=(US)®UT), H=UT and R®R =US.

Since S @ 7T is semi-simple and finite dimensional, we may decompose
€m: €y =-¢e, + e with e, e S@®T and e, | S ®T. Thus we may with-
out loss of generality assume that e,, | S® T'.

First case. e, ¢ R. Therefore ||e, || = 0 and, since (S @ T)L is semi-
simple, there exists »* with (e,, ') # 0. The space k(e,,, ') is semi-simple
and we put S’ =8 4 k(e,,r) and 7' =T. We have to determine
(T"+ 8')~R. Let re(T"®8)~R, r=1t+ 8+ Ae,, + ur' with teT,
seS and reR. Since T c R+ we obtain 0= (v, R) = (¢, B) hence
t=0 as T is semi-simple. Therefore, (since R c R') we obtain 0 = (r, e,) =
= (e, 7). Thus = 0 and v = s + Ae,,. Since e,, ¢ R in our case therefore
SeRie,seSAR=Fk(r);<,by(2). Thus (IT" ®8)~ R=k(ry, ..., p, €n)
which, upon relabeling e,, as 7, . (and 7' as 7),.,), is (2). The remaining
conditions are trivially satisfied.
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Case 2. ¢,¢ R and e, e R-. We first convince ourselves that e, ¢ R 4
+ (8@ T); assume that e,, =r + 8+ ¢t with re R, seS and te7. Since
em I S+ T and T c Rt, we have in particular 0= (e,,7T) = (¢, T);
hence ¢t = 0 as 7T is semi-simple. Since e, ¢ B+ in the present case, and
R c R+, we obtain furthermore 0 = (¢,, R~ 8) = (s, R~ S) 1i.e,
S 1 8~ R. From the explicit form of S = @ k(r,, ;) we see that neces-
sarily s e R~ S. Thus e,, = r 4 s ¢ R, a contradiction. Since (R + S + 7)1+ =
=R+ 8+ T, we conclude from e, ¢ R+ S+ T that (R+S+T)- ¢ e,t.
Hence there exists a vector ¢t e (R+ S + T)t = R+~ (S +4 T)L with
(€mst) # 0. Thus,if ||e,, || = 0 then k(e,,, t) is a semi-simple space and we put
8=8,T =T+ kle,,t). If, on the other hand, ||e,| 7# 0, we simply
putand 8’ =S and T'= T + k(e,,). We have to determine (7' ® 8’) ~ R.
Let, in the first case, re 7' @ 8’ i.e., r=8+t+ Ae,, + ut with seS,teT
and reR. Since e,, ¢ R+ and |le,||=0 wefind 0= (r,e,)=pu(l,e,),
therefore 4 = 0. Since t ¢ R+ ~ (S @ T')L we then find 0 = (r, t) = A(e,,, t).
Hence A = 0. This shows that (7" ®S')~ R = (T ®8S) ~ R. In the other
case, ||e,, || % 0, itiseven simpler to verify that (7" ® S')~ R = (T ® S)~ R.
The remaining conditions (1) are trivially satisfied for S’ and 7".

Case 3. ¢, ¢ Rt. Asin the second case one verifies that e, ¢ B+ + S 4 T'.
Since (BR+ + S + T)*+ = R+ + 8 + T, weconclude from e, ¢ R+ + S + T
that (Rt + S + T)* ¢C elt. In other words there exists a vector
re(Rr4+S+T) =R+~ (S®T)t =R~ S®T)* with (e,,r) # 0.
Since r ¢ R we have ||r|| = 0 and the space k(r,e,) is semi-simple. We
put 8 =8 @ k(r,e,) and T' =T. Upon relabeling r as r,,, (and e, as
r,.,) the conditions (1) and (2) are verified as in case 1. Q.E.D.

Lemma 3 often finds application in the following situation. Suppose that G
is a subspace of £ such that the radical R = G ~ G+ of G happens to be a
closed subspace of E. We then have a decomposition £ = (R@ R') ® H,
H | (R ® R'). Furthermore, one can always find an algebraic complement
L of R in @ such that L c H. For, if L, is some algebraic complement of B
in G then L, | R. Every vector /, ¢ L, has a decomposition ly = r + ' + h.
Since I, | R necessarily ' = 0. In other words, L, ¢ R @ H which shows
that there is a complement L of R in G with L c H.

