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The Spectral Sequence of a Posrnikov System?)

by DoxaLp W. KAHN

The notion of a spectral sequence first came into prominence in connection
with the problem of relating the homology of a fibre space with that of the fibre
and base ([12], [20]). Subsequently, a similar situation was observed for exten-
sions of groups [9]. In all such cases, the function of the spectral sequence was
to show how the homology (or cohomology) of two objects influenced that of a
third. The spectral sequence of ADams [2] is of a different nature; it takes the
cohomology of a space as a module over the STEENROD Algebra and constructs,
from this module, the stable homotopy of the space. The Apams spectral
sequence thus exhibits some of the inner forces which determine the homotopy of
a space.

On the other hand, the PosTNIKOV system ([17], [19], [21]) is a geometric
construction which in a formal way completely determines the homotopy
structure of a space. That is to say, the ingredients of a PosTNIKOV system, the
homotopy groups and the k-invariants, completely determine the homotopy-type
of a space. Nevertheless, there has not been given a full description of how the
homotopy groups and k-invariants fit together to determine the homology of a
space. (Homology has usually been studied by applying the SERRE spectral
sequence [20] to individual terms.) The general purpose of this paper is to fill
this gap. I will study here a spectral sequence which begins with the homology
of K (=, , n) spaces, where n, = m,(X), and which converges to H, (X). There
are similar sequences with coefficients or in cohomology. In a heuristic sense
and in the stable range, this sequence is dual to the Apams sequence which
converges to homotopy. The most important differences are the following; 1. Our
sequence is not restricted to the stable range, although outside the stable range
we do not have a full description of the first term. 2. The differentials in this
sequence may be directly related to the k-invariants. 3. The HuREWICZ map
occurs naturally in our sequence.

The principal results of this paper, according to section, are as follows:
Section 1. contains preliminaries. 2. and 3. are devoted to the construction of
the spectral sequence, with the more technical properties in the latter. Section
4. is devoted to the HurEwroz map H, : 7z, (X)— H,(X), while 5. concerns the
order of elements in ker (H,). In section 6., we introduce a filtration on ker
(H,). 7. deals with stable homotopy groups of spheres, in which case we have a

1) This work was partially supported by contract NONR 266 (57).
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filtration by ideals. In 8. we relate the spectral sequence to compositions, and
we derive some algebraic properties which a non-nilpotent element in the
stable homotopy ring would necessarily have. In section 9. we interpret the
WHITEHEAD product in the spectral sequence and obtain a result about the
non-vanishing of this product.

It is pleasure to acknowledge two sources of inspiration for this work. For the
special case of By, the classifying space for the infinite unitary group, and
within the stable range, a similar sequence was used in [3]. The general uni-
versal coefficient theorem of [7] suggested the duality with the sequence of [2],
as mentioned above.

1. Preliminaries

Throughout this paper, we consider spaces which have the homotopy-type
of a 1-connected, countable C W-complex. All spaces are understood to have
base points, which are respected by maps. However, it is convenient to omit the
base points from the notation. I shall use singular homology, denoted by
H,(X,G) or H (X,G@)=X® H,(X, 3), or singular cohomology denoted

H"(X, @), ete. In case G = Z, the integers, we omit the coefficient groups
from the notation.

By a fibre space, I shall always mean a fibration which satisfies the absolute
covering homotopy property (the 4 C H P), that is to say the covering homo-
topy property with respect to maps of all spaces. It is known that up to fibre
homotopy equivalence, these fibre spaces are the same as the fibre spaces in the
sense of SERRE [20]. By a result of MILNOR [16], our constructions of such fibre
spaces do not take us outside our basic category. We shall also use the well-
known construction which converts any map into a fibre map (see [10]) and
which is functorial.

If X is a space, we shall use the notation {X,,, p,, =,} for a PosTNIKOV system
for X (see [10] for details). Here, p,: X - X, and x, : X, — X, _, is a principal
fibre space [18] with fibre K (n,(X),n). If i"e H"(n,(X), n; n,(X)) is the
fundamental class and 7, is the transgression in the fibre space n,,: X, - X, 1,
we shall use the definition

kit = v, ine H" (X5 7, (X))

for the k-invariants. We note that in the semi-simplicial case, as in [17], the
construction of the PosTNIEOV system is functorial and the maps p,: X - X
are fibre maps. However, the notion of k-invariant does not fit naturally into
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that theory. Hence, we work in the geometric case, where instead of functoriality,
we have the weaker notion of “induced map”’ [10]. It can be shown by example
(due to A. DoLp) that in the geometric case, one cannot have a functorial
construction of PoSTNIKOV systems (in which z,: X, — X, _, is always a princi-
pal fibration).

2. The Spectral Sequence

We shall first construct arbitrarily large finite portions of the spectral
sequence; then we shall show how these fit together to form the entire spectral
sequence.

Let X be a given space in our category and let {X,, p,, n,} be a PosTNIKOV
system for X. Assume that X is (p — 1)-connected, where p > 1. Choose
m > p and convert the map

Pm: X—>X,,

into a fibre map. For simplicity, we keep the same notation for this new
equivalent map. We then have a tower of fibre spaces

xPmx Imx, I X, = K(x,(X),p).
We note that the map

KO ... 0T, © Py

is homotopically equivalent to the map pg_,, and thus we shall use pz_, to
refer to the composition. Because our fibre spaces satisfy the ACHP, the
composition of any finite number of fibre maps is a fibre map. In particular,
each Py_,, for K — 1 < m, is a fibre map. In the fibre space

pi: X->X,,i<m

let F,,, = p;* (base point) denote the fibre.

Lemma 2.1.

a) F,,, is ¢-connected.

b) F,,, is fibred over K (7, (X), ¢ + 1), with fibre F,_,.

¢) Fopc F,c...c F,=...= X is a finite increasing filtration of the
space.
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Proof: a) is trivial. For b), it is sufficient to note that =, projects F, ,
onto K (7;,;(X), ¢+ + 1). But K(#;;(X), ¢ + 1) is a subspace of X, , which
includes the basepoint. Part c¢) follows by taking successive inclusions of
fibres.

We shall now define the spectral sequence of length m. We set F, equal to
the base point, if n > m + 1.

