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A generalization of the homology and homotopy suspension’)

By T. GANEA

Introduetion

Let p: E— B be a fibre map with fibre F = p~1(*), where * is the base-
point in B, let E U CF result by erecting a cone over the subset F' of E, and
let r:E UCF—> B extend p by mapping CF to the base-point. We may
convert r into a homotopy equivalent fibre map, and our first result asserts that
the fibre of r has the homotopy type of the join Fx QB. This yields a new
proof of a theorem of SERRE and enables us to generalize most of the classical
results [25], [2] concerning the homology suspension; the latter occurs upon
taking for p the standard fibration of the space of paths in B. Dually [6], let
d: A— X be a cofibre (inclusion) map with cofibre B obtained by shrinking
the subset 4 of X to a point, let f: X — B be the identification map, let F' be
the fibre of f, and let e: A — F lift d. In view of the above result, duality
suggests that the homotopy type of the cofibre C, of e is determined by those of
B and X' 4. However, this turns out to be false and the main results of the third
and fourth section only yield a description of C, in low dimensions; specifically,
with F; standing for the fibre of d, there are maps 4 # F,— C,—> Q(XA/B)
which are (m 4+ n — 1 + Min(m, n))-connected in case A is (n — 1)-
connected and (X, A) is m-connected. This enables us to generalize for arbi-
trary cofibrations the well known K H P-sequence of G. W. WHITEHEAD [24]
which, in the classical case, arises upon taking for d the inclusion of 4 in the
cone ('4 . The first homomorphism in the generalized sequence is induced by e,
the second is related to a certain generalization of the HopF invariant, and the
third is given by a generalized WHITEHEAD product.

The present generalizations can be used to study iterated fibrations or co-
fibrations. Starting, e. g., with a certain cofibration 4 —~ X — B, we obtain a
second one 4 — F — C, which, in turn, yields a third, and so on; at each
stage our results yield relations between a cofibration and the next. The last
section of the paper studies this process with 4—~CA-—>2XA as original
cofibration. There results a sequence of spaces and maps

A—»...>F ,~>F,—~...>F,—->CA,

which is functorial in 4 and in which F, is equivalent to 2. The sequence is
used to solve some problems concerning the dual of LUSTERNIK-SCHNIRELMANN

') This work was partially supported by NSF G-16305.



296 T. GANEA

category, and spaces of finite cocategory appear as generalizations of H-spaces
in a way similar to that in which nilpotent groups generalize the Abelian ones.

The above sequence gives rise to a spectral sequence, and many of the results
in [26] and [11] can be dualized; in particular, the HopF invariant of a cofibra-
tion described in § 4 readily yields the geometric interpretation of the first
differential, as does the HopF construction of a fibration in 1.4 for the dual
case. However, we have not yet obtained all the relevant results (e. g. the dual
of Lemma 2.2 in [11]), and omit details here.

Thanks are due to M. G. BARRATT, 1. BERSTEIN and P. J. Hirton for their
interest and stimulating discussions.

1. Extending fibrations

All spaces in this paper are provided with a base-point generally denoted by
*, and all maps and homotopies are assumed to preserve base-points. A triple

F LS EX B is a fibration if p has the covering homotopy property for any
space and F = p~1(*); ¢ is the inclusion map. Any map f can be converted into
a homotopy equivalent fibre map p yielding the diagram

X——-—>Y

s S, | W

oy - r-5H Ly
in which
E = {(z,n)eX X YT|f(x) =n(L)}, p(z, n) = 7(0),

F =p(*) c X X PY, ¢ = inclusion map, (2)
d (w) = (¥, 0), 7(377 77) =, h(x) = (x’ ’h)-

PY is the space of paths in Y emanating from *, QY is the loop space,
7,(8) = f(z) for all sel, and h is a homotopy equivalence satisfying poh = f
and hoj~ 1. The triple 2Y - F— X is the fibration induced by f from
QY ->PY Y. We shall call F the fibre of f and sometimes denote it by F,,
noting that no real ambiguity occurs since the map f-1(*)—F defined by
is a homotopy equivalence in case f is already a fibre map. Next, we may
embed Y in the space Y U, CX obtained by attaching to Y the non-reduced
cone over X by means of f. The subscript f will frequently be omitted; the
points of C X are denoted by sz, the base-point is 1*, and X is embedded in



A generalization of the homology and homotopy suspension 297

CX by z— lz. The reduced cone C, X may equally well be used, yielding the
cofibre C, of f. The identification map o: Y U CX — 2X shrinks the subset
Y U I* (resp. Y if we use the reduced cone) to the base-point and yields the
reduced suspension of X, with points denoted by (s, ). The join X* Y is

taken as a quotient space of X x I X Y ; its points are denoted by (1 —s)x 4 sy
and the base-point is 3 * 4 }*.

Theorem 1.1. Let #:F5E2 B bea fibration in which B has the homo-
topy type of a C W-complex. Let r: E U CF — B extend p by mapping CF to the

base-point and let F, be the fibre of r. Then, there exists a weak homotopy equi-
valence w: F*Q B — F,.

Proo!. Since r | E = p and r(CF) = *, by (2) one has
F, = {(a,B)eE x PB|p(a) = B(1)} U (CF x 2B).

We shall define w as the composite of three maps of which the first results by
halving the join, the second is given by an extension CQ2B — PB of the identity
map of 2B, and the third is suggested by the translation of fibres along paths in
the base. Let A:{(a,pB)eE X BI|p(a)= f(0)} > EI be a lifting map for
; A assigns to any path 8in B and any aeX lying over $(0) a pathin E over
B starting at a [8]. For any path &, let £, and — & be given by £&,(t) = £(s?)
and — &(f) = £(1 —t). Let w be the composite

FxQB%F x CQBUCF x QBB F x PBRUCF x QB3 F,

in which the last three spaces are subspaces of CF x CQB, CF x PB,
and (£ U CF) x PB respectively, and

w ((1 —8)x + sw) = (Min (1, 2 — 28)x, Min (23, 1)w),
wy(sz, tw) = (s, w,) for (1 —s)(1 —¢) =0,
wy(sz, ) = (si(x, B)(1), B).