We are interested in decompositions of E of the following sort: ¥ is an
orthogonal sum E = @ E,; such that the ranges || E,|| of the summands
are either 0 or 1-dimensional subspaces of the k*-vector space || E|| and such
that the elements spanning the non trivial || E,|| are linearly independent over &*.
In other words,

E=2PPL{t) DIap D ...
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where the P, are hyperbolic planes and where the field elements o, «,, . ..
are linearly independent over k*. In view of Lemma 1 we may assume that
the summands 2 {«,> are either of infinite dimension or of dimension < 2.
Thus, collecting 1-, 2- and y,-dimensional summands we may rewrite the
above decomposition as follows:

E = 2P®®E(8¢)®@<Yz7’z>®@<a> (I)

1€ly i€ly 1€ly

where all the field elements f,, y,, §, together are independent over k2.
We shall determine those k-space (E, @) which admit of a decomposition
of type (1). We first have

Proposition 1. If E admaits of a decomposition (1) then
E: ®QEL* = (rad B )*. (2)

Proof. Let for every ¢ eI, the space E ,; be spanned by the vectors
(€i)>1* (H(gy)« is spanned by the vectors (e;, + ¢;,),~, and, the orthogonal
complement of (E,,)x in E g, is (0). Let furthermore, for every ¢ ¢ I,,
{y;y;> be spanned by the vectors f,, f;. Since all the elements B;,y;,d,
together are independent over k? (by assumption), we obtain for E, from (1)

E,=2ZPo®E; ) 0 @k(f,+ 1) ®O).

1€ly
Furthermore

Ei=0)o@k(f,+f)e® ;) and ELL =2Pg—a Egpx © ® k(f; + f3)-

From this we readily read off that (2) holds.

Condition (2) is not always satisfied. The simplest kind of counter-example
is the following. Let E be spanned by the basis vectors {e;};~,v {f:}i=1" {90}
and let @ be defined on the basis as follows: [[e;|| =0« and (e;,¢;) =
:0(2"—#73"’:721 ”fz”""ﬂz and fz’f:a —_0?"7&7""721 HgOH"‘y
and (e, f;) = 0, (e, go) = o, (fis go) = Bi> (8,7 = 1) for «,y, s Py ... In-
dependent over k? (a field with [k: k*]>x, is required). Here rad E, = 0
and (rad E,)t = E, but E: + Ei+ falls short of E by one dimension.
We remark that (2) is eqmvalent to E L @ EL+ being closed.

We shall prove that the converse of Proposmon 1 is true. This is accom-
plished by reducing the general case to the cases of spaces E with K. = (0)
or Bl = E,. We start out with these special cases.
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Lemma 4. Let (E, D) be a semi-simple space of denumerable dimension with
EL =(0). Then for every o«cl||E|| and every orthogonal decomposition
E =H ® H* with finite dimensional H we have o« €||H*||.

Proof. Let ¥ = H @ H+ be any decomposition with finite dimensional
H, furthermore « some arbitrarily fixed element in || £||. We apply Lemma
1.2 with E, and H in the roles of V and F respectively. Since « ¢|| Z|],

there exists some vector x,e F with ||z,|| = «. Hence there exists a vector
xel, with (z,f)=—(2,f;), fi, ...,f, a fixed basis of H. Therefore
(tg+ x,f;) =0 ie, x+ x| H. Since xze¢E, we have ||z, + x| =
= || %|| = «.

Proposition 2. Let (E, D) be a semi-simple space of denumerable dimension
with ||E|| # 0. We have an orthogonal decomposition

E=@Egx,

i€l

where {7;};e; 18 @ k*-basis for || E|| if and only if EL: = (0).

Proof. If £ admits such a decomposition it is readily verified that By = (0).
Let us then assume that E} = (0). We construct a decomposition of £ of
the required type step by step. Let F =2XP PLin)p @D ... @ X <{m,> be
a finite dimensional subspace of E, the P, hyperbolic planes and the field
elements 7, ..., 7, linearly independent over k*. Let furthermore (e;);-;
be some fixed basis for the space £ and assume that e,, is the first basis vector not
contained in F. We shall construct a finite dimensional subspace H in F+ such
that e, e F®H and F'=F @ H is of the form PP E(n) @D ... DL ()

with =, ..., n, linearly independent over k2.

