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Symmetry of Linking Coefficients

A. HAEFLIGER and B. STEER

Introduction. Consider a 3-link in the unit sphere S”+1: namely three
spheres 87, 83, §?s differentiably and disjointly embedded in S*+1, Suppose
n — 1 > max (py, ps, p3). Let 7,5, k be any permutation of p,, p,, p;. We
know by ALEXANDER duality that S»+! — § has the same homotopy type as
87—t and that Sn+! — (8% v §%) has the same (n — 1)-type as the wedge
Sn—ty 8»—i, Hence S* represents an element A% ez, (S*—*\ Sn-7),

Hivron, in [3], gave a direct sum decomposition for this group, namely

ey (874 8P1) = 1, (S74) - 1, (S7T) oy (S -

The first two components A¥ and 2¥ of A* in this decomposition are the linking
elements of S* with §* and S respectively. It is known that 4} and A are equal,
up to sign, after stable suspension (see § 5 of [4]).

We shall be concerned by the component 2% of A* in the third factor
7, (S?"—#=7-1); this component is by definition the HmroN-HoPF invariant of
A¥. We shall prove the following symmetry relations. (They where suggested by
the particular case p, = p, = p; = 2d — 1, n + 1 = 3d studied by one of
the authors [2] and were proved in that case by roundabout means.) E¢ denotes
the i-th fold suspension homomorphism, defined as in § 1.4.

Theorem. For any 3-link 8P, 8P, 8Ps in S+l the linking elements
AY e my (8—i-1-1), which are the Hirron-Hopr invariants of the elements
A% €, (8= \/ 871) represented by S* embedded in the complement of S* v Si,
satisfy the symmetry relations

(___ 1)i+ii+nkEn+2—i }';k — (__ 1)9‘+7‘k+-niEn+2—-7‘ l;;i.

On the way (in § 2), we give a geometric definition of the HmtoN-Horr
invariant, which is very close to the original definition of HopF.

1. Terminology. By a manifold M, we shall mean a differentiable compact
manifold of class C®, possibly with boundary o M. A submanifold V of M will
be a compact submanifold of class C® of M ; unless there is explicit statement
of the contrary, the boundary 8 V of V will be contained in the boundary o.M
of M, and V will cut M transversally along 3V .
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1.1. A framed submanifold (V , &) of M will be a submanifold V of M together
with a framing § (trivialization) of class C® of its normal bundle. It is awkward
to write (V, &) for the framed manifold, and we shall just write ¥V with the
particular framing understood. In particular, when V is just a point z of an
oriented manifold M, z will often be considered as a framed submanifold with a
frame giving the orientation of M.

It is clear that the boundary of a framed submanifold V of M is a framed
submanifold 0V of .M.

If ¥, and V, are two framed submanifolds of M and if they cut each other
transversally (i. e. if x ¢ V; ~ V,, the tangent space of M at z is the sum of
the tangent spaces of ¥V, and V, at x), the intersection V; ~ V, is again a
framed submanifold; its framing is given by the direct sum in this order of the
restrictions to V; ~ V, of the framings of V; and V,.

Let V be a framed submanifold of M and let f be a differentiable map of a
manifold M’ into M which is transverse regular on V (see § 4 of [6]). Then
f1(V) is a framed submanifold of M’; its framing is the inverse image by f
of the framing of V.

Two framed submanifolds V, and V; of M are cobordant if there exists a
framed submanifold V of I X M such that aV = (0 X V) v (1 X V,).
This is an equivalence relation.

The PoNTRIAGIN-THOM construction (see [5], [6] or page 346 of [4]) asso-
ciates to each framed submanifold (V, F) of M of codimension ¢ a map of M
into the ¢g-sphere S2. It induces a bijective correspondence between cobordism
classes of framed submanifolds of codimension g in M and homotopy classes of
maps of M in 82

1.2. Similarly we can consider pairs (V, W) of disjoint framed submani-
folds in M. Two such pairs (V,, M,) and (V;, M,) are (framed) cobordant if
there exists a pair (V, W) of disjoint framed submanifolds in I X M such that

0V =0 XxVy)v (1l xV;)and oW = (0 X Wy) v (1 X W,).