Since its composite with the identification map F X I x QB— F*QB is
continuous, so is w. Similarly, w, is continuous; it is also bijective and the
composite of its inverse w; ! with any map of a compact HAUSDORFF space is
continuous. This is enough for w, to be a weak homotopy equivalence. Next,
since B has the homotopy type of a C W-complex the domain and range of the
map ¢: (C2B, 2B)— (PB, 2B), given by ¢(tw) = w,, have the homotopy
type of C W-pairs [16]; this, the free contractibility of C 2B and PB, and the
relation ¢(w) = w, readily imply that ¢ is a homotopy equivalence of pairs.
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Therefore, w, is a homotopy equivalence. In order to discuss w,, recall [8] that
there is a homotopy H,: E7 - EI with

Hy[x] = A(x(0), pox), Hy = 1, poH,[a] = poa, (3)
and define functions

FxPBUCF x QBYF x PBUCF x QB F,YiF,

@ (sz, p) = (sH,[— A(x, )](1), B),
v(sa, ﬁ) = (82(a9 ""13)(1)’ ﬁ)’
Wt(‘ga’v ﬂ) = ('gHt["— A(a’ ""ﬂ)](l)’ /3)

Then @, = vow,, ¢, =1, py=wyov, p, =1. However, w,, v, ¢,, p, may
fail to be continuous; nevertheless, by standard results on identification spaces,
their composites with maps of compact HAUSDORFF spaces are continuous.
Therefore, w, induces isomorphisms of homotopy groups and w is, as asserted,
a weak homotopy equivalence.

by

Remark 1.2. We shall denote by j the composite of w with the projection
F,—E UCF. Without altering the homotopy class of j we may replace
Az, wy,) (1) by Az, )(28), and obtain

Alx, w)(28) if 0 <28 <1,

(1 —8)x + sw) = ]
(2 —28)A(z, w)(1) if 1 < 28 < 2.

To interpret this result, notice that the homotopy &,: F X 2B — E given by
hy(z, ) = A(x, w)(8) connects 2opr with top, where pr:F X QB—F
is the projection whereas the map o:F X QB— F, given by p(x,w)=
A(x, w) (1), expresses the operation of 2B on F associated with the
fibration #[7]. Next,let ¢: E UCF — E U C,F shrink the segment I* to a
point, and let j, = eoj, r, = roe~t. We may obviously regard the triple

F':FxQBLEUCFLB (4)
as a fibration, and the same remark applies to the triple
FrFxQBLEUCFY (5)

provided also F and E have the homotopy type of CW-complexes in which
case ¢ is a homotopy equivalence. We shall, however, continue to write j and r
even when using the reduced cone C, F' . The above results are closely connected

with [5].
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The definition of j is valid even if B fails to have the homotopy type of a
C W-complex, and j satisfies a naturality law expressed by

Proposition 1.3. Suppose the rows in the commutative diagram on the left

F—>E——B F+QB —~ EUCF
[fole |n |[f=en |guct
F'—>E—> B F'x QB —> B'UCF

are fibrations. Then, with j and §' given by 1.2, the diagram on the right homotopy-
commutes; in particular, the homotopy class of j is unaffected by the choice of a
lifting map.

The proof uses homotopies satisfying (3); we omit the details.

The natural map V: F+xQB— 2(F X £2B) shrinks to a point the two ends
of the join and the segment through the base-point. The HopF construction
corresponding to the operation ¢:F X QB — F yields the composite ZpoV .
Define —1:2X 22X by —1¢,2) =<1 —s,2) and — o = (—1)oo.
Then:

Theorem 1.4. Homotopy-commutativity holds in the diagram

F+ QB ! »EUCF

” 174 x l——a

FxQB—Z(FxQB)—-% IF

Proof. The result follows easily from 1.2 noting that
o(B) = *,0(8x) =<8, x>, V(1 —8)x 4+ sw) = (s, (z, w)>.

Let 9:Q2B—~F be given by d(w) = o(*, —w), and let S:F—>QXF
be the natural embedding defined by S(x)(s) = ¢s, x)>.

Proposition 1.5. There is a map I such that the diagram

r
Q(EUCF)~—QB
lQo la

S
QXF <«— F

homotopy-commutes and Qrol'~ 1; in particular, if B has the homotopy type
of a CW-complex, there is a weak homotopy equivalence Q(F* QB) X QB>

Q(E U CF) and the homotopy sequence of F*x QB E U CF L. B splits.
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Proof. The map I' given by
(1 — 3)* if 0<3s<]1,
I'(w)(s) =1 Bs—1A(*, —w)(1) if 1<3s<2,
A(*, — ) (3 — 3s) if 2<3s<3,

is easily seen to behave as asserted. We note that, by (3), its homotopy class is
unaffected by the choice of a lifting map.

The main purpose of the next result is to introduce some maps needed later;
n and 7, are the obvious inclusions whereas o, ¢/, and ¢, are the obvious
identification maps (k = 0, 1, 2).

Proposition 1.6. There are maps y, v', and a homotopy equivalence { yielding
homotopy-commutativity in the diagram below, where r' extends r tn the obvious way.

F B —'» guor -5 xr =% sp
~ v
(EUC,F)U,Cy(F*QB)—— B —» (¢, —> IE
o' , 1771 l’?z
P 4
Z(F*2B) > 0, —— C,
271 . 10'1 - l“z
Z(EUC,F) Z(EUC,F)—> 33F

Proof. Let w (s, z) = (1 — 8)i(x) so that oyop = —Z¢. A homotopy h,
connecting 7,07 with yo ¢ is easily found, and ¢ is defined in terms of o, 7n,, A;
as in [19; 2.2]. It is a homotopy equivalence since, upon replacing B by the
mapping cylinder B’ of r, { is converted into the natural homeomorphism
B'|[EUC,F— (B'|E)|(EUC,F|E), where X/A is the space obtained by
shrinking to a point the subset 4 of X . The map ¢’ corresponds to (5) in the way
p corresponds to F; since ro§ is only null-homotopic, one has

w(2¢t Min (2s, 1)) if 0<2t<1,

Y &, (1 —8)x + sw) = (6)
(2 —20)j((1 —s8)z + sw) if 1 <2t<2.

2. Homology properties of extended fibrations

Throughout the paper we use reduced singular homology groups over the
integers, and omit the tilde to simplify notations. We first show that a well
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known result of SERRE [21] readily follows from 1.1 and the relative HUREWICZ
theorem in the form given by J. H. C. WHITEHEAD.

Proposition 2.1. Let 7: F 5 EX B be a fibration. If B is (m — 1)-connected
and F is (n — 1)-connected, then p_: H,(E, F)~— H,(B) ts monomorphic for
g <m -+ n and epimorphic for ¢ <m + n(m >1,n > 0).

Proof. Suppose first that B has the homotopy type of a C W-complex. The
connectivity assumptions imply that F* QB is (m 4+ n — 1)-connected, and
the homotopy sequence of the fibration (4) reveals that the map r is (m + n)-
connected. To obtain the result, we apply to r the HurREWICZ-WHITEHEAD
theorem (£ U CF is certainly 0O-connected and z; = 0 is not needed to pass
from homotopy to homology) and then identify H,(E U CF) with H (E, F).
If B fails to have the homotopy type of a C W-complex, we replace the original
fibration by the one it induces on the singular polytope of B.