Def. 2.1. The homology couple of length m, of the PoSTNIKOV system
{X,, p,, m,} for X, is the exact couple [14] in homology of the filtration in
Lemma 2.1 c). Specifically, we put

‘D", s = H"+s (F"); Er, s = Hr+s (Fr: Fr+1)'

The couple maps ¢, 5, and k are the usual maps from the exact sequence of a
pair. They have respective bidegrees (— 1, 1), (0, 0), and (1, — 2).
The cohomology couple is

D™* = Hr+s(F,); E"°® = Hr(F,, F,,)

for which we have bidegrees (1, — 1), (— 1, 2) and (0, 0).
We denote these couples by

{Dy,s; By, ) and (D75 BT,

We refer to the spectral sequences associated to these couples as the spectral
sequences, of length m, of the PosTNikOV system {X,, p,, =,}.

Remark. a) Our numbering conventions differ slightly from the usual ones.
For example, in this spectral sequence, the first significant term will actually
be E1.

b) One may define such sequences with coefficients in the obvious way.

Our first task is that of showing how to obtain a spectral sequence for
{X,, Pn, m,}, without regard to m.

Prop. 2.1. Suppose m; > m. Suppose also that we have constructed, as
described above, two finite POSTNIKOV systems
xPmx Ty
and

Xt—X, — X, 21— ...
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Then, X and X! have the same homotopy-type, and furthermore, there is a
homotopy equivalence

f: X->X2
and a family of homotopy equivalences

fi: X; > X,, 1<m
such that
nfi=fiaem; and f,p, = p;f.
We also have
f(F,) c F}, for i <m 41,

with the map f/F, being a homotopy equivalence.
We thus conclude that f defines a couple map.

Proof. Since we have only altered the space X by converting a map into
a fibre map, X and X* clearly have the same homotopy-type. Select a homo-
topy eqmvalence f X - X1, Accordmg to [10], we have a family of induced
maps f, X,— X, such that =,. f = f,_, .7, and p,. f~ j, «p;. In partlcula,r
pmf____/,,, P> 80 that by the ACH P, there is a map f, f~ f with p,, f = fm y -
Let f, = f,, 1 < m. Then the first two conditions are clearly satisfied.

It is clear that f (¥,) c F}. By the five-lemma and WHITEHEAD’s theorem,
we see that f/F, is a homotopy equivalence.

It follows from this proposition that the terms E} ,, r < m, are the same
regardless of which PosTNIKOV system is used in constructing the couple. Hence,
in a range of dimensions which goes to infinity with m, the two spectral se-
quences will be the same.

Def. 2.2. The limits, in m, of the two spectral sequences defined in Def. 2.1
are denoted

{£7 ,; d.} (homology) and {E}'’;d,} (cohomology).

Our interest is in these sequences which are defined without regard to m. We
will next study the convergence of these spectral sequences. Let <D, ,; E, ,»
denote the limit couple whose sequence is {E7 ,; d,}.

Prop. 2.2.

a) If n>s, D}, =0
b) If n > max. (r,s — 1), then EP, = E*! =
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Proof. Elements of D} , are representend by classes in H, ,(F,) which may
be pulled back to H, ,(F,,,). Since s <n and F,,, is (r + n — 1)-connected,
the result follows. Part b) is similar.

Prop. 2.3.
Im(D,,,~ H,, (X))
Im (D, —> H, (X))

@
Er,a"“

with the similar result for cohomology.

Proof. Easy.

In order to apply the spectral sequence to some specific problem, we must
have some information about the first term. To know this term in general
seems to be difficult. However, the following proposition determines it in the
“stable range”.

Prop. 2.4.
E:,s = Hr+s(nr(X)’ 7')

E}*= Hr*(n,.(X), 1) .
Similar statements hold for other coefficients, for example a principal ideal ring.

Prool. F,is fibred over K (=,(X), r) with fibre F,_,. K (n,.(X), r) is (r — 1)-
connected, while F,,, is r-connected. The assertion follows from [20] (see
Cor. 1, p. 469), and similarly in cohomology.

Remark. If one pictures the term E' as lying in the first quadrant in the
plane, then this stable range is the region {(r,s) | 0 < s < r}.

3. The Spectral Sequence (con’t.)

In this section, I shall consider the following special properties of the spectral
sequence: a) the effect of a map, b) the relation between the differentials and
the k-invariants, ¢c) cohomology operations in the spectral sequence for coho-
mology, d) the duality between the spectral sequences for homology and coho-
mology, when the coefficients are a field, and e) the effect of the loop space
functor 2. We begin with some remarks on naturality.
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The notion of PosTNIKOV system in the category of spaces and maps is not
a functor. In fact, the requirement that our fibrations be principal prevents
there from being a functorial construction. Furthermore, our construction of the
spectral sequence from the PosTNIKOV system depended on choices (covering
homotopies, etc.). However, in the case of PosTNIROV systems, one does have
the notion of induced maps [10] which are associated with a map of spaces.
Here we have a similar situation, as follows:

Prop. 3.1. Let f: X — X! be a map. Suppose X and X' have PosTNIKOV
systems {X,, p,, #,} and {X,, p;, =,}, and couples (D, ,; E, > and
(Dy 43 B} > (asin section 2). Then there is a couple map <f,, f,>,

1D, ,—> D},
2t B, ,—~>E;,
such that <{f,, f,> is compatible with the induced maps
fx 7 (X) —> 7, (X)
f« H(X)—~> H,(X?).

Furthermore, if ¢ ~ f: X - X', then {f,, f,> is also compatible with g.

Proof. By our construction, it is sufficient to consider finite PosTNIiKOV
systems of length m, m large. Altering f, if necessary, by a homotopy, we may
form a commutative diagram

X—X,—Xp1—> ...
2
X, X! Xl ,— ...

As all maps are base-point preserving, we have
f(F,)c F}, r<m-+ 1.

We may then form the following commutative diagram, in which the horizontal
maps are inclusions:
eo.— F ,—F, — ... ... — X
flFwa| fIF.| f|

.—Fly— Fi— ... ... — X1,
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It is now easy to construct the desired couple maps. If g ~ f, then g,, ~ f,.,
so that the last assertion follows easily.

