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Homology and fibrations I
Coalgebras, cotensor product and its derived functors

by SAMUEL ErLeNBERrG!) and JorN C. MOORE

1. Introduction

The study of the relations between the homology structure of the base
space, the total space and the fiber of a fibration offers ample opportunity for
application of homological algebra. This series of papers develops some of this
algebra and derives its relations with the geometric situations.

In this paper the basic notion is that of a (graded differential) coalgebra A
over a commutative ring K. Left and right (graded differential) /-comodules
are defined as well as a cotensor product A4 [(J,B of a right A-comodule 4
and a left A-comodule B. Using a suitable relative notion of an injective
resolution the derived functor Cotor?(4, B) (which is a graded K-module)
is defined. This functor is the target of a spectral sequence {E7(4, 4, B),d"}
and under some flatness conditions (which are always satisfied if K is a field)
the term E2%(4, A, B) is isomorphic with Cotor®‘4 (H (4), H (B)). This
algebraic apparatus is developed in §§ 2-10.

The contact with geometry is established in the following way. We consider
a commuting diagram

g%k

n’l l 7
B — B
/
of topological spaces and continuous maps. The normalized singular chains of
B with coefficients in K yield a coalgebra (B; K). We regard (B’; K) as a
left (B; K)-comodule and for any coefficient K-module C we may regard
(&; C) as a right (B; K)-comodule. The diagram above then yields a natural
transformation

v: H(E'; C) — Cotor'B: X ((E; C), (B'; K)) .

The main result (Theorem 12.1) asserts that if the space B is pathwise con-
nected and simply connected, n is a fibration and =’ is the induced fibration
by f then 7 yields an isomorphism

1) Supported by Contract NONR 266 (57).



200 SamMuEL ErLENBERG and JoEN C. MOORE

H(E'; C) ~ Cotor BB ((E; 0), (B'; K)) . (1.1)

A very important special case is when B’ is a single point. Then E’ is the
fiber F corresponding to the point f(B’) of B and (1.1) becomes

H(F; C) ~ Cotor'% 8 ((E; 0), K) . (1.2)

In § 15 we give a more elaborate relative version of (1.1). In § 18 we show
that if C = K and suitable flatness conditions hold then both sides of (1.1)
and (1.2) acquire the structure of graded K-coalgebras and (1.1) and (1.2)
are isomorphisms of K-coalgebras. For general C' (1.1) and (1.2) are iso-
morphisms of right comodules over these coalgebras. Similar considerations
apply to the terms of the spectral sequences approximating the right sides of
(1.1) and (1.2).

A very important special case has to be attributed to Apams[1]. If ¥ is
the space of paths in B with fixed origin b, and =n: £ — B is the evaluation
at the end point of each path, the fiber F' is the loop space 2(B). Since X is
contractible, the isomorphism (1.2) may be reduced to

H (2(B); C) ~ Cotor'B:E)((C; K) (1.3)
and in particular
H(Q(B); K) ~ Cotor'®%(K, K). (1.4)

Starting with the coalgebra (B; K), Apams has constructed a complex X
(the co-bar construction) and has shown that H(X) ~ H (£2(B); K) when K
is a principal ideal integral domain. In our theory X appears as an injective
resolution which allows to compute Cotor ‘& (K, K).

The definition of Cotor properly belongs to the domain of relative homo-
logical algebra that will be treated by us in a forthcoming publication. How-
ever, it has been possible without serious loss of space to give here an entirely
self-contained account.

2. Coalgebras and comodules

Let K denote a commutative ring (with unit). We shall consider complexes C

d

o0, —C > ... >0y =0

of K-modules. A morphism f:C — D will be a family of K-morphisms
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fu: C, = D, commuting with the differentiations. The resulting category is
denoted by DG K. Any K-module C is regarded as an object of DGK by
taking C, =C and C, =0 for n # 0. In particular K itself is an object
of DG K . The tensor product C ® D for C, D ¢ DGK is defined in the usual
way and is again in DG K. We adopt the usual identifications K ® C = C =
=CQK.

A coalgebra A over K (or a K-coalgebra) consists of an object 4 of DG K
together with a pair of morphisms

e:A—>K, 6:4->4Q4
satisfying the identities

E@A)d=1,=(4®¢)b, (6 4)56=(4® ).

A right A-comodule is an object 4 of DG K together with a ‘“‘structure mor-
phism”’
ViA->44
satisfying
E®A4) V=1, (VRA)V=(AQJHV.

With the obvious morphisms, these right comodules form a category DG A
(the category of graded differential right comodules over A). Analogously we
define the left comodules and obtain the category ADG@G. The ring K itself
is a coalgebra with ¢ = d = 1x and every complex over K is also a comodule.
Thus the notation DG K is unambiguous.

All the above can be repeated by requiring that all differential operators
be zero. We then obtain the categories GK, @A and AG where A is a K-
coalgebra with zero differentiation. We shall regard G A as a subcategory of
DG 4.

The category DG A is an additive category with cokernels. If A is K-flat
(i.e., if each 4, is a flat K-module) then DG A is an abelian category. The
category DG A is equipped with a natural functor DG A — DG K obtained
by neglecting the structure morphism. There is an adjoint functor in the
opposite direction which to each object C e DGK assigns the extended
A-comodule C ® A with the structure morphism V= C ® §. More generally,
if A is a right A-comodule and C isin DGK then C ® A is a right
A-comodule with the structure morphism

CRIV:CRQA->CRA4AQ4.
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Let A4 be a right A-comodule and B a left A-comodule. The cotensor product
A [, B is defined as the object in D @K which is the kernel of

1:AQB—-AQRARB, 1:VaQB—ARQVs.

Proposition 2.1. If 4 = C ® A is an extended comodule then the mor-
phism
1:0QVe:CRB—->CQRAQB=AQ®B

establishes an isomorphism

CRB~(C®A4) 0O,B.

Proof. Let t=CQ®Re¢QB:C®4 ®B—~>C QB. We verify by com-
putation that
1j =0, kj=1lggg, jkf=f if if=0.

Thus j is a kernel for .

Corollary 2.2. A O, 4= 4.

3. Resolutions

The functor Cotor”? will be defined as the right derived functor of the co-
tensor product, in a suitable relative sense. This relativity is indicated by
defining the terms “injective’” and “exact’. For the purposes of this paper
we choose the injective comodules to be the direct summands of extended
comodules.

Proposition 3.1. A right A-comodule 4 is injective if and only if there
exists a morphism f: 4 ® 4 - A of right A-comodules such that the com-
position

4V 4 f
—AQQ4A— A
is the identity.

Proof. If A is a direct summand of an extended A-comodule C ® A then
we have morphisms

ALC@A_’LA
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in DG A whose composition is the identity. Then define f as the composition

4 4
404781 00404 8188 coa 4.

The exact sequences in DG A are defined to be the sequences in D G A which
are split exact when viewed in DG K.