The next result yields a useful exact sequence and gives information on the
Hopr construction X'poV associated with /. We use the notation of 1.6.
Assuming F', E, B to have the homotopy type of C W-complexes, passing to
homology in 1.6, and using 2.1, we see that

v is homology (m + m)-connected, (7)
v’ is homology (2m + m)-connected. (8)

We identify H, (2'X) with H,_,(X) in a natural way, write H = X'poV and
Z = {oy': X(F*QB)—C,, and prove

Theorem 2.2. Under the assumptions of 2.1 and if F', E, B have the homotopy
type of C W-complexes, the diagram
) r
Hy_1(F*QB) %> Hy_1(EUC,F)—* Hy_1(B)

“ o Nox ,,_ l
- H * Z7lo
Hy_(F*QB)—F Hy_((EF) - Hy 1(0,) XAy ,(FxQB)—>...

HN_g(F*.QB)%. .

in which N = 2m + n and T is the transgression, commutes and has exact rows.

Proof. Exactness of the top row follows from 1.1 and 2.1 upon replacing
H,((E U C,F)U,C,(F*QB)) by H,(B) for ¢ < N in the homology sequence
of the cofibration F*QB-—>E UC,F— (E UC,F) U,;Co(F*2B). Thus, T
coincides with a;o (r;)“l followed by the identification H,(Z'(F*QB))—
H, _,(FxQB). Commutativity in the third and second square follows from
1.6, whereas in the first it follows from 1.4. To prove exactness in the bottom
row, introduce the diagram
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§-1 (ZH),
H,(F*QB)—> H,,,(Z(F*QB)) H,,,(Z2F)

lz* Tax - la
7 P
oo Hoy (C)—3  H,y(0,) H(EF) —H,(C,)~...

in which the bottom row is the homology sequence of the cofibration
2F—C,—~C, and ¢is the identification. By 1.6 one has 0,0 Z~2Xg0(—1)o27;
on a double suspension one has — 1~ X(—1) so that ZXgo(—1)=
(—1)oXo~ X(—o0) and, by 1.4, we obtain o,0Z~ XYH. The naturality
of § implies #o (X H) od*= H_ and, asis well known, #00,4 = 9. Exactness
in the bottom row of 2.2 now follows easily from that of the bottom row in the
preceding diagram.
Let now X and Y be arbitrary spaces. We shall need the sequence

ox*0YXxpy Exvyix xYS8x 4%y (9)

where X V Y is the subspace (X X *) U (* X ¥) of X X Y, J is the inclu-
sion map, X 3# Y results from X X Y by shrinking XV Y to a point, and
@ is the identification map. X Y is the fibre of J; by (2), it may readily be
identified with PX x QY UQX X PY and, then, L(&,n) = (£(1), n(1)).
The map W is given by

W((l —s)é+ sn) = (fum(l,z—za)’ 77Min(28,1))

and arguments similar to those referring to w; and w, in the proof of 1.1
reveal that W is a weak homotopy equivalence if X and Y have the homotopy
type of C W-complexes.

In the next result C, stands for £ U C, F, A is the diagonal map, and

v, (1 —8)x + sw)> =, ) F w(s).

Theorem 2.3. Let F E5% B be a fibration and suppose F, E, B have the
homotopy type of C W-complexes. Then, homotopy-commutativity holds in the
diagram

r
F+QB—> 0, - B & ¢ ¥ sF«0B)

e o

QC,*QB XFVC, BxB 9 v

W 1
l L l")vr,] lnox Q pil
¢,bB—> O,yB—C,x B—>C,3%+B<"— XF4B

where p* is adjoint to p, T expresses the cooperation of X F on C;, and 9 18 induced
by the second square. Furthermore, w**1 is (m 4+ n — 1+ Min (m, n))-
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connected and &, p', v 3 1, v are N-connected if B is (m — 1)-connected and F
18 (n — 1)-connected (N =2m +n,m >1,n > 1).

Proof. The map 7 is given [7] by

(28, 2y, *) if 0 <281,
T(a) = (*,a) and 7(sx) =
(*,(2s—1z) if 1 <28 <2,

y* stands for the composite F Sezr%ac »» and it is easily seen that
B (b) = no(b) 3 b, F(ta) = Max (0, 2t — 1)a 3 p(a), d(tsx) = *.

Homotopy-commutativity is easily checked in the first three squares.
Letting o' (¢, (1 —s)x + sw) = Min (1, 2 — 2¢)i(z) # w(s) yields a map
vV :2(F*QB)— C,3# B which, by 1.6 and (6), is easily seen to satisfy
v~ (p ¥ 1)ov and v ~doy’. The connectivities of yp-*1,yp 3 1, and ¢’
are easily computed using (7) and (8), and noting that their domains and
ranges are l-connected. Expressing » as the composite

Z(F*QB)—> Z(Z(F % QB)) » X(F 4 XQB) > X(F # B)—>XF # B,

we easily find its connectivity which, by commutativity in the last square,
yields that of .

Remark 2.4. Consider the fibration QB> PB—> B and the diagram
) r
QBxQB— > PBUCQB— > B

—0
—0o) l R H
QBxQB—> XYQB — B

where R (s, »> = w(s). The right square homotopy-commutes and, if B has
the homotopy type of a C W-complex, ¢ and 7, are homotopy equivalences.
Therefore, by 1.2, the bottom row is equivalent to a fibration, a result first
proved in [2]. The map p is now given by loop multiplication and C, has the
homotopy type of B; 2.2 yields the exact sequence associated with the homo-
logy suspension, and 1.4 and 2.3 yield the classical interpretation [25], [2] of
the homomorphisms in the sequence.

Remark 2.5. The connectivity of a join is given in [15; Lemma 2.3]; an
inductive form of the proof, involving (9) but bypassing the K NNETH formula,
is also available, Similarly, the connectivity of a join or reduced product of
maps can be computed by means of the KINNETH formula or analysing the
cofibres as in [19; Satz 21].



304 T. GANEA

3. Lifting cofibrations

Let ASXLB bea cofibration, i. e. a triple in which A is a subspace of
X, B results from X by shrinking 4 to a point, and the pair (X, 4) has the
homotopy extension property; d is the inclusion and f the identification map.
Introduce the diagram

; 2 Q
BL gl pl o g

| : Thd Tes T-fpa J—an (10)
B+— X+— A+~ F, QX

in which the first square on the left and the top row result by converting f as

in (1) into a homotopy equivalent fibre map. The fibration F5EX B will
be denoted by #. Since d is an inclusion, its fibre F, can be identified to
{£ePX |&(1)eA} and the projection ¢, is given by ¢4(£) = £(1); also,
do(w) = w. We define e(a) = (d(a),*) and ¢(&)=fo&, denoting loop
multiplication and inversion by -+ and —. The diagram is essentially dual to
the upper part of that in 1.6 and e lifts d to F.

Lemma 3.1. The third square in (10) homotopy-commutes and the other squares
commute. If A is (n — 1)-connected and (X, A) is m-connected (m > 1, n > 2),
then e and @ are (m + n — 1)-connected provided A, X, B have the homotopy
type of C W-complexes.

