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On the Automorphism Group of a G-structure’)

by ErNsT ALFRED RUH, Brown University Providence, R. 1., USA

Herrn Professor Dr. Heinz Hopr zum 70. Geburtstag
wn Dankbarkeit gewidmet

1. Introduction

Throughout this paper M denotes a paracompact differentiable manifold of
dimension n. Let ¢ be a Lie subgroup of GL(n, R). The group of diffeomor-
phisms of M which leave a G-structure invariant is often a Lit group. We shall
give a condition on the Lik algebra g of G under which the group of auto-
morphisms of a G-structure is a L1e group. (Cf. Definitions 5 and 6 in Section 3.)
The main result is stated as Theorems 4 and B in Section 5, and examples are
given in Sections 8 and 9. To simplify the presentation, ‘differentiable’ always
means ‘differentiable of class C*’. It is to be remarked that for every specific
(-structure however, differentiability of a suitable degree will be sufficient.

H. Carran [3] proved in 1935 that the group of all complex analytic trans-
formations of a bounded domain in C" is a Lie group. S. BocaNER and D.
MonTcoMERY [1] proved in 1946 that the group of all complex analytic trans-
formations of a compact complex manifold is a Lie group. This result was
extended in 1963 by W. M. BooTtuBY, S. KoBavasHI and H. C. WaNg [2] to the
effect that the automorphism group of an almost complex structure on a
compact manifold is a Lie group. By introducing a BERGMAN metric on a
bounded domain in C*, H. CARTAN’s result is shown to be a special case of a
theorem proved by S. B. Mygrs and N. STEENROD [9] in 1939. Their theorem
states that the group of isometries of a RiEMaNNian manifold, i. e. the auto-
morphism group of an O (n)-structure, is a L1t group. In view of the fact that a
Riemaxxian manifold has a unique torsion free connection, this result is
included in a theorem proved by K. Nomizu [10], J. Haxo and A. MoriMoTO
[6]. Their theorem states that the automorphism group of an affinely connected
manifold is a Lie group. It will be shown in Section 8 that our main theorem

includes all the examples mentioned. Some additional examples will be given
in Section 9.

1) I wish to thank Professor K. Nomizu, my thesis advisor, and Dr. H. Ozexk1 for the encour-
agement and help I received while working on the present paper.

.This work was done while the author was partially supported by the National Science Found-
ation Grant 24026.
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We now give an outline of the present paper. In Section 3 we construct a
sequence of G*)-structures induced by a G-structure on a differentiable mani-
fold M. An automorphism ¢ of a G-structure will be lifted to automorphisms
@; of the induced G)-structures. This construction gives rise to a system of
linear partial differential equations for infinitesimal automorphisms of a
G-structure (Section 7). The type of the system will depend on the Lir algebra
g of G. We impose conditions on the Lik algebra g so that the vector space of
solutions will be finite-dimensional (Section 5). A theorem of R. S. Parai1s [11]
shows that if the space of infinitesimal automorphisms is of finite dimension,
then the group of automorphisms can be given a L1k group structure.

2. Prolongations of a LiE algebra

Let g be a Lie algebra of endomorphisms of a real n-dimensional vector
space V. g may be regarded as a subspace of the tensor product V @ V *,
where V* denotes the dual space of V. The first prolongation gV of g is defined
to be gV =gR@V*~V QS2(V*)cVRV*RQV*, where S2(V *)
denotes the space of symmetric tensors of degree two over V*. With respect
to a basis in V ® V* ® V* an element aeg will be given by a matrix
(@ ). Since g ® V* = Hom (V,q), an element ae¢ Hom (V,g) is in g
S ANG oty i a,(v) =a,(u) forall v, ueV.

For each aeg™ we define an automorphism a of g @ V(@ denotes direct sum)
as follows. a(x) =z for zeq, a(u) =a, +u for ueV.

Definition 1. GV = {a |aegW}. G® is a commutative Lie group of
automorphisms of the vector space g ® V.

Definition 2. The k-th prolongation g of g is defined to be
gk = gk1) @ V* A g2 @ S2H(V*) =g Q@ V* ®... 0 V*~ V @ Sk1(V*),
where V* ®...Q® V* denotes the k-fold tensor product. (Note that g® =
—g.9 = 7))

Definition 3. A Lik algebra g is of finite type if g*) = 0 for some £.

