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On the Finite Subgroups of Connected Lie Groups

WiLriam M. BooTaBY and HsieN-CHUNG WANG!)

1. Introduection. According to a beautiful theorem of C. JORDAN [7], a finite
linear group F of degree n, that is, a finite subgroup of G L(n, C), has a normal
abelian subgroup 4 whose index in ¥ is bounded by a number k(n) depending
only on n and not at all on F. Thus, roughly speaking, the nonabelian part of a
finite group of n X » complex matrices has only a finite number of possible
forms. More precisely, every such group is an extension of an abelian group 4
by a group F/A of bounded order; 4 must, up to a similarity, be just a group of
diagonal matrices.

A remarkable analytic proof of this theorem was given by BIEBERBACH [1],
and was subsequently much simplified by FroBeEN1US [4], [6], who obtained
estimates for k(n) later improved by SPEISER [9]. These proofs make use of the
fact that GL(n, C) is a linear LiE group, employing, for example, the matrix
algebra. The authors’ main purpose in this note is to establish FrRoOBENIUS’
result by using intrinsic properties of compact LiE groups so that it will give
JOrRDAN’S Theorem for the finite subgroups F of an arbitrary connected Lie
group G. Moreover, with the help of an integration formula of WEeyL, an
integration formula for the bound of the index is given.

To describe our results, let G be a compact Lie group and & its Lik algebra.
Denote by Q the totality of elements X in & such that the absolute values of

% . Define U = exp Q and
k(@) = u(@)/u(U) where u is a HAAR measure of G. The main results can be
stated as follows:

I. Let M be a connected Lir group, and G a maximal compact subgroup of M .
Each finite subgroup F of M has a normal abelian subgroup A whose index in F
18 not greater than k(G).

the characteristic roots of Ad X2) are all less than

II. Let G be a local direct product G, G,- ... -G, T of compact connect-
ed simple Lie groups G, ..., @, and a toral group T. Then k(G) =
=8-k(Ad @, - k(AdG,) - ... - k(Ad G,) where s is the number of connected
components of the center of G.

III. Let @ be a compact connected simple Lig group of rank r, oy, &g, ..., &,
a system of simple roots, and B = myx, + Mmyoxy + ... + m,x, the maximum

1) This work was supported in part by the National Science Foundation under contracts GP-89
and G-24154.

2) Throughout this paper, Ad denotes the adjoint representation of the group while ad denotes
that of the Lix algebra.



282 WirLriam M. BooreBy and HsieN-CHUNG WaANG

root. Denote by s the order of the center of G, and denote by D the domain
{61 >0,0,>0,...,x,>0,8< 1/12} and regard every root x as a function of
B1s Kgy ««., .. Then

8

G = 2@m @-n ¢ ..bf (IT sin?ma)de, ... do,

where the product I1 sin*nx extends to all the positive roots « of G.
We also, as an example, carry out the integration for the case G' = Sp(r)
and express k(Sp(r)) in terms of a determinant.

2. Some results of FroBENIUS. For the sake of completeness, we shall, in
this section, first use geometrical language to redefine some concepts of
FroBENIUS and then re-establish some of his results in an intrinsic manner.

Let V be a complex vector space of dimension n with positive definite
hermitian form A (&,7),&,7n V. Considering V as a 2n-dimensional real euclidean
space, we can define the angle < (&,7#) between two non-zero vectors &,
in V. This angle is always assumed to lie between 0 and =, and is given by the
formula

cos X (&,7n) = Reh(&, %)/ (& In])

where Re denotes the real part, and |&| = VA (&, £), |yl = Vh(n,n) denote
the lengths of &, 7 respectively.

Let S be the unit sphere in V and U (n) the group of all unitary transfor-
mations. The group U (n) acts on § effectively. Since the angle < (&,7%) is a
metric on 8 (in fact the ordinary spherical metric), the real-valued function d
over U (n) X U (n) defined by

d(X,Y)=sup <(X&,Y§),X,YecU(n)
éeS

gives a two-sided invariant metric on U (n). The right-invariance follows from
the definition while the left-invariance from the fact that < (X&, X7#) =
= X (&,n),X eU(n), & neS. Therefore

d(B,XY)=d(X,Y)<d(E, X +d(E,Y)=d(E, X)+d(B,Y), .1)
where E is the identity transformation.

