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Six theorems about injective metric spaces

by J. R. IsBELL, University of Washington (Seattle)

Introduction

A metric space Y is injective if every mapping which increases no distance
from a subspace of any metric space X to Y can be extended, increasing no
distance, over X. ARONSzAJN and PANITcHPAKDI showed [1] that topologi-
cally, every injective metric space is a complete absolute retract, and asked
whether the converse is true. It is obviously true in 1-dimensional spaces. But
in 2-dimensional spaces there are additional necessary conditions. First, every
injective metric space can be contracted to a point freely, i. e. by a path {A,}
of decreasing deformation retractions. Conversely, for 2-dimensional finite
polyhedra, this condition is sufficient. It is equivalent (for any triangulation) to
collapsibility in the sense of WHITEHEAD [5]. In infinite 2-dimensional poly-
hedra, collapsibility is sufficient and free contractibility necessary, and it may
be that these properties are (still) equivalent.

Second topological necessary condition: a locally compact injective metric
space is locally triangulable at every homotopically stable point (in the sense
of Hopr and Pannwitz [4]).

Three geometric theorems. (1) Every metric space X has a smallest con-
taining injective envelope ¢X, which is compact if X is compact. (2) A com-
pact injective space Y has a boundary, the smallest closed subset B such that
eB=1Y. (3) An n-dimensional compact injective space has at least 2n
boundary points and has injective n-dimensional subspaces with exactly 2=
boundary points. Those subspaces may be chosen to be isometric copies of
closed cells in n-dimensional [ space.

I am indebted to T. GANEA and to W. B. WooLF for some conversations
concerning this material.

1. Polyhedra

By a mapping between metric spaces we mean a function f: X — Y such
that for all «, ' in X, the distance d(f(z), f(z')) <d(x, 2'). Y is an
injective metric space if every mapping from a subspace of any space X to Y
can be extended (to a mapping) over X. ARONSzAIJN and PANITCHPAKDI

introduced these spaces [1], calling them hyperconvex because of the charac-
terizations which follow.

5 CMH vol. 89
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It suffices to require that every metric space consisting of Y and one more
point can be retracted upon Y. This reduces to the condition that any set of
closed solid spheres S(y,, r,) in Y such that for each « and 8, r, + rg >
> d(y,, Yg), has a common point. Equivalently, (a) Y is convex (any 2
sufficiently large solid spheres meet) and (b) a collection of solid spheres has a
common point if every 2 of its members have a common point.

Note that every solid sphere in an injective space is an injective subspace.

A free deformation retraction of a topological space X upon a subspace
A is a homotopy {A,}, te€[0,1], such that k,: X—> X is the identity,
hy: X — X is a retraction upon A4, and every composition Ak, is h, where
r = min (8,?). A free deformation retraction to a point is a free contraction.

1.1. Theorem. An injective metric space s freely contractible to each of its points.

Proof. Let p be a point of the injective space Y. We construct a free
contraction {h,} with each A, retracting Y wupon 8(p,?), suchthat
d(h,(z), h;(y)) <max (d(z,y),|s—1t]|), using ZorN’s Lemma. With this
prescribed modulus of continuity, we need only show that when {A,} is already
defined on a subspace Z of Y, and ¢ is a point not in Z, {h,} can be
extended over a subspace containing g also. We may suppose Z is closed;
and we may confine attention to the solid sphere § = S(p, u) just large
enough to include ¢. On S, A,(x) =« for ¢t >wu. The non-trivial homo-
topy h:(ZNnS) X [0,u]>ZN8S c 8 can be extended to a contraction
j:8 X [0, u]— S, not free but having the prescribed modulus of continuity.
Here j({g} X [0, u]) must be a shortest path J from ¢ to p; so j yields a
free contraction defined on Z and on the part of J from ¢ to where J first
meets Z.

