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Geometric and algebraic intersection numbers

by MicHEL A. KERVAIRE, New York (USA)

Let M be a connected 2n-dimensional differential manifold, not necessarily
compact. Let x,e M be a base point, and xexn, (M, z,) a given homotopy class.
It is well known that, unless M is simply connected, there need not exist any
differentiable imbedding ¢ : S® —~ M representing «.

Let M be the universal cover of M provided with an arbitrary but fixed

orientation, and let a ¢ H,(M) be the (integral) homology class of a lifting of «.

Theorem 1. Assuming n > 2, the class xen,(M, x,) 8 representable by a
differentiable imbedding ¢ : S* — M if and only if for every covering trans-

formation t # 1 of M the homology intersection number a- t(a) vanishes.
If M is oriented, one can define a scalar product

H,(M) ® H,_, (M) —>Z[x]

with values in the integral group ring of # = n, (M, z,). (Cf. K. REIDEMEISTER
[2] and J. MiLNOR [1].) Here m = dim M = dim M need not be even, and we
assume that the projection map p: M — M is orientation preserving. The
image of * ® y under the above pairing will be denoted as in MiLNOR [1]
by [z, y].

In terms of this scalar product Theorem 1 can be formulated as follows:

Theorem 1'. Let M2?" be connected and oriented. Assuming that n > 2, the class
xem, (M, z,) s representable by a differentiable imbedding ¢:S™ — M*"
of and only if

[@a,a] —a-a=0.

The proof is given in §1 and §2. In §3 we give conditions under which two
imbeddings ¢: X2 —- M™ and y: Y™ 2 — M™ representing the homology
classes «, 8 respectively are diffeotopic to imbeddings ¢,, v, such that the
cardinality of the set ¢,(X?) ~ y,(¥Y™ %) equals the absolute value |x- f§]
of the homology intersection number & - 8. (Cf. Theorem 2 below.)
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272 MicHEL A. KERVAIRE

The proofs of Theorem 1 and Theorem 2 depend on the following well
known lemma, essentially due to H. WHITNEY.
Let Br denote the open unit ball in R7.

Lemma. Let V™ be a differential manifold, not necessarily compact, and let
@:B1—> V™ and y:B™2—> V™ be two differentiable imbeddings such that
@(B?) and y(B™ %) wntersect transversally at exactly two points R = ¢(P) =
= y(Q) and B = ¢(P) = p(@).

Suppose that

(i) both ¢ and m — q are larger than 2,

(i) ¢f w:1 - B? and v:I — B™ 2 are paths from P to P’ and Q to Q'
respectively, then the loop ¢@(u)-y(v1) 48 freely homotopic in V to a
constant loop,

(iii) wnth respect to some orientation of a neighborhood of ¢ (B?) v y(B™~9)
iV the intersection coefficients of ¢ (B?) and y(B™ %) at R and R’
are opposite, i. e. ¢ (B?)-p(B™ 9 = 0.

Then there exists a diffeotopy ¢,: B¢ — V™ such that ¢, = @, p,(x) i3

independent of t for |x| > 1 — e for some positive e and @o(B2) ~ p(B™9) =g.

For a proof, see [3] and [4].

§ 1. Proof of Theorem 1

It is easy to see that a- 7(a) = 0 for all v 54 1 is a necessary condition for
the existence of an imbedding ¢:8" — M?" representing wen,(M, x,).
(Reca,ll that a denotes the homology class of a lifting of « in the universal
cover M of M. ) For let ¢:8» — M?» be a mapping representing «, and
f:8" > M a lifting of . Let v: M — M be a covering transformation,
7 % 1. We show that if P is a point in f(S®) ~ 7f(S*) then ¢ is not an im-
bedding. Let @ = v 'Pef(S*). Since 7 # 1, we have @ % P. Choose
Q', P'eS™ such that f(Q') =@ and f(P') = P. Then Q' = P’ but ¢(Q') =
= @(P') since f is a lifting of ¢. Hence ¢ is not bijective. Now, if ¢ is an
imbedding, it follows that f(S”) ~ 7f(S") = @ for every v % 1, and a fortiori
a-t(a) = 0.

Conversely, suppose that a-7(a) = 0 for every 7 = 1. Since M is simply
connected and n > 2, WHITNEY’s lemma (cf. introduction) implies that @ can
be represented by a differentiable imbedding f: 8» — M. The projection map

p: M — M isan immersion. Hence f projects to an immersion pof = ¢ : S*—> M.
We may assume without loss of generality that ¢(8”) intersects itself transver-
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sally in a finite number of points where only two sheets of ¢(8") cross each
other. In other words, we may assume that ¢ is a completely regular immersion
in the sense of [4]. (This can be obtained by an arbitrarily close approximation
to ¢ in the C%-topology so that the new g still lifts to an imbedding.)