It is clear that the k-invariants of the PosTNIROV system determine the fibre
spaces (F,, F,,,, K (n,(X), r)), and thus, they determine all the differentials
in the spectral sequence, at least up to identifications. The stable portion of E,
consists of the cohomology of the fibres in the fibre spaces (X,,, K (=, (X), n),
X, 1;m,). If +* is induced by the inclusion i: K (=,(X),n) - X,, then
v* ke H*+2 (7, (X), n; n,,, (X)) is an element of £, when the coefficients are
taken in =, ; (X). The following proposition identifies this class.

Prop. 3.2. Suppose X is (p — 1)-connected, n > p > 2. Let
intt e H 4 (m,,4(X), 1 + 15 70,44 (X))

be the fundamental class, ¢: K (x,(X), n) > X, the inclusion of the fibre.
Then in the spectral sequence for a PosTNIKOV system for X, we have

dl N+l — ¥ n+2

Proof. We shall use the identifications of Prop. 2.4. Consider the following
commutative diagram, in which the horizontal maps describe fibre space maps:

= n Fn
Fn+1 > n+l "?'E—l-_'il’ K (nn-b-j. (X)’ n + 1)
Fﬂ > X pn+1 > -
v l |
K (%,(X), n) > X, — X, .

Let v and v denote the transgressions in the right- and lefthand fibre spaces

(resp.). Let §n+1 be the fundamental class in F,.,. Since the transgression is

natural, we have L
PR pn+2 = gk ¢ gntl —= ¢ 4N+l

Identifying the cohomology, in positive dimensions, of (4, pt.) with that of
A, for any space A, we have
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2 X kn+e = p*‘l oXpn+l — p*—l ok k* 'z‘,* in—;-l’

where k: F,,+1__—> (Froyrs Foyo) and p: (F,y, F,5) > (K (7,4 (X), n + 1), pt.).
Since p* and p* are just identifications, and 6* k* gives the differential d,, we
have the formula

X e+ — dl g+l
as desired.

Remark. One may prove a similar result about the higher differentials.
Roughly speaking if d,{i"*'} = 0 for 1 <j < m, then v¢"+! is in the image of
(Fpmyz © oo © Wyy o ;,)*. If @ is an element which this map sends to 7"+,
then i*a equals d,, {z"+1}, modulo an appropriate subgroup. Here, as before, ¢ is
an inclusion of a fibre. Details are left to the reader.

We now study the relationship between cohomology operations and differen-
tials in the spectral sequence in cohomology. It is convenient to use the follow-
ing terminology:

Def. 3.1. A family of cohomology operations, @,, defined as additive,
natural transformations of relative cohomology which augment degree by d(n),
with fixed coefficients @, is called ordinary, if the @, commute with the cobound-
ary for all pairs, e. g.

=, |

Hm (X, 4A; Q) ———> Hm++d (X A4; Q)
commutes for all pairs in our category.

Prop. 3.3. Let {E?'? d,} be the spectral sequence for a POSTNIKOV
system for a space X in our category. Let the coefficients be &, and suppose D,
is an ordinary family of cohomology operations with coefficients in G. Suppose
z ¢ E?? represents {z}eE?¢. Then &, (x) represents a class in E?» ¢4,
denoted {®, (x)}, and

@ {D, ()} = {Pn ()}
where u represents dr{x}.

Proof. Since the @, commute with coboundaries and induced maps,
clearly d,{x} = 0, j <r, implies d,{®,(z)} = 0, j < r. The second assertion
follows similarly.

12 CMH vol. 40
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Remark. The differentials thus commute with the STEENROD operations,
which are, of course, the most important example of a family which is ordinary.
Similarly, with appropriate signs, the differentials commute with some families
of BOCkSTEIN homomorphisms. However, the differentials do not commute
with all natural cohomology operations. The following proposition gives an
example of a BOCKSTEIN which does not commute with differentials.

Prop. 3.4. Let X = 87" »n large. Let ue H"+t3(Zg, n + 3; Z,) be the
non-zero element, and let @ e H*+t4(Zg, n + 3; Z,) be the non-zero element.
Then, we have in the spectral sequence for cohomology with coefficients Z,,

d, (u) =0 and d,({u}) =0
but
d, (D (w)) = d, (D) # 0.

Proof. The first assertion follows from the fact that there must be some
element in the spectral sequence to kill 837 e H"**(Z,n; Z,). u is the only
possible element. Thus, dy({u}) = {S;7}. But, there is no element in E3'°,
and {@}eE?** ! is never an image under any dr. Thus, {®} does not remain
until Z,. In fact, it is easy to show that d, (D) £ 0.

Remark. Further details on the spectral sequence for a sphere, in low
dimensions, may be found in section 8. The only information needed for the
computations of Prop. 3.4 is Prop. 3.3 and the ApeMm relations among the
STEENROD squares.

Next, we consider the spectral sequences in homology and in cohomology
with coefficients in a field. In the case of coefficients in a field, the groups
H,(X, A)and H*(X, A) are actually dual vector spaces, and the induced maps
{« and f* are dual homomorphisms. A similar duality applies on the chain level,
and this shows that the connecting homomorphisms are dual homomorphisms.
We thus have a duality between the couples, and hence the

Prop. 3.5. When the coefficients are taken in a field, the two spectral
sequences {£ ;dr} and {E£7'%; dr} are dual spectral sequences of vector spaces.

The last special property of this spectral sequence, which we are going to
discuss, is the relationship with the loop functor. In order to do this, we need
some special properties of the suspension homomorphism, with respect to pairs
of spaces. Although these do not seem to be available in the literature, they
are not difficult and are probably well-known. I will only sketch the theory,
leaving details to the reader.
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We require a transgression homomorphism for pairs that is a map
1: HI(QX,Q4)—> H+H (X, A)

which is to be defined in a stable range, and which is to be compatible with
respect to the ordinary transgression and the exact sequence of a pair.
To begin, let y,eA — X be the base point, and define

Pxo,A = {xePX |« (1) e A}, where PX = pathson X.

We define the relative transgression to be the correspondence
. o*x p*
H* (Pxo,A) — H+(PX, Pxo,A) «— H (X, A).