Since F is finite dimensional and semi-simple, we may decompose em Pl =
— e, -+ e’ with e, ¢F and e/ | F. Three cases are possible: He || =0
and e, is contained in some hyperbolic plane P’ < F+ or ||en| # 0 or

lles || =0 and el (8,8 c FL for some 0 # deck. In the first case
we may choose P’ for H and we put F' = F @ P'. In the second case
we put F' =F @ Ic(e”) provided that e ¢ || F||. If, on the other hand,

we should have e, = 2 A7, with, say A, # 0, then we apply Lemma 4 a

finite number of times a.nd find a sequence of mutually orthogonal vectors
hishyy ooy by in (F + k(ey,))t with || By || = [lenl], [[A]| =, 2 <3 <.
By Lemma 2 the space H spanned by e:;, hy, by, ..., h, is isomorphic to
{7y Wy 7y 75, -« ., W,y and we put F' = F @ H. The third case is treated in
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the same way, the first two vectors for the construction of H already at hand.
Thus, in all three cases we find F' = F ® H, e,, ¢ I’ where F’ again is of
the form YP P E{(n) P ... ® 2 {n,>, the m;s linearly independent over
k2. In this fashion we find an orthogonal decomposition of E as follows,
E=UF=PPE{n) DLy @ ... . In view of the independence of
the 7,8 we have B, = XP @ (X<{m))y @ .... Not all of the summands
Z (x> can be (0) since ||E|| £ 0. Thus, if one of the summands should be
finite dimensional we would have K. 5 (0), contrary to assumption. Hence
all the summands X'(x,> are infinite dimensional. Application of Corollary 1
finally yields £ ~ Kz, D E@x, ® ... .

Corollary 2. If (E,®) s a space with E. = (0) whose range ||E|| +# 0
18 spanned by the elements m,, ..., =, (not necessarily independent over k?)
then E is itsomorphicto En) @ ... ® E(n,,.

Proof. By Proposition 2 E~E,,® ... ® E,, where o, ... 0, is a
k*-basis for ||E||. Let then =, ..., x,(n < m) be a subset of elements in-
dependent over k2. By Corollary 1 (ii) we have

<nlnl> @ R @ <7L’n7’li,,,> = <0101> @ o8 s @ <0n0n>'

T
Hence trivially B,,® ... ®Ep 2 B2y @D ... ®E(a,. Let 7, = 2 Aim,.
i=1
After renumbering =, ..., we may assume that A, # 0, 1 <7r <.
Hence by Corollary 1 (ii) <{f,py Tpyy @y ... Wy =2 (W % A, ... T,). Thus
Enpp ®EBiny @ ... D Einy) = Ezy ® ... D E(z, can be arranged in a
trivial fashion. In this manner we obtain E;) ® ... ® B, >~ K.

Proposition 3. Let (E, @) be a semi-simple space of at most denumerable
dimension. We have an orthogonal decomposition

E = @ <{m;=,)
1€l

where the n; form some k*-basis for || E|| if and only if EL = E,.

Proof. If E admits such a decomposition we trivially have El = E,.
Conversely, let us assume that E: = E,. We first remark that E cannot
contain a triple of mutually orthogonal vectors of the same length # 0. For,
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assume that z,, z,, 2; were such vectors, ||z,|| = ||2|| = ||2]|| # 0. We
decompose according to the decomposition K =E,PL:z =e + 1,
2o=1=¢0 + b, zz=1e+ L. Thus ||,]| = ||L|| = ||L]||. Since L contains no
isotropic vectors we must necessarily have [, =1, = l;. Since E, is

totally isotropic in our case, the three orthogonality conditions reduce to
0=(e,+ e, b))+ [lLll, 0=(ea+ &, h) + LI, 0=1(e+ &, ) + || L]l
Adding the first two of these equations we obtain (e, + e;,7;) = 0 which
contradicts the third one as ||, || ## 0. We now construct a decomposition
of E step by step as in the proof of Proposition 2. Let F = {(m, n,> @ {my ) P
® ... ®<{x,m,> be a finite dimensional subspace of £, =,, n,, ..., n, linearly
independent over k%. Furthermore, let e,, again be the first basis vector of
some fixed basis for £ not contained in F. Without loss of generality we may
proceed assuming that e,, | F. We consider first the case that ||e,, || # 0.
We try to find a vector le¢ F+ ~ E, with (I,e,) # 0. Suppose that there
is no such vector !, in other words F! ~ E, c e};. Since E, is closed
in our case, we find (F + El)* = Ft~ E* = F'~ E, C e, therefore
ene(F+EL)'*=F + El ie, e, eF+E.=F+ E_.Thuse,=f+/
with |le,,|| = || /]| # 0.