In this paper, a polyhedron is a topological space which is the body of a
finite-dimensional simplicial complex, with the metric topology induced by
defining the distance between two points as the maximum difference in their
barycentric coordinates. We remark that, since the complexes are finite-
dimensional, all reasonable distance functions give the same topology; and
some routine details concerning the global treatment of infinitely many
simplexes will be omitted below (1.86).

A finite simplicial complex K is called collapsible [5] if it can be built up
from a point by successive adjunctions of single closed simplexes s such that s
intersects the complex so far constructed exactly in all but one of its maximal
proper faces. The ordered set of simplexes s, in the order of their adjunction,
beginning with a vertex s,, is an expansion of K from s,. For infinite com-
plexes, the definitions are the same, with the provision that the adjoined
simplexes are well-ordered.
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By finite combination of steps one can show, at least in dimensions <4,
that every complex built up from a point by attaching simplexes s each by a
contractible subcomplex of its boundary is collapsible. On the other hand,
since the elementary steps never add a vertex except when a 1-simplex is
adjoined, one shows by a trivial induction that a collapsible simplicial complex
can be expanded from any vertex.

We define a collapsible cubical 2-complex as a (cell) complex built up from a
point by successive adjunction of edges and 2-cubes so that (i) the intersection
of any two of these cells is a common face or the empty set; (ii) no three
2-cubes abcd, adef, afgb occur; and (iii) each edge is attached to its prede-
cessors by one vertex, each 2-cube by two adjacent edges. Again, we could
admit 2-cubes attached by one edge or one vertex, by combining steps. (It
is not clear whether the concept generalizes usefully to 3-complexes composed
of cubes, or of octahedra, or not at all.)

The next proposition is essentially outside the main argument, though it
can be used in proving 1.3.

1.2. A 2-divmensional polyhedron freely contractible to one of its points is
freely contractible to each of its points.

Details will be omitted; the special feature of 2-polyhedra is that every arc is
tame. In particular, every arc is a free deformation retract of a neighborhood of
itself. Then to change a free contraction upon p to a free contraction upon g¢,
consider the path followed by ¢ in the contraction upon p. It is a monotone
continuous image of an arc; hence it is an arc J. Some neighborhood U can
be deformed freely upon J, and some neighborhood V of ¢ is contracted to
p within U. Then using a real-valued continuous function that is 0 at ¢ and
1 outside V, damp the contraction so that g does not move. One still has a
free deformation retraction into U, and the rest is obvious.

1.3. If a freely contractible triangulated 2-polyhedron P consists of two

subcomplexes Q, R, intersecting tn a point or arc, then @ and R are freely
contractible.

The proof is omitted. 2-dimensionality is not needed.

1.4. A freely contractible 2-dimensional finite polyhedron is collapsible in any
triangulation.

Proof. Such a polyhedron P must have either a free vertex (lying on
exactly one edge) or a free edge (lying on exactly one triangle); this is clear
from considering a small open set in which the free contraction differs from the
identity as soon as possible. Now if P is a closed simplex, it is collapsible (in
that triangulation). Inductively we may suppose every freely contractible
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proper subcomplex of P is collapsible. We shall be done when we find a
vertex or an edge-path separating P into subcomplexes @, R, for they are
freely contractible by 1.3, so collapsible by inductive hypothesis, and in
particular collapsible to a vertex of @ n B. In case there is a free vertex, the
vertex joned to it by an edge separates P. Otherwise there is a free edge ab;
it lies on one triangle abc, and some subcomplex K of the pair of edges ac,
bc separates P. If K is connected it is a point or arc. If K is disconnected,
its components are points or arcs, and each component separates because P
is simply connected.
I do not know whether 1.4 holds for infinite polyhedra.

