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Géométrie and algebraic intersection numbers

by Michel A. Kervaire, New York (USA)

Let M be a connected 2w-dimensional differential manifold, not neeessarily
compact. Let xoeM be a base point, and oc€nn{M, x0) a given homotopy class.

It is well known that, unless M is simply connected, there need not exist any
differentiable imbedding (p : Sn -&gt; M representing oc.

Let M be the universal cover of M provided with an arbitrary but fixed

orientation, and let a eHn(M) be the (intégral) homology class of a lifting of oc.

Theorem 1. Assuming n &gt; 2, the class ocenn(M, x0) is representable by a
differentiable imbedding &lt;p : Sn -&gt; M2n if and only if for every covering
transformation t 7^ 1 of M the homology intersection number a • r(a) vanishes.

If M is oriented, one can defîne a sealar product

with values in the intégral group ring of n nx (M, xQ). (Cf. K. Reidemeister
[2] and J. Milnor [1].) Hère m — dim M dim M need not be even, and we

assume that the projection map p: M -&gt; M is orientation preserving. The
image oî x ® y under the above pairing will be denoted as in Milnor [1]
by l&gt;,y].

In terms of this sealar product Theorem 1 can be formulated as follows :

Theorem V. Let M2nbe connected and oriented. Assumingthat n&gt;2, the class

oc€nn(M, xQ) is representable by a differentiable imbedding cp:Sn-+M2n
if and only if

[a, a] — a• a 0

The proof is given in §1 and §2. In §3 we give conditions under which two
imbeddings cp : Xq -&gt; Mm and ip : Ym~q -&gt; Mm representing the homology
classes oc, p respectively are diffeotopic to imbeddings (pQiip0 such that the
cardinality of the set &lt;po(XQ) ^ y)0(Ym-&lt;t) equals the absolute value \oc- f}\
of the homology intersection number oc • p. (Cf. Theorem 2 below.)

The author has an Alfred P. Sloan Fellowship.
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The proofs of Theorem 1 and Theorem 2 dépend on the following well
known lemma, essentially due to H. Whitney.

Let B? dénote the open unit bail in i?&quot;.

Lemma. Let Vm be a differential manifold, not necessarily compact, and let
&lt;p : Bq -&gt; Vm and y&gt; : Bm~q -&gt; Vm be two differentiable imbeddings such that
&lt;p(Bq) and ^(jB™&quot;&quot;5) intersect transversally at exactly two points R q&gt;(P)

y&gt;(Q) and R&apos; &lt;p(Pr) y&gt;(Qf).

Suppose that
(i) both q and m —q are larger than 2,
(ii) if u\I -&gt;Bq and v : / -&gt; B™-* are paihs from P to P&apos; and Q to Q&apos;

respectively, then the loop &lt;p(u)- ipiv&quot;1) is freely homotopic in V to a
constant loop,

(iii) wiih respect to some orientation of a neighborhood of &lt;p(Bq) ^ tp(Bm~q)
in V the intersection coefficients of y(Bq) and y&gt;(Bm~q) at R and R&apos;

are opposite, i. e. cp(Bq) • y)(Bm~q) 0.
Then there exists a diffeotopy q&gt;t: Bq -&gt; Vm such that cpx &lt;p, &lt;pt(x) is

independent of t for \x\ &gt; 1 —e for some positive e and &lt;po{Bq) ^ y)(Bm&quot;q) =0.
For a proof, see [3] and [4],

§ 1. Prooî oî Theorem 1

It is easy to see that a • r (a) 0 for ail r ^ 1 is a necessary condition for
the existence of an imbedding (p:Sn-&gt;M2n representing ot€7zn(M, x0).
(Recall that a dénotes the homology class of a lifting of oc in the universal

cover M of M.) For let &lt;p : Sn -&gt; M2n be a mapping representing oc, and

/ : Sn -&gt; M a lifting of (p. Let r : M -&gt; M be a covering transformation,

t ^z 1. We show that if P is a point in f(Sn) ^ rf(Sn) then &lt;p is not an
imbedding. Let Q r-iPc/OS^). Since r ^ 1, we hâve Q ^P. Choose
Q&apos;,P&apos;€Sn such that f(Q&apos;) Q and f(P&apos;) P. Then Q&apos; ^ P&apos; but &lt;p{Qf)

(p(Pr) since / is a lifting of cp. Hence (p is not bijective. Now, if &lt;p is an
imbedding, it follows that f(Sn) ^ rf(Sn) 0 for every t^I, and a fortiori
a • r (a) 0.