To g*) will correspond a commutative L1E group G¥) of automorphisms
of the vector space V @g®g® @...D g%, defined as follows. To
aeg® define aeG*® by setting

a(x) =z for zeg @...D g%V,

a(u)=u-+a, for ueV.
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Definition 4. The annihilator h*¥) of g'¥) is defined by:
h) = (h | heV* @ S+ (V), <h,g> = O for all geg®}.

The annihilator §*! will be needed in order to state Theorem B.

3. G-structure, torsion tensor

Let M be a differentiable manifold of dimension n. A linear frame u at a
point xe M is an ordered basis X,,..., X, of the tangent space 7, (M). Let
L(M) be the set of all linear frames at all points of M . Let = be the mapping of
L(M) onto M which maps a linear frame » at x into . L(M) is a principal
fiber bundle with structure group G L(n, R). A linear frame u at x can also
be defined to be a vector space isomorphism w: V — T, (M). The two defi-
nitions are related in the following way: Let e;,...,e, be a basis in V.
u:V —>T,(M) is defined by wu(e;) = X,. The action of GL(n, R) on

L(M) is given by u —>u-a, where u-a: v V—u>Tx(M). In the sequel
we will think of » as the isomorphism «: V — T _(M). The notation ™
therefore makes sense.

Definition 5. A G-structure on a differentiable manifold M is a reduction of
the structure group G L(n, R) of the bundle of linear frames L (M) to the subgroup G .
The reduced bundle, a subbundle of L (M), will be denoted by P (M, G):

PM,®) -S> LM

.| |-

M —> M
identity

A diffeomorphism ¢ of M can be lifted to an automorphism @ of the bundle
L(M).

Definition 6. A diffeomorphism ¢ of M is called an automorphism of the G-
structure P (M, @) if @ maps P(M, Q) onto itself. The restriction of @ to
P(M, @) will be denoted by ¢,. (For reference see S. Kosavasur and K.
Nowmrzu [7].)

We now turn to the construction of the torsion tensors associated with a G-

structure (cf. S. STERNBERG [12]). On L (M) define the canonical form & to be
the V-valued 1-form

X)) = uta, (X), where XeT,(L(M)).



192 ErNsT ALFRED RUH

The restriction of 4 to P (M, G) will still be denoted by #. An n-dimensional
subspace H c T, (P (M, @)) is called a horizontal subspace if &: H — V isan
isomorphism. The exterior derivative dd of & evaluated at weP (M, G) is a
bilinear mapping (d#),: A *T,(P(M, G)) — V. In view of the isomorphism
d:H —V,dd restricted to H ~H defines a map VAV -V, ie. an
element c(u, H) c V ® V* A V*.

Definition 7. c(u, H) is called the torsion temsor corresponding to a pair
(w, H).

In the sequel, the dependence of c¢(u, H) on H will be discussed. The action
of G on P, where P stands for P(M, (), induces a homomorphism ¢ of the
L1k algebra g of G into the Lik algebra X (P) of vector fields on P. For A4eg,
g4 is called the fundamental vector field corresponding to A. Since G acts
freely on P, the mapping o (u) defined by A — (6 4), (( ), = evaluation at u)
is an isomorphism of the space g onto the tangent space at u of the fiber G,
through «. Given a horizontal subspace H c 7T ,(P), we define n vectors Z,
such that Z.eH and #(Z;,) =e€;, ¢t =1,2,...,n, where ¢; is the ¢-th
element of a basis in V. For another H' we define Z; in the same fashion. For
each i there is a unique A,eq such that o(w)4, = Z; —Z, = Y,.

