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Isotropic Manifolds of Indefinite Metric')

by JoserH A. WoLF (Berkeley, California)
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0. Infroduction

In an earlier paper [17] we studied the pseudo-RiemManNian manifolds of
constant sectional curvature and classified the complete homogeneous ones
except in the flat case; this paper is a more thorough study of a larger class of
manifolds.

A pseudo-Riemannian (indefinite metric) manifold is (locally) isotropic if,
given two nonzero tangentvectors of the same ‘length’’ at the same point,
there is a (local) isometry carrying one vector to the other. The local version
of this property is automatic in the case of constant curvature. Chapter I
begins with the study of certain isotropic spaces, called model spaces, which
are flat or are indefinite metric analogs of the real, complex and quaternionic
elliptic and hyperbolic spaces and of the CayrLey elliptic and hyperbolic
planes. In § 4 it is shown that every locally isotropic manifold is locally iso-
metric to a model space; an interesting consequence, extending a result of
S.HeLcAsoN ([8], § 4) in the LoRENTZ case, is that the manifold must be of
constant curvature if either the number of negative squares in the metric, or
the number of positive squares in the metric, is odd. This local isometry
extends to a metric covering in the case of complete manifolds (§ 5); as
consequences we obtain a global classification of the complete locally iso-
tropic manifolds of nonconstant curvature in about half the signatures of
metric (§ 6), and we obtain a global classification of the isotropic mani-
folds (§ 7).

Chapter II is devoted to homogeneous locally isotropic manifolds. Using
the techniques of [17] (§ 8), the complete ones are classified (§ 9). In § 12 it is
shown that every isotropic pseudo-RiEMaNNian manifold of strictly indefinite
metric contains an (necessarily locally isotropic) open submanifold which is
homogeneous but not complete. This is surprising in view of the RIEMANNian
case where homogeneity implies completeness. It shows that one must add
the hypothesis of completeness to Theorem 12 of [17] and Theorems 1 and 2
of [19].

I am indebted to Professor JaocQuEs TrTs for a conversation on the indefinite
CayLEY plane. Professor Trrs informs me that he has an unpublished class-
ification of the isotropic pseudo-RiEmanwnian manifolds obtained by means
of a classification of subalgebras § of small codimension in a simple Lik al-
gebra 6.

Note. It is possible to omit reading §§ 1.3.3—1.3.5, § 2.9, §§ 3.3—-3.4
and § 10 while reading the rest of this paper. The main results are stated at
the beginnings of §§ 4, 5, 6, 7, 9 and 12.
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1. Preliminaries on pseudo-RiEMANNian manifolds, LiE groups
and curvature

1. 1. Pseudo-RIEMANNian manifolds. A pseudo-Riemannian manifold is a
pair My = (M,Q) where M is an n-dimensional differentiable manifold, @
is a differentiable field of real nonsingular symmetric bilinear forms ¢, on the

h n

tangentspaces M, of M, and each @, has signature — Xz} + X 25. We often
1 h+1

say M, when M is intended, and then the pseudo-Riemannian metric @ is

understood. Given X e M,, we usually write ||X||2 for @.(X,X). The
Levi-Civira connection is the unique torsionfree linear connection on the
tangentbundle of M} such that parallel translation is a linear isometry (pre-
serves the inner products @) on tangentspaces; M7} is complete if this connection
is complete, i.e., if every geodesic can be extended to arbitrary values of the
affine parameter.

An isometry of pseudo-RiEMaNNian manifolds is a diffeomorphism f : M3—>N3
which induces linear isometries on tangentspaces. The collection of all iso-
metries of M3 (onto itself) forms a Lie group I(M}) called the full group of
tsometries of M7 ; its identity component I (M}) is the comnected group of
1sometries. Given x e M5, we consider the collection of all local maps which
are each an isometry (in induced pseudo-RiEmMaNnNian structure) of an open
neighborhood of x onto another open neighborhood and which leave z fixed,
where two of these local maps are identified if they agree on a neighborhood
of z; this collection of germs of maps forms a LIt group which is faithfully
represented on the tangentspace (M3%),, and is called the group of local iso-
metries at x; its Lie algebra is the subalgebra consisting of elements which
vanish at x in the LiE algebra of germs of KiLLiNG vectorfields at z.

M3 is homogeneous if 1(M3}) is transitive on its points; M} is locally homo-
geneous if, given z and y in M7, there is an isometry of a neighborhood of z
onto a neighborhood of y which carries # to y. M} is symmeiric (resp. locally
symmetric) if, given z ¢ M3, thereisan s, eI(M}) (resp. local isometry s, at z)
of order 2 and with z as isolated fixed point; s, is then the symmetry (resp.
local symmetry) at x. M7} is isotropic (vesp. locally tsotropic) if, given x e M}
and nonzero tangentvectors X, Y at x with ||X]||? = || Y||?, there exists
g «I(M3) leaving x fixed (resp. a local isometry g at x) such that ¢, X = Y.

If M3} is connected and either isotropic or symmetric, then it is both homo-
geneous and complete. For homogeneity one connects any two points « and y
by a broken geodesic arc, chooses isometries fixing the midpoints (in affine
parameter) and reversing the tangentvector there for each of the geodesic
segments, and notes that the successive product of these isometries sends z
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to y. For completeness, one extends a geodesic via its image under any iso-
metry which fixes a point of the geodesic and reverses the tangentvector there.
Combining these two arguments and applying the HEINE-BorREL Theorem,
one can also see: If M} is connected and is either locally isotropic or locally
symmetric, then M} is locally homogeneous. In fact we will soon see that
M3} must be (locally) symmetric if it is (locally) isotropic.

A pseudo-Riemannian covering is a covering =: Nj— M}, of connected
pseudo-RiEmMaNNian manifolds where = is locally an isometry. Then each deck
transformation (homeomorphism d: N — N7 such that n-d ==x) is an
isometry of Nj. If one of Nj and M7} is locally homogeneous (resp. locally
symmetric, resp. locally isotropic, resp. complete) then n carries the same
property over to the other. If M} is homogeneous (resp. symmetric, resp. iso-
tropic), then we can lift each isometry and N} has the same property. But
these global properties usually do not descend.

1. 2. Reduetive groups. We assume familiarity with Lie groups. If G is a
L1z group, then G, denotes the identity component, ® denotes the L1 algebra,
ad and Ad denote the adjoint representations of G, and ® on %, and exp is the
exponential map ® — G,. The following conditions are equivalent, and G and
® are called reductive if one of them is satisfied: (1) ad (G,) is fully reducible
on &, (2) Ad(®) is fully reducible on B, (3) ® = G’ A A where A is the
center and &’ is a semisimple ideal (the semisimple part), (4) ® has a faithful
fully reducible linear representation, (5) ® has a nondegenerate real symmetric
ad (Gy)-invariant bilinear form which is the trace form of a faithful linear
representation. If H is a closed subgroup of @, it is called reductive in G if
adg(H) is fully reducible on & ; § is reductive in ® if H, is reductive in G;
an element g e G is semisimple if ad (g) is fully reducible.

The following well-known fact is immediate from ScHUR’s Lemma because G
is reductive; we will use it often.

1.2.1. Lemma. Let G be an irreducible closed connected group of linear
transformations of a real vectorspace V, let Z be the center of G, and let G’
be the derived group of G. Then (a) G s semisimple, or (b) G = G' - Z where
Z 18 a circle group which gives a complex structure to V, or (¢) @ =G'-Z
where either Z consists of all nonzero real scalar transformations, or Z 1is gener-
ated by a circle group and the nonzero real scalars; case (c) does not occur if V
has a nondegenerate G-invariant bilinear form.

A Carran involution of a semisimple LIk algebra ® is an involutive auto-
morphism of & whose fixed point set is the Lik algebra of a maximal compact
subgroup of the adjoint group of ®; any two are conjugate by inner auto-
morphisms of . We will sometimes say CARTAN involution for an involutive
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automorphism of a reductive LiE algebra which induces a CARTAN involution
on the semisimple part. If § is an algebraic reductive subalgebra of a linear
semisimple LiE algebra &, then it follows (see [4]) from G.D.MosTow’s treat-
ment of the case of semisimple §) [14] that there is a CARTAN involution of
® which preserves § and induces a CARTAN involution of §.

1. 3. Curvature. Let M} be a pseudo-RiEMaNNian manifold. If S is a
2-dimensional subspace of a tangentspace (M}%), on which @, is nondegenerate
(nonsingular subspace), and if 2 is the curvature tensor of the Levi-Crvitra
connection, and is viewed as a transformation, then the sectional curvature
of M7 along 8 is given by

K(S) — — - G RXY)X, V)
Qa(X’ X)Qw(Y5 Y) - Qw(X’Y)Z .

M?% has constant curvature k (at x) if K(S) = k for every nonsingular tangent
2-plane S to M} (at z). If the group of local isometries at « contains the identity
component SO”(n) of the orthogonal group of @, then M} is easily seen to
have constant curvature at . This is particularly useful when M} is connected
and n > 3, for then F.ScHUR’s Theorem says that M} has constant curvature
if it has constant curvature at every point. M} is called flat if it has constant
curvature zero. Finally, M} is locally symmetric if K (S) does not change as 8
undergoes parallel translation, i.e., if 22 is parallel.

Part 2 of the following result generalizes the theorem on sign of curvature
of a RIEMANNian symmetric space.

1.3.1. Theorem. Let M = G/H where H s a closed subgroup of a semisimple
Lig group G such that  1s invariant under a Carran involution o of ®.
Let B be an ad (G)-invariant o-tnvariant nondegenerate symmetric bilinear
form on ®&; B = Xa;B; where the B, are the KiLLing forms of the simple
ideals of ®; suppose that each a;> 0. Then B is nondegenerate on $ and:

1. Let M= HL (L relative to B). Then & = $ + M is an ad (H)-stable
o-stable vectorspace direct sum, M s naturally identified with a tangentspace of
M, and B induces a nondegenerate ad(H)-invariant bilinear form on M which
defines a G-invariant pseudo-Riemannian metric Q@ on M.

2. Let S be a o-invariant 2-dimensional linear subspace of M. Then S
18 nonsingular for B, so the sectional curvature K(S) of (M,Q) along S 1is
defined, and K (S) < 0.

3. The sectional curvatures of (M ,Q) are bounded from above and below, if
and only if (M, Q) has every sectional curvature non-positive.

4. If M has a nonsingular 2-dimensional subspace S with orthonormal
basis {X, Y} and an element Z | S with [X,Z] =0 and || Y|2: || Z]|]2 < O,
then (M, Q) has a positive sectional curvature.
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Remark 1. If we had stipulated a; < 0, then all signs of curvature would
be reversed. If M is symmetric as a coset space, so § is the fixed point set of
an involutive automorphism = of ®, then § is reductive because ® and t are
semisimple, and § is algebraic as defined by 7, so it is automatic that & is
invariant under a CARTAN involution of (.

Remark 2. Parts 2 and 4 lead us to

Definition. In the notation of Theorem 1.3.1 a 2-plane in N is nvolutive
if it is invariant under a CARTAN involution of G which preserves §), and the
involutive sectional curvatures of (M ,Q) are the sectional curvatures along
involutive 2-planes.

Now the sign of involutive sectional curvature is constant for many mani-
folds, but it is unusual for the sign of sectional curvature to be constant. In
fact, from Theorems 2.9 and 4.1 it will follow that a connected locally iso-
tropic pseudo-RIEMANNian manifold M7} has sectional curvatures of one sign,
if and only if either A =0 or h = n (definite metric), or M} is of constant
sectional curvature.

1.3.2. Proof. & = ®,_ + G_ where ¢ is +1 on G, and —1 on G_ and
where B is negative definite on ®_, and positive definite on G_. ¢(H) =9
implies $=(HNG,) + (HNG_), so B is nondegenerate on $H. Now the
first statement is obvious. According to Nomizu [15] the ad(G)-invariance
of B implies that the curvature tensor 2 of (M, Q) is given by
R(X,Y)Z= XY, Zlglm— Y, (X 2]l — 2 X, Yoy Dy — 41X, V1, Zli}

where X, Y,Z ¢ and subscripts denote B-orthogonal projections. For
X = Z the second term drops out and the first is minus half the third. If X
and Y span a nonsingular plane S and if B(X,Y) = 0, then it follows that
|| X2 %% 0 || Y||* and that

X[ || Y|+ K(8) = — B(R(X, Y)X, Y)

= } B(I[X, YIg, XIm, Y) + B([[X, Y]g, X, Y)

= } B([[X, Yy, X], Y) + B([[X, Y], X], Y)

= i‘ ‘B([X? Y]sm’ [X: Y]Eﬂt) + B([X’ Y]57 [X’ Y],ﬁ) ’
Nowlet Z = [X, Y]. We have just seen that

X2~ Y][*- K(8) = & B(Zm, Zy) + BlZg, Zg) .
Suppose further that o(S) = §. We may then choose the basis {X, Y} of §
such that ¢(X) =aX and o(Y)=fY where «a = 4+ 1 and = 4+ 1; in
addition we may assume ||X]|? and || Y||*> to have absolute value 1, and we
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may continue to assume B(X, Y)=0. Then ||X|P= —«, ||Y|2= — 8
and o(Z) =afZ. If xf =1, then ||[Zg|® <0 and ||Z4|> <0, and it
follows that K(S) <0. If aff= —1 then |[Zgx|2 >0 and |[Z4||? >0,
and it follows that K (S) < 0. The second statement is now proved.

1. 3. 3. Suppose that the sectional curvatures of (M, @) are bounded from
above and below, and let S be a nonsingular 2-plane in . We must prove
K(S) <o.