Conversely, suppose that a • t (a) 0 for every r^l, Since Jf is simply
connected and n &gt; 2, Whitney&apos;s lemma (cf. introduction) implies that a can

be represented by a differentiable imbedding / : Sn -&gt; M. The projection map

p:M -&gt;M is an immersion. Hence / projects to an immersion p q f cp : $w-&gt; i^«

We may assume without loss of generality that &lt;p (Sn) intersects itself transver-
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sally in a finite number of points where only two sheets of &lt;p (8n) cross each
other. In other words, we may assume that ç&gt; is a completely regular immersion
in the sensé of [4], (This can be obtained by an arbitrarily close approximation
to &lt;p in the 02-topology so that the new &lt;p still lifts to an imbedding.)

Let S9 be the set of pairs of (distinct) points (P, Q) on 8n such that cp(P)
q)(Q). If Sv ^= 0, pick a pair (P,Q)eS. Claim: There exists another pair

(Pf,Qf)€89 and (p is regularly homotopic to an immersion &amp;:Sn-+M

such that
(i) any lifting F : Sn -&gt; M of 0 is an imbedding,
(ii) S# S,-{(P,Q),(P&apos;,Ç&apos;)},

(iii) 0 and q? coïncide outside some neighborhood of a path joining P to P&apos;

on8n.
This will prove the theorem by induction on the number of self-intersection

points.
We now prove the claim. Since &lt;p(P) y&gt;(Q) and /(P) ^/(Q), there

exists a covering transformation t ^ 1 such that /(P) rf(Q) A, say.
The point A is a transversal intersection point of f(Sn) and rf(Sn). Let
£(s ± 1) be the intersection coefficient. Since a • r(a) f(Sn) • rf(8n) 0

by assumption, there exists another intersection point A&apos; of f{8n) and rf(Sn)
with intersection coefficient —e. Let P&apos;, Q&apos;eSn be such that f(P&apos;)

T/ (Q&apos;) i4;, and let u:I -+Sn be a path on S* from P to P&apos;, and similarly
v: I -&gt;8n a path on $w from Q to Q&apos; such that w(J) ^ t?(/) 0. We may
assume moreover that u(I) and v(I) are disjoint from the points of the pairs in
Sy except for u(0) P, u(l) P&apos;, v(0) Q and v(l) Q&apos;. Then ç?w(/)
and ç&gt;#(/) intersect only at ç?^(0) &lt;pv(0) and 99^(1) ç?î;(1). Since Jkf is

simply connected, fu and rfv are two homotopic paths from A to Af. Hence

(pu and (pv are homotopic paths on M from &lt;p(P) ç&gt;(Q) iJ to &lt;p(P&apos;)

&lt;p(Q;) JS&apos;. Take disjoint open neighborhoods Nu and JYV of u(I) and «;(/)
respectively with diffeomorphisms hu: B71 -&gt; Nu and hv: B*1 -&gt; Nv, and
such that P,Q, P&apos; ,Qf are the only points from #v in Nu^ Nv. Let F

.M — (p(Sn — Nu v Nv) and set &lt;pt 99AJ 571 and y q&gt;hv\ Bn. We are
now in a position to apply Whitney&apos;s lemma. The loop (pih^iu) • fh^1^&quot;1)

is homotopic to a constant loop in F because it is homotopic to a constant loop
in M and the inclusion F -&gt; M induces an isomorphism 7ixV ^nxM. Thus
9?i is diffeotopic in F, relative to a neighborhood of the boundary of D^, to an
imbedding &lt;p0 : J571 -&gt; F such that ç?0(^n) ^ ^(-B11) 0- Define the immersion
*:i8f»-»j|f by