Let X eU(n) and {e'’1, ¢i®, ..., %} be the set of distinct characteristic
roots of X. Choose the #’s so that —n <d; <=x and define

IX)=sup {|]:7=1,2,...,s}.
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The angles ¢,,...,3, will be called the phase angles of X. We shall verify
that d (£, X) = ¢(X). For this purpose, let us denote by V, the eigenspace
of X with eigenvalue ¢'% (note that 9, # 9, for j # k). Then

V=V, @V:® ... ®V,, h(Vy, V) = 0,5 # k.
For any vector £¢8, we write é¢ =&, + &, + ... + &, with &,¢V,;. Then

h(E, X&) = Z5_1h(&, X&) = Zi_, | &2
and then
cos (€, X&) = Z5_,|&|2 cos 9y = T, |&]? cos #(X)
= cos #(X)

where |&,| denotes the length of &;. It follows that < (&, X¢) < #(X), £&8,
whence d(F, X) < #(X). On the other hand, 4(X) = |9,,| for a certain m,
and when £eSnV, we then have < (&, X&) = |9,,| = #(X). This implies
d(E, X) = 9(X) and therefore

d(E, X) =&(X). (2.2)

We see that although a particular hermitian metric on V was used above,
#(X) and hence d(E, X) do not depend on this choice. We also note that the
above statements remain valid for a closed subgroup of U (») which will be used
below.

FroBeEnNtusS Lemma. Let X, Y eU(n) and [X,[X,Y]]=E where
[X,Y] = XYX2Y! denotes the multiplicative commutator operation. If

HY) < %, then X commutes with Y.

Proof. Let V,, ..., V, be the eigenspaces of X with eigenvalues g,, ..., g,.
Then W, = Y(V,),..., W,= Y (V,) must be the eigenspaces of the trans-
formation 7' = Y X Y-1. Denoting by V; the orthogonal complement of ¥,
we have V = V,®V;. From the hypothesis, X commutes with 7' and so
T(V,) =V,,T(V}) = V,. It follows then W,= (W,nV,)® (W,n V).

But #(Y) <g~, X (&, Y§) <%, for all vectors &. Therefore W,n V; =
=Y(V)nV; =0, and W,=W,nV,, whence W;=V, because they
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have the same dimension. Now X and 7 have the same set of eigenspaces

corresponding to the same eigenvalues. Thus X = T, or what is the same,
XY=YX.

Remark. FroBENIUS proved this result under the weaker assumption that
the phase angles 4,,4,, . . ., d, differ from one another by an angle less than .
However, this follows as an immediate consequence of the above version. In
fact, if |9, —9,| <= for all j and k, there exists then a central element Z of

U (n) (i.e., scalar unitary transformation) such that ¢ (Y Z) < -—275 Applying

our proposition with Y Z taking the place of Y, we obtain X(YZ) = (YZ)X
whence X Y = Y X.

3. Two Lemmas. Let G' be a compact Lit group and & its Lie algebra.
The linear adjoint group Ad G/, being compact, may be regarded as a
subgroup of the orthogonal group 0(n) acting on the real Lie algebra ®,
i. e., it leaves invariant a euclidean (symmetric, positive definite, bilinear)
inner product on &. Let V be the vector space over the complex numbers C
obtained by extending the field of scalars of &, and let 4 be any positive definite
hermitian form on ¥ whose restriction to ® is the inner product left invariant
by Ad G. Then if U(n) is the group of linear transformations of V leaving A
invariant, 0(n) and its subgroup Ad G are imbedded as closed subgroups of
U (n) and the results of the previous paragraph (in particular, (2.2) and the
remarks following it) apply to Ad G acting on V. Thus the function

d(Ad z, Ady) =9 (Ad zy™), z,ye@

is a two-sided invariant metric on Ad G. Now define &#(z) = #(Ad z), G
Then 9 is a real continuous function over G with 0 < d(x) <=~ and

Hx) = H(a™), dyxy™) = d(x), ¥ (x2) = 9 (2), d(zy) = F(2) + ()

for all elements z, y of G and all z belonging to the center of G'. The last ine-
quality follows from (2.1) and (2.2).