Let S, be the set of pairs of (distinct) points (P, @) on 8™ such that ¢(P) =
= ¢(@). If S, # o, pick a pair (P,Q)eS. Claim: There exists another pair
(P',Q")eS, and ¢ is regularly homotopic to an immersion @:8" > M
such that

(i) any lifting F:8" — M of & isan imbedding,
(il) Sp = Sq) —{(P,Q), (P”Q')};
(iii) @ and ¢ coincide outside some neighborhood of a path joining P to P’
on S».

This will prove the theorem by induction on the number of self-intersection
points.

We now prove the claim. Since ¢(P) = ¢(Q) and f(P) # f(Q), there
exists a covering transformation v 7% 1 such that f(P) = 7f(Q) = A4, say.
The point A is a transversal intersection point of f(8") and 7f(S"). Let
e(e = 4+ 1) be the intersection coefficient. Since a - r(a) = f(S*) - 7f(S") =0
by assumption, there exists another intersection point 4’ of f(8*) and =f(S")
with intersection coefficient —e¢. Let P, @' eS™ be such that f(P') =
= 1f(Q') = 4’, andlet w:1 — 8" be a path on S* from P to P', and similarly
v:I - 8" a path on S" from @ to @' such that u(I) ~v(I) = 9. We may
assume moreover that »(7) and v (/) are disjoint from the points of the pairs in
S, except for u(0) = P,u(l) = P', v(0) =@ and v(1) =@Q'. Then ¢u(l)
and ¢wv(I) intersect only at pu(0) = ¢v(0) and ¢u(l) = ¢v(1). Since M is
simply connected, fu and rfv are two homotopic paths from 4 to A’. Hence
¢u and @v are homotopic paths on M from ¢(P)=¢(@) =R to ¢(P')=
= @(Q') = R'. Take disjoint open neighborhoods N, and N, of » (/) and v (/)
respectively with diffeomorphisms #,: B» - N, and A,: B - N,, and
such that P,Q, P',Q' are the only points from S, in N, v N,. Let V =
=M —¢(S*—N,vN,) and set ¢, = ¢h,|B* and y = ¢h,|B*. We are
now in a position to apply WHITNEY’s lemma. The loop ¢,h;(u)-wh, 1 (v™1)
is homotopic to a constant loop in V because it is homotopic to a constant loop
in M and the inclusion V — M induces an isomorphism 7,V =~ n, M. Thus
¢, is diffeotopic in V, relative to a neighborhood of the boundary of D", to an
imbedding ¢,: B® — V such that ¢,(B") ~ v (B") = ¢. Define the immersion
D.8" s M by
| pohzt(x) if xzeN,, and

@) =1 (2 if zeSm — N,
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It is easily checked that @ satisfies the conditions (ii) and (iii) of the above

claim. To see that condition (i) stating that @ lifts to an imbedding F: S — M
is also satisfied, let 4, B be points on §* with F(4) = F(B). A path w from
A to B on S™ maps to a loop Fw, and the loop @w is homotopic to a constant
loop in M. Since @(4) = @(B) we have ¢(A4) = ¢(B) because the self-
intersection points of @ are self-intersection points of ¢. In fact pw is also
homotopic to a constant loop in M. (We may assume ¢w = @w because,
unless A = B, we have A, BeS® — N, and we can take w(l) ¢ S* — N,.)
But then, this means that f(A) = f(B), and since f is an imbedding by
construction, it follows that 4 — B. So F'is bijective, and hence an imbedding.
The proof of Theorem 1 is thus complete.

§ 2. The scalar produet

Let M be a connected, oriented, differential manifold of dimension m, not
necessarily even. Suppose M is triangulated as a regular cell complex. The

triangulation of M lifts to a triangulation of M invariant under the covering
transformations. We denote by £f,1 = 1,..., «, the g-cells of M and choose
for each ¢ a lifting x{ of £%. Let 7'~ ? be the dual cell to &7. (§7- 7" 7=1.)
A lifting y7~? of #7~? is then determined by the condition z{-y7~ 7= 4,;.
When we change the lifting a! of &? we demand that y7'"~? be changed
accordingly so that z{ .y} ? = d;; remains valid.