Given Z eI, we write Z =Z_ + Z_ where ¢(Z,) = Z, and o(Z_) =
= — Z_, and we write Z,=Z_+ tZ_ for every real number {. Suppose that
S has a basis {X, Y} such that X | Y, for every t and {X, Y,} spans a 2-plane
S;. We then define

D,= B(X,X) B(Y,,Y,) — B(X,Y,* = || X|P(| Y |* + 2| Y_||*) = Do+ 2b
Ny= X, Yilm |+ [|[[X, Ylg|l? = No + 2 (} || [X, Y. ]ml[* 4 [I[X, Y_]g|[*)

+ t(terms which vanish if ¢(X) = 4+ X) = N, + fu + tv
and have K(S,) = N,/D, if D, # 0.

If ¢(S)= S, we have seen that K(S) < 0. Now suppose o(S) # S.
If ¢(S)~ 8 £0, then we have 0 £ X ¢ § with ¢(X)= + X. Suppose first
that o(X)=X. Then S has basis {X,Y} with X | Y, and Y, #0#Y_,
and each 8, is a plane. D, = D, + b with D;> 0 and b <0, so D, has
precisely two zeros, D, =D_, =0, a> 0. N,= Ny+ 24 with Ny <0
because K (S,) <0, and with 4 > 0. N, must vanishif D, = 0 by bounded-
ness of K(8,) for s near t. If N, is identically zero, then K (8) = 0. Other-
wise N, changes sign with D, and K(S) <0. A similar argument holds if
o(X)= — X.

Now suppose o(S) ~ S = 0, and choose a basis {X, Y} of S with || X[[2#0
and X | Y,_. Suppose first that || X|]> > 0, and let 7' be the span of X and
Y_. We do not generally have X | Y,, so D, is of the form D, = D, 4
+ ta + ##b. D, has two zeros for 8, is positive definite, and, for |¢| large,
8, is indefinite because || Y,||? < 0. We may assume N, not identically zero;
then N,= N, + tv + #» has at most two zeros, and boundedness of the
defined K (S;) shows that a zero of D, is a zero of N,. Now we have D, =
=r(t—2)(t—y) and N,=8( — z)(t —y) because the zeros =z and y
of D, are distinct, and K(8,) = N,/ D, = s/r when D, #0. As K(§;) <0
by the last paragraph, it follows that K(S) < 0. The necessity in the third
statement is proved.

1.3.4. Suppose that (M, Q) has every sectional curvature non-positive;
we must prove the sectional curvatures bounded. If the sectional curvatures
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of (M,Q) arenot bounded, then thereisasequence {P,} in the GRASSMANN mani-
fold L of nonsingular 2-planes of some signature in R, such that {K (P,)}—»> —oo.
We may assume {P;}-—> 8 for some necessarily singular 2-plane 8 in IRt
because the GRASSMANN manifold of all 2-planes in It is compact.

Suppose first that S is not totally isotropic. Then 8 has a basis {X, Y} such
that either {X,, Y.} or {X_, Y_} is an orthonormal basis of a plane, and
|| X||? % 0. We may assume {X_,, Y.} orthonormal, and we have §,,
D,= Dy + ta + 8 with D, 40, and N,= N, + tv + t*s, as in §1.3.3,
with K(S,) = N,/D, whenever D, 3= 0. D, changes sign at ¢t =1, and
each P, has an element Z; with || Z;||? = || X||?; this gives a sequence {,} > 1
such that (S; = 8, e L) {K(S,)} - — oo, by choice of §. In particular N, is
not constant. Our hypothesis on sign of curvature implies that N, and D,
change sign simultaneously. If D, is linear, it follows that N, is linear and both
are constant multiples of £ — 1; then K(S;) is constant, which is impossible.
If D, is not linear, then its zeros are distinct because it changes sign at ¢ =1,
and again K(S,) is constant. This is a contradiction.

Now suppose S totally isotropic; then § has basis {X, Y} such that both
{X,,Y,} and {X_, Y_} are orthonormal. Let ,; be the plane spanned
by X, and Y,.

Ds,t = B(Xs’Xs)' B(Yt: Yt) - B(Xu Yt)z = (32 - 1) (tz - 1)

and the corresponding N, , is quadratic in ¢ and quadratic in ¢. For fixed
t # 4+ 1, D,, changes sign as s crosses + 1; thus the same is true of N,,
and so s — 1 divides N,,. Similarly # — 1 divides N,,, and it follows
that K(Q,, is constant for |s| # 1 # |¢|. That is impossible because L
contains a sequence of @, , converging to §. As before, this contradicts con-
stancy of the K(Q,,).

The third statement is proven.

1.3.5. Let X, Y,Z ¢M be mutually orthogonal such that plane § span-
ned by X and Y has K(S) %0, [X,Z]=0 and || Y|]?-]|Z]*< 0. Then
the plane 7', spanned by X and Y -+ ¢Z is nonsingular for large ¢, and the
formula for curvature then gives

HX|- 11 Y]P- K(S) = | X|P- || Y + 1 Z]*- K(T)
because (Y +¢Z) | X and [X,Y + tZ] =[X, Y]. For large ¢,
1Y +¢Z|2- || Y][*P<O0,

so K(T',) has sign opposite that of K(S). Thus one of them must be positive.
This completes the proof of Theorem 1.3.1. Q.E.D.
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Chapter I
Locally and Globally Isotropic Pseudo-RiEmanNian Manifolds

This Chapter develops the basic theory of isotropic pseudo-RiEmanNian
manifolds. Important examples are described in § 2. In § 4 the local structure
of locally isotropic manifolds is described in terms of these examples, and § 5
shows that these examples act as metric covering spaces for complete locally
isotropic manifolds. § 6 extends that covering theorem to a partial classification,

and § 7 gives the global classification of isotropic pseudo-RIEMANNian mani-
folds.

2. The model spaces

We shall describe spaces analogous to the isotropic RrEMANNian manifolds.
Our later analyses of isotropic pseudo-RiEmMaNNian manifolds will depend on
comparison with the spaces described below. The spaces R} described below
are flat complete connected simply connected isotropic pseudo-RIiEMANNian
manifolds in an obvious way ([17], § 3).

2. 1. Indefinite unitary groups over division algebras. Let F be a real division
algebra R (real), C (complex) or K (quaternion). There is a natural conjugation
z—z of F over R; this defines the multiplicative group F’ of unmodular
(xxz = 1) elements of F, and defines the notion of hermitian form on an F-
vectorspace. Given integers 0 <h <n, F; will denote the right F-vector-
space of n-tuples together with the hermitian form

b((xl"”’ xn)r (yly"'ﬂyn)) = ingi ¢

The ““indefinite unitary’’ group over F, U%(n, F), is defined to be the group of
automorphisms of F,. The usual notation for indefinite unitary groups over

F is:
U*(n, R) = 0*(n), indefinite orthogonal group
U*(n,C) = U%(n), indefinite unitary group
U*(n, K) = Sp*(n), indefinite symplectic group

If =0 or A= n, one omits writing it. Finally, 80*(x) is defined to be the

identity component of 0*(n), and SU%(n) consists of the elements of U*(n)
of determinant 1.

2. 2. Indefinite GRASSMANN manifolds over division algebras. If A’ <h and
n' — k' <n — h then there is an inclusion F}, c F} consistent with the
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hermitian forms; it is unique up to action of an element of U*(n, F), i.e.,
U*(n, F) acts transitively on the collection of all subspaces F7, of F?. The
subgroup of U(n,F) leaving invariant a particular F}, is isomorphic to
Ur-4 (n — n', F)xU¥ (n/, F). Thus we may view the collection of all F}, in
F} as the coset space

G e n(F) = Ur(n, F)[{UP (0 — 0/, F)x UM (', F)} . (2.2.1)

Gy 5;ne,n(F) is the quotient of a Lik group by a closed subgroup, and thus
carries the structure of a differentiable manifold; it has dimension f(n — n')n’
where f is the dimension of F over R.

For the moment we write (2.2.1) above as M = G/H, where H is the
isotropy group at p e M. Then H has an element s, defined to be the identity
Ionpand — I on pl, suchthat s = I (onF}) and H is the full centralizer
of s in (. In other words, M is a symmetric coset space and Lit algebras
satisfy ® = $ + P where § is the eigenspace of + 1 for ad(s) and P is the
eigenspace of —1; $ = P here with respect to the KiLLiNg form B of G,
and B is nondegenerate on . The restriction of — B to P thus endows M
with a G-invariant pseudo-RremMannian structure. This structure has signature
(@,b) where n"'=n—n', " =h —h', a=f(h'(n" — h") 4+ " (n' — }'))
and b= f(h" + (n' — k') (n" — R")) = f(n — n')n’; it has non-negative
involutive sectional curvature. If we use B, rather than — B, to endow M
with a metric, then the roles of @ and b are interchanged and we obtain a
pseudo-RieMaNNian structure of non-positive involutive sectional curvature.
M is always viewed with one of these structures, and is called an indefinite
GrASSMANN manifold over F.

2. 3. The indefinite elliptic space P} (F) is defined to be the GrRassMANN
manifold of all F; in F?*! with the metric of non-negative involutive sec-
tional curvature; it has dimension fn and signature (fA, f(n — h)); if h =0
it is the ordinary elliptic space over F, and if A = n it is the usual hyperbolic
space, with metric reversed, over F. An obvious modification of the coset
representation (2.2.1) yields

P*(R) = SO*(n + 1)/0%(n) (2.3.1)
P3(C) = SU*(n + 1)/Uk(n) (2.3.2)
P; (K) = Sp*(n + 1)/{8p*(n) X 8p(1)} (2.3.3)

In the representation P} (F) = G/H immediately above, we still have the
decomposition G = § + P, and the negative of the Kmring form of
gives P the structure of Fj. The transformations of P generated by ad(H)
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are easily seen to be precisely the group generated by U”(n, F) together with
the scalar multiplications by elements of F'. In particular, P}(F) is an iso-
tropic pseudo-RIEMANNian manifold MJ;, the pseudo-RIEMANNian analog
of the elliptic space P*(F).

P; (F) is complete because it is globally symmetric. If F = R, it is simply
connected, as is seen by its representation (2.3.2) or (2.3.3) as coset space
of a simply connected group by a closed connected subgroup. Pj(R) is the
manifold 83/{+ I} of [17] with universal pseudo-RIEMANNian covering mani-
fold §* described in ([17], § 4.4 and § 11.2).

2. 4. The indefinite hyperholic space H7?(F) is the GRASSMANN manifold
of all F} in F**l with the metric of non-positive involutive sectional cur-
vature; one obtains it by replacing the metric with its negative on P, _, (F).
Thus we have

H(R) = 80"+ (n + 1)/0*(n) (2.4.1)
H? (C) = SU(n + 1)/U*(n) (2.4.2)
Hj; (K) = Sp**(n + 1)/{Sp”(n) x Sp(1)} (2.4.3)

from the obvious U*(t, F) = U*(¢, F).

As with elliptic spaces, Hj(F) is a complete globally symmetric isotropic
pseudo-RIEMANNian manifold MJ;, which is the hyperbolic space over F in
case h = 0; it is simply connected if F % R, and Hj(R) is the manifold
H}/{+ I} of [17].

2. b. Notation for some LiE groups. The compact simply connected Lie
group of CARTAN classification type X will be denoted X ; thus A, = SU(n+1),
B,(» > 1) is the universal covering group Spin(2z + 1) of S0(2n + 1),
C, = Sp(n), D, = Spin(2n) for » > 1, and G, is the group of sutomorphisms
of the CaYLEY-Dickson algebra Cay. In general, the CLIFFORD algebra con-
struction gives a double covering group Spin*(n) of S0*(n). Finally, Ff will
denote the connected Lie group of type F, whose maximal compact subgroup
is B,. Ff is centerless and simply connected.

2. 6. The indefinite CAYLEY planes P3(Cay) and H?(Cay). Recall that the
isotropic RIEMANNian manifolds are the EucLipean spaces, the spheres, the
elliptic and hyperbolic spaces over a field F, and the manifolds F,/B, and
F{/B, in invariant RIEMANNian metric. The latter two, the CAYLEY elliptic
and hyperbolic planes, have indefinite metric analogs; furthermore, each ob-
viously gives a negative definite pseudo-RIEMANNian manifold on reversal of
its metric.

Let o and = be the automorphisms of F, defined by ¢ = ad(s) and v = ad(f)
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where s ¢ B, — F, is the unique central element of order 2 in B,, and where
teF, is the element of B, with image (— és —I-(l)) in SO(9). There is a direct
sum vectorspace decomposition &, = B, + P where B, is the eigenspace of
+ 1 for o and M is the eigenspace of — 1, and FF =B, + V —1M. As
ot =70, we also have B, =9, + P, and M = H, + P, where &, is the
eigenspace of 4 1 for v and 9P, is the eigenspace of — 1; &, = B, + B’
is the LIk algebra defined by B, = $, + V' — 1 B, and M =, + V — 1B,
and ¢ induces an automorphism of &, for which B, is the eigenspace of + 1
and ' is the eigenspace of —1. Similarly, applying 7 to the decomposition
of §F, we obtain a LiE algebra &, = B; + V' — 1 IM'. To simplify the above,
we first observe that B, = Spint(9) from B, = Spin(9) and the definition
ofr. Let @ and G” be the adjoint groups of &, and &,, and let H' and H"
be the corresponding analytic subgroups for B;. G’ and Q" are real forms
of F,, and are noncompact because H' and H" are not compact. H' and H"
each has maximal compact subgroup of type D,; thus the maximal compact
subgroups of G’ and G” have dimensions > 28; it follows that @ = G" = F}
and &, =&, = &:. Now it is clear that we have only: &= B,+ M,
FF =8B, + M* and F'=B, + M where M* =V — 1M, MW is given
above, and B, = Spint(9).