Lemma 1. Let G be a compact Lie group and a:,ysG,z?(y)<—g- If

[,[x,y]] belongstothe center Z of @, then [x,yleZ where [x,y] = xyx~'y™
denotes the commutator operation in the group.
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Prool. Let X = Adz, Y = Ady. Then ﬂ(Y)<-;f and [X,[X,Y]] = E.

From the FrRoBENIUS Lemma in §2, we have X Y = Y X, or what is the same,
[x,yleZ.

This Lemma can be sharpened. We are, however, content with it since
any improvement will not help us in the study of finite subgroups of G.

Lemma 2. Let G be a compact connected Lig group, and ¢ the global metric
induced by a two-sided invariant Riemannian metric on G. Then for elements
x,y and e (= identity in G),

o(e, [z, y]) = 2(sin {9 (y)) e (e, ) .

Proof. We will denote by % the invariant scalar product in ® which gives
rise to the metric p on G, and we denote by || X || the length of a vector X with
respect to . Now choose X, Ye¢® such that

T = eXPX’ Yy = exp Y, ”XH = o(e, x), H Y“ = o(e, ¥y) .
We use here and below the fact that the geodesics through e are exactly the

one-parameter subgroups. Due to compactness any point can be joined to e
by a geodesic whose length is equal to the distance from e. If we take

z(t) =exptX, U(t) = (Ad z(t)) Y, u(t) =exp U(t),

0ost=s1,

then u (t) is a curve in G joining y to xy 1. Let [ be the arc length of this curve.
From the definition of o, we have

ole, [, y]) = oy, xyxt) = 1.

Now let us give an estimate of I. For this purpose, we write x(f) = exp tX
and then u(t) = z(f)yx(—t). The formula

drfdt = L,y X = R,n X
implies that

dujdt = Ly Ryo—0 X — Loy Bocn X = —Ad z(t)- L, (B —Ady™)- X.
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Combining this with the fact that the scalar product in & is left unaltered by
both left and right translations, we have?3)

] = sas].
and then . .
lzfl% dt=f” (E’-—Ady-l)X”dt

= H (E—Ady )X H .

Now Ad y! is a rotation in ®, and by using the normal form of a rotation,
it is easy to check that

[[(E —Ady )X || = 2sin }3(y) || X || .
Since || X|| = o(e, ), this gives
ele, [#,y]) = 1= 2(sin 3 (y)) (e, @).

The Lemma is thus proved.

Remark. With y fixed and « varied, 2 sin } ¢ (y) is the supremum of the ratio
o(e,[x,y])/o(e, x), and therefore Lemma 2 cannot be further improved. To
see this, we choose X ¢G such that the angle between X and (Ady)X is
exactly J(y), and put z(s) = exp sX. Then

. o(e[z(8)9]) _
shino oezl) 2sin 1 d(y).

4. A Theorem. Let G be a compact, connected L1t group with Lir algebra
®. For each 0 < ¢ <z, we denote by Q, the totality of X ¢ G such that all the
characteristic roots of ad X have absolute value less than c¢. Set

U,=expQ,, W,={xeG:9%(x) <c}.
Evidently
Uc = U(,Tl’ W, = Wt;—l’ gU, 97! = Uc’ chg_l = Wc?

(Ad9)(Q.) =Q., U, c W,,g9¢@.

%) We wish to thank the referee for a shorter proof of this formula.
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Both U, and W are open in G (since exp is an open mapping), and U, is connect-
ed. Since the closure Q, of Q, is compact, exp Q, is compact. From the
fact that U, = (exp Q.) N W,, it follows that U, is not only open but closed
in W,. Therefore U, is the connected component of W, which contains the
identity.

Let us conmsider U,U,,c>0,c¢ >0,¢c+ ¢ <mn. Suppose x = exp X,
y=expY, XeQ,, YeQ, . Then

dexptX-.-exptY)<d(exptX)+ dexptY)=c+ ¢
0st=s1

and then exptX-exptYeW, ., for all ¢ with 0 <¢< 1. This implies that
xzy = exp X - exp Y lies in the connected component of W_, . which contains
the identity, or what is the same zye¢U,_,. . Hence we have shown

U.U, cU,,,. (4.1)

In what follows, we need the following simple property of commutators.

(4.2) Suppose 0<c< /2 and yeU,. If the commutator [z, y] belongs to the
center Z of G, then [x,y] =-e.