A complex X in DG A will always be assumed to be negative
X0>Xl -, ,  >X"—>» ..

with the usual convention X? = X_,. The complex X is said to be injective
if each X" is injective in the tense defined above. A complex X is augmented
if it is accompanied by a morphism &: 4 — X° such that the composition
A — X° - X1 is zero. We write ¢: 4 — X, regarding A as a complex con-
centrated in degree zero and ¢ as a morphism of complexes. The augmented
complex ¢: 4 — X is said to be acyclic if the sequence

0-4->X'>X1» ... >X"—> ...

is exact, i.e. is split exact in the category DGK. If ¢: 4 — X is both in-
jective and acyclic then we say that ¢: A — X is an injective resolution of A.
The existence of injective resolutions in the above sense will be shown in § 6.
The only other fact needed here is

Proposition 3.2. Consider a diagram

0>4A->X">>X1» ., . 0 >X"—> .

f
0>4" X0 X1 .. . > X" ...
in D@ A in which the upper row is exact and in the lower row X' are injective
for n =10,1,... Then there exists a family of morphisms f*»: X" — X'n
which render the diagram commutative.
As usual the sequence {f"} is defined inductively using
Proposition 3.3. Given an exact sequence

A, A, ... —oo<n< o (3.1)

in D@ A and given an injective comodule B in DG the sequence
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.« A(4,,B)« A(A,_,, B) « ...

is exact. Here A(4, B) denotes the K-module of all morphisms 4 — B in
DGA.

Proof. Without loss of generality we may assume that B =C ®, 4
is an extended comodule. We then have the natural isomorphism
A(A,C QR A) ~K(A,C) where f: 4 +C ® A and g: A - C determine
each other as follows

g=(CQ®ef, [=@®A4)Va.

Since in the category DG K the sequence (3.1) is split exact, the conclusion
follows.

4. Complexes and filtrations

Let X be a complex in DG and Y a complex in DG. We then have the
K-modules
Ty eelX,4,Y)=(X,047,),

with commuting differential operators
. ", m,
d 'Tq,s,téTq—l,a,t’ d ‘Tq,s,t —*Tq,a—l,t’ d 'Tq,s,t_*Tq,c,t—-l'

We convert this “triple” complex into a ‘“‘single’” complex 7'(X, A, Y) using
the direct product as follows:

T.X,4,Y)=010T,, (X,4,Y), gq+s+t=mn
and considering the total differential operator which on each T', , , is
d=d + (—1)2d" + (—1)2+*d"”.

Note that T(X, A, Y) is a complex of K-modules ranging in general from
— oo t0 + oo.
Similarly we define

Sq,a,t(X’ 4,Y)= HQ(X, ! Yt)
Sq,p(X: 4, Y)=HSq,a,t(Xa A’ Y), s+t=»p
8.(X,4,Y)=10I8, ,(X,4,Y), p+qg=n.
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The differential operators on the complexes §,, and § are given by

(—1)2d" 4 (—1)2t*d”. Thus in a sense S is the homology of 7' with respect
to the partial differential operator d'. Clearly

H,(8(X,4,Y))=IIH, (S, ,(X,4,Y)), g+r=mn.
We define the main filtration of T'(A, A, B) by setting

F,,=010T,,,, n=q+s+t, st+t<r.
We then have

T=Fy,>oF,;>5 .. o0F,oF, ;> ...

The filtration is complete [5] because of the direct product used in the
definition of 7'. Further we find that

Fp,n/Fp—l,n:HTq,a,t’ p=8+t n=p+4q.
Therefore
= Sq,p
and
E:,q = H, (Sq. %) -
Proposition 4.1. Let X be an injective complexin DGA andlet n: B > Y

be an acyclic augmented complex in A D@G. Then
HT (X, A,9):HT (X, A4,B) > HT(X,4,7)
HS(X,A,n):HS(X,A4,B)-HS8(X,4,7)

are isomorphisms.

Proof. In view of the main filtration, the statement for S implies that for
T'. We now filter the complexes S, ,(X, A4, B) and S,(X, 4,Y) by the
resolution degree of X . The associated graded objects are then S, ,(X,, 4, B)
and 8, ,(X,, 4, Y). Thus it suffices to show that

HSQ;*(A’A”’]):HSq,*(A’ A, B) *HS(],*(A, A’ Y)

is an isomorphism for every injective 4. Without loss of generality we may
agsume that A4 is an extended comodule 4 = C ® 4. From 2.1 we deduce



206 SamueL ErLenBErG and JoBN C. MOORE

that S, ,(4,4,B)=H,(C ® B) while S, ,(4, A4, Y) is the complex
HCRY)->H(CQY)—>...
Since the sequence

0->B—->Y'—» Yl .

is split exact in the category D G K, it remains exact after the application of
the functor H,(C ® —). This implies that HS, , (4, 4, n) is an isomorphism
as required.

b. The functor Cotor
Consider 4 e DGA, Be A DG and let
c:d4d->X, n:B->Y
be injective resolutions. It follows from 4.1 that we have isomorphisms

HT (X, A, HT (s, A,Y
XA prx, a7 EEEAY g4y

HT(X,A,B)

of graded K-modules. Any of these three graded K-modules is denoted by
Cotor? (4, B). The independence of Cotor” (4, B) of the choice of resolu-
tions and the functorial properties of Cotor will be established below.

By 4.1 we also have isomorphisms

HS, ,(X,4,B)~>HS8, ,(X,4,Y)«< H S8, ,(4,4,7)
and the common value of these K-modules is denoted by
E; (4,4, B).
These are the terms E , of the spectral sequences of the main filtration

applied to the complexes 7'(X, A, B) or T(X, A4,Y) or T(A, A, Y). The
terms E7 _,r > 2 of these spectral sequences will be denoted by E7, (4, 4, B).

»,q°

We note that £}, ,= 0 unless p< 0 and ¢ = 0.
The augmentations ¢ and » induce morphisms

e: H(4 O ,4B) - Cotor? (4, B)

¢:H(A O,B)~E2 (4,4,B).
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If A is injective then we may choose 4 = X and e and ¢’ are then isomor-
phisms. Similarly if B is injective.

Suppose now that A4, 4 and B have zero differentiation. Then (see § 6) the
injective resolutions X and Y may be chosen so that each X, and Y, has
zero differentiation. Then in the complex T'(X, A, Y) the differential oper-
ator d' is identically zero so that 7'(X, A, Y) coincides with S(X, 4, Y).
Thus the spectral sequence collapses and Cotor? (4, B) may be identified
with E2(A4, A, B). Thus Cotor” (4, B) is bigraded in the sense that

Cotorj (4, B) = Il Cotor, ,(A,B), p+gqg=mn
where

Cotor, ,(4, B) = E2 (A, B) = H,(S, ,(X, 4, Y)).

Let ¢: 4 — A' be a morphism of K-coalgebras. Every A-comodule 4 may
then be regarded as a A’'-comodule with the structure morphism

4
A4V 40422404,

A p-morphism f: 4 > A" for AeDGA, A’ e DGA' is defined as a mor-
phism in DG A’ of A4 regarded as a A'-comodule. If further g: B — B’ is a
@-morphism with Be ADG, B' ¢ A'DG then we readily define the induced
morphism f J,9:4 J0,B—A4' 0,4, B’ in DGK.
Now let
g:4'"->X" x':B ->Y

be a A’-injective resolution of A’ e DGA’, B' e A’ DG. From 3.1 we deduce
the existence of @-morphisms F:X — X' and G:Y — Y’ such that
Fe=¢'f, Gn =1n'g. We then have the commutative diagram
HT(X,A,B)— HT (X, A4,Y) «— HT(4,4,7)
HT(F,p.9) | GT(F,0,6) |  HT(,9,6) |
HTX',A,B)— HT(X',A,Y') «— HT(A', 4", Y")
where all the horizontal morphisms are isomorphisms. It follows that the

vertical morphisms are independent of the “liftings” F and G of f and g.
There results a morphism

Cotor® (f, g): Cotor? (4, B) — Cotor?’ (4’, B)

defined for a morphism ¢: A — A’ and p-morphisms f: 4 - A4’, g: B> B'.
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If A=A and ¢ =1, then we write Cotor? (f,g) for Cotor?(f,g), and
this defines the structure of Cotor” as a functor. Incidentally, taking ¢ = 1,,,
f=14, g = 1p, the argument above shows the independence of Cotor” (4, B)
of the choice of the resolutions.
The same procedure applied to the complexes S instead of 7' yields the
morphism
E} (f.¢,9): B} ,(4,4,B) > E} (A", A", B)).