Definition 8. S(H, H') is defined to be the map of V into g which sends
e; into A

Let Y be a vector field in a nelghborhood of w in P, such that the evalu-
ation of Y at u is equal to Y, i.e. (Yi) = Y,. Likewise find Z such that
(,Z\,.)u = Z,. The torsion tensor c(u, H) is a map V/\V — V given by

c(u, H)(e;, e;) =dd(Z;,Z;) = l{Ziﬂ(E,.) Z, ﬁ(Z ) — 19([Z1, 7 1)}, where
[,] denotes the Lie bracket (cf. S. KoBavasar and K. Nomizu [7], p. 36).
Likewise we define c(u, H'). Hence

(c(u, H') —c(u, H)) (e;, ;) = % (Z;, Z}) — d¥(Z;, Z,)
=d¥Z;,, Y,) —ddZ;, Y,) +d9(Y;, Y,).
Since d¥#(Y,, Y,) is equal to zero (cf. [7], p. 120) we have
(c(w, H') —c(, H)) (e, ¢;) = 3{Z8(Y,) — Y,0(Z) — (2,8(F,) — Y:0(Z)
* — @2, ¥)) —~«9([Z,~, Fan} .
Here we note that Z,.ﬁ(ll/'\j) =0 and Z;d( i’\i) = 0 because 9 maps the vectors

tangent to the fiber into zero. Now we choose the vector fields 2, and Y such
that the brackets [Z;, ¥,] and [Z,, ¥,] vanish, for example, as follows. Let
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U be a neighborhood of n(u)eM; write 1 (U)= U x G by choosing a
cross section U — P through u tangent to Z,,...,Z,. Let «',..., 2" be a
coordinate system in U and let #',...,y™ be a coordinate system in a neigh-
borhood of the identity in G such that

0 0 .
(-5;—{, O)u-—— Zz and <0, —a?)u— Yj .

Set 2 = ——a"r‘, 0) and I/} = {0, ——-—qm . With this choice we have:
¢ oxt 7 oy’
(C(u: H,) ""C(u’H)) (ei: 6_,-) = %lyzﬁ(zj) - Yaﬁ(zz)} .
We shall prove now that: Y,-ﬁ(Z\i) = — A,e;,, where A,eq is defined by

Y, =o0(u)A;. We have
9B )ue = (wa)n(Z,) = a19(Z;) = a-te,, ach.
Using the definition of the fundamental vector field 0 4 we get

t=0

Y,(ate;) = (% exp (——tA,.)) e; = —Ae,;.
Hence we have

Proposition 1. (c(u, H') —c(u, H))(e;, ¢;) = 4|A,e;, — A,e;] where A; =
= S(H, H')e; (cf. Definition 7).

Proposition 2. c(u, H') —c(u, H)ex(g @ V*) ¢ V ® V* ~ V*, where
« denotes the alternation in the two covariant factors.
Note that the kernel of « is equal to the first prolongation g® of g.

4. Induced G -structures

The purpose of this section is to define a sequence of G¥-structures and to
show that an automorphism of a G-structure can be lifted to automorphisms of the
Successive GV-structures.

Let P(M, G) be a G-structure on M (see Definition5). Let g be the L1 al-
gebra of @. We shall choose once and for all a linear subspace C ¢ V @ V* ~ V*
Such that V @ V* N V¥ =0 ®a(g ® V*). In general there will be no
Natural way of choosing C'. The torsion tensor provides a map of P (M, @)
nto V@ Vk ~ V*¥=0C@ax(g ® V*) (see Definition 7).

Definition 9. The image of c(u, H) in «(g ® V*) will be denoted by
k(u, H), where c(u, H) is given in Definition 7.
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To a horizontal subspace H at weP we assign a frame
2= (Zy,e.c,Zp, Ly s ZLpy)

at u in the following manner. For ¢ =1,2,...,n,Z, is defined by Z,cH
and #(Z;) =e;, .where ¢, is the i-th element of a basis in V. For
j=n-+1,...,n 4+ m, Z, is defined by Z, = o(u)A4,_,, where A,,..., A
is a basis in g.

m

Definition 10. P, (P,GY) is the set of frames z=(Z,,...,2,,2,,,...,2Z,.,)

corresponding to horizontal subspaces H < T,(P) such that ueP and
k(u, H) = 0.

Proposition 3. A G-structure P(M, @) on M gives rise to a uniquely defined
GW-structure P,(P,G@V) on P = P(M, Q).

Proof. For a eGL(n + m, R) and zeP, = P,(P,GW) ¢ L(P),z-a isde-

fined by z-a:V @ g g 7 ®g 2 T,.(P). Proposition 2, Section 3, shows
that z-a isin P, if and only if aeG@®. (See Definition 2 and note that g®
is the kernel of the map «:g ® V* - V ® V* A V*.) The following lemma
will conclude the proof of Proposition 3.