Let n = n,(M, x,) be the fundamental group of M at x, which we identify
with the group of covering transformations of M. A g¢-dimensional chain z of

2%, where

(the triangulation of) M has a unique expression as x = 2 4, z7,

A;eZ[n] and almost all 1,’s are zero. If y = 2;u;y7 7, define

[z, y] = [ZA; 2, Z‘ij?*q] = “:i}‘i:ﬁi ;

7

where u — p is the anti-ringhomomorphism of Z[n] onto itself determined by
T —> 1! for Tem.

Theorem. The scalar product [z, y] is independent of the choice of the liftings
x? and induces a pairing
H,M ®H, M —~Zx].

The first statement follows by an easy calculation, using A-p = - A. The
bilinearity of the product is obvious, and the second statement follows from
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the formula [z,dy] = + [dz,y], where dimx 4+ dimy=m + 1, and d
is the boundary Z[n]-homomorphism. (Compare [1].)

We now derive a formula which will yield a translation of the condition
a-t(a) = 0 forall v = 1¢ in terms of the scalar product.

Let ay = 22!, x,eZ[n], be a representative g-chain for a ¢eH qJ_W_ and
by = 28,47 " a representative of beH m_qﬂ_l in terms of the dual sub-
division of M . Then,

”

[ay, by] = Zio"iEi .

We calculate a,- 7(b,), writing 2, and y; for x! and y7~? respectively to
simplify the notation. We have o, =2 ,a, .0 and B;,= 2 ,b;, o, where
@ ,,b; seZ[n] are almost all 0. Then,

@y T(by) = (25,0@;,00%,) - T(25,50;60Y;) = 2 00;,0b; 110>
and

h -1
Loy = Zi,e,aai,ebi,ago = X, (Zi,Qai,Qbi,’r-lQ)T .

In other words, the integer a,- t(b,) is just the coefficient of 7 in the scalar
product [a,, b,]. In formula,

(*) [a’b] :‘2167!(“' T(b))T.

(Compare MILNOR [1] where (*) is taken as definition of [a, b].)
Now,if m =2n,g=mn and a =b, it follows that the condition "a - 7(a)=0
for all 7 # 1* is equivalent to

l[a,a] —a-a=0.
This proves Theorem 1'.

Remarks. (1) If we replace @ by ra in Theorem 1', [a,a] — a-a becomes
7([a, a] —a-a)r!. Hence, only the conjugacy class of [a,a] —a-a is well
determined by «. It seems therefore adequate to choose once and for all a

base point z,e M above x,e M and require all liftings to be liftings at z,. We
then have a function

Q: 7, (M, %) >Z[n],

Q(x)=[a,a] —a-a, and « is representable by an imbedded n-sphere if
and only if Q(x)= 0. The function @ is somewhat like a quadratic form. Let



276 MicHEL A. KERVAIRE

(e, B> = [a,b] + (— 1)*[a,b] and let A, denote the coefficient of lex in
AeZ[n]. Then

Q(rx) = 1Q(x)T (Tem),
Q(x + ) = (x) + Q) + B(x,p),

where B(x,p) = <{x,p)—<{«, ), is bilinear and symmetric.
(2) We have proved a slightly stronger statement than Theorem 1'. A class
weH, M?" is representable by an imbedded manifold 4™ c M?3*" such that

n, A - 7, M is trivial if and only if x is the projection of a class a eH, (M)

which is representable by a submanifold B c M and [@a,a] —a-a = 0.
This gives a hint for the study of the intersection of submanifolds of M in §3.

Example. Take M*" to be the connected sum of S' x 827! with k copies
of S*x S». Let «x;,y,en,(M,x,) be represented by 8" X (point) and
(point) X 8* in the i-th copy of 8™ x 8™ (suitably joined to the base
point z,). Then, =,(M, x,) is the free Z[J]-module generated by =,,..., z;,
Y15- .+ Yy, where J denotes the (multiplicative) infinite cyclic group. If
o = L% + ZiBysen, (M, x,) is a given homotopy class, where «,,
BseZ[J], it follows from the formula (*) above that

Q(x) = Zy(osfi + (— "Bizv) — Zi(aB + (— 1)"Biax)°,

where A° is the integer obtained by substituting the value 1 for every element
of Jin AeZ[J].

For instance, if we let ¢ denote a generator of J, the class = + (¢t + 1)y
in n,M, where M = 8! x $2»1 4 87 x 8, is representable by a differ-
entiable imbedding of §» into M if n is odd, but is not representable if « is
even. The same statement holds for x + (¢t — t-!)y interverting even and odd.