These are of course the morphisms of the terms E?2 of the spectral sequences
induced by 7T (F, ¢, G).

6. Canonical and tapered resolutions

Given 4 e DG A consider the sequence

0o d Vo d@A—te 4140

where 4 @ A has A4 ® § as structural morphism. Then V is a morphism
in DG A and we define ! as the cokernel of V. Since (4 ® ¢) V = 14 the
sequence is a split exact sequence in DG K and thus is an exact sequence in
the sense required here.

Iterating this procedure, we obtain exact sequences

k» »
0—> 4?7 —> 4?7 @ A —> AP — 0 (6.1)

where 4 = 4°, p=0,1, ... Thus setting
Xp :Ap ®A, dp = kp+1lp

we obtain an injective resolution ¥V : A4 — X. This is the canonical injective
resolution of A. This resolution has many useful properties. In particular, it
inherits many properties from A and A. For instance, a fact that we used in
§ 5, if 4 and A have zero differentiation then so does each X,

‘The coalgebra A will be called connected if the morphism &: A - K induces
an isomorphism A, ~ K. In this case we usually identify A, and K. This
imbedding of K into A is a morphism of K-coalgebras and thus permits us to
regard K as a left or right A-comodule.

If further A, = 0, then A is called simply connected. More generally A is
k-connected (k= 0) if it is connected and if A, =0 for 0 <4 < k. Thus the
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terms ‘‘O-connected’” and ‘‘l-connected” coincide with ‘“‘connected” and
“simply connected’’.

Proposition 6.1. If the coalgebra A is k-connected then in the canonical
injective resolution ¢V : 4 - X we have

(X?), =0 if i<(k+1)p.

Indeed, if A is k-connected and if 4, =0 for 7 <s, then 4, = (4 ® A);

for i<k -+ 148, sothat A} =0 for ¢ <k + 1 4+ s. Thus by induction
it follows that A% = 0 for ¢ < (k 4+ 1)p.

Corollary 6.2. If A is connected then
Cotor2(A,B) =0 if n<0
E}  (A,B)=0 if p+¢<0.
Indeed, if X is the canonical resolution of 4 then for n < 0
T.X,4,B)=0, S,(X,4,B)=0.

We shall be particularly interested in the case when A is simply connected.
In this case the canonical resolution X satisfies

(X?), =0 if i<2p.

A complex X with the above property will be called tapered. If X and Y are
tapered complexes then we have

T,.:(X,4,Y)=0 except when —n=<s41t=<0

where n = g + ¢ + ¢. This implies that the product used to define 7', (X, 4,Y)
is finite. For the main filtration {F,} of T (X, A, Y) we have

T.=F,,oF_,,>...o0F_ , ., DF_, ,,=0.

Thus the main filtration is finite in each degree. Consequently, the spectral
sequence converges in the naive sense.

For a tapered complex X in D G A we define a right A-comodule X as follows

~

(X), =2(X?);, n=1—p.

14 CMH vol. 40
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We note that the direct sum is finite. The differential operatorisd =d’ + (—1)*d”
where
d': (X?), - (X?),, d":(X?), - (Xp+),.

Now observe that for any K-module B, the complex X ® B given by
0-X°B>X1QB—>... > X"QB—...

is again tapered and so we have (X X B)~. Since the tensor product com-
mutes with direct sums, this may be identified with X ® B. If we now take
B= A then the morphisms V?: X? - X? ® A induce a morphism
X >X ® A of complexes, which in turn induce %: XX ® A. This
converts X into a right A-comodule.

For any complex Y in A DG, we now observe that

T(X,A,Y)=T(X,4,7).
If Y also is tapered, then
T(X,4,Y)=T(X,4,Y)=X0,7Y.

If X is a tapered injective resolution of A then we have H(4) = Cotor?(4, A) =
=H(X O,4) = H(X). This yields

Proposition 6.3. If ¢: A - X is a tapered injective resolution of 4 then
H(Z): H(A) - H(X) is an isomorphism.

This fact can of course also be verified directly by filtering X by the reso-
lution degree of X .

7. Flatness conditions

A DG@K-module B will be called K-flat if B, is K-flat for each n. If B is
K-flat and A4 is any D G K-module then there is a spectral sequence converging
to H(A ® B) and with TorX(H (4), H(B)) as term E2. This will be called
the KUNNETH spectral sequence [3, Ch. XVII].

Theorem 7.1. Let ¢@: A — A’ be a morphism of K-coalgebras and
let f: A > A', g: B~ B be gp-morphisms with 4 ¢ DGA, A' e DGA’,
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BeADG, B e A’'DG. Assume further that A, A', B, B’ are K-flat. If
H(p): H(A) - H(A'), H(f): H(A) - H(4') and H(g): H(B) - H(B')
are isomorphisms then

Cotor? (f, g) : Cotor? (4, B) — Cotor?' (4’, B')
E*f,p,9): E*2(A, A4, B) - E*(4', A", B)

are isomorphisms.

Proof. Clearly, the conclusion concerning E?2 implies that for Cotor.

Let X and X’ be the canonical resolutions of 4 and 4’. Since the canonical
resolutions are functorial, the ¢-morphism f: 4 — A4’ yields a @-morphism
F: X - X'. More precisely, we have the commutative diagrams

00— A7 — AP QA —> APl 5 0
fpl fp®(p1 fp+1i

00— A'P— A"PQA—> A'PH1—» 0

with f? defined inductively starting with f: 4 — A’ and with F? = f? @ ¢.
If H(f?) is an isomorphism then so is H(f? ® ¢), by the KiNNETH spectral
sequence. Therefore by the “five lemma’, H (fP+!) also is an isomorphism.
Hence by induction it follows that H (f?) is an isomorphism for every p.

To show that E2(f, ¢, g) is an isomorphism it suffices to show that

S(F,e,9): 8(X,4,B) - S(X', A, B)
is an isomorphism. For this it suffices to show that
H(F» O,9): H(X? 0, B) > H(X'» O, B)
is an isomorphism. Since F? = f?» ® ¢. This reduces to
H((f*®¢9) O,9): H(A? ® 4) 04 B) >~ H((4'*» ® 4') O B') .
By 2.1 this reduces to
H(f»@g): HA?» @ B) -~ H(A'» ® B').

The fact that this is an isomorphism follows again from the KUNNETH spectral
sequence.
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8. Finiteness conditions

A D@ K-module 4 will be said to be of finite type if 4, is finitely K-generated
for each n.

Proposition 8.1. Assume that the ring K is noetherian, A is simply con-
nected, A4 and B are K-flat and H(A), H(A) and H(B) are of finite type.
Then Cotor“ (4, B) is of finite type.

Proof. Let C be any DGK-module with H(C) of finite type. Then
Tor X (H,(C), H,,(B)) is finitely generated for each p, n, m and therefore by
the KtNNETH spectral sequence H(C ® B) is of finite type.