&lt;p(z) if
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It is easily checked that 0 satisfies the conditions (ii) and (iii) of the above

claim. To see that condition (i) stating that 0 lifts to an imbedding F : Sn -&gt; M
is also satisfied, let A, B be points on Sn with F (A) — F(B). A path w from
A to B on Sn maps to a loop Fw, and the loop 0w is homotopic to a constant
loop in M. Since 0(A) 0(5) we hâve &lt;p(A) &lt;p(B) because the self-
intersection points of 0 are self-intersection points of (p. In fact &lt;pw is also

homotopic to a constant loop in M. (We may assume (pw 0w because,
unless A B, we hâve ^4,1?€$w — iVw and we can take w(I) c Sn — Nu.)
But then, this means that f(A) f(B), and since / is an imbedding by
construction, it follows that A B. So F is bijective, and hence an imbedding.
The proof of Theorem 1 is thus complète.

§ 2. The scalar product

Let M be a connected, oriented, differential manifold of dimension m, not
necessarily even. Suppose M is triangulated as a regular cell complex. The

triangulation of M lifts to a triangulation of M invariant under the covering
transformations. We dénote by £f, i 1,..., &lt;xq the g-cells of M and choose

for each i a lifting x\ of |f. Let rjf~q be the dual cell to f f. (£?. rçf&quot;? 1.)
A lifting y™~9 of rjf&quot;~q is then determined by the condition ^- yf~q ô^.
When we change the lifting x\ of £f we demand that yf~q be changed
accordingly so that x\ • yf~~q ô^- remains valid.

Let n 7i x (M, xQ) be the fundamental group of M at x0 which we identify
with the group of covering transformations of M. A g-dimensional chain x of

(the triangulation of) M has a unique expression as x ZiXixl, where

AteZ|V| and almost ail A/s are zéro. If y Ujjbt^yf~qt define

[x, y] [Z&amp;A, 2&gt;,#~«] Z^k
where ju -&gt; /* is the anti-ringhomomorphism of Z[?r] onto itself determined by
T -&gt; T&quot;1 for

Theorem. TAe scalar product [x, t/] is independent of the choice of the liftings
x\ and induces a pairing

HqM ®Hm_qM-&gt;Z[7i\.

The first statement follows by an easy calculation, using A • /z fi • A. The

bilinearity of the product is obvious, and the second statement follows from
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the formula [x, dy] ± [dx, y], where dim x -f- dim y m + 1, and d
is the boundary Z[:rc]-homomorphism. (Compare [1].)

We now dérive a formula which will yield a translation of the condition
&quot;a • r(a) 0 for ail r ^ 1&quot; in terms of the scalar product.

Let a0 2%&lt;xtxq &lt;*%eZ[n\, be a représentative g-ehain for a eHqM and

60 Ejfi^~q a représentative of b€Hm_qM in terms of the dual
subdivision of If. Then,

We calculate a0r(60), writing #t and ^ for x\ and y™~* respectively to
simplify the notation. We hâve &lt;xt ZQ€natQg and ^ ZQ€nb3ea, where

at e, 6J)a€Z[7T:] are almost ail 0. Then,

and

In other words, the integer a0- t(60) is just the coefficient of r in the scalar
product [ao,bo]. In formula,

(Compare Milnor [1] where (*) is taken as définition of [a, 6].)
Now, if m — 2n, q n and a b, it follows that the condition &quot;a • r(a) 0

for ail t ^ 1&quot; is équivalent to

[a, a] — a - a 0.
This proves Theorem 1&apos;.