Lemma. P,(P,GW) is locally, in fact globally, trivial.

Proof. We shall construct a distribution of horizontal subspaces §, in fact
a connection, on P such that k(u, H) for ueP and He$), is zero. Since M
is paracompact, the bundle P(M,G) has a connection §’ giving rise to a
differentiable map
k( ,H):P(M,Q) >ux(g ® V*).

Since g ® V* is isomorphic to kernel o« @ «x(g ® V*), we may choose a
monomorphism ¢:x(g ® V*) -g ® V*. The composition ¢ ok( ,H)
maps P(M, @) into g ® V*. Let § be the distribution defined by the vector
fields

Z, =7, — o(u) ((@ok(u,H)e),t=1,2,...,n.

(For definitions of Z; and o see Section 3.) Since k(u, H)(e;,€;) =
= (k(w,H') —a(q o k(u, H'))) (e;,¢;) = 0, by virtue of Proposition 1, we
obtain a global cross section (Zi,..., 2., Zp1s--.s Zprm) of Py(P,GY)
over P(M, Q).

Proposition 4. An automorphism ¢ of the G-structure P(M,G) can be
lifted to an automorphism ¢, of the GV-gtructure P, (P, GW).
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Proof. Let ¢, be the map introduced in Definition 6, Section 3. The funda-
mental 1-form 3 is invariant by ¢, and hence d#(p,«Z;, p1+2Z;) = dd(Z;, Z,)1,
j=1,2,...,n, where 2= 1(Z,,...,2,,Zp 3, s Zpn, )P (P,GV). This
together with the fact that ¢, leaves the fundamental vector fields invariant,
proves Proposition 4.

Proposition 5. An automorphism ¢ = @, of the G-structure P(M,G) can
be lifted to automorphisms ¢, @,,... of the bundles P, P,,... respectively.

Proof. The bundles and automorphisms are defined inductively by applying

Propositions 3 and 4 to P, and ¢;,? =1, 2,..., instead of applying them to
M = P, and ¢ = ¢,.

b. Main Theorems

Let G be a (not necessarily closed) L1 subgroup of G L (n, R) and let M be a
differentiable manifold of dimension 7.
Our main results are

Theorem A'). If the Lie algebra g of G 1is of finite type then the automorphism
group of a G-structure P(M,G) on M s a Lie group.

Remark 1. Theorem A applies also to the case where the sequence of
bundles starts at the i-th stage. In the case ¢ = 1 the theorem reads as
follows.

Let G" be a Lire subgroup of GL(n, R)" (first prolongation). If the Lik
algebra g of G is of finite type, then the group of diffeomorphisms of M
whose lifts to L (M) are automorphisms of a G™-structure on L (M) is a Lz
group.

Theorem B. Let M be a compact differentiable manifold of dimension n.

If there is an integer N and n elements h,l=1,2,...,n, in the annihilator
b of g'N) such that the determinant of the matrix
F1eeod
i = 2 iy N+1§51"'55N+1
71"‘7N+1

8 nonvanishing for every & = (&4,...,&,) # 0, eR™, then the automorphism
group of a G-structure P(M , Q) is a L1k group.

Corollary to Theorem B. Let M be a compact differentiable manifold of
dimension n. If there is a ¢ = (¢/*)eS?(V) such that é’qikf ;& s positive
J

definite and V* ® g ¢ h® c V* ® 82(V), then the automorphism group
of & G-structure P (M, @) is a Lie group.

') Added in proof: This theorem is already known. (Cf. S. STERNBERG, Lectures on Differential
Geometry. Prentice Hall, 1964.)
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Remark 2. If a Lie subgroup @ of GL(n, R) satisfies the requirements
of Theorem A or B, then so does every Lie subgroup of G.

6. Two Lemmas on Partial Differential Equations

In this section, we prepare two lemmas which will be needed in the proof
of Theorems A and B.
Consider a system of linear partial differential equations

du’ o (a1 rY o A )
5 :%'aj,\(a:,...,x)u o, A=1,2,...,8,7=1,2,...,r, (1)
for s functions u? = u(a!,..., ") with initial conditions

w?(0) = ul. (2)
Lemma 1. The system (1) with initial conditions (2) has at most one solution.