We now consider the construction of the canonical resolution X of 4.
From the exact sequence (6.1) we deduce the exact triangle

H (A7) - H (47 ® A)

LN V4
H (A7) |

Thus if H (A4P) is of finite type, then so is H(4? ® A) and consequently also
H (A?»+1), Thus by induction, H(A4?) is of finite type. Since X" (], B =
= (4A*"® A4) 04 B~ A® ® B, it follows that H (X" [J, B) is of finite type.
As a consequence E3 (A4, A, B) is finitely generated for every p, g. Since
A is simply connected the convergence of the spectral sequence yields that
Cotor“ (4, B) is of finite type.

9. Caleulation of £ |
If A4 and B are DG K-modules, then we have the morphism
H(A)®@ H(B) > HA ® B). (9.1)

If B and H(B) (or 4 and H(A4)) are K-flat, then it follows from the KUNNETH
spectral sequence that (9.1) is an isomorphism. Under these conditions we
shall regard (9.1) as an identification.

If A is a K-coalgebra and if A4 and H(A) are K-flat, then it follows readily
that the mappings

H():H(A) > K, H@S): HA) - H(AQ A) = H(A) @ H(A)
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convert H(A) into a K-coalgebra. Similarly, if 4 is a right A-comodule, then
H(V): H(A) > H(A ® 4) = H(4) ® H(A)

converts H(A4) into a right H(A)-comodule. Similarly, for left A-comodules.
Now let A bein DG A and Bin ADG. Assume that A, H(A), B and H(B)
are K-flat. We then have the exact sequences

0— 4 DAB—+A®B~i+A®A®B
0— H(A) OguH(B)— H(A) ®H(B)LH(A) ® H(A) @ H(B)
and we may identify ¢’ with H (7). There results a natural morphism
H(A O4B) ~H(A) O H(B). (9.2)

Proposition 9.1. If under the conditions above, 4 is A-injective then H (A4)
is H(A)-injective and (9.2) is an isomorphism. Similarly, if B is A-injective,
then H (B) is H (A)-injective and (9.2) is an isomorphism.

Proof. If 4 is A-injective then by 3.1 there exists a morphism f: 4 ® 4 -4
such that the composition

AV, 40414

is the identity. It follows that the composition

H(A)IﬂH(A ®A)MA

|
H(4) ® H(A)

is the identity, so that H(A4) is H (A)-injective. To prove that (9.2) is an iso-
morphism, we may replace 4 by 4 ® A. Then by 2.1 both sides of (9.2)
become H(A) @ H(B). The case when B is A-injective is entirely similar.

Now assume that A, H(A), B and H(B) are K-flat and let ¢: A - X be
an injective resolution of 4. Then E? . (4, A, B) is the homology of

HX,,O0,B) - HX,O,B) > H(X,, 0, B)

which by 9.1 is the homology of
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H(X,,) OpguH(B)~>H(X,) OguyH(B)>H(X,,) OgH(B). (9.3)

Since the sequence 0 - A4 —» X°—» X1 ... when regarded as a sequence
in DG K is split exact, it follows that the sequence

H(4) > H(X% > H(XY) - ... (9.4)

is a split exact sequence of graded K-modules and therefore is an exact se-
quence in the category DGH (A). Since H(X™) is H(A)-injective, it follows
that (9.4) is an injective resolution of H(4) in the category DG H (A). Thus
the homology of (9.3) is CotorZ{’(H(A), H(B)). This yields

D,

Theorem 9.2. If A, H(A), B and H(B) are K-flat, then we have a natural
isomorphism
E} (4,4, B) ~ CotorZ"(H(A), H(B)) .

The same holds if the hypotheses that B and H (B) are K-flat are replaced
by the assumption that 4 and H(A4) are flat. In the proof we then use a res-
olution of B.

10. Properly filtered comodules

In this section we shall assume that the coalgebra A is K-flat, i.e. that for

each p, the functor ® A4, is exact.
Define the subcomodules S, A4 by setting

4, fq<p,

(S,4), =
P 0 ifg>0p.

Then for any right 4-comodule 4 set

8,4 =V14®8,4).
We then have

0=8,4c8dc...c§4cS,4c...
usS,4=4
v8,4 cX28,48,4, ut+v=np.

Generalizing this we define a proper filtration T of A to be a sequence of sub-
comodules 7', A of A such that
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0=T__1A C ToA. (o ...TpA C TIH-IA C ...
UT,A=A4
vVT,AcT,AXx8,4, u+v=np.

The filtration S described above is therefore a proper filtration of A and is
called the filtration by coskeletons.
Since A is K-flat we find that ¥/ induces morphisms

TD/TZD-I '_>'Tu/Tu—-1 X Av’ U +'U= 4
from which we deduce, by projection, morphisms
y:’: Tp/Tp—l - To ® AD .

These morphisms are compatible with differentiation provided on the right
side we use the differentiation d @ 4,. Thus, again using K-flatness of 4,, we
obtain morphisms

Voot By (A) > H, (TyA) @ 4,.

We shall say that the proper filtration 7' of A4 is perfect if the following two
conditions hold

(10.1) The diagrams
1
B}, (4) Y23 H,(T,4) ® 4,

d%’,ql l(— 1N1Qd,

) E; 1,(4) —> H,(To4) ® 4,
are commutative. Yp—1.9

(10.2) The induced morphisms

. Yoo Bp.o(4) > Hy(H,(To 4) ® A)
are iIsomorphisms.

Proposition 10.1. Let A, A’ be right A-comodules with perfect filtrations
T,7T" and let f: A - A’ be a morphism compatible with the filtrations.
Then H(f): H(A) - H(A') is an isomorphism if and only if f induces an
isomorphism H(T,A) ~ H(T,A').

This follows directly from the comparison theorem for spectral sequences
(Seminaire Cartan 1954/55, Exposé 3).
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Proposition 10.2. Let A be simply connected and let X be a tapered in-
jective complex in DG A. Then the filtration of X by coskeletons is perfect.

Proof. Since each X7 in injective it is a direct factor of a comodule C? ® A
where C? is in DG K . Thus adding a direct summand to X7, we may assume
that X? = C? @ A for every p. As a consequence we may assume that as a

graded K-module we have X=0 R A.
This reduces the proof of 10.2 to the following

Proposition 10.3. Let A be simply connected, let C ¢« @K and let d be a
differentiation in 4 = C ® 4 such that 4 is a right 4-comodule with the
structure morphism V¥V = C ® 6. Then the filtration of A by coskeletons is
perfect.

Proof. First observe that
S, A=08,4.
Therefore
SgA=0QA,=C

and thus C is a subcomodule of 4 with a differential operator d¢. Consider the
differential operator

d=de®@1+1Q®d,.
For ceC,, A e A, we have

Vadlc ®A)=dV(c® 1) =d(c Q d4).

Since A4, = 0 we have
0A=1®4 modS, 4.

Therefore mod S,_,(4 ® A) we have
VaecRAN=3(cR1QA)=dec®R1I Q1+ (—1)c®1RQd, 4.

Since the result depends only upon d¢ and d,, we have the same with d re-
placed by d. Thus we have shown that

deEV&ymodS,_g(A ®A) for yeS A.
Since (CRQRe Q@A) V=(CQReR@A)(C Q) =CQI1, =14 it follows that

dy = dy mod S, ;4 for yeS,A.
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Therefore (E°(4),d°) and (E1(A),d') and E2(A) (but not necessarily d?)
will be the same for the differential operator d as for d. Thus we may assume
that d =d, i.e., that 4 =C ® A is an extended comodule. In this case

S,4=CQ®S,4 and the verification that the filtration is perfect is entirely
obvious.