1.56. A collapsible 2-dimensional simplicial complex can be subdivided to a
collapsible cubical 2-complex.

Proof. We define the subdivision by induction relative to some expansion
{s,}. The l-simplexes s, will not be subdivided. Each triangle s, will be
subdivided into a number of quadrilaterals, with new vertices occurring only
on the edge e, by which s, is not attached to its predecessors. There may
be finitely many new vertices v; previously introduced on the other edges of
8,- From each v,, and from the (old) vertex opposite e,, draw two new
edges to e,, none of these edges meeting except at their origins wv,. This
subdivides s, into several quadrilaterals and triangles; make each triangle into
a quadrilateral by introducing a new vertex on ¢,. Clearly the resulting cubi-

cal complex is collapsible.

1.6. Remark. To draw topological conclusions from 1.5 (which we mean
to do), one should define a standard metric on these cubical complexes (e.g. as
in 1.7) and add some details to the proof of 1.5.

The next construction involves a standard 2-cube ¢ which it is convenient
to present as the square in [, space spanned by the four points (4- 1,0),
(0,4 1). We may mention the center (0,0) and the l-skeleton @' (the
boundary) and the 0-skeleton ¢° (the four vertices). Note that every two points
of @° are joined by a segment in Q.

1.7. Every collapsible cubical 2-complex admits an injective metric.

Proof. Metrize the complex L so that each edge is a segment of length 1
and each 2-cube a copy of @; define the distance between two points not in a
common cell as the length of the shortest path joining them. Then L is at
least a convex metric space. It will be convenient to note that the 1-skeleton
I is an even graph in which any two vertices are joined by a segment; thus the
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sum of the distances among any triple of vertices is an even integer. Further
preliminaries: a subspace of L isometric with @° lies in L° if three of its
points are in L° (even if one of its points is in L%, but we do not need that);
and it is then the 0-skeleton of a 2-cube of L. (Easy inductions prove all this.)

We must prove that a collection of solid spheres has a common point if
every two of its members have a common point. Suppose first that L is a
finite complex. Then it suffices to consider spheres with rational radii. More:
since regular rectangular subdivision of all cells of L with mesh 1/n yields
again a collapsible cubical complex, homothetic to L, it suffices to consider
spheres whose centers are vertices and whose radii are integers. We shall prove
by induction that when such spheres meet pairwise, they have a common point
which is a vertex or the center of a 2-cube.

L, being collapsible and finite, consists of a last cell ¢ attached by half of
its boundary to a collapsible subcomplex M. As the induced metric on M
agrees with the metric defined by applying the present construction to M, the
inductive method is applicable. The inductive step is trivial if ¢ is 1-dimen-
sional. Then suppose ¢ is a 2-cube abcz, attached to M by ab and bec.
Given an integer-valued function f on some of the vertices of L, satisfying
f(x) + fly) = d(x,y), we want a vertex or center within f(x) of every z.
Clearly it exists in case f(z) = 0.

Consider the case f(z) > 2. The sphere S(z, f(2)) meets M just in the
union of S(a, f(z) —1) and S(c, f(2) —1). Replacing S(z, f(z)) with
either of these subsets of it, we get a family of spheresin M which would have
a common point (vertex or center) if every two of them met. We may suppose,
then, that there are vertices 4 and v with d(u, ¢) > f(u) + f(z) —1 and
d(v, a) > f(v) + f(z) — 1. Of course d(u, a) and d(v, ¢) are smaller, and
therefore smaller by 2. Then there is a vertex or center m within distance
du, a) of u, d(v, ¢) of v, and 1 of b, in view of d(u, a) = d(u, ¢) —
—2>f(u) + f(2) — 2 >f(u). Because of the large distances d(u, c¢), d(v, a),
the distances of m from u, », and b are exactly the numbers indicated, and
d(m, a) = d(m, c) = 2.

If m is not a vertex, we can replace it by a vertex. For m is the center of a
2-cube brst and is closer to u and v than b is. brst has a vertex even
closer to 4, which can only be s; we get d(u, s) = d(u, b) — 2 and likewise
d(v, 8) = d(v, b) — 2. Then r is exactly d(u, a) from u, d(v,c) from v,
and 1 from b.