Proof. Let us decompose @ into the local direct product G, - Z, of its semi-
simple part G, and the identity component of the center Z. Then we have a
corresponding L1k algebra decomposition & = &, + 3. Denote by Q; the
totality of X ¢®, such that all the characteristic roots of ad X have absolute
values less than ¢, and U} = exp Q. Then Q, =Q; + 3, and U, = U; Z,.
Writing y = uz with ue U2, 2¢Z,, we have

[,y] = (zyx )y = (xuxV)ureU U} c U,,.

Therefore [z, y] belongs to the intersection of U}, and the center of G,. But
G, is semi-simple and 2¢ <z, and so this intersection contains only the iden-
tity. It follows that [z, y] = e. (4.2) is thus proved.

For each compact and connected L1k group @, we define k(G) = u(G)/u (U )
where 4 is a HAAR measure on G. Evidently k(@) does not depend on the choice
of u and k(G, X G,) = k(G k(G,).

Now we are in a position to prove one of our main results.

Theorem 1. Let M be a connected Lig group and G a maximal compact
subgroup of M. Then each finite subgroup F of M has always a normal
abelian subgroup A such that the index of A in F is not greater than k(G).
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Proof. We note then any two maximal compact subgroups of M are con-
jugate. Therefore, without loss of generality, we can assume that F c G.
Let U, have the same meaning with respect to G as above. We shall show that
4, = FnU,; is a commutative set. To see this, let =, y ¢4, and consider the
sequence of commutators

n =[xy, =[] ...,2,,=[2] ....

From Lemma 2, g(e, x,,;) < (2sin {3 (x))o(e, ,) and hence pg(e, z,) <
< (2sin {¥(x))to(e,y). Since F is finite and 2 sin ¢ (x) < 1, there must be an
n such that

Q(e’ xn+1) =0, [x: [33, xn—l]] = [x: xn] = Tpy = €.

— 1,1 I
Let w =2, ', ,. Then u = x'z,_, and then

[xs [x: u]] = [x’ [x: xu‘lxn—-l]] = x-—l [x, [x, xn-—-l]] r=e.

Since #(u) = d(x1) <x/3, we have, from Lemma 1 and (4.2), [z, u] = e,
whence z, = e. By repeating this process, we show successively that z,_; =
=e,..., % =e. Hence 2y = yx and 4, is a commutative set. The sub-
group A generated by A, is then abelian. But U, , is invariant under the adjoint
group, and so 4 is a normal abelian subgroup of F'.

Let b,4,b0,4,...,b,A be the totality of cosets of 4 in . When i # 7,
b;'b;¢ A. For simplicity, we set U = U, 4. From (4.1), UU! ¢ U,;. The
q open sets

bU,bU,...,0U

must be disjoint, forif b, UNb, U # o ,j # k, we would have b7 b, e UU1c U,
and then b;'b,eA, which is impossible.
Therefore
p(G) = 2ub;U) = qu(U)
and
index 4 =q¢ = u(Q) [ n(U) = k(Q).

The Theorem is thus proved.

b. Some properties of k£ (G). In this section, we shall establish a Theorem
which reduces the problem of k(@) for a general G to that for simple LIE
groups G.
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Theorem 2. Let G = G,- G,- ... -G, T be thelocal direct product of compact
connected simple Lig groups G, ..., G, and a toral group T. Then

k(G)=38k(Ad &) - k(Ad Qy)- ... -k(AdG,)
where 8 denotes the number of connected components in the center Z of Q.

Proof. Let ' = Ad @ and p: G@— @ the projection. Denote by Z, the
identity component of the center Z of G'. Then s is the order of the quotient
Z|Zy. Suppose U = U4, Q = Q.6 have the same meaning as in the first
paragraph of § 4. Let U’ and Q' be, respectively, the counterparts of U and Q
for the group @'. Since ker p = Z, (dp) (Q) = Q' and p(U) = U'. It follows
then that UZ = p~(U’). Suppose

Z == z1Z°U ZQZOU PR U zSZo, z;lzj¢Z0, i #jc
From the fact that UZ, = U, we have
p I U)=UZ=24U0U%UU...Uz2U.