The analogue of the PONTRIAGIN-THOM construction will give a bijective
correspondence between cobordism classes of pairs (V, W) of disjoint framed
submanifolds of M of codimension (p, ¢) and the homotopy classes of maps of
M in the wedge S? \/ S¢. The construction is as follows. The framings of V and
W identify disjoint tubular neighbourhoods 7' of V and 7" of W with V x D?
and W X D9 respectively; by projection on the second factor, one gets a
differentiable map of 7' v T" on the disjoint union D? v D9; after identification
of the boundary of D? v D¢ to one point b, one obtains a map of 7'~ T" on
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Sr \/ 82 mapping the boundary of 7' v 7" on b; it is extended to the whole of
M by mapping the complement of 7' v 7" to b. Conversely, given a map of M
in 87 \/ 8¢9, it is homotopic to a map f which is differentiable on f-1(Srv S?2—b);
one gets a pair (V, W) of framed submanifolds of M by taking the inverse

image by f of points x ¢ SP —b and z' ¢ S? —b on which f is transverse-
regular.

1.3. In § 3, we shall have to consider a framed submanifold V of M whose
boundary is not contained in the boundary of M. In such a case, the boundary
oV of V will be the framed submanifold obtained in restricting to a V the
framing of V and in adding as last vector the normal to @V in V pointing
outside V. Notice that if M = S», then the framed submanifold oV repre-
sents the trivial element of =,(S?), where ¢ — 1 = codimension of V.

1.4. Let V be a framed submanifold (without boundary) of an oriented disc
Dr jtself embedded in SP+r; then V represents an element « of z,(S,), where
q = codimension of ¥V in Dr. If one completes the framing of V with the
framing of DP (which gives the normal orientation of D?), one gets a framed
submanifold in S?+" which represents the r-fold suspension of «. Indeed, D?

is isotopic to a disc linearly embedded in SP+" and we can apply 1.4 of [4].

1.5. Let (M, O) be a framed submanifold of S? representing an element
x e, (89), We can identify a tubular neighbourhood 7' of M with M x D¢
in such a way that M, as a framed submanifold, is identified with f-(0),
where f is the projection M X D?— D? and 0 is the origin of the unit disk D4.
On the other hand, let N be a submanifold contained in the interior of D¢
with a framing § representing an element f§ e #,(S"). Then the framed sub-
manifold M X Nc M x D? =T c 87 with the framing O X § represents
the composition fow.

1.6. Let M be a submanifold with a framing & in the interior of D4 repre-
senting an element « e 7, (S*). Similarly, let N = D? be a submanifold with a
framing @ representing an element g of x,(S7). Then the framed submanifold
M x N with the framing § X ® represents the element

(—1D4EiBoEix = Bixo(— 1)P2EPf,

where E* denotes the s-fold suspension hormomorphism. This follows from 1.4
and 1.5,

18 CMH vol. 39
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1.7. We embed I x 8* in 8" by the formula
nill, Toye ooy X)) = (B, 0625, ..,6%,)

where 9 = 1/4 (t — 1/2) and « = (1 — 92)1/2.
By this embedding of degree + 1, I x S will often be implicitely consi-
dered as a subspace of S+,

1.8. We shall adopt the original definition of J. H. C. WHITEHEAD for his
product (see for example [3]).

1.9. Suppose that S?, 8¢ are two oriented spheres differentiably and dis-
jointly embedded in S"*! with n — 1 > max (p, ¢). Then S§"*'— 8? has the
same homotopy type as S*P?. We fix a homotopy equivalence using a
map j:8% P Sr+l — 87 guch that the linking number of j(S8"~?) with
SP is 4 1.