Since f e F we should therefore have three mutually orthogonal vectors of
the same length ||e, || # 0, a contradiction (if F contains one vector of
some length &« = 0, then it contains, by virtue of its form, two orthogonal
vectors of that length). Thus we must have FL ~ E, ¢ e, and there exists

a vector I e F* ~ E, with (e,,l) # 0. Hence ¢, and e, = e, + -l-(l-lf-’gl—;- !
are mutually orthogonal vectors of F: with |le, || =] e,||. We put
F'=F®k(e,,e,). There remains the possibility that ||e,| = 0. Since
E, is totally isotropic, e,, cannot be contained in a hyperbolic plane, therefore
e, €{d,8> c F+ forsome 0 # 6 ek (F~issemi-simple). Since there cannot
be more than two orthogonal vectors of the same length # 0 we must have
d¢||F|| and we put F' = F @ (66> similar to the former case. In this
fashion we obtain a decomposition of E of the required form, £ =UF =
(> @ {mym,> @ ... where all the 7, s are linearly independent over k2.

We now prove the converse of Proposition 1.

-Theorem 1. Let chark = 2 and (E,®) a semi-simple k-space of denu-
merable dimension and let B be the subspace of vectors of length zero. If

Ei 4 B+ = (rad E,)*

then E admits of an orthogonal decomposition
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E = @’2 Eyy © ® B, B> ® 6? G (I
- 1 1€l t€ly
E :@I Pi 9.6‘1) <ﬁi’ B> Q‘G’B oy (II)

where, in the first case, the elements of the union {y.};cr, v {Bi}icr, v *i}ier, are
a k*-basis of the range || E || over k?, in the second case the same for the elements
of the union {B,};er, ¥ {%:i}ier, (the P;s are hyperbolic planes).

Proof. Let R =rad (E:')= (Ey + Ei)*. Since R is totally isotropic
and closed, we can apply Lemma 3 and obtain a decomposition

=(ROR)®H, H] (RDR

ROR =@k (rr r), R=@@k )i, (1)

i€ly
Since B | E;+, we can find an algebraic complement S of R in E 1+ with
S | R' (see the remark following the proof of Lemma 3). Hence S | R ® R’ :

Ei+=R®S8, Sc H. (2)

Furthermore S is semi-simple. If 7' is the orthogonal of S in H, we obtain
from (2) ELf =E:** = R@®T. On the other hand, by the assumption of
the theorem RO H =R+ =EL. - Bt =R® (S DT). Since S+ T c H
therefore S + T' = H. Furthermore, since S is semi-simple, the sum 8 + T
is direct. Thus E is decomposed into three orthogonal summands:

E=ROR)DS®T (3)

and it remains to discuss the spaces R ® R', S and T'. With regard to S we
first remark that

E,=R®S,. (4)

For R® S, c E, is trivial. Conversely, if z ¢ E, c E:* = R @S we have
*=r 4 s with r« R and seS. Therefore 0 = || z|| =]|r]| + ||s]| = || sl
and seS,. This shows E, c R+ S,. Let then Si: be the orthogonal
of §, in S Since Sis c S and S | B we have Sis c E; by (4). Also
Sypc 8 c Bt hence 8tsc EL~ELt =R. Therefore Sts = (0) as
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Stsc S and S~ R=(0). Thus, 8 is semi-simple and S}s: = (0). Two
cases are possible for §: Either § = §, in which case § is a sum of hyper-
bolic planes or else S 5= 8, in which case the range || §|| is different from
0 and Proposition 2 can be quoted: Thus

either S= @ P, or 8§ =@ Ey, . (5)
i€l i€l
From (4) we learn that R’ ~ E, = (0). Therefore, taking orthogonals in
R+ R, we obtain (R+ R)y = R = R*= (R + R'); and we may cite
Proposition 3:
RERDR = @B, B - (6)
1€ly
Finally E, ~ T = (0) by (4), i.e., T' contains no isotropic vectors. Hence 7'

possesses an orthogonal basis, 7' = @ <{«,;> where all the «,s are independent
i€y

over k*. Summarizing the facts about the decomposition (3) we see that £

admits of an orthogonal decomposition of the form

E=DEy,o @DBiBooeD<x) or E=DP,0DB:fyo D <n.

1€l 1€lg i€ly 1€ly 1€lq 1€ly

A dependence 0 = Xy, + Zuip; + x5, defines an isotropic vector
x=2vc, +2pb, +Zx,a;,, Zv,c;e 8, Zu,b,e R+ R and Xx,a,¢T.
By (4) zeE, =R+ S, and thus », =0, ||Zv¢]| =2Zviy,=0 and
[|2p:b;]| = ZuiB; = 0. However, the y,s are linearly independent over k?
by Proposition 2. Therefore », = 0. Proposition 3 guarantees the inde-
pendence of the f,s and therefore u, = 0. This proves that the elements
v:, B;» %, together are independent over k* and the proof of Theorem 1 is
complete.