We shall show how this can be modified to give a transgression for pairs as
required. We operate primarily in the stable range, i.e. our dimensions will be
less than twice the connectivity of the space. For simplicity, we omit any
questions of sign.
There is a commutative diagram
y

HY(QA) — H' (P, 1) — Hi(QX)

N

Hi(4) — H" (X, A) 1> H*(X) .

Consider the case where X is fibred over Y with fibre 4. Let n: X — Y be the
projection map. We then have a commutative diagram

( Q(x)

QAB—Z)».QX

QY
PlA—Iz(—i)»PlXMPlY
N

g —» X — % ¥

in which each column or row is a fibration. p. P(n) has fibre Pxo’ 4- In our
stable range, there are isomorphisms

n: HS(P, ) =, Hi(Y)
5, H1(QY) — Hi(Y)
Q(m)*: H1(QY) —» H-1(QX, Q4).
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If we define
f = Q@yorytor: HFI(P, ,)—» H-1(QX,04),

then there is a commutative diagram
H (Py,, )
p*et St Ny
eor. — HY(QX) — HY(QA) fill HQX)— ...
Ny O0* s* A
Hi{(QX,QA4)

In other words, under our assumptions, if we identify H' (Pxo. 1) and H{(QX, Q4)
via f, then there is a transgression for pairs

v Hi(QX, QA)—~ H* (X, A)

which, along with the usual transgression, commutes with induced maps and
coboundaries.
Now, it follows formally that in the stable range, there is a transgression map

v: EP19(QX) - EP9(X)

which commutes with differentials, and which, in this range, is an isomorphism
of spectral sequences. In the usual way, one may convert this to a map of
spectral sequences

X: E?(X)—~ EP (S X)),

Using these maps, one may pass to the limit, and one thus obtains a stable
spectral sequence associated with a space. In homology, the groups Ej , in
this limit spectral sequence are just the stable homotopy groups of the space.
In sections 7. and 8., we shall use this spectral sequence in studying the stable
homotopy groups (ring) of spheres.

4. The HUREWICZ Homomorphism

If we consider the spectral sequence for a PosTNIKOV system for X in integral
homology, we note that z, (X) occurs naturally in E?, while E* is a graded
group associated with H, (X). In this section, we identify the edge homo-
morphism

7ty (X) — H, (X)
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with the HurEwicz homomorphism. We conclude with conditions for the
HurEwICZ map to be a monomorphism or an epimorphism, and with a new,
short proof of the fact that the HurEwWICcZ map is always onto in the second
non-trivial dimension.

Theorem 4.1. Let X be a space with a given PosTNIROV system and spec-

tral sequence {£7, ,; dr} in integral homology. Then, the (essentially finite)
composition

~o

7, (X) —> Ei,o"’Ef,o"’ .> B2, ¢ H,(X)

for which the first map is the HurEwIcz isomorphism in dimension r in the
space K (7.(X), r), the last map is the obvious inclusion, and the other maps
are the natural projections, is the HUREWICZ homomorphism

H,: 7 (X)—~> H, (X)
for the space X .

Proof. Consider our spectral sequence as defined by a finite PosTNIKOV
system of m terms, m > > r, Then, we have a commutative diagram

a1 ]
Tty (Fr: Fr+1) - T, (Fr) B nr(X)

il il |

H,(F,, Fn,) ~— H,(F,) — H,(X)

in which the vertical arrows represent HurREwIcz homomorphisms. We are

interested in the map on the right, so that it is clear that we must study, up to
these identifications, the map

H,(F,) % H,(X)

in relation to the spectral sequence.
Consider the epimorphism
E :, o—~>E 3’ -
This map consists in projecting E} , onto its quotient by the image of d,.
Identifying H,(F,) with H,(F,, F,,,), we see that an element in E} , belongs

to I, (d,), if and only if it is an image under

Oy : Hr+1(Fr—1’ F,) - H,(F,).
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By exactness, an element in E} ,is in Im(d,), if and only if it is annihilated by
Hr (Fr) - Hr (Fr—l) ¢

More generally, an element of E; ,is in Im (d;), if and only if its class is
annihilated by H,(F,)— H,.(F,_,).

Therefore, the composition

H,(F,) = H.(F,, F,,,) = Ei,o"’ Ef,o"* o> ET,
i8 just the projection onto the quotient of H,(F,) by the kernel of
H, (F,) > H,(F,) = H, (X).

It is easy to see that the inclusion £ , ¢ H,(X)is the same as the imbedding of
Im(H,(F,)— H,(X)) in H,(X), proving the theorem.

Cor. 4.1. If X is (p — 1)-connected, and if E ; ; =0, for 0 <¢ <7 —p,
then the HurEWICZ map H,, for dimension 7, is an epimorphism.

Proof. In this case, £, = H,(X).

Cor. 4.2. If X is (p — 1)-connected, and E;_; ;,, =0,for 0 <¢ <r —p,
then H, is a monomorphism.

Proof. In this case, each E} ,— E}%' is a monomorphism.
As an elementary application, we have the following:

Prop. 4.1 (EILENBERG-MACLANE). Let r be a positive integer, 7 an abelian
group. Then H, ,(n,r; Z) = 0.

Proof. For r = 1, this is a well-known algebraic remark, and we shall
consider the case r > 1. Let X be a connected space such that

HX)==n

H (X)=0,8%#r,8>0.
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(It is easy to see that such spaces always exist.) Consider the homology spectral
sequence for a PoSTNIKOV system for X . Then

Ei,l = H,.+1(7L', r; Z).

But if E} , % 0, EY, would be non-zero, since no element in E? , is an image

under any differential. But then we would have H,,,(X) 5 0, which is a
contradiction.

Prop. 4.2 (G. WHITEHEAD). Let X be (p — 1)-connected, p > 1. Then

H:H—l : 7t9+1(X) - Hp+1(X)
is onto.

Proof. By the above, EY, = E , = 0, so that this is a special case of
Cor.4.1.

b. The Kernel of the HUREWICZ Homomorphism

In the previous section, we have characterized the HurREwICZ homomorphism
as an edge homomorphism in the spectral sequence of a PosSTNIKOV system.
Here we propose to use these methods to study the kernel of the HurEwWICZ
homomorphism. It is convenient to make the following definition:

Def. 5.1. The HurEwicz homomorphism
H,:n,(X)> H,(X)

will be called stable, if X is (m — 1)-connected, and n» < 2m — 1.