Proof. The first part is easily checked; the second follows by the 5 lemma
from the BLAKERS-MASSEY theorem [4; Th. IT] (which can be derived from
2.1 as in [17]) recalling that % is a homotopy equivalence.

We seek a suitable approximation to the fibre F', and to the cofibre C, =
F UC,A of e. In the diagram below, ¢, is the projection, k£ the inclusion,
and V the folding map.

Theorem 3.2. Let A% X B be a cofibration in which A, X, B have the
homotopy type of CW-complexes. Introduce the diagram

k e £
Cc, «— F <+«— A <«— F,

le v

u Fx QB AV A v

Tqu)J TlVeoL
A% F,«— AXF, «~— AVF,~— AbF,

(11)
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where o expresses the operation of 2B on F associated with 7. Then, the middle
square homotopy-commutes and there result maps u and v yielding homotopy-
commutativity in the other squares. Furthermore, if A is (n — 1)-comnected
(n > 2) and (X, A) i8 m-connected, then u is (N — 1)-connected for m > 1
and v 18 (N — 2)-connected for m > 2, where N = m 4+ n + Min (m, n).

Proof. We may assume (cf.[7; Prop.3.10] whose conventions differ
slightly from ours) that o((z, ), ) = (¢, — @ + f), where we first traverse
— w and then 8. Therefore, and by the first part of 3.1, the middle square
homotopy-commutes; select a definite homotopy #4,: 4V F;— F connecting
eoVo(lVe,) to vo(e X ¢)oJ. By means of A, we may construct as in [19;
2.2] a map u' such that the diagram

¢, ¥ F
0, Tﬂ’Ql Te°®><¢)

A#F, <0, <2 AxF,

commutes. Since 4 and, as follows from [16], also ', have the homotopy type

of C W-complexes, the identification map @, is a homotopy equivalence [19;

Satz 16] with a map @’ as homotopy inverse. We define u = u’-Q’' and obtain

homotopy-commutativity in the left square of (11) since @ = @,0@,. Using A,

again, a map v yielding commutativity in the right square of (11) is easily found.
In order to compute the connectivities, notice first that:

B is m-connected, F,; is (m — 1)-connected, F is (n — 1)-connected. (12)

Next, introduce the diagram

C, - ¢ EUC,F— B
4 ex@ 7.] ° \}’ 7
AxF, FxQB \\ II
! V' |4 — (13)
0 | Fexo) | ¢ XUGA
Z(A4#F) ~+— Z(AxF) — Z(F x 2B) 1_.0"
" /I Tk Fow v Ze
20, « JF +— YA

in which § and r are givenby 1.2, y | X =h and y | Cy4 = Cye, ' extends
f by mapping C, 4 to the base-point, ¢ and ¢” shrink E and X to a point, ¥ and
V' are natural maps as in 1.4, g is the inclusion map, and [ is the composite

(EUC,F)UC,(XUCA)—-2ZF UC,LXA—X(F UC,A)
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in which the first map is induced by — ¢ and C,(— ¢”) whereas the second
results upon identifying C, 24 with 2'C, 4 in the obvious way. It follows from
3.1 and (12) that

e* @ is N-connected. (14)

Also, by 2.2 and (12), the top sequence in the diagram

7% T T
. >H (F*QB)— H (E U C,F) — H,(B) — H, _,(F*QB)—...

9 x H Y x If*
...« H/(C)) «<— H((EUCF)«~— H(XUCyA)«— H;1(C)) <...

is defined and exact for ¢ < 2m + n + 1. One has roy=f' and f; is,
obviously, isomorphic in all dimensions. Therefore, y, is monomorphic and r,
is epimorphic for all ¢ > 0. By exactness, it follows that g_ is always epi-
morphic whereas j_ is monomorphic for ¢ < 2m + n, and routine arguments
now reveal that

goj is (2m + n + 1)-connected. (15)

Also, h being a homotopy equivalence readily implies that
!, is isomorphic in all dimensions. (16)

Since log = Xko(— o), by 1.4, by the naturality of V and V', and by
homotopy-commutativity in the left square of (11), one has

logojo(exp) ~Xuo2QoV'.

Since XZQoV' is well known to be a weak homotopy equivalence, by (14),
(15) and (16) we see that X'y is N-connected and the connectivity of u follows
upon noticing that 4 # F, and C, are 1-connected.

Finally, the connectivity of » follows from that of x noting that the map
AV F,— A is m-connected and applying the ‘“relative J. H.C. WHITEHEAD
theorem’’ given in [17; Th. 1.8 (I)]. The assumption m > 2 is needed in order
that F, be 1-connected, as required in [17; Th. 1.8]. Thus, 3.2 is completely
proved.

We close this section by describing the behaviour of ¢: 4 — F under sus-
pension.

Proposition 3.8. There exists a homotopy equivalence & such that the composite

TALC,LZFEzA,
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where p is as in 1.6, is homotopic to the identity; in particular, there is a homotopy
equivalence XF — XC,\ XA and, if A, X, B have the homotopy type of C W-

complexes, the homology sequence of A s F X . Splits.

Proof. By [19; Satz 2] the map f’ in (13) has a homotopy inverse f” and the
left square in the diagram

-2 B o

g o, e

X —XUCA— Z4

where 7, and d' are inclusions and %' is the projection, homotopy-commutes.
There results a map « yielding commutativity in the right square. Since 2’ and
{” are homotopy equivalences so is « [19; Hilfssatz 7], and 3.3 is easily checked
using explicit expressions for the maps involved.

Remark 3.4. For the cofibration A 5 c,4 1, XA4, the projection
g Fy;— A and the inclusion 9: 2B - F in (10) are homotopy equivalences.
Using ¢, and do(— 1) as identifications, ¢ and ¢ are converted into the natural
embedding S: A4 —-Q2XA, and, in (11), go(e X ¢) into Mo(S X §), where
M is the loop multiplication.

Remark 3.5. Theorem 1.1 does not dualize: the homotopy type of the
cofibre C, is not determined by those of B and X' A4. Thus, as pointed out by
M. G. BARRATT, if A = 8P\y Sev Sp+¢ and A’ = SP x S¢, where 8" is
the n-sphere, then X4 and XA’ have the same homotopy type whereas, if p
and g are even, the cofibres QX A/A and QXA'|A’' have non-isomorphic
integral cohomology rings.

4. The Horr invariant of a cofibration

The purpose of this section is to provide an alternative approximation to the
cofibre C,. We maintain the notations of the previous section.
For arbitrary spaces X and Y, consider the composite

M QXxY)» 02X xQV2Y o XVY)x QX VY)»Q2(XVY)

in which the first map is the obvious homeomorphism, the last is given by loop
multiplication, and : X—> XV Y, j: Y—> XV Y are the inclusions. With
the notations introduced in (9), it is well known that, in the sequence
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QL Q2J F)
QX bY) T2 QX VY) =2 QX xY) —> X4 Y,

one has QJoM ~ 1 so that d ~ 0, and the properties of fibrations yield a
unique homotopy class of maps 7' such that

QLT + MoQJ~1, ToQL~1, To(1 —MoQJ)~T. (17)
We also need the map
D:XbY—>QXFFY) givenby D(&, n)(t) = &(t) 3 5(?).