Proof. Assume it has two solutions (#®) and (v°) such that for x* = a® we
have the following inequality wu°(al,...,a") £ v%(al,...,a’). By setting
2t = a't and u® = u’(t), a system of ordinary differential equations

du° ou® dx .
2 =G~ 2

with initial conditions »?(0) = uy is obtained. The wuniqueness theorem on
ordinary differential equations implies »°(1) = v°(1), i.e. u°(al,...,q") =
= v?(at,. .., a"). This contradiction proves Lemma 1.

In the proof of Theorem A the following system of differential equations will

occeur.
od+1

ox', .. Qxtd+1 Xp:ngl---id+1k(x’D)Xk’ (1*)
: - . : 0 0
where LP; ... risapolynomialinthedifferential operators D: (W’ e ’W)
of degree smaller than or equal to d with variable coefficients.
. . o%
Introducing new variables Y? . = T X?, k=0,1,...,d, we

obtain a system of differential equations of first order. By adding the initial
conditions YP; ;. (0)= YP, ., Wwe obtain asystem (1), (2). According
to Lemma 1, this system has at most one solution.

Let M be a differentiable manifold and let X be a vector space of infinitesimal
transformations on M such that every point of M has a coordinate neigh-
borhood with a system (1*) of differential equations which is satisfied by all
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infinitesimal transformations X in X. Let r be the number of linearly inde-
pendent initial conditions (Y,  ;,(0)) at an arbitrary point 0OeM.

Lemma A. The dimension of the vector space X is smaller than or equal to r.

Proof. Locally use Lemma 1 and note that the continuation of a solution
along a curve in M is unique if it exists at all.

In order to prove Theorem B, a lemma on elliptic partial differential equations
will be needed (cf. A. DougLis and L. NIRENBERG [4]). Let

n
21,XI=0 (3)

j=1
be a system of linear partial differential equations in » independent variables
at,..., 2" and » functions X!,..., X». The [,;'s are linear differential oper-

ators which may be expressed as polynomials, /,(x, D), in the differential
operators D:(d/dx',...,d/0xz") with variable coefficients, a,;,,. Let
l;,-(x, D) represent the sum of the terms in !,;(z, D) which are of order S,
where S denotes the order of the system (3). For arbitrary scalars § =(&,,...,§,)
the characteristic matrix of (3) is defined to be the nXxXn matrix lg,-(x, £).
The determinant, L(x, £), is a homogeneous polynomial in & of degree n- 8.
The system is called elliptic if L(z, £) is nonvanishing for every & £ 0.

Lemma 2. Assume that
(i) L(x,&) > K- |&|™S forsome K > 0;
(ii) There exists a constant L, such that

e <L, for k=0,1,2;
dzh...0ak 3, BOF B=E TS
(i) X = (X1,..., X") is a solution of (3) in a domain D and there exists a
constant L, such that
gk X»

sz | <L for k=0,1,...,841.

Then for any compact subset F < D there exists a constant C depending only
on Ly, L,, and K such that

05+1 X7 (P) _ 051 X7 (Q)
oz, .. dx'sH ax'l. . . axtsH

<C.|P—ql,

where P and @ are arbitrary points in F.
Let X' = {(XP)} be a family of functions subject to the conditions in
Lemma 2. The family of functions X' and their partial derivatives through the
8+ 1-st order is bounded and equicontinuous in F. By ARzELA’s theorem

14 CMH vol. 39
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every sequence in X', if restricted to F', has a subsequence which is convergent
with respect to the topology of uniform convergence of functions together with
their partial derivatives through the S + 1-st order.

Let M be a compact differentiable manifold and let X be a vector space of
infinitesimal transformations on M such that every point of M has a coordinate
neighborhood with a system (3) of partial differential equations which is
satisfied by all infinitesimal transformations X in X. In addition, X is subject
to the assumptions in Lemma 2. In local coordinates XeX is given by

n
X=x x»°
1

P
P ox

. By choosing an arbitrary RiEMaNNian metric we define

[| X|| = max |X| 4 ... max | V51 X],,
PeM PeM
where {V denotes the covariant derivative defined by this metric and | |
denotes the norm obtained by extending the RiEMANNian metric.