Our work here will be restricted to a study of stable HurREWICZ homomor-
phisms, because in this range of dimensions, we have complete information
about the El-term in the spectral sequence for a PosTNikoV system. The follow-
ing theorem relates the order of elements in the kernel of the HurEwICZ
homomorphism to the density of non-zero homotopy groups of the space.

Theorem 5.1. Let X be an (m — 1)-connected space in our category, which
is assumed to have finitely-generated integral homology groups. Let
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H,:7n,(X)~> H,(X)

be a stable HUREWICZ homomorphism, e.g. » < 2m — 1. Let k,(n) denote the
number of dimensions ¢+, 0 < ¢ < n, for which =, (X) contains an element whose
order is either a power of p or is infinite. Let 0, («) denote the smallest natural
number ¢ such that p°x = 0.

If xeKer(H,) is a non-zero element whose order is a power of p, a prime,
then

0,(x) < ky(n) 4+ 1.

Proof. If » is any finitely-generated abelian group, then it has been shown
by H. CarTAN [6] (see also [8]) that p-torsion every element of H, (x, n; Z),
n <1t < 2n, is order p. Clearly, such a group has elements of order p, if and
only if, n has elements of order p or co.

Therefore, £}, 0 <r<m, s <<r, has elements of order p, exactly when
7, (X)) contains elements of order p. There are exactly £,(n) such groups. Since
o is in Ker(H,), its class is annihilated by some sequence of differentials d,.
The domain of each such differential is a group all of whose elements have prime
order. The desired inequality follows immediately.

Cor. 5.1. With the same notations as Theorem 5.1, let o, (G) denote the
maximum of o, («x), when « ranges over G. Then, when all the numbers involved
are finite, we have

0y (7, (X)) — kp(n) — 1 < 0,({n(H,)) < 0,(H,(X)).

Cor. 5.2. Let xem;(S"), n<j<2n — 1. Denote by /,(j) the number of
i, n <1i<7j,so that z,(S") has an element of order p. Then,

0,() <1, () + 1.

Remark. 1. Apawms [1] and LivLevicius?) have obtained absolute bounds
for the order of elements in the stable homotopy groups of spheres. On the
other hand, KERVAIRE and MILNOR (11) construct elements in the stable homo-
topy groups of spheres or arbitrary high order. This fact shows that in some limit
sense, Cor. 5.2 is best possible. However, we shall show, in the next section,
that the estimate of Cor. 5.2 may be improved by 1.

2) Apams’s results first appeared as Lecture Notes from the Univ. of California. LIULEVICIUS’S
paper is in Proc. Amer. Math. Soc. 14 (1963).
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2. One also has some information about elements xex,(X), xeKer(H,),
which lie outside the stable range, provided one assumes that {x} = 0eEI3.
In this case, one may also bound order in terms of the density of elements in
the range of dimensions [n/2] < ¢ < n. Clearly, such elements lie in a “meta-
stable’”’ range, in that they share some properties with the stable elements.
Unfortunately, I know no condition on « which would insure that it was
metastable in this sense.

6. The Filtration of Ker (H,)

We shall now define a filtration on the elements of the homotopy groups of a
space and then examine some of its special properties.

Def. 6.1. Let xen,(X), n > 1. We identify « with an element of E; ,,
via the HUREWIOZ isomorphism x,(X) ~ E}, ,. Suppose that 0 # {«}<E} ,,
1 <¢ <m —1, but that 0 = {x} e E7 ;. Then we say that « has filtration m

and write f(x) =m. If &« = 0, put f(x) = 0; if « ¢ Ker(H,), put f(x) = oo.

Def. 6.2. Define
I (X) = {wem, (X) | f(o) <Kk}

Remark. It is clear that if aen,(X), f(x) = k, then if a is an integer,
f(@x) < k. Clearly the set J* (X) is a subgroup of =, (X). We put

JEHX) = 2@ JE(X).
The subgroups J*(X) are then a filtration of
iy (X) = 2@ 7, (X).

Remark. In we consider the spectral sequence with coefficients in a field,
then the set of elements such that f(x) = k also forms a subgroup, and in fact,
one can define a filtration by vector subspaces.

These subgroups and filtrations will play an important role in subsequent
sections. In the remainder of this section, I propose to obtain bounds on the
filtration of elements. We shall also indicate why elements of arbitrarily high
filtration occur in the stable spectral sequence for a sphere.
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Prop. 6.1. Let X be (m — 1)-connected, m > 2(p — 1). Let xemn,(X) be
an element whose order is a power of the prime p. Then, we have

Ho) = 2(p—1) —1.

Proof. We begin by noting that the homology of an ErLENBERG-MaAcLANE
space, with coefficients in the field of p elements, Z , vanishes in the range of
dimensions m 4 1 < ¢ < 2(p — 1). By the universal coefficient theorem, the
p-torsion of the integral homology must also vanish in this range. Therefore,
the first differential whose image can possibly be {«} is dy(,_3)_; -

Prop. 6.2. Let X have a single non-vanishing free homology group = in
dimension m. Suppose xenm, (X), m<n<2m — 1.
1. If « has order a power of p, p an odd prime, then

f(#) < max.[n —m — (2(p —1) — 1), 2(p — 1) —1].

2. If the order of « is a power of 2, then either the above holds with p = 2,
orelsen —m =1,3,o0r 7.

Proof. We have {x} =d;{p}, for some j and f. In case BeE} ,,_1
f(x) = 2(p — 1) — 1. In this case, « lies in the first non-vanishing homotopy
group of X, whose dimension is greater then m, and which has p-torsion.

We must show that for n>m+2(p—1)—1, f(a) <n—m—2(p—1)+1.
Consider the coefficient homomorphism Z — Z,, into the spectral sequence with
coefficients Z,. In that portion of the spectral sequence where g lies, all ele-
ments have prime order, so that this coefficient homomorphism is actually an
isomorphism on p-torsion. It is then clearly sufficient to show that in the dual
cohomology spectral sequence, with Z, coefficients, if

d'f {E} = {E}

then j <n—m —2(p—1) 4+ 1.