Let now C: 43X B be a cofibration and let A4 cooperate on B

through y: B—> XAV B[7]. We define the ‘delicate’” and ‘“crude Horr
invariant of ©” as the composites

Q
F#: QBZX 0(xAvB) T, Q(ZA4 b B),
Q0
#:08 2 046 B) 2% 02 za i B).

This is obviously consistent with previous generalizations of the HopFr invariant
[12; § 3], and the map 7 below is related to the relative Hopr invariant
introduced in [23]. Define

G:AH F,—~ QXA B) by GaF &)(8)(@t) =<1 —t,a) #F fo&(s).

Theorem 4.1. LetC: ASX LB bea cofibration in which A, X, B have the
homotopy type of countable CW-complexes. Then, there exists a map 7 yielding
homotopy-commutativity in the diagram

U k
A#F,— C, <+~ F

| 17 51
Q0 F
Q2TAH#B)y«— QXA bB)y«— OB
Furthermore, 7 is (m + n — 1 -+ Min (m, n))-connected if A is (n — 1)-connected
and (X, A) 18 m-connected (m > 1,n > 2).

Proof. There is [7; p. 11] a homotopy A,: X > X4V B with
ho(x) = (%, f(2)), by = gof, hyod(a) = (<3, a), *).

We also need the maps

0:BXXA\V B" X4 and 9: BAXAV B B,
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and recall [7; Th. 3.1'] that there is a homotopy
#,: B— B satisfying 4, = ¢, ¢, = 1.
To define 7, introduce the diagram

e k
A — F =l C,
| |0 |7
M T
QEAXB)— QXAVB)—>Q2(XA b B)
in which l(a)(s) = (K1 — s, a>,*) and
2°f(38) if 0<3s<1,
D(z,B)(8) = { (1V Py g))ohyg(x) If 1 <382,
(*,9.6(3 —3s)) if 2 <3s<3.

The left square is obviously homotopy-commutative, by (17) one has 7o M~ 0,
and there results a map 7 yielding homotopy-commutativity in the right
square. By (17), the map

Q=D —MoQJoD:F—->QZAV B)
satisfies D= (1 —MoQJ)o D~ QLoToD~ QLoTok, so that
ToD~Tok (18)

and also 9* ~ Lo 7 0 Xk, where 9 and 7 are adjoint to D and 7. Passing
to loop spaces and then composing with 7', we obtain

ToQD ~ QT oQXk. (19)

To prove homotopy-commutativity in the left square of 4.1, define a map
H:X(Ax F,)~>ZXAbB by

({u,ad>,Pofolow) if 1 <58 < 4,1 <2t <2,
H<8’ (a3 £)> (t):

(6ofokow, dofolow) otherwise,
where the real functions u, v, w are given by
U = u(s,t) =2 —2¢t 4 (2¢ — 1) Max (2 — 58, 0, 58 — 3),
v v(8,t) = Max (1 — 2t, 0) 4+ Min (2¢{, 1) Max (1 — 55, 0, 58 — 4),
W = w(s, t) = Max (1 —2¢,0)+ Min (2¢,1) Max (1 —5s,0,Min (58 —2,1)).

I

21 CMH vol. 39
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The definition of H is suggested by a null-homotopy of Jo 2 in 2’4 x B
and, when dealing with H, we shall tacitly use the fact that (o(b),3(b)) =
x(b)eX AV B for any beB. As is easily seen, Lo H is homotopic to the
composite

Z(exX ) 2-

z
(A4 x F,) SFxeB =8 2, x4VB

so that, passing to loop spaces, composing with 7', and then applying (19), we

obtain

QH:TOQLOQH:TOQQ'OQZ(QO(Q X q)))_’?’_..Q.To.QEICo.QZ(Qo(G X (P))

Therefore, inspection of (13) reveals that QH ~ QZ, where

z z T
z:z:(Ade)__Q.z'(A#Fd)_".zoo__»z*AbB.

Define @,: A*F,—~ Q(XA # B) by

gofol(1 —2¢t) HPofol(l — 2t + 2tsu) if 0<2t <1,
?,(¥)(t) = :
2 —2t,a) FP,_,of0&(3) if 1<2t<2,

where y = (1 — 8)a + s&. Then, it is easily seen that @, and @, are respec-
tively homotopic to the composites

| 4 H D
and

A*Fd—z; Z(A X F) 59» Z(A#F,) i Q(ZA # B),

where G* is adjoint to G and V' is the natural map. Passing to loop spaces and
replacing, as we may, 2 H by 2Z we obtain

ROPoRT 0 QXU RXQo 2V ~ QG 0QXQoQ2V'.

Since 4, X, B have the homotopy type of countable C W-complexes, Z@QoV'
is a homotopy equivalence so that the left square homotopy-commutes in the
diagram

QG- S
QPLAFB)«—QIAH F)«— A3 F,
QO Qlu Lu
7 S
QIALB) «— QXC, <+— C,
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To obtain homotopy-commutativity in the left square of 4.1, it only remains
to notice that, with § standing for the natural embedding, the right square
also homotopy-commutes whereas G = QG o8 and T = Q27°68.
To prove homotopy-commutativity in the right square of 4.1, notice that
(oow(28), *) if 0<2s8<1,
MoQdolyow(s) =
(x, Bow (28 — 1)) if 1<2s<2,

whereas, since 9(w) = (*,w), 2J0D o9 ishomotopic to the map 2B— 2 (X4 x B)
given by o — (cow,*). This readily implies (1 —MoQJ)oQy~ Dod
which, by (17), (18) and the definition of #, yields the desired resuit.

Finally, G may be expressed as the composite

A F, > 0252 (A4 F,)—> Q*(TAH# ZF) 2 (1) 9, 03544 B)

in which ¢ is adjoint to ¢, and it is easily seen that G is (m + n + Min (m,n —1))-
connected. Also, by 3.1 applied to the cofibration XAV B—>XAXx B—~> XA # B,
it follows that @ is (m + n + 1 4+ Min (m, n))-connected. By commutativity

in the left square of 4.1, the connectivity of 7 now follows from that of u as
given in 3.2.

Remark 4.2. It is well known that (X4 4 B) is homotopically equiva-
lent to the “cojoin‘‘ of £ A4 and B, i. e. the space P(XAV B; XA, B) of all
paths in X4V B which start in 24 and end in B. In this sense, the right
square in 4.1 can be regarded as dual to the diagram obtained upon replacing
F * Q B by the actual fibre F, of r in the top row of 1.4; the left vertical in 1.4
should then be replaced by the weak homotopy equivalence w of 1.1 which
appears as dual to the (m + n — 1 4 Min (m, n))-connected map 7 of 4.1.
This duality becomes actually more striking if the results of 4. 1 are expressed in
terms of the cojoin. For traditional reasons however, we prefer to use 2(2'4 4 B)
and the present generalization of the HopF invariant.