Theorem 1 can be used to discuss the problem of isomorphism between y,-
dimensional k-spaces (£, @) in a large number of cases. We shall give here
a complete discussion of the cases where the underlying field k is of finite
dimension over its subfield k2. Thus, let k be a field with [k : k?] finite. For
a space (E,®) we have codim E, < [k: k*] or else an algebraic comple-
ment of £, in E should contain an isotropic vector which is impossible. Since
dim B! < codim E,, the space E} is finite dimensional and E L+ 4 K is
therefore closed. Hence every space of denumerable dimension over such a
field admits of a basis as described by Theorem 1. (The following discussion
also includes that of spaces (E, ®) with || E|| finite dimensional over k*, k
an arbitrary field.)
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Theorem 2. Let k be a field of characteristic 2 of finite dimension n over its
subfield k* (n = [k: k?]), (E, D) an y,-dimensional semi-simple space over k.
Then (i) E 1is of the form:

E=Ey,®... 0 Eu @<PibiBefe-- BB D<lnyory ... )y r=1 (I

or

E—=2SP®Bibifufe- Byh>® atg .. >, (11)

where all the sums are orthogonal and, in the first case, the elements
Vis o ovsVrs Bis coos Bsy &15 - .., &, are tndependent over k* and the same for
Bis oo o5 Bps %15 - .., &, tn the second case (thus r 4+ s+t <m, p + g < n).

(ii) E 18 uniquely determined, up to orthogonal isomorphism, by its range
| E||, the range ||EL*|| and by the space E . (In particular, the numbers
r, 8 and t, respectively p and q are orthogonal invariants of the space E.)

(iii) In terms of the above bases: If |[EL*|| # 0 (i.e., B, not closed) then
E is of type (1), of [|E£+|| =0 (i.e., By closed) then E s of type (1I). (Thus
(I) and (II) represent non isomorphic spaces.) A space of type (1) is uniquely
determined, up to orthogonal isomorphism, by || B ||, the subspace of k (over k?)
spanned by the elements vy, ..., v, and by the space {x,, ...,n,. A space of
type (II) 18 uniquely determined, up to isomorphism, by || E|| and by the space

Ayy vev s By

Proof. It only remains to discuss the question of isomorphisms. For a
space of type (I) let Ky, be spanned by a basis {e;;};~;* £, is then spanned
by the vectors e;; + e; (j = 1) and the orthogonal of E, in E, is 0.
Let <B,f, -..,B,B,> be spanned by a basis {e;, e;},-;, and let R be the
totally isotropic space k(e; + e}), —i<s+ We then have, by virtue of the in-
dependence of the lements »,, ..., B, ..., x, .

E*zEm)*@--- @E(V,)* @R, Ei =RD L, .o,
EiL:E(71)®... @E(yﬂ@R.

Let~ﬁ be another space falling into category (I), E=E D . Dl @
® Bibrs ..., BiBsy ® G, -, 50> such that || B|| = || B||, [| B+ = | B+ |
and E! ~ E:. We have to prove that K ~ E. Since y,,...,7, and
7, ..., p; are independent over k* we first have r =7 (since |[Ei*|| =
= ] EL+]|]). By Corollary 2 we see that Elt ~E}*. Hence we may intro-



260 HerBERT Gross and RoserT D. ENGLE

duce a new basis in E’}l such that y,, = y,, 1 <¢ <r. From the isomor-
phism R® <{x;, ..., ) ~R® (&, ..., ;> we conclude that {x,, ..., > =~
=~ (&,...,a;) since R and R are totally isotropic orthogonal summands and
since both <a,, ..., «,> and («,, ..., a;> are semi-simple (even non-isotropic
by the independence of the «s). Thus ¢ = ¢ and we may introduce a new basis
in <&,...,%,> such that x, =«;, 1 <i <¢. Finally, since ||E|| = || E||
and since p;,..., By, ..., 0%,... and p,, ..., El, .v.,0,... are independent
over k? we have r 48t =r }+ 8+ t; therefore s=8 as r=7r and t=1.
Furthermore, having introduced the new bases in E—il and <oy, ..., %)

Wema'y CIt'e Coroua'f_y__l (il): 37_13 sy yr> @ <ﬁl:317 ey IBsﬂs> @ <0‘1a ) at> =
= @y 7 D Bibrs s BB DBy . .5,y Afortioni By @ ... @ By, ®
@ <.Blﬂ1: st ﬁs:Bs> @ <0‘1’ e o‘t>_~% E(;'l) ®... G-)E(;f) @<ﬁlﬂls R ﬂsﬁs> @

@ {04, ...,0,y and thus E ~ E. The simpler case of spaces falling into
category (II) is treated in the same way. This proves Theorem 2.