But suppose that d,{«} = {;9_}, EeE’}"'"“mH. Then, we must have B} ; =0,
i1<n—m-+ 1.

Then there is an element P in the mod p STEENROD algebra such that
E = Pi. Pisnot P If pis odd, then according to LivLEvicrus [13] and others,
there can be no space where this operation is non-trivial, and there is no
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cohomology in dimensions between those of ¢ and P:. This shows that
BeB™ ™ ™+1 wag impossible.

In case p = 2, the argument is similar, except for the fact that S¢2, S¢?, and
S¢® do not factor (see [4]).

Now, referring to Theorem 5.1, we see that the presence of elements of high
order in the stable p-component of the homotopy groups of a space implies the
existence of elements of high filtration in the spectral sequence. Using the work
of KERVAIRE and MILNOR [11], we have the following observation:

Prop. 6.3. There exist spheres which contain elements in their stable
homotopy groups of arbitrarily high filtration.

Remark. The results on the WHITEHEAD product, in the last section of this
paper, will show that there also exist unstable elements, in the homotopy
groups of spheres, which have arbitrarily high filtration.

7. The Filtration for Stable Homotopy Groups of Spheres

We now examine the filtration in the case of stable homotopy groups of
spheres. We use the notation

G, =lim=n, . (S"); @ =2D G,.
n—>o k
In section 3, we sketched a theory of relative suspension and transgression
which enabled us to pass to the limit and define a spectral sequence which
contains the stable homotopy groups of spheres. In the case of homology with
integer coefficients, we denote this stable spectral sequence, which is the limit
of the sequences for the spheres 8%, by

{,sE' ’ d,} .

»,q°

Exactly as in the previous section, we make the following

Def. 7.1. x¢@,, n > 0, has filtration m, written f(x) = m, if 0 % {x}esK}, ,,
for r <m, but 0 = {x} esE™,.
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We define
sJp = {xe@, | f(o) <k}
and
sJb =2 @ sJE.

Remarks. The sJ* clearly define a filtration of the stable homotopy groups
of spheres by subgroups. It is easy to see that the bounds, given by Prop. 6.2,
on the filtration of an element, may be carried over to estimate the filtration
of elements in G.

It is well-known (see [5]) that G possesses the additional structure of an anti-
commutative ring. The multiplication is defined via the composition of map-
pings. We shall study the effect of this multiplication on the stable spectral
sequence and on the filtration of elements.

First we note that an element x e, is represented by a map

o: Stk Sn q large,
and hence, « defines, by means of proposition 3.1, a homomorphism « of

{skE? ,; d,} of bidegree (k, 0). If i¢G, is a specified generator, we have that
«(t) = &. The following proposition is immediate :

Prop. 7.1. Suppose xe@,, Be@;:. Let « denote the homomorphism of
{sE} ,; d,} defined by «. Then, under the identification of sEj ;. , With

p:q;
Gk-l-kl s WEe have

a(B)=wop.

Concerning the relation of multiplication to filtration, we have
Prop. 7.2. Suppose xeGy, feG;1, f(x) = m, f(B) = m'. Then
fla o B) = f(B o &) < min. (m, m!).

Proof. From anti-commutativity, we see that f(xo )= f(fc«). Since
f(B) = m?!, there is a class » such that

{ﬁ} = dm' U.
{ox o ﬂ} = Gm (‘0—‘(“))

Then
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Thus

foo B) <mt.
Similarly

flaxoB) <m.

Remark. The case where f(xe ) < min. (m, m') does occur. For example,
the generator of G;, which is of filtration 3, has a non-zero power which is
divisible by the generator of G,. The latter has filtration 1. Hence, an element
of filtration 3 can have a non-zero power which has filtration 1.

In the sequel, it will be convenient to refer to those products, for which
f(x o f) = min. (m, m'), as non-degenerate. A non-zero product with f(xopf) <
< min. (m, m!) will be called degenerate.

Cor. 7.1. a) sJ* is an ideal in the ring G.

b) If k < k', sJ* is an ideal in gJ*.

Proof. Let xesJ*, BeG. Then, f(xof) <k, so that xoBesJ%. Case b) is
similar.

Remark. I do not know the exact relationship of this filtration to the other
filtrations which have been defined on the stable homotopy groups.

8. The Composition Produet for Homotopy Groups

It has been said that cohomological methods for studying homotopy fail to
shed light on compositions (and higher order composition products). In this
section we shall show how this is not the case. Using the spectral sequence, we
shall give conditions for a composition product of homotopy classes to be
essential. Some applications follow. Finally, we obtain some information
on the properties which non-nilpotent elements in the ring G' would neces-
sarily have. The existence of such elements is unknown at the present time.

Prop. 8.1. Let xem,(S?), Ben, (89, p<g<r. Suppose that in ES, in
the spectral sequence for 8¢, {8} = d,,u. Then, if d,,(x(x)) # 0, we have
xof #£0.
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Proof. Since « is a map of spectral sequences, we have
{xof} = a(dn(u)) = dp(x(w).

Remark. This condition is not necessary, as is seen by considering degener-
ate products in the ring G.

Now, the spectral sequence forms a useful tool for investigating the pro-
perties of composition of an arbitrary stable element with a fixed stable element.
For example, we have

Prop. 8.2. Let xe@G,, 0 # 12¢ G,. If « has order 2, is not divisible by 2,
and xon? # 0, then & o#? is divisible by 2.

Proof. We shall work in the ring G ® Z,. We shall use the same notation
for elements as for their images in this ring. Our object is to show that in the
ring G ® Z,,« - n* = 0. Consider «(7?), where now « denotes the homomor-
phism of spectral sequences with Z,-coefficients. Clearly, » has filtration 1, so
that #? must be non-degenerate, and #? has filtration 1.

Let u be a generator of sEjg ,, and let the generators of sE; , and sEj,
be written S'u and S*u. Similarly, let #, S', and S5 be generators of sE] ,,
sE1 ., and sE1 ,. Clearly, 8¢ refers to the homology dual of the STEENROD
operation S}. We immediately have

n = d,(8?u) and #»*=d,(S%n).
Using * to denote the duals in cohomology, we get
dyn* =87 w* and d,n** = 87 n*.
If « .7+ 0, there are classes x,e EX*%:% 4 = 0, 1, 2, such that
dy @, = S}, and dyx, = 8} =y,
as well as a*(z,) = w*, a*(2,) = ¢* and o*(x,) = .
Now, because d, x, = 8} z,, we must have d, (S ;) = 0. On the other hand,
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which is not zero, as x has order 2 exactly. Therefore, we must have z, = 0,
which implies that &« %2 = 0 in the ring G ® Z,.