2. Construction of the HiLronN-HoPF invariant

2.1. Let « be an element of x,(S*?\V 8"9);let f: S*— S ?V 8§"¢ be a
representative which is differentiable on f-1(S*»»\ S»~¢ —b). Taking the
inverse image of two regular values, xeS"? —b, yeS*2—0b (as above)
we get a pair (MP, M9 of disjoint framed submanifolds of S”. Let V?+! be a
framed submanifold in I x 8* with boundary M? = 0 X M? in 0 x S" and
N? in 1 x 8*; similarly let V2! be a framed submanifold in I x 8* with
boundary M2 =0 X M? in 0 x 8 and N? in 1 x S*. We suppose in
addition that N? and N? are separated in 1 X S* by an equator and that
Vr+l meets V2! transversally. Such V»+! and V¢t alwaysexist; for instance,
one can get them by moving M? and M9, as ¢t varies from 0 to 1, by an isotopy
to push them finally into opposite hemispheres of S*. Then W = V»+ ~ Vet
is a framed closed submanifold of I X 8 — 8"+ and we may apply the
PoNTRIAGIN-TOM construction to get an element

T(MP, M?) e n, ,(S*P-9),

In some sense, this element measures how much M7 and M¢ are linked in S™.
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Lemma 2.2. The element ©(MP, M?) depends only on the cobordism class of
the pair (MP, M?) and yields a homomorphism k' of x, (S P\ 8"9) into
Ty (S2P79).

Proof. To prove the first assertion amounts to showing that if M? and M¢
are separated by an equator to begin with, then = (M?, M%) = 0. Indeed, sup-

pose Me, Ma is a pair of submanifolds of §* cobordant (by the pair @7+,
Qe+ say) to MP, M? and that fo“f1 Vet « [ x 8 are two candidates for

use in the construction of r(MP Mq) Similarly let V?+, Vel < J x S»
be candidates for 7(MP, M?). We thus have three pairs of submanifolds of
I x S». Paste these together (with the first pair in the middle) across the
faces where they agree. We arrive at the situation mentioned in the first line.

By a rotation, arrange that some separating equator of N? and N? lies
vertically above a separating equator for M?, M¢; and that MP and NP lie
on the same side of these equators. Let Vr+l ~ Vatl = W, Place I x S»
in I xIx8 as 0x1I x8*, and pull VP+ Vel apartin I X I X S®
so that, if one regards the last parameter as time, M?, M?, N? and N? remain
fixed throughout and at the end V?+, Ve+l are separated by an equator in
Sn+2, This presents W as the boundary of a framed manifold. Hence 7 (MP, M) =
= 0. The last assertion follows from the additive property of the PONTRJAGIN-
TaOM construction.

We now compare this homomorphism ' : x, (8* V 87) > &, (8?+) with the
homomorphism 4 : x,(S*V 87) > xn,(S+7-1) given by the HirronN-Horr
invariant.

Proposition 2.3. If x ex, (S V S7) then A'(x) = (— 1)+t Eh(x).

Proof. Let «;, ¢, denote the classes of the inclusion of 8¢ in 8¢ \/ 87, and of
87 in 8¢\ &, respectively. Suppose that « e, (S'V S7), and that ., is a
basic WHITEHEAD product in ¢;, ¢, with m entries of ¢; and n entries of ¢,.
By Hivuron’s decomposition (see 6.1 of [3]) there exist elements

X

7, (Sm(i-—l)+n(:i—1)+l)
such that

& = 1100y + tgony + 2t 00, (2.4)
Wwhere o runs over the basic WHITEREAD products of weight > 2. Weshall prove
the proposition by evaluating A’ on each component of this decomposition.
(We regard HrLton’s invariant as being defined with respect to the product
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[t4, ¢3].) Consider the WHITEHEAD product [x, ] where « e, (S*V §7),
B en (S Vv 8). Let f: (D», SP-1)— (8 Vv 8, a) and g: (D9, 82-1) — (S*V §,a)
be representatives for o« and g which are differentiable, except at the inverse
image of the base-point a. Then the following map, &, of 9(D? X D9) =
= Dr x S¢-1 v 8p-1 x D2 into S*V 8’ defined by

f(u); weDP, veSat

h(u,v) =
g); ueSPLvel9,
is a representative for [«, f] which is differentiable except at A~'(a). (Here
Dr x D7 has the product orientation and SP-! x D2v D? x §2-! is oriented
as the boundary.) Suppose zeS‘—a, ye S8 —a and that fl(zx) = M,,
f(y) = M,, g7 (x) = N,, g7*(y) = N,; so that « is represented by the pair
(M,, M,) of disjoint framed submanifolds of D? and B is represented by the
pair (N;, N,) < D4. Then [«, ] is represented by the pair

(M; x S¢1v §P-1 X N,, M, x St v §P-1 X N,) (2.5)

of framed submanifolds of a(D? x D9).