This union is a disjoint union. Suppose z, UN 2,U # @ . Then 2 *2, e UU c U 5.
This means that we can choose X ¢ Q,; such that z7'z;, = exp X, and then
E = Ad 2;'z; = exp (ad X). But all the characteristic roots of ad X have
absolute values less than /3 and so the above equality implies ad X = 0. In
other words, X belongs to the center 3 of the LiE algebra G. Hence z;'z;¢Z,

and so ¢ = j. The union 2, UU ... Uz, U is therefore disjoint. Let x be a
normalized HAAR measure of G. Then we have

p(p2(U) = 2;=lﬂ(zi U) = su(U).
The set function u’' = u-p~! is evidently a normalized Haar measure of
G’ and so
k(G') = 1/u' (U") = 1/su(U) = k(G)/s.
Since Ad@ >~ Ad G, x AdG, X ...x AdG,, we get
k(@) =8-k(@)=s8-k(AdGy)-...-k(AdG,).

6. An integral formula for 4 (G). From Theorem 2, to calculate k(@) for a
general @, it suffices to calculate k(@) for simple compact LIt groups. In this
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section, we shall express it in terms of an ordinary RIEMANN integral. For this
purpose let us recall some known results about compact semi-simple L1E groups
(8], [10], [11].

Suppose that G is a connected and compact semi-simple LiE group of rank r,
and ® its Lik algebra. Take a maximal toral subgroup H of ¢, and denote by
$ the LiE algebra of H. Restricted to &, the exponential map is a homo-
morphism of the additive group § onto the multiplicative group H. The
kernel of this homomorphism is a lattice yin . Let + ¢, ¢z, ..., + @pm>»
2m = dim G — r be the roots of ® with respect to . They are linear forms on
$ taking integer values on y. It follows that cos 2ng,, €**% are functions on
$ mod y, and hence they can be regarded as functions on H. In fact, for xeH,
the characteristic roots of Ad z are precisely

1,1,...,1, n g~2min = 2niem o—iniem
N rr—— ——
r
Let
— AT m in2
o(x) = 4™ II7., sin® @, ()

and dg, dx be the normalized invariant volume elements of G, H, respectively
(.e., f dg = [ dxz = 1). Then, for any class function f over ¢/, we have
@ :

| @) dg = [ f(x)o(x)da|w
q H

where w is the order of the WEYL group [8], [10].

For later application, we find it more convenient to express [ f(g)dg in
@

terms of integrals over . To do this, we take a fundamental region P of y in
9, and take an invariant volume element dX of the additive group § such that
fdX = 1. Then
P

[ 1)y = f(X)g (X)dX jw

@

where 7, ¢ are functions on § given by

f(X) = f(exp X), g (X) = g(exp X), X¢$.

Theorem 3. Let G be a compact, connected simple Lig group of rank r.
Suppose oy, ...,&, to be a system of simple roots and = myo, + My +
+ ...+ m.x, the maximal root. Denote by s the number of elements in the
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center Z of G, by D the domain {x,>0,...,6,>0,mo,+ ... +
+myu, < Tl-é}, and regard each root x as a function of &y, ..., x,. Then
1 92 (dim G-r) 17 sin? i d
k(G)= p ”g( sinfpoa)do, ... da,

where, in the product I1 sin®? nx, x runs through all positive roots.

Proof. From Theorem 2, it suffices to prove the formula for the case
G = Ad G. Thus we can assume that G has a trivial center. Then

P={XeH:—i<o,(X)Z£%,7=1,2,...,7}

is a fundamental region of y in §. Suppose that dg, dX have the same meaning
as before, and Q = Q, is the totality of X in ® such that all the charac-
teristic roots of ad X have absolute values less thanz/6. Let U = U, = exp Q
and u be the normalized HaArR measure of G'. Then by WEYL’s integration
formula, we have

@ =+ O = FX)dX/w.

a)

Let R={XeH:p(X)I < ﬁ for all roots ¢}. Then P N Q =R.
We find it convenient to divide R into subdomains. For this purpose, let

Ci, Cs, ..., C, be all the WEYL chambers. Up to a change of index, we can
assume

Ci={XeH:x(X)>0,7=1,2,...,r}.