For the final result of this section, we need a third map closely related to #.
Let 7 ; result as in (5) from the fibration # obtained in (10) by converting f
into a fibre map. Introduce the composite

»' :BLXUC,ALEUC,F
where y and f” are defined in (13) and in the proof of 3.3. One has
roy’ =f'of"~1and Qrol'~1, (20)

where I is defined in 1.5. Therefore, if B has the homotopy type of a C W-
complex, 1.2 yields a map
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H": QB> Q(F+Q2B) such that Qy' — '~ Qjo F#", (21)

by 1.3 and the remark concluding the proof of 1.5, the homotopy class of 7#”
is uniquely determined. We now write ¥ = xoy and P = xo#,, where « is
given by 3.3, then pass to loop spaces in 2.3, and obtain the diagram

Q5 Qr
QF*0QB) —> Q0C,; < > OB

Qy'.I"
l!)(‘[f'*l) l[)r lQA
Q(QZA*QB)  QZFVC) 21/ 2(BxB)
lgw .Q(Z'eVy')u.Q(’PVr) l.o(rx 1)
QL QJ
Q(ZAbB) — Q(EAVB) ——= Q(ZAx B)
T M

where ¥ is adjoint to Y and C, = E U C,F.

Proposition4.3. Under the assumptions of 3.2, one has H#~ QW o Q(¥ * 1)o F"
and QWoQ(¥W-*1) is (m + n + Min (m, n — 1))-connected.

Proof. Commutativity in the right square in the proof of 3.3 yields
P = ¢"of" so that, by well known properties of cooperation,

Joy~ (P X 1)od.

Commutativity in the second square of (10) and the naturality of y imply
(ZeV p')oy ~ 7oy’ so that, by 3.3 and (20),

1~ (PVr)orey’.
Finally, using 1.5 and the definition of y given in 1.6, it is easy to see that
MoQ(P X1)oQA~Q(WVr)oQlrol.
By (17) and (21), the three preceding relations yield
ToQy~To(l —MoQJ)oQy~ToQ(¥VV r)oR102j0 FH",

and the first result follows from the definition of 7#, homotopy-commutativity
in the left square of 2.3 and hence of the preceding diagram, and (17). The
connectivity follows from 2.3.
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b. The generalized EHP sequence

Recall first that the generalized WHITEHEAD product of two maps f: XX —~>Z
and g:2'Y — Z is a map [f, g] such that the composite

X xY) > rx#r)™% 2

represents the commutator (f' 4+ ¢') + (—f —g’') of
[ EXxY)-B 33X 1 Zand g Z(XxY) B 2y -z

in the group #(X(X X Y), Z). As in [3; 6.9], the construction of [f, g] is
valid if X and Y have non-degenerate base-points and then, by [19; Folgerung,
p. 333], the homotopy class of [f, g] is uniquely determined by those of f and g.
Define R:XQZ—>7 by R{,w)=w(s), and let f: X —>Z, g: Y >2Z
be arbitrary maps.

Lemma 5.1. If X and Y have the homotopy type of countable C W-complexes,

there exists a homotopy equivalence & yielding homotopy-commutativity in the
diagram

L
2z gvzMxvr L xby
3
H [RoZQf,RoZQq] T
Z « QX #Q7)

Proof. Since QX and Q7Y also have the homotopy type of countable C W-
complexes [16], the weak homotopy equivalence

IQoV:QX*QY > Z(RX X QY)>Z(QX # Q7)

has a homotopy inverse A. Define ¥ = WoA, where the homotopy equi-
valence W:QX*QY - X b Y is asin (9). One has

hoy>~ Vo(fVg)oLoW and h; = [Ro 2Qf, Ro X2Q2g]o2QoV,
provided the values of A,((1 — 8)& + s87) on the quarters of 0 <8 <1 are
fo&(1 —t 4 4st), gon(ds — 1), fo&(38 —48), gon(l —t + (4 — 48)t).

The result now follows easily.

With the notation of 3.2, let F, be the fibre of k, let ¢’ lift ¢ to F,, and let ¢,
be as in (10). Define

& () = (*,0) and R (s, o 3 6>(t) = (1 —s) H 6(1 —1).
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Theorem 5.2. Let C: ASXL B be a cofibration in which A, X, B
have the homotopy type of countable C W-complexes. Then, homotopy-commutativity
holds in the diagram

e d Qu
A— F, +— QC, +— Q(A#F,)

'[93

“ [R,RoZ0¢,]
A - Z(QA # QF,)

Furthermore, e’ 18 (m + 2n — 2)-connected and R 18 (m + n — 2 + Min(m,n))-
connected if A 18 (n — 1)-connected and (X, A) 18 m-connected (m > 1,n > 2).

Proof. With the notation of 3.2 one has
gr0v ~ Vo (lV egy)oL. (22)

Replacing in (10) the original cofibration by 4 — F—» C, and then by
AVF,—>A x F;,—~ A # F;, we obtain maps

p':F,>QC,and ®':AbF,—~> QA #F,)
which, by naturality and commutativity in 3.2, satisfy
Quod' ~ g'oy. (23)

Asin 3.1, one has 9'o(— ¢') ~ ¢’0¢, so that, by (23) and (22),

oQuo(—P')~e'oV o(lVey)oL:AbF;—~ F,. (24)
The map @' is given by &' («x, 6)(t) = «(¢) ¥ §(¢) and, letting
H,((1 —8)a + 868)(¢) = «((t + w — tu) Min (1, 2 — 2s)) # 4(¢ Min (2s, 1)),
we obtain Hy, = @'ocW and H, ~ U in the diagram

w
Q4% QF, > AbF,

o\ /o

QA4 F,)

where W is as in (9) and U((1 —s)ax + 88)(t) = (1 —8) 3 6(¢). Thus
defined, U coincides with the composite
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04x0F, Vo204 x0F) 28 s0as0r) L0 ry "o £ F,

and, by the definitions of 4 and @ in the proof of 5.1, we obtain
R~ (—U)od~=(—DP)oWod=(—D')od.
Therefore, by (24) and 5.1, we have
0oQUuoR~00Quo(— D)o ~eoVo(lVey)oLod~eo[R, RoZQ¢,].

Finally, the connectivity of e’ follows from 3.1 and that of % is easily com-
puted.