Remark. This proposition may be observed empirically in the range where
G has been computed. Similar methods may be used to study other compo-
sitions of fixed elements with arbitrary elements. However, in these cases, if
filtrations are greater than 1, there is always the possibility of a degenerate
composition. In order to state theorems, it is thus necessary to make some
assumptions about the vanishing of certain homotopy groups which guarantee
non-degeneracy. Details here are left to the reader.

One knows (see [22]) that the elements «(2) = ne@,; and «x(p)e Gy, 5 are
the lowest dimensional, non-trivial elements in the p-component of G. These
elements have minimal possible filtration (Prop.6.1). By Prop. 7.1, any
composition with such an element has minimal filtration. Curiously enough,
the converse of this fact is also true.

Prop. 8.3. Let feG, be an element, whose order is a power of p, and which
is not divisible by p. Assume B has minimal filtration for the p-component.
Then, g is divisible, in the sense of composition product, by «(p).

Proof. In a similar fashion to the above, we use the spectral sequence with
Z,-coefficients. Here, we identify « @, with its imagein sE , with coefficients
in Z,, and let Px be dual to the cohomology class Pla*e K} ,,_;), where P!
is the usual STEENROD operation relative to the prime p.

We assume, with no loss of generality, that fe G, is a generator of a cyclic
summand. Because f is of minimal filtration, there is an element x e E;_,(,_1) 11,0
such that d,, ;(Px) = B. As above, let ueG, generate G, with «(u) = «. The
dual to P! is a natural homology operation P-! such that

P1(x(Pu)) = «,
and hence,
*(Pu) = Pu.

Now, d,,_4(Pu) = &(p), so that

B = dyy 3 (Po) = {wou(p)} in E}’°.
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But, because dy,_g is the first non-zero differential to map to Ef ,, we conclude
that § = xox(p), as desired.

Cor. 8.1. Any element § of G, which is of order a power of p and which is
not divisible by p, and which has minimal filtration for the p-component, is
nilpotent. In fact, if p is odd, 2 = 0, while if p = 2, 2 = 0.

Prool. By the previous proposition, these statements are reduced to the
corresponding facts about «(p). But «(2)® = 7® = 0, while for p odd, x(p)? = 0.
(See [22].)

As a final application to compositions, we make a remark concerning non-
nilpotent elements. A non-nilpotent element of G' means some x Gy, k> 0,
such that «f = 0, for all 4. It is presently unknown whether such elements
exist, but it is still of interest to examine what properties they would enjoy. In
fact, sufficient information in this direction may lead to results on the non-
existence of such elements.

Our result, roughly speaking, states that such elements would generate an
ideal of a certain size. More specifically, we have

Prop. 8.4. Let xeG,, k > 0, have order a power of p, where p is an odd
prime. Suppose «' ~ 0, for all 7. Then there is an element f¢ @,, 1 =% 0 (mod k),
so that

otoff 5= 0, for all positive integers 5.

Proof. f(«%), the filtration of «f, is a non-increasing function of 7; because
ot £ 0, all ¢, f(«?) is bounded below away from zero. Hence, there is some
N > 0, such that if ¢ > N, then f(x*) is constantly at its minimum value.
Select some ¢ > N. Then {x‘} = d,,u, and by Prop. 6.2, m < f(x) < k.

Since « (x?) = «*+1, and

{641} = a(dp (v)) = dy, (x(w)),

we see that o (u) £ 0.

In general, we have {x‘+} =d,, («7(u)), which implies that &’ (u) # 0, for
any j > 0. Now, since the map « applied to E};_,, , is an induced homomor-
phism on the homology of an EILENBERG-MACLANE space, there is clearly an
element e By;_,, o, With «f+ f 5= 0 for all 4.
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Remark. 1. In case of elements whose order is a power of 2, we immediately
get the same result except when « has dimension 1, 3, or 7, or when « is divisible
by such an element. In these dimensions, there are elements which are of equal
dimension and filtration. For such an element, the above mentioned inequality,
m < f(x) < k, does not hold. Thus, for such an element, we cannot rule out the
possibility that g is itself a power of «. Fortunately, the elements in @, and G,
are all known to be nilpotent. However, the generator of @, has a non-zero cube.
Several people have conjectured, but to my knowledge not yet proved, that the
fourth power will be zero. If this is the case, Prop. 8.4 is valid for p = 2.

2. With special assumptions on the filtration of x, one may extend these
results and get other elements which are not annihilated by all powers of «.

9. The WHITEHEAD Product

In the present section, I shall interpret the WHITEHEAD product in the spec-
tral sequence, and then obtain estimates on the filtration of WHITEHEAD
product elements. After that, we give some applications.

We shall take, as a definition, the formulation of the WaITEHEAD product
given by J.-P. MEYER. To fix ideas, I will first sketch his approach (see [15]).

Let xen,(X), fen,(X), p=>¢q. In a PosTNikOov decomposition for X,
consider the following composite fibration.

)
F, P p+a—2 » X p+q—2

ﬂpo see -] n_.p_*_q_g

X

-1

We use F, ,, to denote the fibre of X, — X,. MEYER defines a generalized
multiplication

I Fp,p+q-2 X F«l,zr+a~2_'> Fp.m+q—2'

If  and B denote the (unique) elements in 7, (¥, », p+a=2) A0 7o (Fy 51, 0) (vesp.),
which correspond to « and 8, we put

Y = (— D" uy (H(x), H(B))

where H is the HuREWICZ homomorphism.

13 CMH vol. 40
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Now, let v denote the transgression in integral homology for the fibration

K =K(#,oa(X),p+q—1) — F, opien

l

F P, p+a—2

24 .
Ty - Hﬂ+q(Fp,m+q-—1’ K) — Hp+a(Fm,r+q~2)a since p,q>1.
We consider
A=t (y).