We now note that if A is connected then for any right comodule 4, the sub-
comodule S, A consists of all elements a ¢ 4 such that Va =a¢ ® 1. From
the definition of the cotensor product we then see that

SoAzADAK-

If T is any proper filtration of 4 then 7,4 S,4 and therefore we have a
morphism
H(T,A)—-H((AO,K).

Composing this with the morphism

eax: H(A O, K) - Cotor? (4, K)
we obtain

B: H(T,A) — Cotor* (4, K).

Theorem 10.4. Let A be a simply connected and K-flat coalgebra over K,

let 4 be a right A-comodule with a perfect filtration 7'. Then 8 is an iso-
morphism.

Proof. Let ¢: 4 - X be a tapered injective resolution of and consider
§: 4> X. By 10.2, the filtration of X by coskeletons is perfect. Since
T,A c 8,4 we have that & (T,4) c S,X. Further, by 6.3, H(Z) is an
isomorphism. Thus 10.1 implies that ¢ induces an isomorphism

H(T,A) ~ H(S,X).

However H (SOX )=H (f 04 K) = Cotor? (4, K) and the proof is com-
plete.

11. The geometric filtration

Let A be a simplicial set (i.e. a complete semi-simplicial complex) and let
K be a commutative ring fixed once and for all. We shall denote by the same
symbol 4 the DG K-module of normalized chains in 4 with coefficients in K
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and write H (A4) for the homology G K-module. If C is any D G K-module then
we write H(A; C) for H(A ® C).

If X is a topological space and S(X) is its total singular simplicial set, then
we shall frequently write X for S(X). Thus X will denote a space, a simplicial
set or a DG K-module depending upon the context.

Given a simplex s in 4 of dimension 7, we denote by s (0 < p < q < n) the
simplex of dimension ¢ — p obtained from s by applying the face operator
.41 (n — g)-times and then the face operator ¢, p-times. We now define

0:4A->AxA4
by the usual ALEXANDER-WHITNEY formula
ds=28{Q®sy;, 0=qg=n.

We also define ¢: A - K by setting es =0 if n >0 and ¢s =1 if n = 0.
The mappings ¢, § convert A into a K-coalgebra and 4 ® C is a left
A-comodule.

A morphism f: A — B of simplicial sets induces a morphism of K-coalge-
bras and an f-morphism f® C: A ® C —~ B ® C of comodules.

The geometric filtration G of A ® C' induced by f is defined by setting G,
to be the submodule of 4 @ C' generated by simplexes s such that fs is an
iterated degeneracy of a simplex of dimension < p. This is equivalent with
the condition that f(s’) be degenerate for any face s’ of s of dimension > g.
To verify that G is a proper filtration of 4 ® C as a left B-comodule, con-
sider an n-simplex s in 4. Then

Vie®c)=28]@f(s7) ®c, 0=qg=n.
Thus if s ® ce @, and f(s;) is non degenerate then s @ ce¢ @, ,. Thus
vG,c 28,B®G,,
q

as required. The morphism

y"p :@,/G,_, > BQ® G,
takes then the form

rp(8®c)=383"?Qf(85n_,) Qc.

Now consider a fibration n: E — B of topological spaces, let M be a sub-
complex of S(B) with a single 0-simplex b, ¢ B, let N be the subcomplex
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a~1(M) of S(E) and let p: N — M be induced by ». Then for the geometric
filtration G of N ® C induced by o we have

Go = F (039 C ’ where F = n_l(bo)
and
v:E'(Q)-MQHF;C).

We shall use the following facts, which constitute the basic facts of the com-
putation of the Serre spectral sequence of a fibration; [10], [9], [2].

(11.1) y!is an isomorphism.

(11.2) Each 1l-simplex of M defines an automorphism of H (F; C) and
there results a local coefficient system on M. If in M ® H(F; C) this local
system is used, then y' commutes with the differentiation.

It follows from the above that the filtration @ of N ® C is perfect if the
local system on M is constant. In particular, this is the case when M has only
one l-simplex, i.e. when M is a simply connected coalgebra.

12. The main results
Consider a commuting diagram

g 9.8

#| =

B — B
/

of simplicial sets. The diagram is then also a commuting diagram of K-coalge-
bras. In particular, B’ may be regarded as a right B-comodule and £ @ C
(where C ¢« DGK) as a left B-comodule. There results a commuting diagram

H(E'; C)

~ ~ A
H(E' Qg (B' ® C)) —> Cotor® (E', E' ® O)

H(x Oa(g ®0))| | Cotore (z',9 ® )
H (B Oz (E ® 0)) —> CotorB(B', E ® C)

where ¢ = ng = fa'. There results a morphism
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7: H(E';C) - CotorB(B', £ @ C)
which is the prime objective of our investigation.
Theorem 12.1. Consider a commuting diagram of topological spaces

g 9.8

7 l l 7
B — B
/
where B is (pathwise) connected and simply connected, = is a fibration (in the
sense of Serre) and =’ is the fibration induced by f. Then for any commutative

ring K and any DG K-module C' we have
H(E';C) ~ Cotor®B (B, E ® ().

In the special case when B’ is the space consisting of a single point, £’ is
the fiber F of n corresponding to b, = f(B’) as base point. This yields

Theorem 12.2. If n: B — B is a fibration with fiber F = n~1(b,) and if
the space B is connected and simply connected, then

H(F;C) ~ CotorB(K,E ® C).

In both theorems the isomorphisms are instances of the morphism 7.

It should be observed that we could equally well regard C ® E as a right
B-comodule and B’ as a left B-comodule, thereby interchanging the two
variables in the functor Cotor 3.

13. Proof of Theorem 12.1

By considering the pathwise connected components of B’ separately, we
may assume without any loss of generality that B’ is pathwise connected. We
select base points b, € B, b, ¢ B such that fb, = b,. Then the fibers F =7~ (b,)
and F' = n/-1(b)) may be identified under g.

Let M be a minimal subcomplex of S(B) relative to b, as base point. Let
N = a~1(M) be the subcomplex of S(Z) consisting of all singular simplexes
s with 7 (s) in M. We note (without proof) that we have a commuting diagram
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vy osm e N

| S@| o
M-—S8SB)— M
/] h
of simplicial maps with the following properties.
(13.1) 7 and k are inclusions.
(13.2) hj and Ik are identities.
(13.3) 4, k, h and I induce isomorphisms of homology.
Similarly we choose a minimal complex in S(B’) relative to b, and obtain
a diagram as above with ‘“primes”.
Now consider the commuting diagram
K S l
v s @9 sm LN
o S@)|  sS@| e
M — S(B') - 8(B) — M
J F3 (H) h

There results a commuting diagram

g 0) E¥50 gm0y T CotorB(B', E ® 0)
r’l Cotor* (B, 1 ® C) l (13.4)
CotorM (M', N ® C) » CotorM (B', N ® C)

CotorM (5, N ® C)
where 7’ is the morphism resulting from the diagram
NN

¢ e (13.5)
M—M
%
with uw = hS (f)j', v=1s(g)k'.
By the isomorphism theorem 7.1, the morphisms in (13.4) except v and 7’
are isomorphisms. Thus 7 is an isomorphism if and only if 7’ is an isomorphism.
We note that in diagram (13.5), M’ has one 0-simplex, M has one 0-simplex
and one 1-simplex and the fibers of ¢ and o’ are both S(F), and are identified
under ».
Since the coalgebra M is simply connected we may choose a tapered injective
resolution of N x C as a left M-comodule
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e: NRC—-X
from which we derive the morphism

§:NxC—>X
of left M-comodules.
The mapping 7’ is then induced by

E:NQC—>M OuX
defined for any n-simplex s in N’ by
E(s®c) =20 (8) ®c(vs; ®c), 0=g=n

where M' (u X is regarded as a K-submodule of M’ ® X.