There is a vertex or center 2 within d(u, a) —1 of u, within 1 of a,
and within 1 of m. It follows that {m, z, a, b} is a copy of @° and thus that
there is a 2-cube maab in L. Similarly there is a 2-cube mycbd in L. With
abcz, this violates condition (ii) of the definition of a collapsible complex.



70 J. R. IsBELL

In case f(z) =1, consider the three possible points in S(z, 1), namely
a, ¢, and the center A of abcz. Every S(z, f(x)) includes at least one of
them. The subset of {a, A, ¢} lying in S(x, f(x)) is order-convex in this
order, i.e.itisnot {a, ¢}. Ifit were, we would get an impossible 2-cube abcz’
from the requirements that 2’ is within 1 of @ and ¢ and within f(z) — 1
of z. (Condition (i) of the definition is violated in that case.)

If S(u, f(v)) meets S(z,1) in ¢ and S(v, f(v)) meets S(z,1) in c,
the argument of the case f(z) > 2 can be repeated, for we still have d(u, a) =
= d(u, ¢) — 2 = f(u) and the corresponding conditions on ». The remaining
cases to consider are {a} and {h, ¢} and the similar case {a, A} and {c}; it
will suffice to treat the first of them. Then we have u closest to @, v closest
to ¢, f(u) =d(u, a), f(v) =d(v,c) + 1. There is a center or vertex m
within f(u) of u, f(v) of v,1 of a and 1 of b; and these distances are
exact because of d(u, b) and d(v, a). Since m is equidistant from a and b,
it is not a vertex but the center of a 2-cube abnzx. Since v is equidistant
from m and b, and further from a, it is closer to n; d(v, n) = f(v) — 1.
Then there is y within f(v) —2 of v, 1 of n, and 1 of c¢; and these
distances are exact. This makes cbny a 2-cube of L, violating (ii) of the
definition, and proving 1.7 for finite complexes.

For the general case, there is a finiteness lemma.

In the 1-skeleton of a collapsible cubical 2-complex metrized as above, any two
vertices are joined by only finitely many shortest paths.

The maximum number is the maximum number of maximal chains between
two plane lattice points. To prove merely the italicized assertion, it suffices to
show that if @ and b are vertices at distance n -+ 1 there cannot be three
vertices ¢, d, e at distance 1 from e¢ and n from b. If there were, there
would be a vertex or center of a 2-cube f at distance 1 from each of ¢, d, e
and » —1 from 6. Then {a,c,d,f{}, {a,c,e,{}, {a,d,e, |} would all
be 0-skeletons of 2-cubes, any two of which have too many common faces.

To apply this, we want two more lemmas. First, it suffices to establish the
intersection property for spheres with integral radii centered at vertices. That
will imply, by subdivision as before, that any set of conditions d(p, ) < f(x)
(where f(z) + f(y) =d(x, y)) can be satisfied to within an arbitrarily small
error ¢ > 0. To reduce the error to 0, find p, with error ¢ ; adjoin
d(p, p;) <& to the conditions; find p, satisfying all these conditions to
within half as large an error, and so on to the limit.

Second, if a family of spheres meets pairwise then every finite subfamily
meets. Perhaps the simplest way to prove this is to use the sublemma: if s =
= {¢o, ¢1,- - -} 18 an expansion of L and t = {q,, Q> - .} is a subsequence
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of s and an expansion of a subcomplex M, then t followed by the remainder
of s in the given order is an expansion of L. Then it is clear that M is an
injective subspace. As every finite set of points of L lies in a unique smallest
such M, which is finite, the intersection property follows.

Now given a function f on the vertices of any collapsible cubical 2-complex
L such that f(z) + f(y) > d(x, y), replace f by a minimal function satis-
fying these inequalities; we shall still call it f. For each z, there is y such
that f(x) + f(y) = d(x, y), since f is minimal and integral. From the
finiteness lemma, the set H = S(z, f(x)) n S(y, f(y)), for any such z and
y, is compact. The traces of the other spheres on H are a family of closed sets
having the finite intersection property; so the total intersection is not empty.