§ 3. Reducing the geometric intersection of submanifolds

Let ¢: X?— Mm™ and y: Y™ ¢ — M™ be differentiable immersions, resp-
imbeddings, where X, Y, M are connected differential manifolds. We assume
X, Y to be compact, without boundary.

Roughly speaking, the problem is to use a deformation of ¢ so as to reduce
the intersection ¢ (X) ~ y(Y) to consist of a number of points equal to the
algebraic intersection number of ¢(X) and y(Y).
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We assume that M is oriented. There are then two cases:

Case 1. X and Y are oriented. Denoting by «eH, M and feH, ,M the
integral homology classes represented by ¢:X? > M and y: Y™ 72> M
respectively, the algebraic (homology) intersection number «- g8 is then an
integer.

Case 2. At least one of the manifolds X, Y is non-orientable. Then ¢ : X?—+M
and y: Y™¢ —» M still represent mod 2 homology classes xeH, (M ; Z,) and
feH, ,(M;Z;). In this case the intersection number «-f is an integer
modulo 2.

We use |x-f| to mean the absolute value in Case 1. In Case 2, |x- 8] is
the integer 0 or 1 depending on whether a-f = 0eZ, or «-f = leZ,.

In either case we shall assume that ¢ and y satisfy the following hypothesis:

(H) The tnduced homomorphisms @.: 7, X - a, M and y.:7 Y —>a, M
are trival.

It follows that ¢ and y can be lifted to differentiable immersions, resp.

imbeddings f: X7 —» M and g: Ym¢ > M, where as before M is the

universal cover of M. We let a and b denote the homology classes represented
by f and g. In Case 1, aeH,M and beH, ,M. In Case 2, aeH (M ;Z,)
and beH,,_  (M;Z,).

We also assume (H)g>2 and m —q> 2.

Finally, we use the following notation. If AeZ[r], A = X, n,7, set wil=
=2 |n,|.

Theorem 2. With the above notations and hypotheses, including (H) and (H'),
the vmmersion, resp. imbedding ¢: X2 — M™ 1is regularly homotopic, resp.
diffeotopic to an immersion, resp. imbedding @, : X2 —> M™ such that ¢q(X) ~ p(Y)
consists of |o-B| points if and only if

in Case 1, wla,b] —|x-B| =0,
in Case 2, [a,b] —a-b=0 in Z,[n] for some liftings a,b of «,p.

Remark. Observe that
B =CZ,cqa-7(b).

Thus, in view of (*), the equation w[a, b] — |x-B| = 0 in Case 1 is equivalent
to the statement that a- v(b) does not change sign as 7 runs over z. (More

precisely, (a-ob)(a-tb)=0 for all o, rem.) Obviously the condition is
independent of the choice of liftings.

19 CMH vol. 89
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An important special case in practice seems to be Case 1 when |a-f| = 0
or 1. Then, wla,b] — |x-f| = 0 is equivalent to the nicer looking condition

[a,b] —a-b= 0 for some liftings a,b of «, 8.

(However, in general this last condition is definitely stronger than the former.)
As an illustration to the theorem, let M = S x S§2»-1 4 S» x §», and
x,yen,(M, x,) be the elements represented by S*» X @ and P x 8™ respec-
tively, with ; = P X Q. Let u, ven,(M, x,) be given elements and 4 be the
2 by 2 matrix over Z[J] such that (J) = A(]), where J is the multiplicative
infinite cyclic group.
Suppose that u-v =1, and let I, denote the matrix

L= (e o)

The classes © and v can be represented by imbedded spheres with just one
intersection point if and only if

w e (IO
IALIA* = (O t_r)

for some integer r. (¢ denotes a generator of J and 4* is the conjugate trans-
posed of A = (a;), i.e. A* = (a};), where af; = a.

Proof of Theorem 2. We may assume that ¢(X) and w(Y) intersect
transversally in a finite number of points S;,..., S8, and ¢ 1(8,), »™(8))
each consists of a single point for every ¢ =1,..., k. Let f: X - M and
g: Y — M be arbitrary liftings of ¢ and y respectively. (Hypothesis (H).)

Case 1. The manifolds X and Y are oriented. If tex, we have f(X)- 7g(Y) =
= ¢, |la- 7(b)| for some e, = + 1. For each temr we can select intersection
points R, ;,j=1,...,]la-7(b)|, of f(X) and 7g(Y) so that the inter-
section coefficient of f(X) and zg(Y) at R, ; is equal to ¢,, and thus
independentofj. (If a- 7(b) = 0, theset {R, ,} is empty.) Let (P, ;,Q, ;) eX XY
be the uniquely determined pair such that f(P, ;) = 79(@, ;) = R, ;.