Then, according to MEYER [15],
H76,(2) = [«, B].

Now, let (¥, .., 1)(—1 denote the (1 — 1)-term in the PosTNIKOV system for

F, ,.01-Set J; equal to the fibre in the fibration

?
Q- Fw,n+a—1 - (FZJ,:D+G——1)(1'--1) .
We consider the following commutative diagram
Hp—f—q (Fp-p+q—-1: -K)
I
M %
H P+4q (s Ipto1) — H pra s Ip11)
e | o
]
H p+¢-1 (Jp+a-1) _j" H 9+q—1 (J9+1)

H p+g—-1 (J +a—-1> Jr+q)

where j is the (composite) inclusion J,, , ; - J,,; and m = (1, 7).
Clearly, the element m, (1) has the property

Ty’ 0k (my(2)) = {84 (A)} = {H ([, B1)}

when viewed as a class in the spectral sequence for ¥, .. ;. In other words, in
the spectral sequence for ¥, ,. . ,, we have

o {my (4)} = {H ([, B])}.
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Now, it is clear that ¥, and F, , ., have the same spectral sequence in this
range, so that we have the same relation in the spectral sequence for F, .

If welet ¢; F,— X denote the inclusion of the fibre, we have a corresponding
statement about %, (m,(4)).

Theorem 9.1. If xen,(X), fen,(X), p < g, then we have, in the spectral
sequence for a PosTNikoV system for X,

L. f(H([x,8])) =qg—1
2. dq—l {7:* (m* (}'))} = {H ([0‘ ’ ﬁ])} .

Now, we shall apply this result to the determination of WHITEREAD products
and the study of the filtration of known WHITEEEAD product elements. We shall
say that elements in a finitely generated abelian group are independant, if they
lie in distinct summands in the usual sort of decomposition into a direct sum of
cyclic groups. An element which generates a cyclic subgroup which is an entire
summand will be called a generating element.

Theorem 9.2. Let X be an (n — 1)-connected space, «, fex,(X), with
q < 2n — 1. Suppose that « and g have orders that are powers of a fixed
prime p or infinite. Assume that either

a) « and f are independant generators,
or

b) The fixed prime p is odd, ¢ is even, and x = f is a generator.

In addition, suppose that H(«x) = 0, H(B) # 0, and H,,(X; Z,) = 0.

Then, we have

[*, ] # O.

Proof. By previous identifications, we may take 4, m, (1) to be an element
of H,,(F,, F,,,). There is an isomorphism

l:H, (F,, F ) — Hy (K (7,(X), ),

under which 4, m, (A1) corresponds to the PONTRIAGIN product u, (@, b), where
a=H(x), b= H(p).

It is sufficient to take, as coefficients, the prime field with respect to our
fixed prime. It follows from our assumptions that i, m, (1) or u (a, b) is not zero
(see [6]). By the previous theorem, d,,_, {i, my (A)} = {[«, B1}. As H,(X;Z,) =0,
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the theorem will follow if we can show that ¢,m, (4) is not an image under any
differential.
Consider the diagram

Hyy(F) 2 Hyy(Fyy Foun)
| At
Hyps (Fyems Fon)) —> Hyq (F o)
i
Hoo (Foo)

in which j; and j are induced by the obvious inclusions. If {{-'u, (a, b)} is in the
image of d,, there exists xeH,, (F,), k(x) =1 u,(a,b), j, (x) #0, and
Jh(z) = 0.

Considering the exact sequence of the pair (¥,_,,, F,), i.e.

Oy ji1
H2q+l (Fa—m’ Fq) s Hza (Fa) = qu (Fq-m)s

there is we Hyyy (F,_,n, F,), such that é, w = x.

On the other hand, k11~ (a) and k~1/-!(b) are not in the image of

Ot Hops (Fos Fo) > H, (F,)

because H(x) and H(f) are different from zero.
We now look at the following commutative diagram:

8 joj
Hyp(Fom, F)—5 H,(F) L8 B,(F,_,)

|7 |7

H, (K (7(X), 9)) —2> H,(Fom, o)

where p, and p, are induced by projections onto the g*-terms in the respective
PoSTNIROV systems, and 3, is induced by the inclusion of the fibre. In dimension
q, p, and p, are isomorphisms. As was just noted, j7, (k11 (a)) and jj, (k2171 )
must be different from zero. We thus conclude that ¢, (a) and 4, (b) are different
from zero.

Now, because ¢ < 2n — 1, it follows (see [10]) that F'_,, ,is an H-space and
%, is induced from a multiplicative map. ¢, (a) and ¢, (b) are either independant
elements, or else the same even-dimensional element. For reasons of dimension,
neither 4, (a) or 4, (b) is decomposable, with respect to the PONTRIAGIN product
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py in F,_, .. Thus, by the structure theorem for HopFr algebras®) we must
have p, (3,(a), %,(b)) % 0. Since 7, is induced from a multiplicative map, we
can conclude that ¢, (1. (a, b)) # 0.

We have shown that ¢, p,(x) = ¢, (lk(x)) # 0, so that p,(jj,(x)) #O.
Therefore, j « 4, (x) % 0, which is a contradiction. We conclude that the class
of i,m, (1) is not an image under any d,,, and the theorem follows.

Remark. It is easy to give examples of this result. For example, one may
consider iterated suspensions of products of spheres.

As a final application, we would like to remark that the unstable homotopy
groups of spheres contain elements which have arbitrarily high filtration.

Prop. 9.1. If » is even and ¢,ex,(S™) is a generator, then [3,, 4,] has filtra-
tionn — 1.

Proof. Here, we know that ¢,m, (1) has infinite order. The domain of any
other differential whose image might possibly be {H ([3,, %,])}, is a finite group
[6]. Since H,,(8") = 0, d,_, {t,m,(A)} # 0, proving the proposition.

Remarks. One may use Theorem 9.1 to prove several other results, too long
to be included here. For example, if X is an H-space, «, f e 7, (X), then [x, §]=0.
However, ¢,m, (A) is often not zero. Nevertheless, we can show that
14m, (1) never persists in the spectral sequence to represent a class in the
homology of X, if H(x) = H(B) = 0. Simple examples are obtained by
considering the spaces (S»)(;, for j<2n —1.

The University of Minnesota
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