The principal conclusion:

1.8. Theorem. A 2-dimensional finite polyhedron is injectively metrizable if
and only if it is freely contractible, and this is if and only if it is collapsible (in any
triangulation).

It may be that this generalizes to infinite polyhedra. Straightforward combi-
natorics prove that a simplicial complex is collapsible if and only if every
finite subcomplex is in a collapsible finite subcomplex (by means of the lemma:
any expansion of a subcomplex of a collapsible complex K is an initial segment
of an expansion of K). Perhaps straight forward, delicate simplicial approxi-
mation will prove a corresponding reduction for free contractibility, and that
would complete the generalization.

It may be that 1. 8 generalizes to arbitrary polyhedra, but the present
results scarcely suffice to suggest such a conjecture.

2. Envelope and boundary

We call a mapping of metric spaces e¢: X — E an injective envelope of X
if E is injective, e is an isometric embedding, and no injective proper
subspace of £ contains e¢(X). Two injective envelopes ¢: X > E,f : X - F
are equivalent if they are related by an isometry i: £ — F.

2.1. Theorem. Every metric space has an injective envelope and all of its in-
Jective envelopes are equivalent.

Proof. We define an extremal function on X as a real-valued function f
which is pointwise minimal subject to

f(2) + f(y) = d(z, y) (2.2)
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forall z,y in X. Then f also satisfies

f(@) + d(z, y) = f(y) (2.3)

for all * and y. If this were false, one would define g to coincide with f
except at y, where g(y) = f(x) + d(x, y). By the triangle inequality, ¢
satisfies (2.2); as ¢ < f, we must conclude g = f.

Therefore the difference between any two extremal functions f, ¢ is bounded;
any number f(x) 4+ g(x) is a bound. Thus th~ set ¢X of all extremal func-
tions on X is a metric space with d(f,g) =sup|f(x) —g(x)|. An iso-
metric embedding e¢: X — ¢ X is defined by e(x)(y) = d(z, y).

By (2.3), every extremal function is continuous; in fact, all extremal
functions are equicontinuous. As also every limit of extremal functions is
extremal, hence ¢X is compact if X is compact.

(2.2) and (2.3) together are equivalent to
cor all o f(2) = d(f, e(2) (2.4)

2.6. Every function satisfying (2.2) is greater than or equal to some extre-
mal function.

2.6. If X is compact, then for any f in ¢X and « in X there is, by
minimality, some y in X such that f(z) + f(y) = d(z, y). In general we
have only f(z) 4+ f(y) <d(x, y) + 6, where § is any positive number and ¥
depends on 4.

2.7. If s 18 an extremal function on the metric space ¢X, then se 18
extremal on X.

Proof. Suppose the contrary. We get heeX,h <se, h(x) < se(x).
Define ¢ on ¢X by i(f) = s(f) except at e(x); te(x) = h(x). To show ¢
satisfies (2.2), it suffices to show

te(z) + t(f) = d(f, e(x)) (2.8)

forall f in ¢X (as ¢ agrees with s elsewhere in ¢X). For any 6 > 0, pick
a y such that f(x)+ f(y) <d(x,y)+ 6. If y=2 or f=e(x), then
(within an error of §) 2.8) holds. Otherwise te(x) 4 te(y) = h(x) + se(y) =
=h(z) + k(y) 2 d(z,y) > f(x) + f(y) — 6 = d(f, e(x)) + f(y) — 6. More-
over, since ¢ coincides with ¢ at f and at e(y), (2.4) and (2.3) imply

t(f) + f(y) =te(y). Adding, te(x) + te(y) +¢(f) + f(y) > d(f, e(x)) +f(y) —
— 8 + te(y). Since ¢ is arbitrary, the proof is complete.