The decompositions above yield symmetric coset spaces F,/B,, F;/B, and
F;/Spin! (9). With Kirring form for invariant metric, we obtain spaces of
non-positive involutive curvature with metrics respectively of signature (16,0),
(0,186), (8,8); the statement about (8,8) comes from the equivalence of IR’ and

V' —1 M, which comes from the equivalence of F, and F” above.

The CAYLEY elliptic planes are the following symmetric coset spaces with
pseudo-RIEMANNian structure of non-negative involutive sectional curvature
induced by the negative of the KiLLiNa form:

P2(Cay) = F,/Spin(9), positive definite CAYLEY elliptic plane.  (2.6.1)
P2(Cay) = F;/Spin'(9), indefinite CAYLEY elliptic plane. (2.6.2)
P2(Cay) = F;/Spin(9) , negative definite CAYLEY elliptic plane. (2.6.3)

The CaYLEY hyperbolic planes are obtained the same way, with non-
positive involutive sectional curvature from the KrLrLing form:

HZ(Cay) = F;/Spin(9) , positive definite CAYLEY hyperbolic plane. (2.6.4)
H?(Cay) = F}/Spin(9) , indefinite CAYLEY hyperbolic plane. (2.6.5)
HZ(Cay) = F,/Spin(9) , negative definite CAYLEY hyperbolic plane. (2.6.6)
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P2 (Cay) and H3%(Cay) are complete because they are globally symmetric;
each is a pseudo-RIEMANNian manifold M3, and it is known from the theory
of R1EMANNian symmetric spaces that they are isotropic for & % 1. We will
now prove that Pi(Cay) is isotropic; isotropy then follows for HZ(Cay). To
do this, we must show for every real number y that Spin!(9) is transitive on
the nonzero vectors of square norm y in MM’ = RS,

Let o be a CARTAN involution of §; which preserves Spinl(9); M =A + B
under o where U is positive definite and B is negative definite. Spin(8), the
subgroup of Spin'(9) which preserves this decomposition, maximal compact
subgroup of Spin'(9), acts by u:a + b — f(u) (a) + f(¢(w)) (b) where
f: Spin(8)— S0 (8) is the projection and ¢ is triality. If @ 7= 0 £ b, it follows that
the isotropy subgroup of Spin(8) at a + b lies in the fixed point set G, of ¢.
Given « >0>f let S, = {aeW:||a||* =a} and Sg= {beB:[|b]* = f};
it follows by counting dimensiors that Spin(8) is transitive on S, x Sg and
G, is its isotropy subgroup?®. Finally, let {g,} be a l-parameter group in
Spin!(9) such that o(g,) = g;'. As each g, is a semisimple linear transfor-
mation of M’ with all eigenvalues real, and each g, preserves the inner product
on M’ = Ri®, we can replace the parameter by a multiple and find r U
and 8 e such that ||7|]2=1= — ||s]|?, ¢9,(r) = cosh(¢)r 4 sinh(¢)s, and
g,(8) = sinh (¢)r + cosh(t)s.

Let xeM', 2 #0, ||z|]P=yp; x=a+bwithaeWand beB;||e|f=«
and ||b||2 = . Applying an element of Spin(8), we may assume

a=Var and bzl/:—?)‘s.

cosh (#) sinh (¢)
sinh (¢) cosh (¢)

(1) If y >0, thensome g, carries z to V'yr.
(2) If y = 0, thensome g, carries x to r 4 s.

Now a close look at R} and matrices ( ) shows:

(3) If ¥y <0, thensome g, carries z to V—ys.
This completes the proof that P}(Cay) is isotropie.

We have proved that each of the CAYLEY planes is an isotropic pseudo-
RiEmaNNian manifold. Observe also that each CAYLEY plane is complete, sym-
metric, and simply connected.

2.7. CARTAN’s technique for the full group of isometries of a RiEMANNian
symmetric space can be extended to indefinite metric. We will make that
extension now, and then calculate the full group of isometries for each of our
model spaces in § 2.8.

) I am indebted to Professor JAcQUES TrTs for bringing to my attention this fact that Spin (8)
is transitive on §7 x 87,

3 CMH vol. 89
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Let M3 be an irreducible complete connected simply connected pseudo-
RiemaNNian symmetric manifold, let s be the symmetry at z e M3; let G =
=L, (M%) and Q' =1(M}), and let H and H’ be their respective isotropy
subgroups at «. The problem is to find ' and H' from G, H and s. @' =G H’
because M35 is connected, so it suffices to find H'; knowing the subgroup
H" = H vs-H of H', then, it suffices to find {k; =1, k,;,...} c H' such that
H' is the disjoint union of the k,H”. The whole point is that the following gives
enough information about the k£, so that, in any particular case, one can find them:

Theorem. FEach k;,, 1 > 1, induces an outer automorphism of H which is
induced by an automorphism of G. The automorphisms of H induced by k;
and k; differ by an inner automorphism of H, if and only if k; = ;.

Let ¢ = ad(s); then ® = + M where & is the o-eigenspace of 41
and I is the eigenspace of — 1. As M?% is irreducible, i.e., as ad(H) is irre-
ducible on I, the centralizer of ad(H) in the algebra of linear endomorphisms
of M is a real division algebra F (by ScHUR’s Lemma). Now identify H, H" and
H' with the linear groups they induce on . I claim that we need only prove
F' < H". For then if ¥’ e H' induces an inner automorphism of H, so k'keF
for some k ¢ H, we have k'keF' because (since it preserves the metric)
det. (k'k) = 4+ 1, whence k'k e H" and so k' ¢ H"; the theorem would follow.

The fact that F' ¢ H” is obvious if F = R (in which case 1 e His 1 ¢ F’
and seH" is —1eF'); if F £ R it is a consequence of:

Lemma. (1) F = R if and only if H is semisimple. (2) F £ K. (3) These
are equivalent: (a) the center of H is a circle group, (b) H i3 not semisimple,
(c) M} has a G-invariant indefinite metric KAnLER structure which induces the
original pseudo-Riemannian structure, (d) F = C.

Remark. This is the indefinite-metric version of ([20], Lemma 2.4.3), which
is essentially due to CARTAN [5, 6] with part of the proof taken from CARTAN
[56] and BorerL [3].

Proof of Lemma. Let Z be the center of H; then Z c F' because Z c F and
det.z= +1 forevery zeZ. Thus F 5 C implies that Z is finite. H is reductive
because it is an irreducible linear group. It follows that H is semisimpleif F = C.

Suppose that F = R, i.e., that F has an element J with J2 = —I. Then

we have real subalgebras 2=+ I+ V —-1J)M and T =$° +

+ I — V —1J)M of the complexified algebra G which are complex con-
jugate over ®, which span ¢ over R, and which have intersection $°. As H
is connected (because M} is simply connected), this is A.FROLICHER’s criterion
([7], § 20) that J define a G-invariant complex structure on My = G/H. From
our pseudo-RIEMANNian metric we now have a G-invariant indefinite hermitian
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metric on M7%; the complex structure is parallel because H contains the holon-
omy group, so the indefinite hermitian metric is KARLERian.

Continue to assume F = R. Let 7 be a maximal compact subgroup of H,
so T" =T vs- T is maximal compact in H”; extend 7' to a maximal compact
subgroup S of ¢, s0 8" = S vs-8§ is maximal compact in G =G vs-G.
The group G is semisimple ([15], p.56), because M} is not flat as a consequence
of F=£R. Thus ®” has a CARTAN involution v which induces a CARTAN
involution of §”, and we may assume z trivial on §” and 7. In particular,
7 commutes with o = ad(s) and preserves the summands in ® = & + M.
The transformation ¢ of M induced by = normalizes the linear group H, so
tFt1=F. If F =K, then ¢ centralizes F because F' has no outer auto-
morphism and its element of order 2 is central. If F = C and ¢ does not
centralize F, then ¢ft1 =} for every feF. Nowlet =9, + H_ and
M =M, + WM_ where subscripts denote the eigenspace of +1 or —1 for
7, andwedefine $* =§, + V-1 H_, M* =M, + V' — 1 M_and G*=
= H* + M*. If G* is the adjoint group of ®* and H* is the analytic sub-
group for H*, then G*/H* is a RIEMANNian symmetric space. If ¢ centralizes
F, then J preserves both 9, and I_, and thus induces a transformation J*
of square —I on IN* which commutes with the irreducible linear group
H*(= ad(H*)) on IM*. Otherwise, J interchanges IR, and IM_. Then J
induces a transformation J' of M* by J'(X) =V — 1J(X) if X MM, orif
XeV -1 M_. J' centralizes H* and has square -+ 1. This is impossible
because H* is irreducible on IMM*. Thus J preserves both M, and M_, and
induces J*. It follows, as with J on G/H, that J* induces a G*-invariant
KAHLER metric on the compact RIEMANNian symmetric space G*/H*. Now
the cohomology group H2(G*/H*; R) # 0 so the homotopy group =, (G*/H*)
is infinite, and the homotopy sequence

0 = m, (G*) - my (GF*/H*) — m, (H*) - 7, (G*) = finite

shows that s, (H*) isinfinite. Thus H*, and consequently H , is not semisimple.

We have proven that H is not semisimple when F = R, and that M7} has
a G-invariant indefinite metric KAHLER structure then which induces its orig-
inal pseudo-RIEMANNian structure. As H is reductive, it also follows that the
center Z of H is infinite; as Z c F', it follows that F = €. The Lemma now
follows, and the Theorem is proved. Q.E.D.

2. 8. Enumeration of the full groups of isometries of the model spaces.
It is known ([17], § 3) and easily seen that the full group of isometries I(R})
is the semidirect product 0*(n)- R® acting by

(4,a):z—>A(z) + a
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where A €0"(n), a ¢ R* = underlying vector group of R}, and z ¢« R?; the
action of 4 is the usual linear action.

If h<n — 1, then the universal pseudo-RiEMaNNian covering manifold
S? of P3(R) is the quadric 87 = {z ¢ R}*!:||z|* = 1} with induced metric;
if A =mn, then §2 is one of the two components of 8;; if h=n — 1, then
the situation is rather complicated ([17], § 11) and §7 is an infinite covering
manifold of S};. Similarly, the universal pseudo-RiEMANNian covering manifold
i} of Hj(R) is described by the quadric Hj = {x e Rit}: ||z|]? = — 1} with
induced metric. It is known ([17], § 4.5) that I(S}) =0*(n + 1) and I(H}) =
= Q*+1(n 4 1). Together with ([17], § 11), this will suffice for our purposes.

We will apply the technique of § 2.7 to the other model spaces. The starting
point is a result of K.Nomizu ([15], Th. 16.1) which assures us that the repre-
sentations M = G/H of model spaces M of nonconstant curvature, given by
(2.3.2—3), (2.4.2—3) and (2.6.1—6), have the property: L,(M) consists of
the isometries induced by G. In each case, this means I,(M) = G/Z where Z is
the center of G ; Z is trivial if @is of type F,,Z = {+ I} if G = Sp*(n + 1), and
Z consists of the scalar matrices exp (2# V —1mjn + ) I if G = SU¥(n + 1).

Let M be a CayLEY plane G/H as in (2.6.1—6). Then G = I,(M), G con-
tains the symmetry, and H = Spin*(9) has no outer automorphism. By
Theorem 2.7, G =I(M):

I1(P:(Cay)) = I(H2(Cay)) = F,; Spin (9) is isotropy subgroup. (2.8.1)
1(P%(Cay)) = I(H2(Cay)) = F}y; Spin! (9) is isotropy subgroup. (2.8.2)
I(P%(Cay)) = I(HZ(Cay)) = F;; Spin (9) is isotropy subgroup. (2.8.3)

Let M be an indefinite quaternionic elliptic space G/H; G = Sp*(n + 1)
and I,(M) = G/{+1I}. If n>1, then Sp*(n) is not isomorphic to Sp(1),
and it follows that H/{+ I} has no outer automorphism. If n = 1, then G
is of the type C;; CarTAN type C, is the same as type B, so one would expect
that M have constant curvature; indeed, it is standard that P}(K) is iso-
metric to the sphere $% and easily seen that P}(K) is real hyperbolic space H*
with metric reversed. We set aside these spaces of constant curvature. Now G
contains the symmetry, so Theorem 2.7 yields:

I(P;(K)) = I(H;_,(K)) = 8p*(n + 1)/{£1} when n>1;  (2.8.4)
{Sp*(n) x Sp(1)}/{£ I} is isotropy subgroup.

Let M be an indefinite complex elliptic space G/H; G = SU%*(n 4+ 1) and
I, (M) is SU?(nw + 1)/{scalars}. The image of H in I,(M) is isomorphic to
U”(n); its only outer automorphism, the usual conjugate-transpose, is induced
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by the automorphism ad(x) of G where « is the isometry of M induced by
conjugation of € over R. As ¢ contains the symmetry, Theorem 2.7 yields:

I(P3(C)) = L(P3(C) v o - L(PR(C)) = I(H_4(0)) , (2.8.5)

where « is induced by conjugation of C over R; U*n) v o - Ut (n) is isotropy
subgroup.

We have now determined the full groups of isometries of the model spaces.

2.9. Sectional curvatures of the model spaces are not well behaved, except
in the cases of definite metric and constant curvature:

Theorem. Let (M,Q) be a pseudo-Riemannian manifold Py (F) or Hj(F)
with F=C or K and 0 <h <mn, or P}(Cay) or H2(Cay). Then the sectional
curvatures of (M, Q) are not bounded and do not keep one sign.