The union C,U C,U ... U C, isdisjoint and $H =C,U C,U ... U C,,
where, as well as in what follows, the symbol ‘="’ means ‘“‘coincides up to a set
of measure zero”. It follows then that R =U¥_, (RN C,) and

i=1

1 Y N
5@ — Zimg S X aXhe.

The WeyL group @ leaves invariant both the function g (X) and the set R.

Therefore the sets RN C,, RN C,, ..., R N C,, are equivalent to one another
under @, and we have then
1

e =RAfC;§ (X)dX.
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Using the fact that any positive root ¢ is of the form ¢ = Xq, &, with ¢, < m,,
t=1,2,...,7, we see that RNC, =D and p(X) = 4mITsin® zx where
2m = dim G — r and the product I7sin*nx extends to all positive roots «.
Hence

1
e — 4m in2
56 43‘Hsmmde.
By considering «;, ..., «, as functions over §), the differential r-form

dx; ... dx, (more precisely its absolute value) is an invariant volume element of
$ with { dx, ... dx, = 1 and so we can take it to be our dX . It follows then
P

1

W:a}"‘j...gﬂsmznadal oo do,.

Theorem 3 is thus proved.

7. k(G) lor the symplectic group. As an example, we shall actually carry
out the integration for the case G = Sp(r). Let us first establish a lemma.

Lemma. Let f,f,, ..., f, be integrable functions in one variable, and

h(@) fa(@) .. fr(21)
A = det filze) fa(zs) ... fr(2s)

fl(xr) fz.(xr) . . fr(xr)

Then
'All AIB Alf
a a
) | A%dz, dz, = r! det An 4y Ay
o 0 . e . .
Arl A'rz Arr
where .
Aii = 6“ f: (@) 1;(2) dt.
Proof. For every permutation (j;, ..., ,) of (1,2, ...,7)1let e(fy, Jas - - - » Jr)

denote 1 or —1 according as the permutation is even or odd. Then

A =2X; ey s7) €kys ..o, k;) f;, (1) fkl (1) - - f1, () fk,- ()

where the summation extends to all pairs of permutations (j;,7s ---> Ir)s
(ky, byy ..., k) of (1,2, ...,7). It follows that
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a

O NV Y 2 £ 2

0

ok € s oees Gr) € By oy o) Ay Aps oo Ay

160159 D (Guy oo vy Jr)

~
Il
b e

I

l
M

where
iz e A,

A
D(ar ... ) = dot | Ant Anz o Ay
A

Ajfl jr2 e 0 A- 'y
Since D(j,, ..., j,) is skew with respect to (j;, .. .,J,) we have
Ay, Ay ... A,

I:r!D(l,2,...,T):r!det An A22 "'Azr

A4, A4, ... A,
The Lemma is proved.

Now let G be the symplectic group of rank r. We can choose coordinates
T, ...,% in § such that {4+ 2x;, 4+ x; + x;: j < k} is the totality of roots.
Then [2]

0(1 == xl """x2, az == xz —-:l73, ""“ﬂ“l == xn..l _x", an= 227,,
form a fundamental system of simple roots with
f=2x =20+ 200+ ... + 26,31 + x,
as the maximal root. In terms of z’s the domain D in Theorem 3 becomes
1
<z, <z, 1< ... <2 <94.

When @ = Sp(r), we know that ¢ = 2 and the product 4™ [7 sin®n«
(2m = dim G — r) is the square of the determinant [11, p. 59]

sin 2n 2, sin2zz, ... sin2nz,
sind4nx, sin4nx, ... sin4azx
4= 2 det ! ? T

sin 2rnx, sin 2rnx, ... sin 2rnw,
Therefore

1 % . 2
W=%j...£d docl...dcx,.——j...gA dxl...dx,.

20 CMH vol. 89
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Any permutation of the coordinates z,, . .., x, leaves the integrand unchanged.
1t follows then
1

1
TEoey = A s

where D' = {0 < z,; < -2—12, j=1,2,...,r}. Applying the above Lemma, we
have

Cn G2 ... Cir
1 Cyy Cop ... C
= 4r det 21 “22 2r
k (Sp ()
Crp Crg ... Cpp

with ¢, = (kn — 6sin (kxn/6)) /48 k=, and for j # k,
¢ = [(j + k) sin ((j — k)m/12) — (j — k) sin (G + &)7/12)]/4 (> — ).
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