2.9. eX 18 imjective.
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Proof. We use the criterion from [1]; any closed spheres S(f,, r,) such that
always 7, 4 rg = d(fy, fg) must have a point in common. We may suppose
r is a function defined on all of ¢X, satisfying (2.2). Let s be an extremal
function < r. Then se belongs to every r(f)-sphere about f. In fact
se(x) — f(x) = se(x) —d(f, e(x)) <s(f) for each z, by (2.3); and f(x) —
—se(x) = d(f, e(2)) — se(x) <s(f), by (2.2).

2.10. e: X —> eX 138 an wnjective envelope of X and is equivalent to every
injective envelope of X.

Proof. A mapping of ¢X into itself leaving X pointwise fixed must take
each f to some g such that d(g,e(x)) = g(x) < f(x) for all x; thus it is
the identity. Then &£X cannot be retracted upon any proper subset 8 con-
taining X ; 8§ is not injective. Finally, for any injective envelope f: X — F, f
can be extended over ¢X and e can be extended over F. The composed
mapping ¢X — F — ¢X is the identity. Hence ¢X — F is an isometry upon

its image. Hence the image is injective; so it is all of F. This completes the
proof of 2.10 and of 2.1.

The proof has shown also

2.11. The injective envelope of a compact space is compact; the injective enve-
lope of a finite space is a polyhedron.

We define an end point of a compact metric space X containing more than
one point as a point z such that for some point y the equation d(w, x) +
+ d(x, y) = d(w, y) implies w = z. (This implies y # x).

2.12. If x is an end point of X, then x 1is an end point of the injective
envelope ¢ X, and every closed subset of ¢ X mot containing x lies in an injective
subspace of ¢X mot containing x.

Prool. The definition gives us a certain point ¥ of X. If z were between
Yy and w in ¢X, we would apply 2.6 to get » in X such that w is between
v and y. Then d(u, z)+ d(x,y) = d(u,y), a contradiction. If H is a
closed subset of ¢X not containing z, sois K = H U {y}. The embedding
of K in ¢X can be extended to an embedding of ¢K in ¢X; but z cannot
bein ¢K, for the function d(x, k) on K is not extremal.

This proposition is vacuously true in a space of O points, false in a
space of 1 point. It is true for non-compact spaces if we define an end point
z by (2)(39)(3 B> 0=> > 0] A [d(w, x) + d(z, y) < d(w, y) + =
= d(w, x) < x]. However, the notion of end point is less interesting in non-
compact spaces, because the following theorem fails.
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2.13. Theorem. In a compact injective space Y containing more than one
point, the closure B of the set of end points is the smallest closed subset which is
not contained in any injective proper subspace of Y .

Proof. A closed set lying in no injective proper subspace must contain B,
by 2.12. Supposing ¢ B to be a proper subspace of Y, let y be a point not in
¢ B and consider f(z) = d(z, y) on ¢B. By the triangle inequality, f satisfies
(2.2). Since y is not an end point, for each x in ¢B thereis z in Y such
that y is between x and z; choosing z at maximum distance past y, z
also is in ¢B because it is an end point. Hence f is extremal; y e B.

This set B will be called the boundary.

3. Some other results

The following remark will presumably be of central importance in any general
theory of injective metric spaces.

3.1. Remark. Let Y be an injective metric space, and S a subspace
such that every point of Y is within 6 of some point of §; then Y con-
tains &8 (by a non-unique embedding) and there is a retraction r: ¥ — &8
which moves no point more than 4. If Y is compact, S can be taken to be
finite.

A converse:

3.2. A complete metric space Y 1is injective if for every &> 0 there i$ an
tnjective subspace S of Y such that every point of Y is within € of some point of S.