The norm || || makes X into a BANACH space. Since convergence in this
norm is equivalent to uniform convergence of functions together with their
partial derivatives through the § 4 1-st order, and since M is compact,
the following lemma is obtained.

Lemma B. The BaNAcH space X is locally compact and hence finite-dimen-
sional.

7. Proof of the Main Theorems

The proof consists of the following steps. First a system of linear partial
differential equations for infinitesimal automorphisms of a G-structure is
established. Under the assumptions of Theorems A and B we shall prove that
the space of solutions is finite-dimensional. Then a theorem of R. S. Pava1s [11]
shows that in this case the group of automorphisms is a Lig group.

Let the vector fields {Z,,j=1,2,...,n + m} be a cross section of the
bundle P,(P,G"). By Proposition 4, Section 4, an automorphism ¢ of
P(M,GR) can be lifted to an automorphism ¢, of P;(P,G"). Hence, for
ueP(M,d), {p+((Z)), i=1,2,..., n+m} will be an element of
P, (P,GY) at ¢,(u). Recalling the proof of Proposition 3, Section 4, we have

Proposition 6. For each ueP thereis an aeg® such that

(pl* ((Z:l)u) = (Z:i)ipl(u) + G(q)l(u)) (ae.'i) H fOl' j = 19 2" N

Note that o(@,(u))(ae;) is the fundamental vector field, evaluated at
@, (u), which corresponds to ae,eg. Let (z!,..., ") be a coordinate system
in U c M. With respect to the coordinates (z,z%) in U x GL(n, R),
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lj

. _ i 0 b 0
Z;,, for j=1,2,...,n, isgivenby Z, = (fcf(u)_é_x_i’,fc'(u) _a—x{‘_) For

u= (2', 2}), ,(u) is expressed by ((pi(x), X aq;:qx) . x’j) Proposition 6
yields ?
i ogk 9 i\ PP (x) , 0P () 9\
(ﬁcﬂu)wm’ﬁ(ﬁcwmxl+§°'~'(“) 52t >axg’) =
. 0 0
=|Z¢j(p1 (W) 35—, Zejj(91(w)) 5| + o (1 (w)) (ae,) . (1)
P oxt ' 4, oz

As in Section 2, an element aeg is given by a matrix a = (a];). For
o 0 .
u = (x', 67) (0; = KRONECKER delta) we get o(u)(ae;) = Z’az,-—azp—. Since
pl l
this is true for w = (a%, 6}) only, we evaluate the above equation at

w=(y',y}) = ((<p~1 (x))i, 2<————a‘gk;f) )_’ a;;) . Thus we have ¢, (w) = (', &).
k

The components in the fiber direction of equation (1) yield

) PP (Y) 29" () o s
2 6j(w) 5 Loy Vi + Eeyw) =5 = (@, 8) + a ()
where the af ;’s depend on ¢(x).

In order to obtain a system of differential equations, satisfied by all auto-
morphisms ¢, we let an element & = (hif)el)(l’ operate on equation (2).
(For hV see Definition 4.) Thus we get

i[5 iy PP (Y) 097 (y) j
1y i P\Y) q q ¥ \y P N\ 27 5% S
j;h,, (501(@0) 3209 ?/l‘*";:cza(w) 3 21 %(x)) ﬁ;hp“l,a 0. (3)

Let X be a vector field on M. In a coordinate neighborhood U write

X=xx-2_
n 0P

mations ¢: U’ x I, - U, where U’ is an open subset of U and I, is an open
neighborhood of zero in R. X is called an infinitesimal automorphism of the
G-structure P(M,Q) if for tel, ¢(z,t) is an isomorphism of P(U’, @) onto
P((pt(Ul)’ G) L

In this case, ¢(x,t) for tel, is a solution of equation (3). By taking the
derivative of equation (3) with respect to ¢ for ¢ = 0, and noting that

X generates a local 1-parameter group of local transfor-

dhtip(z,0)  oEXP

p 10 = z? . - == n :
v (2, 0)=2a" and —m g r s dzit.. . oxik

for k=0,1,...,
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we get 5 X 5 xp
7 .