(i) First we -calculate the value of 2’ on the WHITEHEAD product
[e1, o] €7y 1 (SFV 87). Let v, : (D%, 8*1)— (S*V 87, a) denote the compo-
sition of a relative diffeomorphism of degree - 1, w,: (D?, 8:1)— (S8, a),
and the natural inclusion of S in 8¢\ 8/. (Define y,: (D7, 87-1)— (S'v &/, a)
similarly.) Then v, represents ¢,, and y;'(x) = a point, =’ say, and y;'(¥)
is void. Similarly y;!(y) = a point, ¥’ say, and y;1(x) = @ . Hence, by 2.5,
[t1, ts] is represented by the pair (z' x 8-1, 81 x ') in a(D* x Df). To
compute %' ([, t5]) we may use the framed submanifolds U, = z' x D/ and
U,=D'xy. U ~U,=2' Xy, a point, and so &h'([¢;, ¢;]) = + 1,
depending on the orientation of the field at 2’ X y’'. Now as ' has a frame §
which gives the positive orientation of Df, ' x 8/-1 and U, = z' X D’
have framings which, at the point 2’ X y’ determine the positive orientation
of D' xy'. Similarly for 81 Xy and U,= D’ X y'; where ® is the
frame of y'. Hence the framing of 2’ X y' is, by convention, § X ® which
determines the positive orientation of D! x Di. Hence A'([,t,]) = — 1.

(ii) We now show that %'(:,) = 0 if ¢, is any basic WHITEHEAD product
other then [iy, ¢,]. Clearly %'(t;) = 0 = A'(ty), 80 we may concern ourselves
with WHITEHEAD products of weight greater than 2. If [x, 8] is such a product,
then either &, = 0 = &, or f; = 0 = f,. We may suppose the former, and
we shall show more generally that if «en,(S'V 87), Ben, (S'V §) and
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o, =0=0u, then A'([x, f]) = 0. Let (M,, M;) be a pair of framed sub-
manifolds of D? representing « : similarly, let (N,, N,) < D? represent S.
Since oy =0=0y,, M, =0V, =V,~DP x0 where V, is a framed sub-
manifold of D? x [0,¢] and V,~DP Xe= @, t=1,2. And we may
arrange that V, and V,intersect transversallyin W.Let U; = &(V; x 871)
c D? x Di(t = 1,2) where £ is the embedding of D? X [0, ¢] X 87! in
Dr x D7 defined by &(z, ¢, y)= (z,(1 —t)y). Now N,, N, are closed mani-
folds and lie in the interior of D?. Hence we may suppose that ¢ is so small that

ED?P X[0,e] X8 Y)~nDP X Ny= g (t=1,2).

We may then use the submanifolds @, = U, v D? X N,(t =1, 2) of DP X D1
to construct A'([x,pB]). Clearly X =@, ~Q, = U, ~ U, = §(W x 82-1),
But in D? x D2 X I, X bounds a framed submanifold diffeomorphic to
W x D4. Hence &' («, B]) = 0.

(iii) Finally we show that if ¢ e #,(S*V 87) and y e=xn,(S"), then

W (@oy) = (— 1)P¥h (p)o By + (— 1y ") Eig 0 B pyo b/ (y),

where ¢, is the component of ¢ in =,(S?) and ¢, is the component of ¢ in
7, (87). (Here ' (y) denotes A'(Aoy), where A:8"— 8"V 8" is the canonical
pinching map which shrinks the equator to one point.)

This formula, together with (i), (ii), and 2.4 will prove 2.3.

Let M,, M, c S" be two disjoint framed submanifolds of 8* which repre-
sent g and let P, P, ¢ I X 8* be two framed submanifolds, constructed as in
2.1, of which the intersection P represents 2’ (¢). The framed submanifolds
M,=P,~(1x8, k=1,2, of 1x&8 are contained in two disjoint
discs D] and D} c 1 X S* which we may take as small as we please. Moreover,
ifi,§ > 1, as we suppose, we may further arrange that P, ~I Xa = @ (k=1,2)
and that 1 x a ¢ D] v Dj, where a ¢ 8 is the base-point.