Remarks. (1) If we replace a bj Ta in Theorem 1&apos;, [a, a] — a • a becomes

f([a, a] — a- ajr&quot;1. Hence, only the conjugacy class of [a, a] — a- a is well
determined by oc. It seems therefore adéquate to choose once and for ail a

base point zoeM above x^M and require ail liftings to be liftings at z0. We
then hâve a fonction

Q:jzn(M, x0) ~&gt;Z[ti]

Q(oc)= [a, à] —a a, and a is representable by an imbedded w-sphere if
and only if Q(&lt;x) 0. The fonction Q is somewhat like a quadratic form. Let
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&lt;&lt;x, py [a,b] + (— l)n[«, f&gt;] and let Xx dénote the coefficient of len in
Then

Q(ra) tQ(oc)t

«(« + /S) 0(«) + #(/?) + B(&lt;x,P),

where B(oc,p) ~ &lt;&lt;%,/?&gt; — &lt;&lt;%,/SX is bilinear and symmetric.
(2) We hâve proved a slightly stronger statement than Theorem T. A class

(xeHnM2n is representable by an imbedded manifold An c M2n such that
ti^-A -&gt; nxM is trivial if and only if &lt;x is the projection of a class a cHn(M)
which is representable by a submanifold Bn c M and [a,a] — a- a 0.
This gives a hint for the study of the intersection of submanifolds of M in §3.

Example. Take M2n to be the connected sum of ^S1 x /S2n~1 with k copies
of 8nxSn. Let xt,yl€Ttn{M, x0) be represented by Sn x (point) and

(point) x Sn in the i-th copy of Sn x Sn (suitably joined to the base

point x0). Then, nn(M, x0) is the free Z[J]~module generated by xlt..., xk,
Vu- • •&gt; Vki where J dénotes the (multiplicative) infinité cyclic group. If
&lt;x E^Xi + £)(ljyj€nn(M, x0) is a given homotopy class, where &lt;%t,

ft cZ [ J ], it follows from the formula (*) above that

Q(*) 27,(«&lt;&amp; + (- 1)V^) -^(««Â + (- l)ttft«,)°

where A0 is the integer obtained by substituting the value 1 for every élément
of Jin XeZ[J].

For instance, if we let t dénote a generator of J, the class x -\- (t + t~l)y
in 7inM, where M S1 x S2™&quot;1 # #n X Sn, is representable by a differ-
entiable imbedding of Sn into M if w is odd, but is not representable if n is

even. The same statement holds for x + (t — t-x)y interverting even and odd.

§ 3. Redueing the géométrie intersection of submanifolds

Let ç&gt; : XQ -&gt; Mm and y) : Ym~q -&gt; Mm be differentiable immersions, resp.

imbeddings, where X, Y, M are connected differential manifolds. We assume

X, Y to be compact, without boundary.
Roughly speaking, the problem is to use a déformation of q&gt; so as to reduce

the intersection &lt;p(X) r\ y)(Y) to consist of a number of points equal to the

algebraic intersection number of &lt;p(X) and y)(Y).
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We assume that M is oriented. There are then two cases :

Case 1. X and Y are oriented. Denoting by (xeHqM and fieHm_qM the
intégral homology classes represented by &lt;p : Xq -&gt; M and y) : Ym~~q -&gt; M
respectively, the algebraic (homology) intersection number oc • ft is then an
integer.

Case 2. At least one of the manifolds X, Y is non-orientable. Then 9? : Xq-&gt;M

and ^ : Ym~q -&gt; ifef still represent mod 2 homology classes ot€Hq(M; Z2) and
f}eHm_q(M ; Z2). In this case the intersection number &amp;/3 is an integer
modulo 2.

We use |&lt;%- /?| to mean the absolute value in Case 1. In Case 2, \oc - f}\ is
the integer 0 or 1 depending on whether &lt;x- fi 0cZ2 or &lt;%-(}= l€Z2.

In either case we shall assume that q&gt; and ^ satisfy the following hypothesis :

(H) The induced homomorphisms ç?« : 7itX -&gt;n1M and ip* : nx Y -&gt; nxM
are trivial.