Theorem 2 may also be expressed in the following way: If [k: k?] is finite
and (Z, @) an p,-dimensional, semi-simple k-space with E, not closed, then
there exist three finite dimensional k-spaces /',G and H suchthat F @ G ® H
contains no isotropic vectors and E is isomorphic to the (external) ortho-

gonal sum (TF)® GO G @ H. E is uniquely determined by the ranges
||F + G+ HI||, || F|| and by the space H; on the other hand, if E, is
closed, then there exist two finite dimensional k-spaces G and H such that
G @ H contains no isotropic vector and E is isomorphic to the (external)

- ]
orthogonal sum (XP) P G @ G @ H. In this case E is uniquely determined
by the ranges ||G + H|| and by the space H.

We should like to mention that Theorem 2 alone can be obtained more
directly by proving Theorem 1 only for spaces £ with || £|| of finite dimen-
sion over k2. This is done by an induction on dim,|| £||. For dim,.||E|| = 0
we have K = XP. After induction assumption two cases arise which have
to be treated differently: First case, there exists some decomposition
E = H @ H+ with finite dimensional H such that dim,, || H+ || < dim, || E||.
Hence there is a basis of the required sort for H+ by the induction assumption.
The required basis for £ is then found easily by applications of Corollary 1.
Second case, there is no such decomposition of £. In that case, one proves
directly that £ = E 5, ® ... ® B, where m;,..., n, span || E||. Thisis
accomplished along the line of the proof of Proposition 2, where now the as-
sumption of our case replaces the function of Lemma 4.
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Thus, for fields £ with finite [k:%?] a complete list of non isomorphic
k-spaces (E, @) of denumerable dimension can easily be given on the basis
of Theorem 2, provided one knows the finite dimensional, non-isotropic k-
spaces ({x,...,x!). It is advantageous to first subdivide the spaces ac-
cording to the dimensions of E/E,, E; and rad (E,). In the notations of
Theorem 2: p +¢q,r + s+t =dm(E/E,); p+4q, s+t = dim(Ei-);
p,s=dim(rad B,) p+¢q, r + s+t <[k: k*]. We may use uniformly the
notations r, s, ¢ by interpreting a triple (r,s,f) with r = 0 as belonging
(n+1) (n+2) (n+3)

6
(r,s,t) with 0 <r + s+ t <mn; they yield a subdivision of all semi-simple
Ro-dimensional k-spaces (E, P) according to their dimensions of E/E,, E}
(n+1) (n+2) (n+3)

6
choices for y,, ..., ¥, P1s---5 Bss %1, - .., %, are then taken. For the sake of
illustration, we give a complete list for an underlying field ¥ with [k: k?] = 2:

to a space of type (II). There are

ordered triples

and rad E, into classes (n = [k : k?]). The particular

dimE/E+| dim B4 (ra.((iiuz'* )
rt+s8+1t s+t 8
0 0 0 EP
1 0 0 E,
1 1 0 SP @ &
1 1 1 SP @ v, v
2 0 0 Ey @ Eg
2 1 0 Ey @<y v#u
2 1 1 Eo ®<B, 8, By ®Lx,0) vF#a
2 2 0 SP®<x,v> v £
2 | 2 | 1 | ZP@B.AHOW, EPBL,e @) v £a
e | 2 | 2 | ZPOwo @B

All the sums are orthogonal, {x, 8} is some fixed basis of k over &*; » and
# run independently through a fixed set of representatives of g, (the multi-
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plicative group of ¥ modulo square factors), subject only to conditions listed
in the table. All the spaces thus obtained are mutually non isomorphic and
they are, up to orthogonal isomorphisms, all semi-simple k-spaces (£, ®) of
denumerable dimension.