Now,let (P,Q)eX X Y be such that ¢(P)=y(Q) and PP, , forall 7, J,
if any such pair exists. Then, there exists a covering transformation ez such
that f(P) = o0g(Q) = R, say, and R # R,, for all i-(1<i<|a-0ob].)
Actually R s R, ; for all 7, j. Since f(X)-0g(Y) = ¢,|a-o(b)|, there must
exist another pair (P',Q')eX X Y with f(P')=0g(Q')= R', where
R # R, for all i and the intersection coefficients of f(X) and og(Y) at
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R and R' are opposite. Again, since p~'(pR') consists of a single point, we
actually have R/ # R_, forall 7, j.

We choose a path w: 1 — X from P to P’ such that u(/) and some neigh-
borhood N, of 4(I) in X are disjoint from any other ¢-preimage of an inter-
section point of ¢(X) and y(Y). Using WHITNEY’s lemma as in §1, we can
eliminate the intersection points ¢(P)=y(Q) and ¢(P')=1y(Q') by a
diffeotopy of ¢|N, keeping ¢ fixed near the boundary of N,,.

It follows that ¢ is always (i. e. without condition on [a, b]) regularly homo-
topic, resp. diffeotopic, to an immersion, resp. an imbedding ¢, such that

l‘PO(X) ~ '/J(Y)l = Z‘rla' t(b)] ’

where |@,(X) ~ p(Y)| denotes the cardinality of the finite set ¢ (X)~ y(Y).
If a- 7(b) does not change sign, we then have

|@o(X) ~p(Y)| = |25a- 7(b)] = |&-B] .

Conversely, if |@o(X)~p(Y)| =|x-8|, then |2, a-7(d)]=2,|a-t(b)|,
and it follows that a-7(b) = ¢|a- v(b)| for all v, where ¢ = + 1 is inde-
pendent of t.

Case 2. The manifold X, say, is non-orientable. Then, aqu(M ; Z,) and

we alsoregard b as a classin H,,_, (M ;Z,). For those ren such that a- v(b) # 0
(mod 2), we choose an intersection point R, of f(X) and 7¢g(Y), and let
(P,,Q,)eX X Y bethe uniquely determined pair such that f(P,) = 7¢(@,) =
=R.. Let (P,Q)eX X Y be a pair such that ¢(P)= y(Q) and P # P,
for all ten. Then f(P)= og(Q)= R, say, for some cex, and since either
P, does not exist or P # P,, there exist another pair (P',Q') with f(P’) =
= 0¢(Q') = R', say, where P’ 5= P, for all rex. Let v be a path on Y from
@ to Q' such that v(I) ~ {Q,} = ¢. Choose an orientation of a neighborhood
N, of v(I) in Y. Since X is non-orientable, there exists a path % in X from
P to P’ with u(I) ~ {P,} = @, and an orientation of a neighborhood N, of
#(I) in X such that the intersection number of ¢(&,) and w(N,) is the
integer 0. We can then use WHITNEY’s lemma again, as in §1, and eliminate the
pairs (P, Q) and (P, Q') from the set of intersection pairs by a diffeotopy of

¢| N, keeping ¢ fixed near the boundary of N,. Thus ¢ can be replaced by ¢,
such that

|@o(X) ~ p(Y)| = Z,|a- ()],

where |a-7(b)| is the integer 0 if a-7(b) = 0 mod 2 and the integer 1 if
a-t(b) =1 mod 2.
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If [a,b]=a-b in Z,[n] for some liftings a, b, then a-7(b) =0 for
T # 1, and therefore, using these liftings in the above argument, |@,(X)~y(Y)]
is equal to 0 or 1 depending on whether a-b = 0 or 1 mod 2 respectively. In
other words, |@o(X) ~p(Y)| = |a-b|. Since a-v(b) = 0 for 7 4 1 implies
6-f=2a-tb) =a-b, we have |py(X) ~ p(Y)| = |x-f]| as desired.

Conversely, if ¢(X)~y(Y) =90, we obviously have [a,b] —a-b =0
for any liftings of ¢ and y since both terms are then 0. If |¢p(X)~yp(Y)| =1,
we take a, b to be the classes of liftings of ¢ and y whose images intersect each
other. Then a-v(b) = 6, ,. Hence [a,b] —a-b = 0 in this case too. This
completes the proof of Theorem 2.

Courant Institute of Mathematical Sciences, New York University
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