Proof. Let G =1,(M, Q) and let H be the isotropy subgroup of Gat e M.
Then G is semisimple, §) is the eigenspace of + 1 for the involutive isometry t
of ® induced by the symmetry to (M, Q) at z, ® = H + M where M is the
eigenspace of — 1 for 7 and both summands are stable under a CARTAN involu-
tion ¢ of ®, and a nonzero real multiple of the KiLLing form B of ® induces
through its restriction to M. Thus we are in the situation of Theorem 1.3.1.
If one changes @ to a - @, he changes a sectional curvature K(S) to a*K(S);
thus the assertion on P} (F) or P3(Cay) will follow from the corresponding
assertion for H}:_,(F) or H} (Cay), and we may assume that @ is induced by B.
As [N, M] < H, we have seen in the proof of Theorem 1.3.1 that a non-
singular 2-plane § — M with basis {X, Y} has sectional curvature

X, Y]
X2 1Y ]]*— B(X, ¥)?
where ||Z||? denotes B(Z,Z). We also write & =G, + G_, M =M, + M_
and § = §, + H_ where subscripts denote the eigenspace of 41 or — 1 for
the CARTAN involution ¢, and we write Z =17, + Z_ for every Ze® where
Z,eG,=9H,+M, and Z_eG_ = HH_+ M_. Bis positive definite on G_
and negative definite on G, .

Choose X e M_ with || X||2 = 1 and let U be the subgroup of H consisting
of all elements which preserve M, and M_. U is a maximal compact subgroup
of Hand W = §,. Let V be the isotropy subgroup of U at X . Transitivity of
H on the light cone ||W|2=0 % W in M implies transitivity of V on the
unit sphere S, = {WeM, :||W|t=—1} in M,. If (M,Q)=H;(F),
then IR carries the structure of F} and H acts as U%(n, F) - F'. We then define
a subspace 0 % N = X1~ X:-F c PM_ which is nonzero because F # R.
Let S_ be the unit sphere {W eR:||W|2 =1} in RN; if F=C then 8_ is

K(8) =
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two points; if F = K then V is transitive on S_. If (M, Q) = H}(Cay), we
define M = XL ~M_. Then U = Spin(8); let ¢ be its triality automorphism
and let f: Spin(8) — SO (8) be the projection; if 80 (8) acts on M, and IM_ by
its usual action on R®, then U actson M = M, @ M_ by u— f(u) ® f(t(w));
then the action of ¥ on R is the usual action of S0 (7) on R7, so V is transitive
on the unit sphere S_ = {W eR:||W]||?= 1} in N.

From transitivity of ¥ on 8., and on S_ when the latter is connected, we
see that there are real numbers « and f§ such that K(S) =« and K(T) =
if S is spanned by X and some Y eS_, and if T is spanned by X and some
Z e8,. Now &« 7% i because (M, Q) is not of constant sectional curvature.

Choose YeS_ and ZeS,; for every real number b, let b =V + 1,
define W,=bY + b'Z, and let S, be the plane spanned by X and W,.
We have X | W, and ||W,|[?2= — 1. Thus K(S,) = — ||[X, W2 =
— — {I[X, bY1II* + |I[X, b Z]|} = — (P — (B2 + 1)B} = B*(B — ) + B,
which is unbounded for |b| large. To see that sectional curvature does not keep
one sign, we can either apply Part 3 of Theorem 1.3.1 or observe that the plane
T, spanned by X and 'Y 4+ bZ has K(T,) = « + b*(« — f). Either way,
Theorem 2.9 is proved. Q. E.D.

Remark. One can show &« = 48 < 0 above.

3. Groups transitive on cones and quadrics

The first step in our study of isotropic spaces is:

3.1. Theorem. Let G be a closed conmected subgroup of SO*(n) which is
transitive both on a component L of the light cone {x ¢ R} :||z||? =0, = # 0}
and a component Q of a non-empty quadric {x e R} : ||z||*> = a} (@ % 0). Then

(a) G = 80*(n);

or
(b) G = SUM2(n/2) or UM*(n/2);
or
(c) G = Sp™4(n/d) or SpM(n/4)- T or Sp**(n/d)-Sp(1);
or
(d) G@ = Spin(9) with » =16 and h=0 or 16; or G = Spin'(9) with
n =16 = 2h;
or

(e) G = Spin(7) with n =8 and h=0 or 8; or G = Spin®(7) with
n=8=2h;
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or
f) =G, withn="Tand h=0o0r T;0or G =G withn="7 and h =3
or 4.
Here Gj denotes the noncompact centerless real group of the type G,.
Conversely, every group listed above 18 transitive on the nonzero elements of any
given square norm in Ry.

Remark. Our proof is based on the case h = 0, which is the celebrated
MONTGOMERY-SAMELSON-BOREL classification of groups transitive on spheres
([12], [1], [2]; see § 27 of [16]).

3.2. Proof. If n =2, then dim.@Q = 1 = dim. S0*(n) and necessarily
G = S0*(n). Now assume = > 2; then @ is irreducible on R} ([17], Lemma
8.2). Now (@ is reductive and its connected center either is trivial or is a circle
group which gives a complex structure to Ry ; it follows ([14], Th. 6) that ®
is invariant under a CARTAN involution ¢ of ©0(n) which induces a CARTAN
involution of . ¢ =1 if A=0 or h=n.

Let z €Q. The isotropy subgroup H of 80*(n) at z is reductive, algebraic
and connected, and thus ([14], Th. 6) $ is invariant under a CARTAN involution
7; ¢ and 7 are conjugate in the group of inner automorphisms of 80%(n),
so we may change x and assume o =7. Now SO*(n) =R + P where K is
the eigenspace of + 1 for ¢ and P is the eigenspace of —1; & = G + Gp
and $ = Hr + Hp where subscripts denote intersection with & or P. Define
SO*n)*=R+V —1P,6*=0z+V —-10p and $*=Hx+ V — 1 Hp;
then SO*(n)* = S0 (n) and H* = SO(n — 1). Let G* be the analytic
subgroup of 80(n) corresponding to G* — SO(n). Transitivity of G on @
implies ® 4+ $ = SO*(n); thus O* + H* = (G + H)* = SO(n) and it
follows that @* is transitive on the sphere S§7-1 = S0 (n)/S0(n—1).

According to MONTGOMERY, SAMELSON and BOREL, transitivity of G* on
S7-1 implies

(@) G@* = 80(n) ;

or
(b) @* = SU(n/2) or U(n/2);
or
(¢) G* = Sp(n/4) or Sp(n/4)-T or Sp(n/4)-Sp(1);
or
(d) G* = Spin(9) with n = 16 ;
or
(e) G* = Spin(7) with n = 8 ;
or
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Because G c SO*(n), cases (a), (b) and (c) above yield the corresponding
possibilities for ¢ in the Theorem; they have the required transitivity. Now
we need only examine (d), (e) and (f) above when 0 < h <n. We will need
the fact [13] that, by transitivity of G on L, a maximal compact subgroup
M c G is transitive on a compact deformation retract of L, and that this
retract is a component of 8*-1 x §7-2-1 because the full light cone is homeo-
morphic to 81 x R x S**-1. As M preserves complementary positive
definite and negative definite subspaces of R} ([18], p. 79), we may take
S»—h-1 and S§*-! to be the respective unit spheres in these subspaces. We may
assume h <n — h.

Let G* = Spin(9) with G noncompactand 0 <h <n — h. Then n = 16,
G = Spin*(9) with 1 <k <4, and M isa quotient of Spin (k) x Spin(9—*k).
Now k& = 1 because a simple factor of M is transitiveon S**-1 and n — h —
— 1>7; thus h =8 and we are in case (d) of the Theorem. The required
transitivity of G was seen in our proof that P?(Cay) be isotropic.

Let G* = Spin(7) with G noncompact and 0 <h <n — k. Then n = 8,
@ = Spin*(7) with 1 <k < 3, and M is a quotient of Spin(k) X Spin(7—%).
If k=1, then Spin(6) is transitive on §*»*-1; » — h — 1 > 3 then implies
n—h—1=5 and h — 1= 1, so the isotropy subgroup Spin(5) of Spin (6)
on §° is transitive on 8! ; that is impossible. If k = 2, then Spin(5) is transitive
on S"*-1 because Spin(2) is not; thus n —h — 1 =4, so h — 1 =2 and
M’ x Spin(2) is transitive on §? where M’ is isotropy of Spin(5) on 8%; then
M’ = Spin (4) implies that M has a 2-dimensional subgroup which acts triv-
ially on all of R}; that is impossible. Now k = 3, so M is locally (Spin (3))3;
thus b = 4, two factors of M acting as SO(4) on one $* and the third acting
simply transitively on the other $?, as in case (e) of the Theorem.

Let G* = @, with G noncompact and 0 <h <n — h. Then n =7 and
M is a quotient of SU(2) x SU(2). It follows that h =3, M ~80(4), G is
the noncompact centerless group G; of type @,, and we are in case (f) of the
Theorem.

3. 3. In order to complete the proof of the Theorem, we must find actions
of Spin®(7) on R§ and G} on R] with the desired transitivity properties.

We have Spin(7) c SO(8) transitive on the unit sphere §' — R® and
with isotropy subgroup @, at z ¢S§’. The theory of RIEMANNian symmetric
spaces provides an element ¢ e G, of order 2 whose centralizer K, in G, is iso-
morphic to SO(4). Let 4 and B be the eigenspaces of 41 and of — 1 for ¢
on R®.

We first prove dim. 4 = 4 = dim. B. B has even dimensjon 25, 1<b<3,
and we must prove b = 2. Let y be an element of the unit sphere 8¢ in the
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tangentspace (87),. G, is transitive on S8 with isotropy subgroup J = SU(3)
at y. As rank. J = 2, we may assume y chosen so that ¢eJ. We identify
(87), with ! by a Gy-equivariant parallel translation; now z and y span a
plane T'in A, and J acts on T1. Thus if b #2, ¢t would be — I on 71 and
thus would be central in J, or would represent an element of U(3) not in
SU(3) and thus not be in J. This shows b = 2.

We will produce groups acting on Ri=A4 + V' —1B and R} = 4"+
+V —1B, where A’ =A~zl. Let v be the automorphism ad(¢) of
Spin(7); then Gpin(7) = K + P where K is the eigenspace of + 1 for =
and P is the eigenspace of —1, and G, = K + P’ where P’ = G, ~ B,
and & = G, ~ & is the algebra of K,. Now G, = K + V — 1 P’ is the
Lit algebra of G;. & + V-1 P is Spin®(7) because it is contained in
S04(8) where S0%(8) acts on R, and because S0%(8) cannot contain
Spin(5). Thus G} acts on R} and Spin®(7) acts on R}.

Given «> 0>, we define 3-spheres S, ={wed:||w|?=«} and
Sg={weV —1B:||w|?=p} and a 2-sphere S’y =8,~4". K, acts
effectively on 4’ @ B and is isomorphic to S0(4); thus we view K, as the
image of a representation f@g of S0(4) on 4'@ B. ¢ is faithful because
f® ¢ is faithful. If f is not trivial, then f: SO (4) - SO (3) is onto and it follows
from the local product structure of S0(4) that K, is transitive on S, X §,.
We will prove that f is not trivial. Choose nonzero ze B, let @, be the iso-
tropy subgroup of Spin(7) at z, let e be the central element of order 2 in
Spin(7), and define #' = te. Now e acts as —I on R® by irreducibility of
Spin(7), so ' = — ¢ on R® and ¢ ¢@,. Any two elements of order 2 in G,
being conjugate, Spin(7) has an element % such that hG,ht= G, and
hth' =¢t'. Now K, = hK,h™ is the centralizer of ¢’ in G,. % interchanges
A and B because ¢ = — ¢; it follows that the group K generated by K,
and K, preserves both 4 and B. If f istrivial, then K is the product S0(4) X
X 80(4) of the rotation groups of 4 and B; then rank. K = 4 > 3 =
= rank. Spin(7), which is impossible. This proves f nontrivial.

We have proved that K, is transitive on S, X S;. The group K above is
centralized by ¢ and thus is contained in Spin®(7). It is locally a product of
groups 80(3), the number of factor being at least 3 because it contains K,
properly and the number of factors being at most 3 because rank. Spin(7) = 3.
Thus K is the group with Lik algebra & and is maximal compact in Spin®(7).
A close look at f, g and h above shows that K is transitive on S, x Sg. Now,
as in the proof that P%(Cay) is isotropic, it follows that G (resp. Spin®(7)) is
transitive on the nonzero elements of any given square norm in R} (resp. in
R)). Q. E. D.
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3. 4. Some coset representations for quadrics. In R} we define quadrics
S={xeR}:||z||2=1} and H= {z R} :||z|2= — 1}.
Besides the usual representations of § and H as coset spaces of S0%(n),
U2 (n/2) and SU*2(n/2), and Sp**(n/4)- Sp(1), Sp**(n/4)- T and Sp**(n/4),
we have:
Spin (9)/Spin(7) = § c R
Spin! (9)/Spin (7) = § c RL®
Spin(7)/6; = 8 < Ry
Spin®(7)/G; = S < R}
G,/SU3) =S8 c R}
G5/SUY(3) =S c R]
G3/SL(3; R) =8 c R}

L

Replacing the inner product by its negative on R}, these representations yield
representations for H in Ri¢, R, RS, RS, R?, R], and RI.

4. Structure of locally isotropic manifolds

Theorem 3.1 enumerated the candidates for group of local isometries in a
locally isotropic manifold M7%. This is used in the structure theorem, Theorem 4
below. It turns out that not all the groups listed in Theorem 3.1 occur here,
however; this happens in such a way that we are able to extend, in Theorem 4
(4.), the theorem that an isotropic LORENTZ manifold has constant curvature.