II1. Orthogonal bases

Let k be an arbitrary field of characteristic 2. If the semi-simple k-space
(£, D) is finite dimensional, then either & = X'P or F possesses an orthogonal
basis (Lemma 1). Let (£, @) be a space of denumerable dimension. ¥ is an
orthogonal sum X P @ E, where E, possesses an orthogonal basis. If
dim, (E/E,) is infinite (i.e., dim,,||£]| is infinite), then dim E, is infinite
and £ has an orthogonal basis by virtue of Lemma 1. Thus, if ¥ does not
admit of an orthogonal basis, then E/E, is of finite dimension and there
exists a decomposition of £ as described in Theorem 2 (necessarily of type (II)):
E =2XP ®E, where E, is finite dimensional and spanned by an orthogonal
basis. Conversely, a space of this form does not admit of an orthogonal basis

© N
for, 2P @ E, ¢ @ k(e,) gives By, c @ k(e;) for a suitable N and thus, for
1

the respective orthogonals, we obtain @ k (e;) — Z'P. This is a contradiction
N+1
as ||e;|| # 0 for an orthogonal basis of a semi-simple space. Thus, a space

(E, D) of denumerable dimension admits of no orthogonal basis if and only
if £, is closed and Z/E, finite dimensional. These conditions may be formu-
lated in various ways. Here is a selection:

Theorem 3. Let k be an arbitrary field of characteristic 2, (B, @) a semi-simple
k-space of denumerable dimension. The following statements are equivalent:

(j) E possesses no orthogonal basis;
(Gi) E|[E, ts finite dimensional and E, s closed;
(3ji) By 18 finite dimensional and dim E[E, = dim B ;
. (jv) E|E, is finite dimensional and dim (rad E,) = dim E/(E, 4 E) .

IV. Automorphisms

We shall add here a few remarks about the group O(E, @) of all metric
automorphisms of a space (&, @), i.e., the group of all vector space auto-
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morphisms 7' : E — E which satisfy &(Tz,Ty) = @(z,y) forall z,yec k.
The underlying field & is of characteristic 2 and dim £ = yx,. The structure

of the group O(F, @) is unknown in the general case. If (#, @) satisfies the
conditions

E; + E;+ isclosed, dim(rad E,) <y, (1)1)

- which always takes place when the underlying field is of finite dimension
[k : k?] over k? — then the study of O(X, @) can be reduced to the study of
simpler groups. They are the (sympletic) group O (&, @), where the y,-
dimensional space (E, @) is an orthogonal sum of hyperbolic planes, and the
group O(E, @), where (E, ®) is an orthogonal sum K., , ® £, ® ... and
the elements «;, «,, ... independent over k% (cf. 1.3 for notations). This
reduction, possible for the spaces subject to (1), shall be carried out here.
For a space satisfying (1) there is decomposition (Theorem 1):

E=E,® R+ R)DE,, (2)
where E;, R @ R' and E, are orthogonal summands such that
R=radE,, E, =E,, R, E; =R®E, E;*=E,®R (3)

and, furthermore, R @ R’ is an orthogonal sum of planes k(r,,r;), i ¢ [ for
{ri};e; and {r;};c; a basis of R and R’ respectively. For every T ¢ O(E, ?)
we have T (Ey) =E,, T(R)=R, T(E:)=E; and T(E;*)=E;*.
When ze¢R @©E, we write Tax=xz+ Lx. Hence ||Lz||=0 and
Lz ¢ E* cC Eil,

LxeE,® R for ze R" D E, . (4)

In particular, if x ¢ R and y ¢ R’ then (z,y) = (T'z,Ty)= (Tz,y + Ly)=
= (Txz,y) since TxeR | E,® R. Therefore (x —Tux,y) =0 for all
YeR or t —TxeR'{,R'"Lt~R=0; hence x — Tx = 0 since x — Tz also
belongs to R. Thus the restriction 7'/R of T to R leaves the vectors of R fixed,

T\gr=1r. (5)

!) We recall an earlier example where the second condition is satisfied but not the first. See the
remark at the end of this section.
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Let then z¢E, and yeR'. Since B, c B, and T(E;)= E, we have
LxeR; hence (x,y) = (Tz,Ty)=(x+ Lz,y+ Ly) = (»,y) + (Lz,y).
Thus (Lz,y) =0 for all ye R i.e., LreR'L, R"* ~ R =0 and therefore
Lx =0 as Lx e R. In other words,

T\|g, = Ik, . (6)

Thus, every automorphism of £ leaves E } pointwise fixed. Therefore we have
for every ze¢R' and yeE}: that (x,y) = (Tz,Ty)= (Tz,y) hence
*t—TzxeBi+=E,+ R for every z e R'. Therefore, and in view of (5)
and (6) we can decompose the image 7'z for every ze¢(R @ R') + E, as
follows, Tz = x + Lyxz + Lyx with LyxeE, and L,z e R. Computing
| Tx|| shows furthermore that even L,z ¢ E,,. We therefore have
(xe RO R @ E,)