Proof. Let f be an extremal function on Y. Select injective subspaces
S, coming within ¢, of every point of Y, where X¢, < co. There is p,
in S, within f(s) of each point s of S,; hence p, is within f(y) 4+ 2¢, of
every point y of Y. Then since f is extremal, f(p,) < 2¢,, and the points
p, form a CAUCHY sequence converging to the required point p.

Recall next that a point x is homotopically labile [4] if for every ¢ > 0 there
is a deformation of the identity mapping to a non-onto mapping, with the
e-neighborhood of = deformed in itself and the rest of the space remaining
pointwise fixed. The weaker requirement that no point moves more than ¢
(rather, &/2) has the same effect, by an obvious damping argument. There is
a stronger requirement in which “non-onto’” becomes ‘‘omitting the value x”’;
if this is satisfied, we call x freely labile. A non-labile point is homotopically
stable; a point that is not freely labile is weakly stable, or “stable in the sense of
BorsUk and JAworowsK1”’ [2].
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One sees at once

3.3. Every end point of an injective metric space s freely labile. Thus in a
compact injective metric space, every boundary point is homotopically labile.

On the other hand, every finite-dimensional separable metric space has
weakly stable points [3]. This shows

3.4. A fimite-dimensional compact injective space containing more than one
point is not topologically homogeneous.

Even in the infinite-dimensional case, a compact injective space cannot be
geometrically homogeneous. If the diameter is (for convenience) 2 = d(x, y),
there is a point 2 distant no more than 1 from any point, and no autoisometry
can take x to z. However, it is not clear how one can find structure in the
inhomogeneity. Easy examples show that every point may be a boundary
point. I do not know whether every point can be an end point.

Applying the fundamental remark 3.1, we get

3.56. Theorem. A locally compact injective metric space is locally triangulable
at each homotopically stable point.

Proof. Let x be a point of the injective space Y having a compact
neighborhood N. We may suppose N isinjective but not locally triangulable
at x. Then for every &> 0, there is a finite subset of N coming within ¢
of every point of N, and there is an injective polyhedron P c N coming
within ¢ of every point of N. There is a deformation retraction of N upon P
which moves no point more than ¢; as x cannot be interior to P, points
arbitrarily near = are uncovered. We can modify the deformation retraction
to a deformation of the identity to a non-onto mapping, affecting only the
2¢e-neighborhood of . Thus z islabilein N andin Y.

The theorem leaves something to be desired, particularly since there need
not be any stable points. The proof establishes a trifle more than was stated.
However, it is easy to see that the stronger statement that the space must be
locally triangulable except at boundary points is not a theorem.

An n-dimensional compact injective space admits e-deformations upon its
subpolyhedra for all ¢ > 0, and therefore contains n-dimensional polyhedra —
in particular, it contains n-cells. Evidently an n-dimensional locally compact
injective space has n-dimensional compact injective subspaces, so that these
Spaces also contain n-cells. We can say more about some of these n-cells. By
construetion, they occur in injective envelopes of finite sets of points z,,...,z,,.
If the set of extremal functions on {z,,..., z,} is n- limensional, there must
be an extremal function f for which there are n linearly independent func-
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tions g such that f 4 Ag is extremal whenever | A | < 1. There are not less
than m/2 constraints f(x,) + f(z,) = d(=;, z,) (since each z; occurs in one,
by 2.6); and they imply g¢(x,) = —g(x,). Moreover, these are the only
constraints on g near 0. If n of the variables g(z;;,) are independent, there
are n other variables g(x,,) = — g(x,;,). But this means that the restriction
of f to a subset of 2n points is extremal and there are n degrees of freedom
for extremal functions near it. A neighborhood of f is isometric with an open
set in the [ space of all functions on the set {x;,).

3.6. Theorem. An n-dimensional locally compact injective metric space
contains n-cells, some of which are injective envelopes of sets of 2n points and are
1sometrically embeddable in n-dimensional 1, space.

An n-dimenstonal compact injective metric space has at least 2n  boundary
points.
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