Theorem. Let M} be a connected locally isotropic pseudo-Riemannian mani-
fold. Given x e M3, let G, be the group of local isometries at x, let 8, denote
the L1k algebra of germs of KiLring vectorfields at x, and view &, as the sub-
algebra of 8, consisting of the elements which vanish at x. Then:

(1) My 18 locally symmetric.

(2) M3 s locally homogeneous: given x, y e My, there is an isometry f of a
neighborhood of x onto a meighborhood of y with f(x) = y. In particular,
f induces isomorphisms £, ~8,, 6,~6, and G, =G,.

(3) M% s characterized locally by =, h, Q,, 8,, and (only mecessary if
Q. =% and n = 2h = 16) the sign of involutive sectional curvature, in the
sense that the only possibilities are:
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G, 2, M7, locally isometric to
S0%(n), not semisimple Ry
case of constant SO (n + 1) *(R)
curvature SOM(n + 1) H'(R)
U (), SUW (0’ + 1) P”. (C)
28 =h,20' =n SUF 1 (n' + 1) »(0)
Sp*" (n") - Sp(1), Sp*' (0" + 1) Ph(K)
4h" =h,4n" =n Sph'(n" + 1) H7 (K)
Spin (9), &1 Pj(Cay) or H;(Cay)
n=16, h=0or h=16 g Hj(Cay) or P}(Cay)
Spint(9), n = 2h = 16 & P2(Cay) or HZ(Cay)

(4) If b isodd,orif n — h isodd, then M} is of constant sectional curvature.

Proof. The case m = 2 is trivial because there each G, = S0*(n) and M}
has constant curvature. Now let n > 2. As seen in the proof of Theorem 3.1,
G, acts irreducibly on the tangentspace T, and every representation of G,
is fully reducible.

Let n:8,— T, be evaluation at z. x is a linear map with kernel %,. We
have a natural representation g—ad(g) of G, on £, by automorphisms,
and zn(ad(9)X) = g(=(X)) for every geG, and every X ¢g,. Given
ze My, ®, extends to a Lir algebra of KiLring vectorfields on a normal
coordinate neighborhood U of z. We may choose z with xze U. By irre-
ducibility of G, on T',, now, £, has an element which does not vanish at z.
By irreducibility of @, and equivariance of x, it follows that =n(8,) = 7', and
in particular 8, has dimension #» 4 dim. @,,.

G, is represented faithfully on 7', because M} is connected. Identifying T,
with R} and G, with its linear action, the identity component @ of @, is listed
in Theorem 3.1. By irreducibility of ®, on 7',, and by the LEVI-WHITEHEAD-
Mavcev’ Theorem, G, is a maximal subalgebra of &,; if ®, is semisimple it
follows either that g, is semisimple or that £, = G, + Rad(Q,); in the
latter case Rad(®,) is commutative by irreducibility of ,, whence M?% is
flat in a neighborhood of z, and G, = 0%(n).

If @ is listed under (e) (resp. (f)) in Theorem 3.1, so Gis Spin(7) on R§ or
Rg or Spin®(7) on R{ (resp. G, on RY or R? or GF on R} or RY), then we
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choose X e¢7T,= R}, with ||X||?> # 0 and observe that the isotropy sub-
group of G at X is G, or Gj (resp. SU(3) or SU(3) or the self-contragredient
group of type SL(3, R) — S0°(6)). From the combined transitivity pro-
perties of G and this subgroup (see Lemma 8.3 of [17] for SL(3, R)), it
follows that G is transitive on positive definite or on negative definite 2-planes
in T',, so all such planes give the same sectional curvature; these planes form
an open subset in the GRASSMANN manifold of 2-planes in 7', and thus their
sectional curvatures determine the curvature tensor of M} at z; it follows
that M7} has constant curvature in a neighborhood of = and so G, = 0*(n).
This is a contradiction. We conclude that G is listed under (a), (b), (c) or (d)
in Theorem 3.1.

If @ is listed under (a), then — I ¢ G, = 0*(n). If G is listed under (b),
(¢) or (d), then — IeG c G,. In any case, M} is locally symmetric at .
This proves the first statement of the Theorem.

Define two points of M} to be equivalent if a neighborhood of one is iso-
metric to a neighborhood of the other as in the second statement of the
Theorem. The equivalence classes are open subsets of M} because = (8,) =T,
for every z. As the equivalence classes are disjoint, it follows that each is a
union of components of M7%. The second statement of the Theorem follows
from connectedness of M.

We have seen that G, has an element ¢ whichis — I on 7'; let v = ad(?).
Then under 7, &, = 6, + M, where I, is the eigenspace for — 1 in L,;
®, is the eigenspace for 4+ 1. We have also seen that M} is flat and G, =
= Q*(n) if &, is not semisimple; now assume L, semisimple. Then ([14],
Theorem 6) there is a CARTAN involution o of £, which induces a CARTAN
involution of ®,. ¢ lies in a compact subgroup of G, because > =1; re-
placing ¢ by a conjugate (this does nothing because ¢ is central), we have
01 =10. 8, =L% + 8, and G, =G, + &, where K denotes o-eigenspace

of +1 and P denotes o-eigenspace of —1. Let 8* =8, +V —1 &, and

G* =0 + V-1 ®p; then 7 induces an involutive automorphism of £*
with G* as fixed point set. Let L* be a (necessarily compact) connected group
with LiE algebra 8*, and let G* be an analytic subgroup corresponding to G *.

Recall 8, = 0, + MM, under 7; =:M,— T, is an equivariant isomor-
phism, so ad(@,) has an (n — 1)-dimensional orbit on I,. Let IM* =
= (M, ~ L) + l/———_l(ﬁﬁxnﬁp); then f* = ®* 4+ IM* under 7, and it
follows that ad(G*) has an (n — 1)-dimensional orbit on JR*. In other
words, the compact RIEMANNian symmetric space L*/G* has rank 1. By
Theorem 3 and our above elimination of (e) and (f), it follows that the identity
component of G, is (a) SO*(n), (b) Ut2(n/2), (c) Sp**(n/4)- Sp(1), or (d)
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Spin (9) or Spin'(9), and that &, is given respectively as an algebra of type (a)
B, if niseven, D, ifnisodd, (b) 4,4, (¢) Ciyaq, or (d) Fy.

If G,= 80*n), then M} is of constant curvature, and thus is locally
isometric to R}, P} (R) or H}(R). If G,= U (n') where 2h' = h and
2n' =mn, then L, is either GU* (n' + 1) or SUP+H(n' 4 1) because it
contains U* (n') and is of type A,.; thus M?% is locally isometric to P%,(C)
or to HY(C). If G, = Sp*(n")- Sp(1) where 4h" = h and 4n" = n, then
g, is either Gp*'(n” + 1) or Sp»+1(n” 4 1) because it is of type Cp,, and
Sp* (n") ® Sp(1) is a maximal subalgebra; thus M} is locally isometric
either to P, (K) or to H}.(K). If G,is Spin(9) or Spin!(9), then £, is §,
(only when @, = Spin(9)) or §;, and M7} is locally isometric to a CAYLEY
plane.

We have just completed the proof of the third statement of the Theorem.
The fourth statement follows at a glance. Q.E.D.

Theorem 4 allows us to formulate:

Detinition. Let M7} be a locally isotropic pseudo-Riemannian manifold and
let S be a nonsingular tangent 2-plane at = ¢ M}, so S is sent to a nonsingular
tangent 2-plane f,(S) at f(x) e N3 under an isometry f of a neighborhood
of z onto a neighborhood in

»= R}, PP(R,C,K or Cay) or HF(R,C,K or Cay).

Then S is involutive, and the sectional curvature K (S) is an tnvolutive sectional
curvature, if and only if either N} = R} or f, (8) is involutive on N3j.

6. The universal covering theorem

Our global classifications will depend on the following consequence of
Theorem 4:

Theorem. Let M3} be a connected pseudo-Riemannian manifold. Then My
18 complete and locally isotropic, if and only if its universal pseudo-RiEMANNiIan
covering manifold is (a) Ry, S? or HPY; or, if B’ =h/2 and n' =02 are
integers, (b) P%.(C) or H%.(C); or, if h" = h/4 and n" = n/4 are integers,
(c) PR(K) or HY(K); or, if n = 16 and h" = h/8 is an integer, (d) P2, (Cay)
or Hj, (Cay).

Remark. §7 and H? are the universal pseudo-RIEMANNian covering mani-
folds of P}(R) and H}(R).

Proof. 1t suffices to prove the Theorem when M} is simply connected, and
completeness and local isotropy are immediate from the existence of a pseudo-
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RiEmaANNian covering by one of the manifolds listed. Now assume M} com-
plete, simply connected and locally isotropic; we must show that it is isometric
to one of the manifolds listed.

Choose z ¢ M. By Theorem 4, there is an isometry f of a neighborhood
U of z onto an open subset ¥ of a manifold N} in our list. The curvature tensors
are parallel on both M} and N3, for those manifolds are locally symmetric.
The torsion forms vanish because we are dealing with LEvI-CiviTA connections.
The proof of Theorem 5 is now identical to the proof of the case of constant
curvature ([17], Theorem 5): one uses N.HIckS’ extension ([9], Theorem 1)
of AMBROSE’s Theorem to extend f to a global isometry by extending it along
broken geodesics. Q. E.D.

6. A partial elassification of complete locally isotropic manifolds

As in the case of constant nonzero curvature [18], one can classify the non-
flat complete locally isotropic manifolds in certain signatures of metric:

6. 1. Theorem. Let M, be a complete comnected locally isotropic pseudo-
Riemannian manifold which is not flat.

1. If M7 is of non-negative involutive sectional curvature with 28 < n and
s#mn—1, or if M} is of non-positive involutive sectional curvature with
28 >n and s # 1, then the fundamental group =,(M7) 18 finite.

2. If =,(M7%) 18 finate, then

(@) M% is of constant sectional curvature. In [18], the global classification of
such spaces is reduced to the classical Crirrorp-KigIn spherical space form
problem in dimension m — 8 for positive curvature, and thus in dimension s
for megative curvature;

o (b) M? is simply connected and thus isometric to one of the model spaces;

m(c) M} is isometric to PUE(C)/{1,xJ} where r = 8/4 and t = ((n/2) 4 1)/2
are integers, o ts the isometry induced by conjugation of C over R, and J 18 the
18ometry induced by

01,
0 ) e8UE@n x 8UEE - 2r)  SUP(@f2) + 1);
t—r

- It--r 0

d) M} is isometric to HJ3(C)/{1, aJ} where r = ((s/2) + 1)/2 and t=
= ((n/2) + 1)/2 are integers, and « and J are as above.

il
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Remark. It suffices to prove Theorem 6.1 in the case where M? is of non-
negative involutive sectional curvature; the case of non-positive involutive
sectional curvature will then follow by reversing (replacing with its negative)
the metric.

6. 2. Proof of Part 1. M} is non-negative involutive curvature with 28 < n
and 8 #n — 1. We may suppose that M? is not of constant curvature,
for the result is known in the case of constant positive curvature ([18],
Theorem 1).

Now suppose that M} is not covered by a CAYLEY plane; then = :P} (F)—> M7
is the universal pseudo-RiEMANNian covering where F = € or K has degree
fover R, fm = n and fh = s. Let I" be the group of deck transformations of
n; we must prove [ finite; as I(P} (F)) has only finitely many components,
it suffices to prove I' ~ I, (P} (F)) finite; thus we may assume I' c I, (P} (F)).
The principle fibring o : 8/~ P"(F) given by

U*(m + 1, F)/U*(m, F) > U*(m + 1, F)/U(m, F) x U(1, F)

induces a homomorphism @ of SU*(m + 1) or Sp*(m + 1) onto L (P} (F));
now it suffices to prove @-1(I') finite. @1(I") is properly discontinuous
because @ is y-equivariant, I" is properly discontinuous, and the kernel Ker. @
i8 finite. @-1(I") acts freely because both I" and Ker. @ act freely. 2s <n
implies 28 <n + f — 1, and f>1 then gives s A2 (n + f — 1) —1. Now
our result ([18], Theorem 1) for constant curvature shows that @—1(I") is finite,
and so &, (M?7) is finite.

Now suppose that M? is covered by a CAYLEY plane P2(Cay); A =0 or 1
by hypothesis. If A = 0, then the CAYLEY plane is compact and our assertion
is trivial; now assume h =1 and let I" be the group of deck transformations
of the universal pseudo-RIEMANNian covering = :P%(Cay) — M?. P2(Cay) is
a coset space G/H where G = F; is the full group of isometries and H is the
isotropy subgroup at some point z. Let ¢ be a CARTAN involution of G which
preserves §) and induces a CARTAN involution of §; ® = & + P where |
is the eigenspace of + 1 for o, where P is the eigenspace for — 1, and where
H=H~RK) +(H~P). Let A be a 1-dimensional subspace of P, and
define 4 = exp (A), K = exp (]), and P = exp (P). As G/K is an irre-
ducible RiEMANNian symmetric space of rank 1 and of noncompact type we
have G = K-P and P =ad(K)4; thus @ = KAK. Now dim.$§ = 36
and dim. (§ ~ K) = 28 because § is of type B, and H ~ & is of type D,;
thus § ~ B # 0 and we may choose A < § ~ P; it follows that G = KHK.
Define X = K(x) c P2(Cay) and let ge@; then g =k, hk, with ke K
and heH, ky'(x) e X, k(x) e X, and g(k;1(x)) =k, (x); it follows that
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g(X) meets X . Now X is a compact subset of P3(Cay) such that y(X) meets X
whenever y e I’. As in [18], proper discontinuity of I' now implies that I’
in finite. Thus =, (M}) is finite.

We have now proved the first part of Theorem 6.1.