Let ¢': 87—~ 8" be a map representing y and obtained by applying the
PoNTRIAGIN-THOM construction to a framed submanifold N c 8?. Define
g:Ix8—>1x8 by g(t,x)=(t, g (x)). Then g is transverse-regular to
D%, Dy, M,, M,. Approximate g by g, where g agrees with g in a neighbour-
hood of the boundary and is transversal to P,, P,. The framed submanifold
97! (P) represents (— 1)P+h'(p)o Ey.

Now g, =glkx8 =kxg, k=0,1, and g'(M,) and g;'(IM,)
represent @oy. To construct A'(poy), we proceed in two steps. First we
consider the framed submanifolds ¢g-1(P,) and ¢g~'(P,) in I X 87 of which
the intersection is g—*(P): if g;!(M}) and g;'(M;) were separated by an
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equator in S?, then g—!(P) would represent A'(poy). But this will not be the
case in general if p > 2r — 1. Indeed if x;, and z, are points of M; and M,
the framed submanifolds N, = gy'(x;) and N, = g;1(«,) may be linked in S7.

Let @, and @, be two framed submanifolds in [1, 2] X S? such that 9@, =
= N,v N; where N, c 1 x8?, N, c 2x87(i=1,2) and N, and N,
are separated by an equator in 2 x SP. Then Q = @, ~ @, represents k' (y).
Now using the framings of @, and @,, we can construct tubular neighbourhoods
T,~@, xDi and T, ~@, X D} of @, and @, in [1, 2] X 87 such that:

(8) T, ~(1 X 8?) = N,; X D; and the natural projection N, X D]— D
is just the restriction of g, to N, X D}, 1 =1, 2.

(b) Ty ~(2 xS?) and T, ~ (2 X SP) are separated by an equator in
2 x 87,

()T =T, ~T, is diffeomorphic to ¢ x D] X D, where under this
diffeomorphism 7', ~ @, mapsinto @ X D] X 0 and T, ~ @, onto @ x 0 x Dj.

That (a) can be satisfied follows from our choice of representive, g, for y:
to see that (c) is possible is a little more difficult. It may be proved using the
tubular neighbourhood theorem of J. MiLNOR. From (a) it follows that g;1 (M) =
=N, XM, c N, xD; c1x8? i=1,2. The element h'(poy) will be
represented by the union of g—'(P) and the framed submanifold

(@ X My) ~ (@ X M) =Q X M; x M, by (c).

Let {, be the framing of M;in 1 x 8", let Q, be the framing of @, in [1,2] x 87;
and write Q, =R, X §;:¢=1,2. Then @ with the framing Q; X Q,
represents A’ (y). And the representative map goes from 8P+, with orientation
determined by that of the subspace [1, 2] X S?, into 8% with orientation that
determined by the field Q, X Q,. By 1.4, the submanifold M, c S, where
M, has framing &, X Q, and S¥ has orientation given by Q, x Q,, will
represent E7g,. Hence when S has orientation given by Q, X Q,, M,
with the framing Q, X §, will represent (— 1)+ Ergp,. Again by 1.4, if
Sr+i has orientation given by Q, X &, then M, with framing §, x &, will
represent Eip,. Thus the framed submanifold @ X M; X M, in [1, 2] x S?
represents (by 1.5,1.6)

(— 1y "+ Bl gyo Brp,o b (7).

The result now follows by the additivity of the PONTRIAGIN-THOM construction.
2.6. We can arrange that proposition 2.3 is much neater by using through-

out either the homotopy convention or the homology convention, instead of
using them both, each one in its own context. If one chooses the homology
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orientation convention, that is, if M = 9V, the orientation of V = the out-
ward normal 4 the orientation of M, then to be consistent, one must redefine
suspension by placing the suspension parameter first, that is, as the first

coordinate. Then if £ denotes this suspensmn homomorphism and if x ez, (S7),

Ex = (— 1)?+*Ex. Clearly, then, &' = — Eh.