In N' ® C we consider the geometric filtration G given by o' while in
M’ Om X we consider the filtration R given by the degrees in M'. Then, if
8 ® c e G, then g (s]) is degenerate for ¢ > p so that £(s ® ¢) e B,. Thus ¢
is compatible with the filtrations G and E. By (11.1) we have

E'G=M QH(F;C).

The terms E) . for R are
M, Ou X

where M, has the trivial structure morphism s ->s ® 1. Thus M, as a
right M-comodule is a direct sum of copies of K. Consequently we have the
identification

M,; OuX = M,ﬁ R (K OmX).
Therefore

E'R=M, ® HK OuX)= M, ® CotorM(K,N ® C).

Consequently,
Eit =M Q8
where
: p:H(F;C) - CotorM (K, N ® C)
is induced by =

FRC—>NQC —» X,

Since the geometric filtration @ of N ® C' given by g is perfect and since
G, = F ® C, the fact that 8 is an isomorphism follows from 10.4.
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14. Connecting morphisms
Let
0>4">4->A4"->0

be a sequence of right A-comodules which is exact in the ordinary sense, i.e.
such that

0> A, - A, - Al -0 (14.1)

is exact for every m. Assume that A is K-flat and that B is a K-flat left
A-comodule. Then in the canonical resolution of B, the comodules B™ are
K-flat. Since A (0, X™ = 4 ® B" it follows that the sequences

0->-4'"0,X*">A4A0,X">A4"J,X*"—>0
are all exact. Consequently we obtain an exact sequence of D G K-modules
0>TA4A,4,X) >T(A4,4,X) >TA",4,X) -0
and passing to homology we obtain the exact triangle
0
Cotor4 (4", B) — Cotor4 (4’, B)
LN N (14.2)
Cotor4 (4, B)

with the connecting morphism 9 of degree —1.
If

0B >-B—->B"—->0

is an exact sequence as above of right A-comodules then it follows that in the
canonical resolutions of B’, B, B” we have the exact sequences

0> B'" > B* > B'"* -0
0—>X'n 5> Xn 5> X"" 0.

If, therefore A and B” are K-flat, then B"" are K-flat and it follows as above
that the sequence

0>T(A,4,X)>T(A,A4,X)>T(,4,X") >0

is exact. This yields the exact triangle
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Cotor4 (4, B") i» Cotor4 (4, B')
N 4
Cotor4 (4, B)

The usual formal rules for the two connecting morphisms apply and will not
be stated here. In particular, the connecting morphisms commute with the
morphisms 7 of § 12. Thus, in particular under the conditions of 12.1, if

0->C->C—->0C"-=>0

is an exact sequence of DG K-modules, then the triangles

H(E';C" ——a-—> H(E';C")
N Vg
H(E'; C)
and F
CotorB8(B', E x C") — CotorB(B', E x C)

N 4
CotorB (B', B x C)
are isomorphic.

Remark. To obtain the exact triangle (14.2), the condition that A and B
are K-flat may be replaced by the condition that the sequence (14.1) be split
exact.

15. The relative theorem

Let A be a simplicial set, 4,, 4, simplicial subsets of A andlet 4,,= 4,n 4,.
For any D G K-module C we have the commuting diagram

0 0 0

l l l

0— 4, ®C 4,00 —— (4,/4,) ®C— 0

l l i

0— > 4,8C 4Q0 (4)45) ® C —— 0

l l l

00— (4p/Ay) ®C —> (4/4,) ®C —> (4[4, U4,)  C— 0

l l l

0 0 0
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with exact rows and columns. The module
H(4, 4,;C) = H((4/4,) ] C)
is the relative homology module, while
H(A,A,,A,;C)=H(A,A4,,A4,;C)=H((4/4A,U 4,) ® 0)

is the triad homology module. Note that H(4,0;C) = H(4;C) and
H(A4,A4,,A4,;C)=H(4,A4,;C) if 4, c A4,.

Note that if X is a topological space and X,, X, are subspaces of X then
S(X;) U S(X,;) is a simplicial subset of S(X; U X;). If the inclusion
S(X;) U 8(X,) - S(X; U X,;) induces isomorphisms of homology groups
then the triad (X, X, X,) is called proper and we then have H(X, X,, X,;C) =
= H (X, X, U X,; C). This is always the case when X, c— X,. Since in our
notation X and S(X) frequently are denoted by the same symbol, we shall
write X; v X, for 8(X,) U S(X,) so as not to confuse it with S (X; U X,).

Consider the commuting diagram

h

D —» D
4 i
5", El,,_& 115’ (15.1)
n"l in’l f nl

BII______’BI_______’B

of simplicial sets in which ¢, 4/, 5, k, are inclusions. We then have the com-
muting diagram
H({E,E" D';C)
~y/ N N
H(E' Og (E'|E"uy D'); C) — Cotor®' (E', (E'|[E" U D") ® C)

H@O,(800) | | Cotor* (2, C)
H((B'|B") Oz (E/D ® C)) —> Cotor® (B'|B’, E[D & C)

where ¢ = ng = fn’ and
wiB > BIE, §iEIEUD > ED
are induced by =’ and g.

15 CMH vol. 40
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There results a morphism

t:H(E',E", D'; C) - CotorB(B'|B",E|D ® C). (15.2)
Theorem 15.1. Assume that (15.1) is a diagram of topological spaces and that
(i) ¢,%,9,k, are inclusions,
(ii) = and n¢ are fibrations,
(i) =’ and x4’ are fibrations induced by f,
(iv) =" is the fibration induced by f7,

(v) B is pathwise connected and simply connected.
Then for every DG K-module C, (15.2) is an isomorphism.

Proof. From the exact sequences
0—>B"—-B - B|B"—>0
0—>E —-E - FE|E" -0
we deduce the commuting diagram with 7' = CotorB (—, ¥ ® C)

.—>H(E";C)—> H(E'; C) —> H(E',E";C) —> H(E"; C) —> ...

I v | v

.—TB"Y———>TPB)——>T(BIB")—>TB")— ...
Thus 12.1 and the ““5 lemma’ imply that

7: H(E', E"; C) — CotorB(B'|B",E ® C)

is an isomorphism.
We now consider the exact sequences with D" = E" n D’

0 - Ell - El — EI/EI/ — O
0—>E'ID"—->E|D —~E|E"UD -0
and have the commuting diagram with 7' = Cotor2(B'/|B’, — ® O)

H(E",D"; C) -~ H(E',D';C) ~ H (E', B", D'; C) > H(E",D";C) ~ ...

|- I |- |-

. —— T(B") —— T(E') T (E'|E") T(B") —> ...
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Applying the ‘5 lemma’” again it follows that H(E', E",D’; C) — T (E'|E")
is an isomorphism as required.
16. External products
Given 4 and B in DG K we define the permutation morphism

c: AR B—->BXA
by the usual formula

ol@a®b)=(—1)"bQ®a, acd,, beB,.