6. 3. Proof of Part 2. Let I" be a finite group of isometries acting freely on
a model space N of non-constant and nonnegative involutive sectional cur-
vature. I lies in a maximal compact subgroup K of I(XN), and there is a point
y € N such that the symmetry to N at y normalizes K in I(N). Let H be the
isotropy subgroup of I(N) at y; then L = H ~ K is a maximal compact sub-
group of H, and I" acts freely on K/L. The possibilities for N are P%(Cay),
P3(K) and P3(C); they all have the property that the compact LIt groups
K and L have the same rank; thus every element of K, is conjugate to an ele-
ment of a maximal torus of L and consequently has a fixed point on K/L; it
follows that I' ~ Ky = {1}. As K, = K ~I(N), this proves I' ~ I,(N) = {1}.

Suppose that I' s~ {1}. Then the curvature conditions on N and the
results of § 2.8 show that N =P}(C) and I' is a 2-element group {1, ag}
where « is the isometry induced by conjugation of € over R and g «L,(P} (C))
is induced by some element (also denoted g) of the matrix group SU*(m + 1).
(xg)? = 1eI' implies that ?g~'g is a scalar matrix c¢I e SU*(m + 1), so
g=c'. As '(%9) = g we have ¢ = + 1, so g = + ¢g. Let Z be the

group of all matrices (gl (1)9) where 4 ¢ U(h), BeU(m + 1 — h) and

(det. A) (det. B) = 1; Z is the pre-image of K;in SU*(m + 1). Now g = (g g)
with those conditions, for we may assume K = K,v«aK,. If g = ‘g, then
a ='a and b = ‘b, and there are unitary matrices « and v with wa‘u = I,

and vbw =1, ,. It follows that (det. u)?(det.v)? = 1, so we may replace
u or v by a scalar multiple, if necessary, and assume A = (Q(; g) €Z. Now

hg'h = I, and this gives ad (A1) (xg) = hxg*h = *hahhg'h = hah' =
=*h1-ha =, so xg has a fixed point on K(y) c Py(C). This being
impossible, we have g = — g. Now a = — %@ and b= — %, so N = N,
gives that r = h/2 =s/4 and ¢t = (m + 1)/2 = ((»/2) + 1)/2 are integers.

Define J, = (_;) é"’) for every integer w > 0, and then define
w

J= (g o ) ¢ SU27) x SU(2t — 27) < SUMm + 1) .
t—-r.

Now we have unitary matrices w and vsuch that va*u = J, and vb'v = J,_,. As be-



Isotropic manifolds of indefinite metric 49

u 0
0v
and the second element is given by

th-1ag'h = h—ahthgth = th~*ah™J = *h' - thad = o J .
As aJ has no fixed point on P} (C), the Theorem follows. Q.E.D.

fore we may assume h = ( ) € Z. Now I'is conjugate to {1, ad (‘A1) (xg)},

6.4. A finiteness criterion. The latter part of § 6.2 consisted of a technique which
could be useful in a variety of situations. For this reason we state it separately.

Theorem. Let G be a connected semisimple Lie group with finite center, let H
be a closed subgroup of G, and let I' be a subgroup of G which acts properly
discontinuously on G/H. Suppose that § 18 preserved by a CarTaN tnvolution o
of ®, that ® = K + P 18 the decomposition under o, and that $ ~ P contains
a Carran subalgebra of the symmetric pair (®, K). Then I is finite.

Corollary. Let G be a group Fy, Sp'(n), SU'(n) or SO'(n). Let H be a
closed moncompact subgroup of G whose Lie algebra is preserved by a CaRrTaN
involution of ®, and let I' be a subgroup of G which acts properly discontinuously
on G/H. Then I' is finite.

For if @ is semisimple, then, in the notation of Theorem 6.4, (&, K) has
rank 1 and $ ~ P 7% 0. If G is not semisimple, then n is so small that ¢ = H.

Remark. Part 1 of Theorem 6.1 could be proved from Theorem 6.4; the
proof then would be more uniform and would avoid appeal to [18], but the
method used in § 6.2 is more elementary.

7. The classification theorem for isotropic manifolds

Extending the results ([17], §§ 16 —17) for constant curvature, we will prove:

7.1. Theorem. Let M} be a connected locally isotropic pseudo-Riemannian
manifold which is not flat. Then these are equivalent:

1. M} 1is isotropic.

2. My is symmetric.

3. Let I' be the group of deck transformations of the universal pseudo- RIEmMaNNian
covering n: Nj— M. Then M3 is complete and I' is a normal subgroup of
L(NV3).

4. There is a pseudo-Riemannian covering M;—>Pr(R,C,K or Cay) or
My —>HPR,C,K or Cay).

5. Either M}, 18 isometric to a model space P (C, K or Cay) or HY (C, K or Cay),
or there 18 a pseudo-Remannian covering M5 —Ph(R) or H(R).

4 CMH vol. 39
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Corollary. Let M3} be a comnected isotropic pseudo-Riemanwnian manifold.
If M3 1is of constant nonzero curvature, then it is explicitly described in ([17],
Theorem 16.1). Otherwise, M} 1is simply connecled and 18 isometric to

3> PE(C, K or Cay) or HP(C,K or Cay).

7.2. Proof of Theorem. If M} is symmetric or isotropic, then it is complete.
In the notation of statement (3.), if M} is symmetric, then every symmetry
lifts to a symmetry of N}, and consequently every symmetry of N} is a n-fibre
map. Thus every symmetry of N} normalizes I'. Now I ,(N?) lies in the closure
of the group generated by the symmetries and thus normalizes I", and thus
centralizes I" because I is discrete. Now I’ lies in the centralizer Z of I,(N3) in
I(N3). Given g ¢I(N3) and zeZ, one can check the various cases and see
that gzg—! is z or z71; in fact this is trivial in nonconstant curvature and is
contained in ([17], § 16) for constant curvature. Thus I" is normal in I(N}).
On the other hand, if we assume M} to be isotropic instead of symmetric, we
see that every isotropy subgroup of I;(N}) consists of z-fibre maps, and it
follows as above that I'is normal in I(N%). Thus (1) implies (3) and (2) implies (3).

Assume (3). If M} is of constant curvature, then we know ([17], Th. 16.1)
that (5) follows. If M7} is of nonconstant curvature, then I,(N?}) is centerless,
and it is easily checked that the centralizer Z of I;(N3%) in I(N3) is trivial; as
I' c Z, it follows that x is an isometry. Thus (3) implies (5). And it is clear
that (5) implies (4).

Assume (4) and let yp: M3 — D} be the covering of (4). Given d e D},
g «1(D%) such that g(d) =d, and z ey'(d), thereis alift geI(M?) of ¢
such that g(x) = . Now both (1) and (2) follow.

This completes the proof of Theorem 7.1.

If M7} is not flat, then Corollary 7.1 is the statement that (1) implies (5) in
Theorem 7.1; if M} is flat, it is the statement that (1) implies (3) in Theorem 15
of [17]. The Corollary follows.

Chapter I1
Homogeneous Loecally Isotropic Pseudo-RiemMANNian Manifolds

The goal of this Chapter is the global classification of complete homogeneous
locally isotropic pseudo-RiEMANNian manifolds which are not flat. That classi-
fication was accomplished in an earlier paper [17] in the case of constant cur-
vature. Our main technique is to reduce to the case of constant curvature and
use the results of [17]. After the classification, we give some examples which
show that the hypothesis of completeness is essential.
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8. Application of the classification in constant curvature

8. 1. Theorem. Let M, be a complete connected homogeneous locally isotropic
pseudo-Riemannian manifold of monconstant sectional curvature. Let I' be the

group of deck transformations of the wuniversal pseudo-Riemannian covering
w:N,—> M,. Then I' ~1(N;) = {1}.

Remark. If N; is not a complex elliptic or hyperbolic space, it immediately
follows from Theorems 6.1 and 8.1 that M is simply connected and = is a
global isometry; if M} is not simply connected, it follows that M7 is isometric
to one of the two manifolds of (2¢) and (2d) of Theorem 6.1. This does not
complete the classification, however, as those manifolds must be checked for
homogeneity.

Proof. The possibility of reversing the metrics of M} and N shows that we
need only consider the case of non-negative involutive sectional curvature.
If N7 = P%(Cay) with k< 2, then Theorem 6.1 proves I' = {1}. If N =
= P2(Cay), then we reverse metrics and have several theorems (see [20], [21]
or [11], for example) which imply triviality of I". Thus we need only consider
the case N7 = P7(F) with F =C or F = K.

Let 4 =TI ~I;(N]). According to Theorem 6.1, we need only prove that

4 is finite. Thus we need only prove 4 finite under the assumption N; =
=Pr(F =0C or K).

8.2. Let f be the degree of F over R, and define h and n by A = 8 = fk and
n+1=fm+ 1)=r+4+f. We have y: 8} - Py (F) given by
Uk(m + 1; F)/U¥(m,F)—>Uk(m + 1; F)/U*(m,F) x U(1, F)
and a y-equivariant epimorphism @ : H — I,(PY (F)) where H = SU*(m + 1)
or Sp¥(m + 1). Define D = @-1(4).
P?(F) consists of all positive definite lines in F2**!, and

p={we<Fla]]p =1}

where the norm is taken with respect to the hermitian form on Fptl. View
F7*! as a real vectorspace ¥ ; F acts on V. Let Q be the real part of the her-
mitian form on Fpt!; @ is a symmetric bilinear form giving V the structure
of R}*!. Let F' denote the multiplicative group of unimodular element of F';
now ¥ ¢ O*(n + 1) and H < 0*(n + 1) where everything acts on ¥ and
H is the group mapped by @.

8.3. Lemma. Let @ be the centralizer of D in H and define G = Q' - F'.
Then @ is transitive on the points of S3. In particular, 83/D is a homogeneous
pseudo- Rizmannian manifold of constant positive curvature.
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Proof of Lemma. Let z,y ¢ S;. Homogeneity of M} implies ([17], Th. 2.5)
that the centralizer of 4 in I (N]) is transitive on N}; it follows that Q' is
transitive on Nj; thus G’ has an element g, mapping «F onto yF. As ||z|[® =
= ||y||?, F' has an element g, sending ¢,z to y. This proves transitivity of G.

Transitivity of G shows that D acts freely on 8}, for every element of G
commutes with every element of D. The action of 4 on P} (F) is properly
discontinuous and Ker. @ is finite; thus the action of D on 8} is properly
discontinuous. Now 83— S7/D is a normal covering, and homogeneity
follows ([17], Th. 2.5).

Lemma 8.3 is now proved.

8.4. Lemma. If D s not finite, then the R-linear action of D on V 18 not
fully reducible.

Proof of Lemma. Lemma 8.4 is based on ([17], Lemma 8.4). Suppose that D
is infinite and fully reducible. Then Lemma 8.3 and ([17], Th. 10.1) show that
V is the direct sum U @ W of two totally @-isotropic R-subspaces and that
there is a nonzero real number ¢ 4 4+ 1 such that D has an element d whose
restriction to U is tI, whose restriction to W is ¢-11, and such that d and pos-
sibly also — I generate D. U and W are F-subspaces of ¥V because D is F-
linear and ¢ # ¢1. Let Qr be the F-hermitian form on V = F¢tl; m 4 1=
= 2k, k is the common dimension of U and W over F, U and W are totally
Qr-isotropic ([17], § 8.4), and there are F-bases {¢;} of U and {f,} of W with
Qr(e;, f;) = 20,;. Now let o represent GL(k, F), the general linear group of
F¥, on V by: o(x) has matrix (g %—1) in the basis {e;, f;} of V over F.
The image of ¢ is precisely our group G, consisting of all F-linear transfor-
mations of ¥V which preserve @ and commute with each element of D.

We have k> 1 because M} is not of constant curvature. Define w, =
= (1/2) (¢, — f;) and wy,; = (1/2) (e; + f;) for 1 <9 <Fk; now {w;} isa
@r-orthonormal basis of V. As w,,;¢8; and G =G -F' is transitive on

&, whenever we have z ¢ 8} we must have b ¢ F' and « ¢ GL(k, F) such that
o(x): wy—~>2b. Let o = Zw;x; with z;¢F; then it follows as in the proof
k

k
of ([17], Lemma 8.4) that X (x;b) (,,46)e R c F, i.e., that Tz, ;¢ R.

i=1 B i=t
As F # R, 8; has many elements x = X'w;z; for which X z,,; is not real.
Thus D cannot be both infinite and fully reducible. i=1

Lemma 8.4 is now proved.

8.b. Lemma. If D 18 not finite, then F # C.

Proof of Lemma. Suppose that D is infinite and F = €. Nonconstancy of
sectional curvature of M} shows m -+ 1> 2, so the kernel Ker. @, which
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is isomorphic to cyclic group Z,.,, is a cyclic subgroup of D of order ¢ > 2.
D has an element d of infinite order; let D, be the subgroup generated by d
and Ker.®. Ker. ® is central in D so D, >~7Z X Z,, ¢ > 2. Lemmas 8.3
and 8.4 hold for D,. Now D, is abelian but not fully reducible on ¥ ; Theorem
10.1 of [17] says that D, is isomorphicto Z,Z X Z,, Z X Z or Z X Z X Z,.
Thus F £ € if D is infinite.

Lemma 8.5 is now proved.

8.6. The following is the last and most delicate step in the proof of Theorem 8. 1.

Lemma. If D 18 not finite, then F # K.