Te =x+ Lyx + Lyx (7)
where the projections L, and L, are linear maps
Ly: ROR ®E,— Ey,, Ly(R D E,)=(0);
L:R®PR ®E,~» R, L,(R®D E,) = (0).
On the other hand, for 2<%, c B+ = E,® R we have
(xeBy) Tx=Lx+ Lix Lyxel,, LyxeR. (8)

Since R is totally isotropic and orthogonal to E,, L,: E,— E, is a metric
automorphism of E,; L, is some linear map E,— R. If we express Tz for
an arbitrary z ¢ E by using (7) and (8), then the condition that (z,y) =
= (Tx,Ty) forall z,ycE, T e O(E, D) is equivalent with the conditions

(¢, Lyy) + (Lyx, Lyy) = 0 forall ze¢R',yek, (9)
(z, Lyy) + (Lyz,y) + Loz, Lyy) =0 forall z,yeR (10)

(9) and (10) permits a discussion of O(E, @) as in the finite dimensional case
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([2)). First, the system (9) and (10) admits of solutions L, and L, for arbitrarily

prescribed L, and L;, L, an automorphism of E, and L,: E,— R a linear

map. Indeed. For given L, and L; (9) defines a linear map L,: R' — E,, in

a unique manner. We then extend it to Ly: R ® R' @ E, - E,, by defining

Ly(R @ E,) = (0). Appealing to the basis of RO R = @ k(r,,r;) we put
I

L,r; = Za,r;. Condition (10) is satisfied with the previously found L, pro-
vided that o, + a;; = (Lo, Lor;-) . Since (Lyr;, Lyri) = || Lyri|| = 0 as
Lor; € By, there are always solutions for the unknowns «;,; (this is the only
place where use is made of the assumption (1) that dim R < x,). This proves
our assertion. Thus, if T' runs through O(Z, @) then the restriction 7|z o p
(it leaves Ey ® R = E;+ invariant!) runs through the group & of all auto-
morphisms of the space E,® R that leave R pointwise fixed (as we have
just proved, every element of & can be extended to an automorphism of E).
T'— T|g,gg defines an epimorphism

p: O(E,P)— 6. (11)

The kernel € = ker ¢ can easily be described. 7'« € means that T'|; gz
is the identical transformation of K, ® R. For such a T and every
reB, ®RPE, ye R we obtain from (z,y) = (T'z, Ty) = (x, Ty) that
y—Tye(ly+ R+ E,)* = R. Thus

Te=z+ Lz, LixeR, xe¢ &, L,(E,+ R + E,) = (0) (12)
(x,y) = (Tz, Ty) yields
(y: L4 x) + (L4ya x) = (O) . (13)

Conversely, every linear map L,: R'— R meeting (13) defines an element
T ¢« € by means of (12). € is thus seen to be isomorphic to the additive group

of linear maps L: R R’ satisfying (13). Thus, as s = dim R is finite,
s (s41)

€~k 2 . Let us turn to the group . It contains the subgroup ®, of
automorphisms 7": E,® R— E, ® R of the form 7': xz— x + L;x where
L; is an arbitrary linear map L;: E,® R — R with Ly(R) = (0). G, is an
invariant subgroup of ® and G/G, >~ O(E,, D g,). ®, is isomorphic to the
additive group of all linear maps L: E,— R, and G, =~ k* or ®, =~ (1).

18 CMH vol. 40
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Thus, if we put G, = ¢~1®,, we have the series of invariant subgroups

Cc G c OF, D)
s (s+1)
with €~k 2 ,G/C = Gy, O(F, ?)/C =< O (E,y, D|g,), s = dim (rad E,).
E, is an algebraic complement of rad E, in El*; it is either an orthogonal
sum of hyperbolic planes or an orthogonal sum K., ® ... @ E,,, the ele-
ments «,;, «,, ..., x, independent over k2.

Remark (added in proof). The condition in (1) that dim R = dim (rad £ ) < g,
is quite unnecessary for the discussion that followed. Setting L, r; = Z«,;r; the
matrix equation «,; + a;; = (L, 7;, Ly r;-) admits row-finite solutions (which
actually define a map L,); for example ;= 0 (j=1), a;= (Lo 7;, Lo r;-) for
j <t. For the normal series of groups obtained we have in the case dim R = y,:
Go=~k» and C =~ k».
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