Let A and I" be K-coalgebras, let 4 be a right A-comodule and B a right
I'-comodule. The morphisms

A@r- A% rok—K
) A A
AQT 4 ® Or ARARIQT ®G§~>A®I’®A®P

Va®Vs ARQRo I

AQ®B ARARBRTI ——> A QQBRARQT

convert 4 ® I' into a K-coalgebra and 4 ® B into a right A ® I'-co-
module. Similarly if C is a left A-comodule and D is a left I-comodule then
C ®D isaleft 4 ® I'comodule. Further we have the commutative diagram

]
A®B®RC®D Ve v ARBRAQI®RC®D
1Qoc®1 la’
1 1
A@CoBoDpY®1®V Xl  eieceBereD

where the vertical maps are suitable permutation morphisms. The same dia-
gram holds with the horizontal arrows replacedby 1 ® Vand 1V ®1 Q V.
This implies a natural transformation

§: (40,0 ® (BOyD) = (4 ® B) uer(C ® D).

Proposition 16.1. If 4 is A-injective and B is I-injective then 4 ® B is
A ® TIinjective and & is an isomorphism.
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Proof. Without any loss of generality we may assume that A and B are
extended, i.e. that 4 = 4’ ® A, B= B' ® I' where A’ and B’ are DG K-
modules. Then 4 R B=A4A" A QB I'~A" B ® A  I' so that
A ® B is A ® I'-injective. Further, using 2.1, & reduces to

§:(A®0)® (B ®@D) > (A" ® B)®(C ®D)

which upon inspection turns out to be a switching isomorphism.

Proposition 16.2. If ¢: 4 - X is an injective resolution in DGA and
n: B — Y is an injective resolution in DG then e ®n: A B ->X QY
is an injective resolution in DG (A Q I').

Proof. We recall that X ® Y is defined as the complex
X@Y)r=2XXPrQRY?, p+qg=mn

and with the usual derivation operator. It is clear from 16.1 that each (X ® Y)*
is A ® I-injective. To prove that ¢ ® # is acyclic, we observe that the con-
dition that ¢: 4 — X is acyclic is easily seen to be equivalent with the con-
dition that ¢: 4 — X regarded as a morphism in the category of complexes
in DG K is a chain homotopy equivalence. It now follows readily that

B X
40B%% x93 28 T x oy

are chain homotopy equivalences and thus ¢ ® » also is a chain homotopy
equivalence.
We consider the complexes

T=TX®Y, AQT, CQ D)
T =T(X,4,C), T"=T(Y,I, D).

We have by 16.1
Ty o0=X ®7Y), Oser (C ® D)

= Z(‘Xa' ® Ya") Oaer C® D)
— Z(Xw DA 0) ® (Y‘" DI’D)
=2T=,I<,s',o®TZ,s",0
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where 8’ 4 8" = 8. There results a natural morphism

QT —T. (16.1)

Passing to homology we have
HT)Q HT"Y  ->-H(T' T"y -~ H(T). (16.2)
Consequently, we obtain a natural morphism
Cotor” (4, C) ® Cotor” (B, D) — Cotor’®" (4 ® B,C ® D). (16.3)

Proposition 16.3. If A4 and I' are simply connected and if 4, 4,C and
Cotor* (4, C) are K-flat then (16.3) is an isomorphism.

Proof. Since A and I are simply connected, the resolutions X and Y may
be chosen tapered. Then X ® Y is a tapered resolution of 4 ® B. It follows
that the various products involved in 7', 7" and T are finite. Therefore (16.1)
is an isomorphism. It therefore suffices to show that H(T') ® H(T") —
— H(T' ® T") is an isomorphism. For this it suffices to establish that 7"
and H(T') are K-flat. The assumption that Cotor“ (4, C) is K-flat yields the
K-flatness of H(T'). If we choose X to be the canonical resolution of 4,
then since 4 and A are K-flat, it follows that A® and X" are K-flat. Then
X»,C ~ A» ® C and therefore X™ [, C also is K-flat. Therefore, with
this choice of X, 7T’ is K-flat.

It should be noted that the morphism (16.3) is associative in the following
sense. If X is a third K-coalgebra, then the diagram

Cotor4 X Cotor” X CotorZf — Cotor4®r @ Cotor~*

| l

Cotor4 ® Cotor’®* — Cotor487'®Z

commutes. For convenience we omitted the variables. The proof of this asso-
ciative law is omitted.

We now return to the complexes 7', 7", T" above. The main filtrations of
T" and T" induce a filtration of 7’ ® T" using the usual rule

F.(T'®T)=3XF,TQF,T, utv=r

and the morphism (16.1) is compatible with the filtration. There result mor-
phisms



230 SaMUurL EILENBERG and JoBN C. MOORE
re BH"Q B'"m—> KT

which are compatible with the differentiations. Further the diagram

HE o B 2C) g @

I |
E'rl @ gl Qf___* Er+l

commutes. If
A,T, A, B,H(A), H(T"), H(A), H(B) (16.4)

are K-flat then by 9.2 E'® may be replaced by Cotor?'?, etc. The morphism
&2 then becomes

Cotor#Y(H(A4), H(C)) ® Cotor®'" (H (B)), (H(D)) —
— CotorZW@ B (J(A) @ H(B), H(C) ® H(D)) . (16.5)

From 16.3 we know that (16.5) is an isomorphism if

H (A) and H(TI') are simply connected and H(A), H(A)
H(C) and Cotor®“ (H(A), H(C)) are K-flat. (16.6)

Thus is both (16.4) and (16.6) hold then &2 is an isomorphism. This implies
that &3 is an isomorphism if we know that E"3 = H(K"?) is K-flat. By in-
duction we thus obtain

Proposition 16.4. If H(A) and H(I') are simply connected and if
A, T’ A,B,C,H(A),H(I'), H(A), H(B), H(C) and E""(r=2) are K-flat
then &7: E'" ® E'" — E* is an isomorphism.

Of course, all the flatness conditions are automatically fulfilled if X is a field.

17. The EILENBERG-ZILBER Theorem

Given simplicial sets 4 and B the product 4 X B is a simplicial set with
(AX B), = A, X B,. The EILENBERG-ZILBER [8], [4] theorem establishes
morphisms ¢

AXB_—AQB (17.1)
n
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of DG K-modules which have the following properties

(17.2) ¢ and 7 are naturalin 4, B (and K).

(17.3) {n=1.

(17.4) n¢ is homotopic to 1 (in a natural fashion). It follows that
(17.5) H(n) is an isomorphism with H ({) as inverse.