Proof of Lemma. Suppose that D is infinite and F = K. D is not fully
reducible on ¥V and we apply the method of ([17], § 10.4). Lemmas 8.2 and
8.6 of [17] provide a G-invariant D-invariant maximal totally @-isotropic
subspace U of V and a Q-orthonormal R-basis y = {v;,...,v,,4_3,,} such
that (e; =v,.; + v, and f, =wv,,, — v, for 1 <¢ <p) {e;} is a basis of U
and {Vp,1,...,Vs; €,...,€} is a basis of UL. Let 8 be the basis {f,,...,f,;
Upyrs--->Uns &, ...,6,} of V and let B be the algebra of linear transformations
of V generated by D. If a is an element of B, D or ¢, then a preserves both
U and U4, so a has matrix relative to g given in block form by

a QGG 4
a =10 a, a
0 0 a4
If aeG@ or aeD, then ac0*n + 1) and it follows that ay = ‘o, and
ase0(h — p).

Let r,, 7, and 74 be the matric representations of respective degrees p, b — p
and p of G given by a—a,, a—a, and a —a4. 7, is irreducible ([17], Lemma
8.2) and r, is contragredient to rg. If a ¢ G sends v,,, to x = 2 x;v,, then
one checks that the first row of a, is (%5, — 2y, ..., %y — 2,) = q(2) .
As x ranges over S}, ¢(x) ranges over a subset of R? on which no nondegenerate
quadratic form is bounded. In [17] this was observed to imply that », has no
nonzero symmetric bilinear invariant. As ¢ = G'- K’ and K’ is compact,
it also shows that the restriction 7{ of 7, to G' is without a nonzero sym-
metric bilinear invariant. It follows that rg = 74|, has no nonzero symmetric
bilinear invariant.

After considering bilinear invariants of rg, §10.4 of [17] goes on to show
that every element d ¢ D has matrix of the form

d =10 d, 0] relative to g.
0 0 d
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It is further shown that an element d of D can be chosen with d; = 0 and that,
this choice made, d, is a bilinear invariant of 74, i.e., ‘ged;g¢ = d, for every
geG. Now let ge@ and ueK'. Then Ig4(d;ug) g6 = 'gedsgste = d3tg,
whence d,u,is a bilinear invariant of 7; . It follows that dyu, is antisymmetric
for every u e K'. Now as in [17] we take %, v e K', observe that w e K’
gives dywg = — (dywg) = — *wg* 'dy = 'wed,, and conclude that wugve =
= (uv)g =d37 - *(Uv)g-dy = dyg' - g dy-ds™ - 'ug - dy = vgugs. As the restric-
tion of 74 to K' is faithful, it follows that K’ is commutative. That is absurd.
Lemma 8.6 is now proved.

8.7. We saw in § 8.1 that, in order to prove Theorem 8.1, it was sufficient
to assume N, =P7(F = C or K) and prove 4 finite. For this, it is sufficient
to prove D finite. If D is infinite, then Lemma 8.5 shows F # C and Lemma
8.6 shows F = K. This completes the proof of Theorem 8. 1. Q. E.D.

9. The classification theorem for complete homogeneous locally
isotropic manifolds of nonconstant curvature

The following theorem gives the classification mentioned above. Combined
with Theorem 12 of [17], it gives the classification up to global isometry of the
complete homogeneous locally isotropic manifolds which are not flat. A par-
tial classification is available [19] in the flat case.

9.1. Theorem. Let M}; be a complete connected locally isotropic pseudo-Rie-
mannian manifold of nonconstant sectional curvature. Then these are equivalent:
1. M} 18 homogeneous.
2. m, (M3) s finite.
3. m, (M3) has only 1 or 2 elements.
4. M3 s isometric to one of the spaces:
(a) P2(Cay) or H3(Cay) where n = 16 and h = 8k.
(b) PZ(K) or HY(K) where n = 4m and h = 4k.
(c) PZ(C) or HY(C) where n = 2m and h = 2k.
(d) P2-1(C)/{1, aJ} where n =4t — 2, h =48, « s the isometry induced
by conjugation of C over R, and J is the isomelry induced by

01,
—-1,0 o8
o I, e SU%(2¢) .

- It—l 0

(e) HE-1(C)/{1,0J} where n =4t — 2, h=4r — 2, and x and J are
given a8 above with 8 =1t — r.
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9.2. Proof. Theorem 6.1 is the equivalence of (2), (3) and (4), Theorems 8.1
and 6.1 show that (1) implies (4), and the manifolds (4a), (4b) and (4¢c) are homo-
geneous. As one passes from (4e) to (4d) by reversing the metric, the Theorem
will now follow as soon as we prove that P2~1(C)/{1, aJ} is homogeneous.

Let V = C2¢ and identify J with its matrix as given in (4d). Let A be the

algebra of R-linear endomorphisms of V generated by «J and V — 1 I,,. As

both «J and V' —1 I,, have square —I, and as they anticommute, A is a
quaternion algebra. Let @, be the C-hermitian form on ¥V and let @ be its real
part. There is a unique A-hermitian form @ , on V whose real part is @. We now
have (V,Q) = R}, (V,Q,) = Ci and (V,Q,) = K!. One can describe
§i-1 phy Q(z,x) =1, by Qq(z,z) =1, or by Q,(z, z) = 1. The unitary
group Sp*(t) of (V,Q,) is a subgroup of the unitary group U*(2¢) of (V,Qc);
by construction, Sp®(t) is the centralizer of «J in U*(2t). As Sp’(f) acts
transitively on 83~! and C-linearly on V, it induces a transitive group of
motions of P2~1(C). It follows that P3~1(C)/{1,«J} has a transitive group
of isometries. Q. E.D.

9. 3. Combining Theorem 9.1 with Theorem 12 of [17], we obtain the rather
strange result:

Theorem. Let M% be a complete connected locally isotropic pseudo-RieManNian
manifold which 18 homogeneous but not isotropic. Then M3 is of constant sec-
tional curvature, if and only if n,(M3) s not of order 2. M} is of nonconstant
sectional curvature, if and only iof n =4t — 2, h = 48 (resp. h = 4r — 2)
and M?% is isometric to P21 (C)/{1,ad} (resp. HEZ1(C)/{1, aJ}).

For if N7} is complete, connected, of constant sectional curvature, and with
fundamental group of order 2, then N} is isometric to P3(R) with A<n — 1
or to H?(R) with h> 1. Those manifolds are isotropic. Theorem 9.3 now
follows from Theorems 7.1 and 9.1.

10. A characterization and completeness criterion for locally
symmetrie affine homogeneous spaces

This section provides a tool for the study of incomplete homogeneous spaces.

10. 1. An affine manifold is a differentiable manifold with an affine con-
nection on its tangentbundle. If M is an affine manifold, then A (M) denotes
the group of all connection preserving diffeomorphisms of M, and M is affine
homogeneous if A (M) is transitive on the points of M. Given z e M, there
is an open neighborhood U of  on which the geodesic symmetry at « is a diffeo-
morphism; M is locally symmetric if, given x e M, U can be chosen such that
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the geodesic symmetry preserves the induced connection on U ; this is equi-
valent to vanishing of the torsion tensor and parallelism of the curvature
tensor for the affine connection on M. M is symmetric if it is locally sym-
metric and the geodesic symmetries extend to elements of A (M). If the affine
connection of M is the LEvi-Civira connection of a pseudo-RIEMANNian
metric, then M is (locally) symmetric in the affine sense if and only if it is
(locally) symmetric in the pseudo-RiEmMANNian sense, for an element of A (M)
or A(U) is an isometry if it is an isometry at some fixed point; on the other
hand, M can be affine homogeneous but not pseudo-RreMannian homogeneous.

10. 2. Theorem. Let M be a locally symmetric connected affine homogeneous
manifold. Then there is a connected simply connected affine symmetric manifold
N, a point y e N, and a closed connected subgroup B < A(N), such that

1. B(y) s an open submanifold of N .

2. M and B(y) have the same universal affine covering manifold.

3. M 18 complete if and only if B(y) = N.

10. 3. Corollary. Let M be a compact connected locally symmetric affine
homogeneous manifold. If =, (M) is finite, then M is complete.

For B(y) must be closed in N, as it is a continuous image of the compact
manifold which is the universal covering of M.

10. 4. Corollary. Let M be a connected locally symmetric affine manifold,
and suppose that there is a connected solvable subgroup G c A(M) which is
transitive on M. If the space N of Theorem 10.2 i8 not coniractible, then M
18 not complete. ‘

For the proof of Theorem 10.2 will show that B can be chosen to be solvable
when A (M) has a solvable transitive subgroup. If M is complete, then B(y) =
= N, so N = B/F where F is the isotropy subgroup of B at y. F is closed
in B, and is connected because x,(N) = {1}; it follows that N has a defor-
mation retraction onto a torus. As =, (N) = {1}, this says that N is contract-
ible. Thus M cannot be complete if N is not contractible.

10. 5. Proof of Theorem. Choose a connected transitive subgroup G < A (M),
close it if it is not closed, let = ¢ M, and let H be the isotropy subgroup of
G at . The universal covering f: Q@' — G gives an action of the universal
covering group G’ on M by g':m— f(g9’) (m). A result of K. Nomizu ([15],
Th. 17.1) provides a connected simply connected affine symmetric manifold N,
a point y e N, open neighborhoods U of  and V of y, and an affine diffeo-
morphism f of U onto V carrying = to y. Let W be an open neighborhood of
1¢@ such that ¢'(x) e U for every g'e W. Given g'e W, now, we have
a small open neighborhood X of z such that X U ¢'(X) < U; thus ¢’ in-
duces an affine equivalence ¢” of f(X) onto f(g9'(X)).
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N is complete because one can extend geodesics by the symmetries. As N
is simply connected, and as its affine connection is real analytic ([15], Th.15.3),
it follows that g” extends to a unique element (also denoted g”) of A (N). This
map ¢g'—¢" gives a homomorphism of G’ onto a subgroup L of A(N). L(y)
contains ¥ and thus is an open submanifold of N. Let B be the closure of L in
A(N). B preserves the closed set N — L(y) because so does L, and thus
B(y) = L(y). The first statement of the Theorem is proved. For Corollary
10.4, one observes that B is solvable if @ is solvable.

In the universal covering f:G'— G, let H' be the identity component of
p1(H). p induces a universal covering =:G'/H'— M; pull back the con-
nection of M so that = is the universal affine covering. Now let «: G' — B(y)
be defined by «(g9') = ¢"(y). «(H') = y because every vectorfield on U cor-
responding to a l-parameter subgroup of H vanishes at . Thus « induces a
map @ of G'/H’' onto B(y), and @ is a covering. If we take a small n-admissible
open set in M, lift to G'/H’ and then map by @, we have an affine equivalence,
for everything can be translated back into U and V ; thus @ is an affine cover-
ing. The second statement of the Theorem is proved.

The second statement shows that M is complete if and only if B(y) is com-
plete. As N is complete, M is complete if B(y) = N. Now suppose B(y) # N ;
we must prove that B(y) is not complete. As B(y) # N but B(y) is open
in N, we have a boundary point v of B(y) with » ¢ B(y). Some geodesic of N
through v must have a point in B(y); otherwise v would have a geodesic
coordinate neighborhood disjoint from B(y) and thus would not be a boundary
point. Let {v;} be a geodesic of N, v,=v and v, ¢ B(y). v,,, ¢« B(y) for ||
small; thus B(y) contains an arc of {v,}. If B(y) were complete it would con-
tain all of {v;}. As v ¢ B(y), B(y) is not complete. Q.E.D.

10. 6. The following can occasionally be useful in applying Theorem 10. 2.

Theorem. Let N be a complete connected affine homogeneous manifold; let
B c A(N) be a closed connected subgroup with an open orbit B(y); let H be
the isotropy subgroup of the identity component Ay(N); and le¢ Ky, Ky and
K, be respective maximal compact subgroups of B, H and Ay (N) such that
Kyc K, and Ky < K,. If Ky tsnot transitiveon K, /Ky, then B(y)#N,
and consequently B (y) s not complete.

For we can assume L = Kz n Kz to be maximal compact in H n B.
If Ky is not transitive on K /Ky, then an orbit Kz/L has lower dimen-
sion and thus (these manifolds are compact) has different homotopy type.
Then B(y) has different homotopy type than N, for B(y) = B/(B n H)

retracts onto Ky/L and N = Ay(N)/H retracts onto K, /Ky. It follows that
B(y) # N.
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11. A tool for the construction of incomplete manifolds

We will develop tools for the construction of incomplete homogeneous
pseudo-RIEMANNian manifolds as orbits of groups which preserve the exponen-
tial image of a set obtained from a light cone. The basic idea is illustrated by:

11. 1. Theorem. Let U be a nonzero totally isotropic linear subspace of Ry, and
define M3}, to be the open set Ry — U+ with the induced pseudo- RIEMANNian struc-
ture. Then M7} is a flat homogeneous incomplete pseudo-Riemannian manifold.

Remark. There are min. {h, » — h} non-isometric manifolds M} above,
corresponding to the possibilities for the dimension of U.

Remark. Given a group H of linear transformations of U which is transitive
on U — {0}, define G to be the subgroup of I(R}) consisting of elements which
preserve M7, whose homogeneous part preserves U, and whose homogeneous part
restricts to an element of H. We will in fact prove that @ is transitive on M}.

Proof. Let f be a skew basis of R} with respect to U. This means that we
choose an orthonormal basis {v,,...,v,; v44,...,?,} of R} such that
(t=dim.U; f;=—v;,+v,_y,and e,=v,+ v, ., for 1 <i<t) {e,...,e;}
is a basis of U, and we define ftobethebasis {f,,... f,; V1, e -, Vs €, .. €}
of R}. U+ isspanned by the e, and the v,in §; thus Gy = {ge0*(n) : g(U) = U}
consists of the elements ¢ ¢ 0*(n) whose matrix relative to g has block form

91 92 9s
gg = {0 91 G5
0 0 g

Let H be a subgroup of GL(U) which is transitive on U — {0}. There is a
monomorphism r— 7' of H onto a subgroup H' of ¢ given by:

-1 0 0
(?")ﬁ = 0 I 0
0 0O »r

where r denotes the matrix of » with respect to {¢;}. Let G be the subgroup of
I(R}) consisting of all isometries whose homogeneous part lies in H' and
whose translation part is in U+ ; G preserves M;. Given ze M3, x=f+ v
where v ¢ UL and f is a nonzero element of the span of the f,; choose r’ eH’
with 7/ (f,) = f; @ contains the transformation y — r'(y) 4 v, and this trans-
formation sends f, to . Thus @ is transitive on M}. Q.E.D.