If, alternatively, one adopts the homotopy orientation convention through-
out, that is, the orientation of V = the orientation of M + the outward normal,
then one must, in order to be consistent, write S™x I instead of I x 8", and one
must change the convention for WHITEHEAD products in the way that W. D.
Barcus and M. G. BARRATT do in their paper ‘On the homotopy classification of
extensions of a fixed map’ (Trans. A. M. S. 88, 1958, pp. 57-74). In this case, if
x en,(X) and fen,(X) andif [x, f]' is the product defined with respect to
the homotopy convention, [x,f] = (— 1)?*¢1[x, f]. And with A and A’
redefined according to this convention, proposition 2.3 again reads »' = —Eh.

3. Proof of the theorem. A sphere S? differentiably embedded in S*+! is A-
cobordant to zero (see [1]) if S? bounds in the (n + 2)-disk D"+? a contractible
submanifold DP+! (homotopy (p + 1)-disk). A 2-link formed by two disjointly
embedded spheres S? and S? in S*+! is h-cobordant to zero (cf. [2]) if S? and S¢
bound in D"*2 two disjoint contractible submanifolds D?+! and D4+,

In that case, let 7',, T, be tubular neighbourhoods of D7+, D4+l in Dn+2

which touch at one point a e 9 D"*2 = §"+1, Let T,,, Tq denote the sphere
bundles over D?+!, D2+! which are the boundaries of 7', and 7',. As bundles they
are trivialized by the framings. To have a definite homotopy-equivalence
between Dn+2 — (Dp+lo Da+l) and S* PV S ¢ we must choose definite
framings. We choose one which, for each disc, agrees with the convention of 1.9.

Let S»—», 8n-¢ be the fibres of T T which contain a. Map T, — D?+! onto

T » by collapsing radlally, now use the framing to map the whole of T onto the
ﬁbre S»—», Call this map ¢, and let ¢,: T, — DI+ — S"¢ be s1m11arly defined.

By Poincarf duality, the inclusion of the wedge formed by the fibres
Sn-p\/ Sn—¢ in Dr+2 — (DP+1 v Do) is an homotopy equivalence. Hence
there is no obstruction to extending ¢, v @, to a map ¢ : D*+2 — (D?P+1 v DI+) —
— §n-» \/ §n—¢, Moreover, as ¢, and @, are differentiable, we may suppose ¢
to be differentiable (except on a). Let ¢ be the restriction of ¢ to S8» —
— (82 v 89), It is a (n — 1)-homotopy equivalence. If xzeS"? —a, and
Y82 —q are regular values for ¢, ¢p~'(z) and ¢~'(y) are disjoint open
framed submanifolds and

V2 = g-1(z) v 8P and VIt' = @7 (y) v S¢
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are disjoint compact framed submanifolds in S*+! with boundaries S? and S?
(see 1.3). We have thus proved the following lemma.

Lemma 3.1. Let S?, 87 be two disjoint differentiable spheres in S™+! such that
S?, 82 18 h-cobordant to zero. There exist disjoint bounded framed submanifolds
Ve+l, Vitt in Sn+t such that @ V21! = 8P, 8 Vit! = 8a.

The PoNTRIAGIN-THOM construction applied to the pair V2+!— 8p, i+t — Qe
yields a map of 8"+ — (87 v 89) into S»® YV S§*¢ which is an (n — 1)-
homotopy equivalence.

3.2. Let SP c S8*+! be a sphere h-cobordant to zero in §7+! and let Dj+!
and D?*' be two (p + 1)-disks in D*+2 whose boundary is S?. Using DZ*! (resp.
D?*1) we can construct as above a framed submanifold V2*! (resp. V?+!) whose
boundary is 8P. Suppose now that D?+! and D?*! are h-cobordant, i. e. there
exists in I X D™*? an homotopy disk D?+? whose boundary is the union B of
0 x D2+, 1 x D?*! and I x Sr. Then there exists a framed submanifold V»+2
in I x 8™+ whose boundary is the union of 0 x V2*+! 1 x V?*! and I x 8.