Since both sides of (17.1) are K-coalgebras it is natural to ask whether ¢
and 7 are compatible with the coalgebra structures. The mapping ¢ is defined
by

{(a,b)=2af @by, 0=p=0,acd,, beB,

and is not compatible with the coalgebra structures. The definition of 7 is
much more elaborate. Given integers 0 < m < n we denote by (m, n) the set
of all integers g such that m < ¢ < n. Consider diagrams

(0, m)
) S
(0,m+n) - (0,77?,) X (O’n)

LAY
(0, n)

where n; and m, are projections, m,w and mw are weakly monotone and
mw + ww is the identity. If « has this property then the points
w(t), 0=t< p + q are the vertices of a path in the rectangle with corners
(0,0), (m,n) leading from (0, 0) to (m,n) and composed of m + n intervals of
length 1 parallel to one of the axes. The area of the rectangle under the path
is then an integer k& and we denote ((w) = (—1)*. Then % is given for
a e Am, b e B,,, by
7@ ®b) =2 (0) (mwa, m,wb)

the summation extending over all paths w from (0, 0) to (m, n) as described
above. We assert that

7 is a morphism of K-coalgebras. (17.6)
The commutativity of the diagram

A® B-'»A®B

s®s\ /a
K

is evident. We must show that the diagram
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A@B—"1 _,AxB
R4 |
ARAQBQ®B 8
1o ®1 |
498042812 4x B)® (4 x B)

commutes. Applying 6 ® d to a @ b,ae 4,,be B, yields
2al Q@ay @b ®b;, pe(0,m), ge(0,n).
Applying 1 ® 0 ® 1 to each term yields

2(—1)m=2eal QbR ay ® by .

p,q

Applying n ® 5 yields

2 X (—1)mpe (o) (") (my 0" al, my0 b)) ® (n; 0" al, my 0" b7) (17.7)
p,q o,

where o' ranges through all paths from (0, 0) to (p, q) while »” ranges through
all paths from (0,0) to (m — p,n — ¢q). By translation, the path " may
be regarded as running from (p, ¢) to (m, ») and thus we obtain a path
w =o' + 0" from (0,0) to (m,n). A calculation of areas shows that

(—1)m=21 ¢ (') ¢ (") = ¢ (o) .
Further
(0 af, 7y, 0'b) = (mowa, mwb)t
(7" @, myw" b7) = (mowa, mwb)pir.
Thus (17.7) becomes

2 Zi(w)(moa, meob)i?'Q (mwa, me b))y
7.4 o

where w ranges through all the paths from (0, 0) to (m, n) passing through
(p, q). Fixing r = p + q¢ we obtain this way all paths w. Thus the summa-
tion above is’

2 X (mwa, b)) ® (mwa, mwb)™", re(0,m 4+ n)

r o

which is precisely d7(e ® b). This concludes the proof.
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Let B’ be a simplicial subset of B. The morphism #: A ® B—>A4 X B
then induces a morphism

n:A®B|B -Ax BjA X B.

The left side is a left A @ B-comodule while the right one is a left 4 x B-
comodule. It is trivial to see that %’ is an #»-morphism of comodules. Further
H (n') is an isomorphism.

18. Cotor as a coalgebra

Let A be a simplicial set. We then have a commuting diagram

4% 44
AVERF:
A4

where d is the diagonal map. Since H ({) and H (n) are inverses of each other,
we obtain the commuting diagram

H(A)F—@» H(A x A)
HoN | Ho
HA®A).

Assume now that H(A4) is K-flat. Then by § 9, H(4) is a K-coalgebra with a
structure morphism éy and we have the commuting diagram

H(A) Hd) H(4 x A)
ox | [ H@)

HA)QH(A)=H(A ® A).

Since d and % are morphisms of coalgebras it follows that H(d) and H ()
are also morphisms of K-coalgebras and thus ¢ is a morphism of K-coalgebras.
This is equivalent to the well known fact that the K-coalgebra H(4) is com-
mutative.

If 4,, A, are simplicial subsets of 4 and C is in DG K then H(A4,A,, A,; 0)
is a left (or right) H (4)-comodule and we have the commuting diagram
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HAd®C
H4, 4, 4,0 2989 gaxa,4x4,4x4,0)

an Tﬂ(n ® O) (18.1)
H(A) ® H(A, 4,,4;;C0) = H(A ® (4/4,U 4,) @ 0)

where Vg is the structure morphism of H(4, A4,, 4,; C). It follows that
V u is a morphism of H (4)-comodules.

We return to diagram (15.1) of simplicial sets and assume throughout this
section that

(18.2) There exists a simplicial set M with a single 1-simplex and a mor-
phism ¢: B — M of simplicial sets such that H (¢) is an isomorphism.

This hypothesis is satisfied if B is the singular simplicial set of a pathwise
connected and simply connected topological space.

We have the diagonal maps

d: B>Bx B, d,: B/B" > B x B'|B' X B’
d;: E|ID - E X E[E x D
and we consider the diagram

Cotord(d,,d, ® C
CotorB(B'|B", E|D @ ¢) — (%1:%:® €)

CotorB*B(B'X B'|B'X B", E X E|[E X D ® ()
T Cotor” (9, 1, ® O)
(18.3) CotorB8®8(B' @ (B'/|B"), E ® E|D ® C)

I

CotorB (B', E) ® CotorB(B'|B", E/D ® C) .

Since H(n), H(n,), H(n,) are isomorphisms it follows from the isomorphism
theorem 7.1 that Cotor”(%,, 7, ® C) is an isomorphism. From 16.2 we know
that & is an isomorphism if

Cotor B8 (B', K) is K-flat. (18.4)
If (18.4) holds, then (18.3) yields a morphism

Cotor®(B'|B", E/D ® C) — Cotor®(B', E) ® Cotor®(B' B", E/D ® C). (18.5)
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As a special case of (18.5) we have
Cotor 8 (B', E) — Cotor B (B', E) ® Cotor3 (B', E) . (18.6)

We also have a morphism

CotorB8 (B',E) - K (18.7)

induced by mapping B, B’ and E into a pointlike simplicial set (which has
one simplex in each dimension).

It is a formal matter to verify that (18.6) and (18.7) convert CotorB(B’, E)
into a graded K-coalgebra and that (18.5) converts CotorB(B'/|B", E|D ® C)
into a graded left CotorB (B’, E)-comodule.

Assume now that

H(E') is K-flat. (18.8)
Writing down the appropriate fairly large commuting diagram one easily ob-
tains that
to: H(E') — CotorB (B', E)
is a morphism of graded K-coalgebras and that
v: HE',E", D'; C) - CotorB(B'|B", E|D & C)
is a 7y-morphism of graded left comodules.

In diagram (18.2) we may replace the functor Cotor by the spectral sequence
functors E7. Then assuming

H(B), H(B'), H(B'|B"), H(E) and Er(B',B,E) (r=2) are K-flat (18.9)
we obtain that E7(B', B, E) is a (graded differential) K-coalgebra and that

Er(B'|B", B,E|D ® C) is aleft E*(B', B, E)-comodule.
Conditions (18.9) together with 9.2 yield isomorphisms

E*(B', B, E) ~ Cotor#'® (H(B'), H(E))
E*(B'|B", B, E/D ® C) ~ CotorH'®)(H(B', B"), H(E, D; C)) .

This yields morphisms (18.5) and (18.6) with B, B’, etc. replaced by H (B),
H(B'), etc. These morphisms can be obtained from diagram (18.3) by re-
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placing B, B’, ete. by H(B), H(B'), etc. However, in view of (18.1) the
following slightly simpler diagram may be used

CotorH'B) (H(B', B"), H(E, D; C)) —» Cotor¥(B)®H(B) (H(B') @ H(B', B"),
¢ HBSHEDO)

CotorH(B)(H(B'), H(E)) ® Cotor#8®(H(B', B"),H(E,D; C)) .
The horizontal morphism is induced by the structure morphism

H(B) >H(BYy® H(B), H(B', B"y > H(B') ® H(B', B")
and
H(E,D;C) ~H(E)Q H(E,D; C).

Columbia University
Princeton University
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