It follows that (p and y can be lifted to differentiable immersions, resp.
imbeddings / : Xq -&gt; M and g : Fm~« -&gt; M, where as before M is the
universai cover of M. We let a and b dénote the homology classes represented

by / and g. In Case 1, a*HqM and b€Hm_qM. In Case 2, a€Hq(M,Z2)
and b€Hm^q(M;Z2).

We also assume

Finally, we use the following notation. If AcZfjr], A ZTnTrf set m; A

Theorem 2. With the above notations and hypothèses, including (H) and
the immersion, resp. imbedding y : XQ -&gt; Mm is regudarly homotopic, resp.
diffeotopic to an immersion, resp. imbedding cp0 : Xq ~&gt; Mm such that ç?0 (X) r\ tp (Y)
consists of | (x - /S | points if and only if
in Case 1, w[a, 6] — |^-/5| 0,

in Case 2, [a,b] —a« b 0 tn- Z2[^] /or ^ome liftings a, 6 o/ a, ^8.

Remark. Observe that

Thus, in view of (*), the équation w[a, b] — |&lt;* • 0| 0 in Case 1 is équivalent
to the statement that a- r(b) does not change sign as r runs over n. (More
precisely, (a&gt;ab)(a- rb) ^ 0 for ail a, ten.) Obviously the condition is
independent of the choice of liftings.

19 CMH vol. 39
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An important spécial case in practice seems to be Case 1 when | &lt;% • /S | 0

or 1. Then, w[a, b] — \&lt;x- j8| 0 is équivalent to the nicer looking condition

[a, 6] — a • b 0 for some liftings a,b of &lt;x, fi.

(However, in gênerai this last condition is definitely stronger than the former.)
As an illustration to the theorem, let M S1 x S271-1 dfr Sn X 8n, and

x, y€7tn(M, x0) be the éléments represented by Sn xQ and P x Sn respec-
tively, with x0 P x Q. Let u, V€7tn(M, x0) be given éléments and A be the
2 by 2 matrix over Z [ J ] such that (&quot;) A (*), where J is the multiplicative
infinité cyclic group.

Suppose that u-v 1, and let Jn dénote the matrix

T (° l\
n \(-l)n 0/-

The classes u and v can be represented by imbedded sphères with just one
intersection point if and only if

1&apos;A1&apos;A&apos;-(o

for some integer r. (t dénotes a generator of J and A* is the conjugate trans-
posed of A (al}), i. e. A* (a*j), where a*,- â,t.)

Proof of Theorem 2. We may assume that &lt;p{X) and tp(Y) intersect
transversally in a finite number of points Sl9..., Sk and çr&quot;1^), ip~1(St)

each consists of a single point for every i 1,..., Je. Let / : X -&gt; M and

g : Y -&gt; M be arbitrary liftings of cp and \p respectively. (Hypothesis (H).)
Case 1. The manifolds X and Y are oriented. If tctz, we hâve f(X)- rg(Y)
«T|a- r(6)| for some eT ± 1. For each rerc we can sélect intersection

points BT},j= 1,..., \a- r(b)\, of /(X) and rg(Y) so that the
intersection coefficient of f(X) and tç(Y) at i2r&gt;^ is equal to eT, and thus

independent of j. (If a • r (6) 0, the set {i2T^} is empty.) Let (PTj, Qri)€X X F
be the uniquely determined pair such that f(PTj) tg{QTtj) ^rj*

Now, let (P, Q)eX x F be such that ç&gt;(P) f(Q) and P ^PT $ for ail r, i,
if any such pair exists. Then, there exists a covering transformation oen such

that /(P) ag(Q) B, say, and iî ^ jR^ for ail i • (1 ^ i ^ |a• ab\.)
Actually J? ^ JST&gt;i for ail r9j. Since /(X)• c^(7) eo\a- a(b)\, there must
exist another pair (P&apos;,Qf)€X X Y with /(P&apos;) ag(Q&apos;) iî&apos;, where
jB; 7^i?a t- for ail i and the intersection coefficients of f(X) and
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R and R&apos; are opposite. Again, since y)~l(pRf) consists of a single point, we
actually hâve R1 ^ RTi for ail t, j.