Corollary. The connected noncommutative 2-dimensional L1E group admits an
incomplete flat left-invariant LorenTz metric.
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Proof. Suppose n = 2 and ¢{= h = 1 above. Then H consists of nonzero
scalars and @ is simply transitive on M3. The diffeomorphism g->g(f,) of @
onto M2 endows @ with an incomplete flat left-invariant LORENTZ metric, and the
group of the Corollary is isomorphic to the identity componentof G.  @. E. D.

11. 2. In order to apply the idea of Theorem 11. 1 to a manifold which is
symmetric but not flat, one replaces H' by a corresponding subgroup of the
isotropy group at a point, and one replaces translations along U+ by transvec-
tions. It is difficult to see that a group analogous to G' will then result, and it
is very difficult to see whether the orbits are proper submanifolds. But the
construction of most of our model spaces allows us to replace those considera-
tions of LIk algebra by considerations of linear associative algebra while pre-
serving the idea of Theorem 11.1. The associative algebra consists of:

11. 3. Theorem. Let Qr be the hermitian form on Fy, define quadrics
S={xeFp:Qr(x,2) =1} and H= {xeFy :Qr(x,2) = — 1}, and let U
be a nonzero maximal totally Qrp-isotropic F-subspace of ¥y . Let P be any group
of F-linear transformations of U which contains the real scalars and is transitive
on U — {0}, define G = {geU¥(m,F):g(U)=U and g|yeP}, let F' be
the group of transformations of ¥y which are scalar multiplication by unimodular
elements of ¥, and let G' be the group of R-linear transformations of ¥y generated
by G and F'. Let x be a Qp-orthonormal F-basis {vy,...,v;; vppy,. ., Vp}
of Fy which gives a skew F-basis f of ¥y with respectto U. If 2k > m, then
G'(vy) 8 a proper open submanifold of H. If 2k < m, then G'(v,) 18 a proper
open submanifold of §.

Proof. Let ¢t = dim.pU and f = dim.gF so {f =dim.x U, let §={f,,...,f:;
Vs o s Umss €, ..., €} be the skew F-basis of Fy derived from « so that

8 = {e;,...,¢} spans U over F, and let 8¥-! be the unit sphere {Ze
Zaa =1} in U. P acts transitively on S¥-1 by p:u—>p(u)- {Z'b b}"“2

Where ueSY1 and p(u) = Ze;b*; it follows that a maximal compact subgroup
K c P is already transitive on S‘f—l, by a check if {f <2, and because S¥-1
is simply connected if ¢f > 2. We may now alter ¢, changing # and « in conse-
quence, so that the F-linear action of K preserves S§¥-!; this change will
not effect the Theorem.

We wish to prove certain orbits G'(v) proper and open in quadrics @, i.e.,
Properly contained in @ and of the same dimension as @. We may cut @' to a
subgroup in proving G'(v) open, and we may do the same in proving @' (v) # @
because our reason for that inequality (see § 11.5) will depend only on m, k
and the fact that G'(U)= U. Thus we may replace P by its subgroup
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generated by K and the real scalars. This done, the matrix p, of an element
p € P relative to ¢ satisfies ¢- p, = *p,”' where 0 #ceR.
Let g ¢ G. Its matrix relative to g has block form

i 92 Gs
gﬂ =10 9s gs ],
0 0 g

and g, is a real scalar multiple of g, because gs = p, for some p e P by defin-
ition of @, g, = 'gs* because g ¢ U* (m, F), and *p,~! is a real multiple of p,.
Let (g9;). and (9;)uo denote the u row and the (u, v) element of g,. Then we have

m—1
el+f1)~—2{e (9eh: + fi(grh: + €:(gshs} + Z'v«h)
m— t
gleg — f) = 2 {e;(ge)r: — fi(ghs — €:(gahri} — 151 V; (92

thus 2v, = ¢, — f; tells us that g(v,) = v, if and only if

(@) (g2} = (0,...,0)

(b) (g = (1,0,...,0) = (gg)1 — (9a)r -
Similarly 2v,,_,., = ¢, + f, says that ¢g(v,_,.,) = v,,_;, if and only if

(@) (g2 =(0,...,0)

(b’) (g1, = (1,0,...,0) = (ggh + (g3h-
Now (a) coincides with (a’), and the first equality of both (b) and (b’) imply
(91 = (ge)1, s0 (b) is equivalent to (b’). It follows that g(v,) = v, if and only
if 9(Vpp_s11) = Ym_isa- In particular, as v,, € G(v,,_,,,) so that G(v,_..,) =
= G(v,,) we have dim. G(v,) = dim. G(v,,).

To calculate these dimensions we need:

11. 4. Lemma. Retain the notation of Theorem 11.3. If 2k > m, then Q 18
transitive on S. If 2k < m, then G 18 transitive on H.

Replacement of Qr by — @ shows the two statements to be equivalent,
so only the first need be proved. Assume 2k > m; then ¢{ = m — k because
U is maximal totally isotropic, whence the span of {v,,...,v,_,;} 18
negative definite under Qr. One now repeats the transitivity argument of
([17], p. 127) replacing EucrLipean pairings by F-hermitian pairings and
writing scalars on the right.

11. 5. Combining Lemma 11.4 with dim. ¢ (v,) = dim. G(v,,), we see that
G(v,) and @' (v,) are open submanifolds of H, and that G(v,) and @ (v,)
are open submanifolds of §. As @ and G’ preserve U, we know ([17], Lemma
8.2) that transitivity of G or @’ on § would imply 2k > m, and thus, by
reversal of @, transitivity of @ or G’ on H would imply 24 << m. The Theorem
follows. QE.D.
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11. 6. A conjecture, Theorem 11.3 will allow us to deal with all of the
isotropic manifolds of strictly indefinite metric except P?(Cay) and HZ(Cay).
In those spaces, however, we will see that the normalizer of a BOREL subgroup
of the full group of isometries has an open proper orbit. I believe that this is
the case for every symmetric pseudo-RieManNian manifold G/H of strictly
indefinite metric and of rank one where @ is simple and has the same rank as
H . Unfortunately I have been unable to give a general proof of this conjecture,
even for the spaces covered by Theorem 11.3.

11. 7. Theorem. Let B be a Borer subgroup of F; and let P be the nor-
malizer of B in ¥y. Then P has a proper open orbit on ¥ /Spin(9).

Proof. Let Q = F; acting on M = F;/Spin'(9). Choose xe M, let H
be the isotropy subgroup of G at =, and choose a maximal compact subgroup
K of G which is normalized by the symmetry s of M at . We have involutive
automorphisms v and o =ad(s) of ® such that G =R+ L=H + M
where ois +1on Handis — 1 on IMN, and whereris +1on KRandis —1on L.

Metrize M as H?(Cay) with the KirLiNg form of & ; let U be an isotropic
(= light like) line in M, = M, let y be the light like geodesic exp (U)- z in
M, and choose y ey within a geodesically convex normal coordinate neigh-
borhood of x. The point y cannot be fixed under exp (L), for exp(L) generates
G. Thus we have an one-dimensional subspace U < £ such that A ¢ §’,
where H' is the isotropy subgroup of G at y.

A = exp(A) is maximal among the algebraic tori of @ which split over R,
for the RiEMANNian symmetric space G/K is of rank 1; thus there is a unipotent
subgroup N < G such that G = KAN is an Iwasawa decomposition. We
may replace B by a conjugate, assuming B = AN. Now P = Z B where Z
is the centralizer of 4 in G. 7(3) = 3 because 7(A) = A; thus 3 =Q+R
where Q=3 N K and R=3 n &. R=UA as rank (G/K)=1, and
@ = exp(Q) is compact; P = QAN.

Let J =P n H'. J is algebraic because P and H’ are algebraic; thus
3=64+ €+ B where B is a unipotent ideal, S + € is reductive, S is
semisimple, and € is the center of S + €. § = exp(€) is a compact subgroup
of H which preserves the geodesic ¥ : compactness follows because S is a
semisimple subgroup of the compact group @, and y is preserved because S
fixes both # and y. In proving HZ(Cay) to be isotropic, we saw that the
maxima among the compact subgroups of H preserving a nonzero element of
the light cone of M, were of type G,. It follows that S is contained in a sub-
group @, of H ; in particular, dim. © < 14. € 4+ B lies in a BOREL subalgebra
B’ of §'. B’ is of dimension 8 because H'/(maximalcompact) = Spin! (9)/Spin(8)
is real hyperbolic 8-space; thus dim. (€ + B) < 8. If dim. (€ + B) = 8,



62 JosepH A. WOLF

then € + B = B'; it would follow that € + B contains the Lir algebra of
an algebraic torus split over R; U being the only such algebra in P because
@ is compact and U is the only such algebra in B, it would follow that A < §’;
by our choice of U, this is not the case. Thus dim.(€ + B) < 7. This proves
dim. J < 21.

P=QA+B direct sum as P =QAN. B is of dimension 16, 16 being
the dimension of H2(Cay) = G/K. @ is the centralizer of % in K, which is
isomorphic to Spin(7). Thus P has dimension 37. It follows that dim. P(y) =
= dim. P-dim. J > 16, which proves that P(y) is open in M. On the other
hand if P were transitive on M, then we could retract M onto the orbit of a
maximal compact subgroup K’ of P, and it would follow that K’ is transitive
on a sphere 88 = K/(K n H); then K’ would have to be of type B, and would
thus be a maximal subgroup of @; as P is not compact it would follow that
P = @, which is impossible because B is normal in P and @ is simple. We
have proved that P(y) is a proper open subset of M . Q.E.D.

12. Existenee of incomplete homogeneous spaces

The following shows that the hypothesis of completeness is essential in
Theorems 9.1 and 9.3, in Theorem 12 of [17], and in Theorems 1 and 2 of [19].

12.1. Theorem. Let Nj; be an isotropic pseudo-Rizmannian manifold.
Suppose either that N} 18 of nmon-negative involutive sectional curvature with

0o<h < Z;—- or that N% s of mon-positive involutive sectional curvature with
—g» < h<n. Then there is a subgroup G c I(N}) and a point y e« N3 such that

G(y) 8 a proper open subset of Ny ; in the induced pseudo-Riemannian structure,
G(y) 18 an incomplete homogeneous pseudo-Riemannian manifold locally iso-
metric to N3 .

Remark. Let M% be a non-flat manifold G(y) constructed in the proof of
Theorem 12.1. The construction of G and the arguments of ([17], § 10) imply:
If T is a properly discontinuous group of isometries acting freely on My, and if

*/I" i8 homogeneous, then I is finite. The signatures of metric involved are
about the same as those involved in the finiteness statement (part 1) of Theorem
6. 1. This suggests that Theorem 6.1 (part 1) might be valid without assuming
completeness.

12. 2. Theorem 12.1 is contained in Theorem 11.1 if N7} is flat, and is con-
tained in Theorem 11.7 if N} is a CAYLEY plane. Reversing metrics if necessary,
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we may assume N} to be of non-negative involutive sectional curvature. Now
by Theorem 7.1 we have reduced to the case where there is a pseudo-RIEMANN-
ian covering n: N3 — P/ (F) with F= R, C or K.

Our hypothesis 0 <k < —-2n— translates to 0 < 2s <r.

Recall the quadric 8 = {z ¢ Fi*':||z||2 = 1} where norm is in the her-
mitian form on F/*'. Let F' be the group of scalar multiplications of F{*!
by unimodular elements of F. As 0<2s<r 4 1, Theorem 11.3 yields a
subgroup ¢' < U*(r 4+ 1, F) and a point b €8 such that (H = G'-F¥') H(b)
is a proper open subset of §. The projection f:8§— S/F' = P[(F) induces a
homomorphism «:H—> H/F' = H" c I(P;(F)); H(@b) =g (H"(Bb)) be-
cause ¥ ¢ H. Thus H"(Bb) is a proper open subset of P;(F).

Choose y e z~1(Bb) and lift H” to a group @ of isometries of N3; G(y) =
= n~1(H"(fb)) and so G(y) is a proper open subset of N}, necessarily in-
complete in the induced metric. Q. E.D.

12.3. The group G' in the proof of Theorem 12.1 was constructed, in
Theorem 11.3, from any subgroup P of the group of all F-linear transformations
of a maximal totally isotropic subspace U of Fi*! such that (1) P is transitive
on U — {0} and (2) P contains the real scalars. Often there are several such
groups, but I do not know whether the resulting incomplete homogeneous
spaces are distinct. Condition (1) cannot be avoided, but condition (2) was used
only to ensure that (3) P has a subgroup which satisfies (1) and whose isotropy
subgroup at any w e U — {0} preserves a subspace of U complementary to «F.
Condition (2) implies that P has no R-bilinear invariant. But if a group P
could be found satisfying (1) and (3), then the resulting group G’ - ¥’ would
have in its center one of the hyperbolic translation groups ¥ (4) described in
([17], § 9.2). If this could be shown to act discontinuously on the resulting
orbit My & Pj(F), then M3/T(+) would be homogeneous. This would be
of interest in comparison to Theorems 6.1, 8.1, 9.1 and 9.3.

The University of California at Berkeley
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