We conclude this section with a result which is, to a certain extent, dual to
2.2. Introduce the diagram

0
F «— QB

A
e —@
e £

Fﬁ' <« A 4_—0_ Fa

A

a’T slT &g ‘ (25)
QT —¢' ¢

Q*(XAbB) «— QC,«— F, «—F_,

a4l 57

QF «—— QF «—— 2*B

in which 9,, 9,, &, have obvious meanings whereas all other maps, except £,
have been defined in connection with (10), 3.2, 4.1, 5.2; ¢ is induced by the
top square and, since A in (10) is a homotopy equivalence, an argument dual
to that in 1.6 reveals that ¢ is, in turn, a homotopy equivalence. The diagram
homotopy-commutes. By 4.1 and then by 3.1 applied with 4 - F —C, as
original cofibration, it follows that

Z=Q0QTo(—¢')ol is (m 4+ n —2 + Min (m, n))-connected

if 4 is (n — 1)-connected and (X, A) is m-connected. We identify = (2 Y)
}Vith e41(Y) in a natural way, denote by E, L and P the homomorphisms
Induced by e and by the top rows in 4.1 and 5.2 respectively, and prove
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Theorem 5.3. Let A-5X B be a cofibration vn which A, X, B have the
homotopy type of countable C W-complexes. If A is (n — 1)-connected and (X, A)
18 m-connected (m > 1, n > 2), then the diagram

eay s(A) «—— ay (A#F) <— ay_,(F) <— ny_,(4)

EO*I Gilo(QQ)*I B*I SO*T
Egx 0 Lt Fx —@x
TNy (Fg) ¢ Ay _(RQ(ZA b B)) «— axy_(QB) «— ay_,(F)

where N = m + n + Min (m, n), commutes and has exact rows.

Proof. According to 4.1 we may replace G,'o (@), by u 'e T.*.
The top sequence results upon using the maps ¢ and u of 5.2 and
3.2 in order to replace n, (¥F,) and = (C,) for ¢ <N —2 by =n,(A) and
n,(A 3 F,) in the homotopy sequence of the fibration F,— F—C,. Com-
mutativity in the first square (from the right) follows from 3.1 and in the second
from 4.1; to prove it in the third, it suffices to notice that, in (25), one has
€' oggoeya~ 0 o(—e')ol. To prove exactness in the bottom row, introduce the
diagram

41 (2 F)«
7ie1(Q(EAbB)) ~—m (Q(ZAbB)) ~— x,(Q*B)

Eg% A — @
. 7o (Fy) — Re(Figy) 7 (2B) 7y (F)«. ..

where the bottom row is the homotopy sequence of the fibration ¥_,, — ¥,
QB and 9 is the identification. Inspection of (25) reveals that Zod,~
DT0Q0ko(—1)o0Q0 so that, by 4.1, Zo9d,~ — Q. The naturality of
#implies F 1o (QH) o ¥ = F#, and,asiswellknown, 0,409 = A. Exactness
in the bottom row of 5.3 now follows from that of the bottom row in the pre-
ceding diagram noting that 9-10Z, is isomorphic for ¢ < N — 3.

Remark 5.4. For the cofibration 4 — C,4—>2XA one has m = n and
N = 3n if Ais (n — 1)-connected (» > 2). As noticed in 3.4, ¢ can be identi-
fied to the natural embedding 4 - 23 A whereas 9 and ¢, are homotopy
equivalences. Hence, replacing F, by 4 and ¢, by the identity map, and writing
H for the composite G3le(Q2®P)y0 H5 o d%', we obtain the exact sequence

E H P
Tapeg(A) —> 73, 2(QLA)—> 7y, o (4 + A)““""-'”'an—a(A)"’ B
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where, according to 5.2, P coincides with [R, R]4 0 R3'c#; as before, 9 is the
identification 7z, ,(Y)—> 7, (2 Y). This is, essentially, the well known £ H P-
sequence of G. W. WHITEHEAD [24] in the slightly more general form given by
Barcus [1]. Obviously, it could be rewritten for generalized homotopy groups.

6. Nilpotency and cocategory
Let A be any space. Define a sequence of cofibrations
C:ap B k>0

as follows. G, is the standard cofibration A - CyA — Y A. Assuming G, to be
defined, let F,,, be the fibre of f, and let e, ,: 4 F;,, lift e, as in (10).
Define F,,, as the reduced mapping cylinder of ¢, let e,., be the obvious
inclusion map, and let B,,, and f,,, result by shrinking the subset 4 of
F.., to a point. We also need the fibre D, of e,, with projection ¢, : D, — 4.
The results of the preceding sections refer to F;,; and e,,,; obviously, they

apply equally well to F,,, and e,.,, and will be used when passing from
G, to Ciq-

Definition 6.1. 7'he cocategory of A, cocat A, is the least integer k > O for which
there is a map r:F,—> A such that roe,~ 1; if no such integer exists,
cocat 4 = oo.

Remark 6.2. Interpreting F, as a functor and e, as a natural transfor-
mation, we see that the above definitions yield a left structure in the sense of
[18] on the category of based topological spaces. A previous definition [9;
2.1] of the dual of LUSTERNIK-SCHNIRELMANN category may be restated as
follows: cocat 4 = 0 if and only if A4 is contractible, and cocat A <k + 1
if and only if there exists a fibration F > E — B such that F dominates 4
and cocat E < k. Its equivalence with 6.1 is easily proved using the next
result, in which cocategory is as in 6.1.

Lemma 6.3. If FLEZXB isa fibration, then cocat F < cocat £ 4 1.
Proof. Suppose cocat E = k and introduce the diagram

] 7, (F) fr

Fia(F) By (F)

91£+1 s' (7% F,(3) g

? € r
F-55-% pm) ——>5-5 B



318 T. GANEA

in which § is the projection and r is given by 6.1. The pair (F,(E), E) has the
homotopy extension property so we may assume that roe, = 1. Hence, by
the naturality of e,, poroF,(i)oe, = * and there results g satisfying
porokF, (1) = gof,. Therefore, poroF,(1)oj~ 0 and there results s’ with
i08' ~ roF,(i)oj sothat,since joe,,, = e, 108'0e,,,~i. Let p: FX QB> F
express the operation associated with the given fibration. By [7; Th. 4.2] there
is a map u: F— QB such that

0o ((8'0epn) X u) oA~ 1:F—>F, (26)
where A:F — F X F is the diagonal map. It follows from 3.3 that there is a
map v: F, ,(F)—> QB with voe, ; ~ u. Define
8’'Xv
8: Fh+1(F)"“—* Fk+1(F)XFk+1(F)“”“”’ FxQB-2>F.

Then, by (26), one has .:me,:,H ~1,i.e. cocat F <k 4 1.
Next, let ¢:02A4 # Q24> 0QA denote the adjoint to the WHITEHEAD
product [R, R] defined in § 5. Let

@o=1 and g, : (QA)*+D —5 L350 QA% 04-%, 04,

where X® is the k-fold reduced product inductively defined by X = X and
X®+) — X 4 X®, Define nil 4 as the least integer ¥ > 0 such that ¢, ~ 0;
if no such integer exists, nil 4 = co. The construction of ¢ is valid if 4, hence
QA4, has a non-degenerate base-point and the preceding definition is then
equivalent to that introduced in [3]. As a motivation, recall [3; § 2] that

nil 4 =supnilzn (XX, A) = supnil n(X, 24),

where nil G denotes the nilpotency class of the abstract group G, and X ranges
over all based topological spaces.