We choose a path u : I -&gt; X from P to P&apos; such that u (I) and some neigh-
borhood Nu of u(I) in X are disjoint from any other ç&gt;-preimage of an
intersection point of &lt;p(X) and ip(Y). Using Whitney&apos;s lemma as in §1, we can
eliminate the intersection points &lt;p(P) y(Q) and y(P!) y{Q&apos;) by a
diffeotopy of cp | Nu keeping &lt;p fixed near the boundary of Nu.

It follows that &lt;p is always (i. e. without condition on [a, &amp;]) regularly homo-
topic, resp. diffeotopic, to an immersion, resp. an imbedding cpQ such that

\Vo{X)rsV{T)\=Zr\a-r{b)\9

where | &lt;pQ (X) ^ \p Y) | dénotes the cardinality of the finite set &lt;p0 (X) &lt;^ %p Y).
If a - t(6) does not change sign, we then hâve

Conversely, if \&lt;po(X) ^ y&gt;(Y)\ \&lt;*-0\ then \ZTa- r(b)\ Xr|a.
and it follows that a- r(b) e|a- t(6)| for ail t, where e ± 1 is inde-
pendent of t

Case 2. The manifold X, say, is non-orientable. Then, aeHq(M ; Z2) and

we also regard 6 as a class in i/m_g (ilf ; Z2). For those r € jr such that a • r (6) 7^ 0

(mod 2), we choose an intersection point RT of f(X) and rg(Y), and let
(PT, QT) eX x F be the uniquely determined pair such that / (PT) rg (QT)

RT. Let (P, Q)eX x Y be a pair such that ç&gt;(P) ^(Q) and P ^ Pr
for ail rejr. Then /(P) crgr(Q) R, say, for some creTc, and since either
Po does not exist or P ^ Pa, there exist another pair (Pr, Q&apos;) with /(P;)
~ a9(Q&apos;) ^&apos;) say, where P1 ^ PT for ail ren. Let t; be a path on Y from
6 to Q&apos; such that #(/) r&gt; {QT} 0. Choose an orientation of a neighborhood
Nv of v(I) in Y. Since X is non-orientable, there exists a path winl from
P to P&apos; with m (/) r\ {PT} 0, and an orientation of a neighborhood Nu of
w(/) in X such that the intersection number of (p(Nu) and ip(Nv) is the
integer 0. We can then use Whitney&apos;s lemma again, as in § 1, and eliminate the
pairs (P, Q) and (Pr, Q&apos;) from the set of intersection pairs by a diffeotopy of
(p | Nu keeping &lt;p fixed near the boundary of Nu. Thus q) can be replaced by ç?0

such that

where \a&gt; t(6)| is the integer 0 if a* t(6) 0 mod 2 and the integer 1 if
a-T(6) 1 mod 2.
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If [a,b] ab in Z2[^] for some liftings a, 6, then a- r(b) 0 for
t ^ 1, and therefore, using thèse liftings in the above argument, | &lt;pQ (X) ^ y) Y) |

is equal to 0 or 1 depending on whether a • 6 0 or 1 mod 2 respeetively. In
other words, \&lt;po(X) ^ ^(F)| |a-6|. Since a- r(b) 0 for r fi 1 implies
&lt;x-f} 2JTa-r(b) a-b, we hâve \&lt;po(X) rs y&gt;(Y)\ \&lt;x-ft\ as desired.

Conversely, if &lt;p(X) &lt;-&gt; y (Y) 0, we obviously hâve [a, 6] —a- 6 0

for any liftings of &lt;p and y&gt; since both terms are then 0. If 19? (X) ^ y) F) | l
we take a, b to be the classes of liftings of &lt;p and y) whose images intersect each
other. Then a- r(b) ôTl. Hence [a,b] —a- b 0 in this case too. This
complètes the proof of Theorem 2.

Courant Institute of Mathematical Sciences, New York University
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