If D2+ and D?+!are not h-cobordant, a modification of D?*!in an arbitrary
small neighbourhood of one of its points will make D?+! h-cobordant to D3+,
Indeed it is sufficient to replace (D"+2, D?+1) by its connected sum with the
pair — (0 (I x D+%), B).

3.3. Now let L = (871, SP2, SP3) be a 3-link in S** with n—1>max
(py, P2, ps) as always. Let ¢, j, k be a permutation of p,, p,, p;. Denote by L;
the 3-link obtained in dropping the component 8¢ in L and replacing it by the
boundary of an (¢ 4 1)-disk which does not intersect the two other components
S/ and S*. The inverse — L, of L, is the symmetrical of L, with respect to
reflection in an equator of S*+! (see [2]).

Let A be the 3-link which is the sum of L, —L, Py —-—Lpz, and —L, . The
linking elements A%, of L and A are the same because they vanish for each L;;
moreover each 2- sublmk of A is h-cobordant to zero. Hence it is sufficient to
prove the theorem when each 2-sublink of L is h-cobordant to zero. From now
on we assume this.

According to lemma 3.1, for any permutation (¢, §, k) of (p;, p;, ps), one can
construct framed submanifolds V{*' and V%** in 8"+ such that

oVt =8 and Vil A Vil = o,

Let Wi, be a framed submanifold of I x S*+! such that aWi, =1 x §'v
v 0 X V“rl v 1 x Vitl. The existence of such Wi, is assured by 3.2. (Having
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deﬁned W, for a positive permui.sation (¢, 7, k) of (py, P2, P;), we could define
1j to be the inverse image of W7, in I X S™+! under the orientation-reversing
homeomorphism (¢, x)—> (1 —¢, z), z e 8"+, tel.) Denote Vit'~S* by MLi.

Lemma 3.4. ©(M}, Mi) = (— 1)+ E 2%, .
Proof. Consider the following pair of manifolds in I x S+,
Q= Wi~ (8 xI), IxM.

It is clear that @ and I x M} are two manifolds which qualify for use in the
definition of v (M}, M}), since 0Q = M:. SoQ ~ (I x M%) is a closed framed
submanifold of I x 8* ¢ I x 8"+ which represents (M}, Mi). Now if

@ SMH — (8F k) > S \/ nk

is the map of 3.1, ¢ |S8*:8*— 87\ §** is a representative for Ai'. By
definition V{*!'= ¢~1(z) and V¥*'= p1(y) for some regular values zeSm7 —b,
yeS** —b. So

(¢ 181 (x) = M, (9 18)(y) = Mj.

Hence by lemma 2.3, ©v(M}, ML) = (— 1)+ E 2}, .

We wish to prove symmetry. First notice that by 2.1 we could have used the
pairs [I x M}, W% ~ (I X §%)] or the pair [W]; ~ (I X 8%, Wk ~ (I x 8]
instead of [Q, ] X M}] to define (M, M}).

Let T'= Wi~ (I x Vi)~ x Vit). It is a framed submanifold of
I x 8»+1 under the conventions of 1.1 and 0 7 = A v B where

A=WhH~I X8 ~IXViF'=W,~I x M
B=W§iﬁIXVz+1nIX37 =W§inIXMg
and this time we break 1.1 and suppose that A, B are framed according to
convention 1.3. If we write 4,, B, for the manifolds 4, B reframed according

to the convention of 1.1, and if »(MP?) e 7,(S2?) denotes the element obtained

by applying the PoNTRIAGIN-THOM construction to the framed submanifold
Mr < 8¢, then

v(4y) = (— 1)***v(4), »(By) = (— 1)**+*»(B).
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Moreover, because 4 v B = 07T, v(A) = v»(B); and by lemma 3.4,
v(A;) = (— 1)+ (n+itl) Pn—itlq (L Mt;,) = (— 1)(n+7‘)(n+i+1)+i+i+kEn—i+z,1;’cj,
v(B,) = By (M, M{) = (— 1)i+j+kE"‘j+22ii .
But E 2, = (— 1)+ k) 2% - hence

Br—it2jh = (— 1)ontDith +it] fn—i+2 ]
The theorem is proved.

The Unaversity of Geneva; Christ Church, Oxford, and The Institute for Ad-
vanced Study, Princeton.
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