Lemma 6.4. If A is a countable C W-complex, then for every k > O there
18 @ map A, such that @, is homotopic to the composite

A Q
@A)+ 2, op “% 0y,

If A v8 (n — 1)-connected (n > 2), then A, 18 (k + 2)(n — 1)-connected.
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Proof. We may obviously assume that Dy = A4 and ¢, =1, so that 6.4
holds true for k = 0 with 1, = 1. Suppose 6.4 is true for some ¥ > 0 and
introduce the diagram

Qv Q4 8 134,
QD <2 Q(AbD,)«—QI(QA QD) «~—QA % .QD,,«—;(.QA)U‘H)
Q f g h {
8k+l\M Q[R, R] g K/ o

QA QFQA#0QA) —QAH# 04

where f=Q(Vo(lV e&)oL), g=02X(13 Q¢), and h =13 Q¢,; Sand
8’ are the natural embeddings, »,,; is given by 3.2 and 4 by 5.1. The left
triangle homotopy-commutes by 3.2. Next, by 5.1 and the naturality of the
generalized WHITEHEAD product, one has

Vo(lVe)oLod~[R, RoZQ¢,] = [R, B]o Z(1 $ Q¢,).

Commutativity in the second square is obvious. Finally, homotopy-commu-
tativity in the right triangle is granted by the induction hypothesis. Obviously,
Q[R, R]o 8’ = ¢, and the first result follows upon defining

Aeyy = 29310029080 (1 4 4).

Next, it is easily seen that
D, is (k 4+ 1)(n — 1)-connected.

Also, by 3.2, v,,, is ((k 4+ 3)(n — 1) + 1)-connected, and the connectivity of
A4y follows easily from that of 4, recalling that ¢ is a homotopy equivalence.

From 6.4 and 6.1 it is easy to derive the following two known results [9;
Th. 2.12], [10; Th. 1.4]:

Proposition 6.5. nil 4 < cocat 4.

Proposition 6.6. cocat A <k if 4 is an (n — 1)-connected C W-complex
such that m,(4) =0 for ¢ > (k + 1)(n — 1), (n > 2,k > 0).
Let W-long A denote the least integer k > 0 for which any (k + 1)-fold

WHITEHEAD product [x,,..., [*, ®34q]--.], With «,ex, (4), ¢; > 1, van-
ishes. We prove '
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Theorem 6.7. Let A be an (n — 1)-connected countable C W-complex (n > 1)
and let k>0. If n,(A) =0 for ¢q > (k + 1)(n — 1) + n, then cocat A <k
of and only +f milA < k. If n,(A)=0 for ¢g> (k+ 1)(n — 1) 4 1, then
cocat A < k +f and only if W-long 4 < k.

Proof. If n =1, we have [9; Th. 2.15], without assuming countability,
nil 7,(4A) = nil4d =cocat 4. Let n> 2. Let R: XQD,—> D, satisfy
R{s,w)=w(s). If ¢,,~ 0, then, by 6.4 and the naturalityof B, e, 0o Ro 24, ~
Hence, there is a map s: H > A such that sonp~ 1, where n: 4> H is the
inclusion map and H = 4 U C,2(2A4)**Y results upon attaching the cone
by means of ¢,0oRoX1,. Themap @ =1UCy(R-21,): H—> A UC,D,,
where C,D, is attached by means of ¢,, and the extension r: 4 U Cy D, — F,
of e,, given by 1.1, obviously satisfy ro®@on=¢,. It follows from 1.1 and
6.4 that the composite ro®@ is ((k + 2)(n — 1) + 2)-connected and an
obstruction argument yields a map ¢: F, > 4 satisfying tor o ®~s. Hence,
toe,~ 1 and the first resultis proved. Next, (2 A)**Y is ((k + 1)(n — 1) —1)-
connected and its (k + 1)(» — 1)-dimensional homotopy group can be
identified to the (k + 1)-fold tensor product in the left bottom corner of the
diagram

w
7,(4) ® ... d=n,(A4) > T (x11)(n-1)+1(4)

(1))
N,3(R4) ® ... @7, ,(24) —> ”(k+1)(n-—1)('QA)

The top row is given by the (k + 1)-fold WHITEHEAD product, @ is the homo-
morphism induced by ¢, , and the verticals are given by a natural isomorphism
Tey1(4)—> 7, (2A4). It follows from a result by SaMELSON [20] that the dia-
gram commutes up to a sign, so that @ =0 if W = 0. Since =,(24) =10
for ¢ > (k 4 1)(n — 1), an obstruction argument now implies ¢, ~ 0 and
the second result follows from the first.

Remark 6.8. It follows from [14] that cocat 4 <1 if and only if 4 is an
H-space, and 6.5, 6.6, 6.7 generalize well known results on H-spaces; the
first part of 6.7 generalizes a theorem by SucAwara [22], and the second
dualizes an unpublished result by I. BERSTEIN on LUSTERNIK-SCHNIRELMANN
category.

As a final result, we express 7, (F,(4)) in terms of 7z,(A4). Recall that the
lower central series of a group # consists of the commutator subgroups 7, of
m, given by @) =# and 7,4 = [, W (n).
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Theorem 6.9. Let A be a connected C W-complex with fundamental group .
Then, for every k > 0, e, : A — F,(A) induces an epimorphism of fundamental
groups under which 7, (F,(A)) s isomorphic to x|z, .

Proof. Suppose first that m = » = 1 in 3.1. Then, F, is O-connected, 2.1
implies that 4 U CF,— X is homology 2-connected, and a 5 lemma argument
reveals that the same holds for X'F;,— B. Since X F,; and B are 1-connected,
applying the HuUREWICZ-WHITEHEAD theorem and then passing to loop spaces
we see that QX F,—~ QB is 1-connected. Since F,— QX F, is 1-connected,
it follows that ¢ is 1-connected, and a 5 lemma argument reveals that also e
is 1-connected. An obvious induction argument now reveals that e, is 1-connec-
ted for all £ > 0. Obviously, cocat F(4) <k so that, by 6.5, nilx, (F,(4)) <k;
therefore, the kernel E of the epimorphism induced by e, contains 7. To
prove the converse, let Y be a connected aspherical C W-complex with funda-
mental group = /x,,, and let g: A— Y induce the canonical homomorphism
7> 7[my. One has nil n/n, <k so that, by [9; Th. 2.15], cocat ¥ < k
and there results a map r:F,(Y) > Y such that roe,(Y)=1, hence
ro F,.(g)oe, = g. This obviously implies £ c 7, and 6.9 is proved. The
crux of the matter is Lemma 5.4 in [13] which implies 2.15 in [9].

University of Washington
Seattle, Washington
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