2 W) G TINE) G+ Eh@ X =0, (4

where c(x), b](z), and h,(x) depend on =z = (a!,...,2") only, while

B is a constant. Thus we see that every element h = (hY)eh™ gives rise to
an equation (4). By lifting an automorphism ¢ to a G'@-structure, we see that
an element & = (hi1"74+1)ch@ gives rise to a linear partial differential
equation of order d 4 1. The highest order term will be

o4+ Xnp
oxtoxi...oxid

(5)

E o aeeend,, @
ij1...7d+1p
If the L1k algebra g of G is of finite type, then there is an integer d such that
gP =0, i.e. hP equals V* ® S4+1(V). This yields the system of linear
partial differential equations:
o%+1

dxi, .. .dxid+1

(xz, D)X*.

X? = fL?l e dd+rk
(For a definition of D see equation [1*] in Section 6.) By Lemma A, Section 6,
the. vector space of all infinitesimal automorphisms of a G-structure P (M, @)
is of finite dimension. An upper bound of this dimension is given by the follow-
ing: » + dim g + dim g® + ... 4 dim g'¥.

The condition on the Lie algebra g of G in Theorem B is to insure that
condition (i) of Lemma 2, Section 6 is fulfilled. Note that it is possible to choose
a coordinate system such that c¢(0) = 6. Condition (ii) can be satisfied by
restricting the vector field X to a smaller neighborhood if necessary. Lemma B
therefore shows that under the assumptions in Theorem B the vector space of
infinitesimal automorphisms of a G-structure P (M, ) is of finite dimension.

An application of the following theorem of R. S. Parais [11] concludes the
proof of Theorems A and B. Let H be a group of differentiable transformations
acting on a differentiable manifold M . Let )’ be the set of all vector fields on M
which generate a global 1-parameter group of transformations belonging to H.
Let B be the subalgebra generated by |’ in the L1k algebra X (M) of all differ-
entiable vector fields on M.

Theorem. If Y is finite-dimensional, then H admits a Liz group structure
(such that the map H X M — M is differentiable), and § =1§’. The LiE
algebra of H is naturally isomorphic to f).

Now let H be the group of all automorphisms of a G-structure P (M, G).
Then Ty’ and | are contained in the Lir algebra of infinitesimal automorphisms
of P(M, ). This L1k algebra has been proved to be of finite dimension under
the assumptions of Theorems A and B respectively.
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8. Examples Mentioned in the Introduction

1. RIEMANNian manifold.

Let O(n) denote the group which leaves a given nondegenerate symmetric
bilinear form (,) on V (of arbitrary signature) invariant. A RiEmMANNian
structure is an O (n)-structure on M . We will show that the Lir algebra o (n) of
O(n) is of finite type, in fact, o(n)) = 0. Thus Theorem A will apply. The

n(n-+41)

maximal dimension of the automorphism group is » 4 dim o (») = — The

following computation is taken from V. W. GuiLLEMIN and S. STERNBERG [5].
A linear transformation a of V is in o(n) if and only if (au, v) + (u,av) = 0;
for all w,veV. For any aep(n)? and any w,v,weV we have

(awv, u) = (avw, u) = — (avu, w) = — (auv, w) = (auw, v) =
= (awu,v) = — (awv, u).

Thus (ewwu, v) = 0, which implies @ = 0 because ( , ) is nonsingular.

2. Conformal structure on a manifold of dimension » > 3.
Let (, ) be as in Example 1. ¢o(n) denotes its conformal algebra.

aeco(n) ifand onlyif (aw,v) + (u,av) = 4. (u,v) forall u,veV,

where 1 is a scalar depending on a¢. V. W. GULLEMIN and S. STERNBERG [5]
show that co(n)® isof dimension » by establishing a vector space isomorphism
(0(r)® — V*. For aeco(n)® and w,v,xz,y in V we get

(auvz,y) + (z, auvy) = (duv)(z, y) ,

where / is an element of V* ® V* which depends on a. By a computation
similar to that used in Example 1, A is shown to be zero (cf. [5]). This implies
that @ = 0 because in this case aep(n)?® = 0. Hence c¢p(n)? = 0, the
conformal structure is of finite type and Theorem A applies.

3. Manifold with an affine connection.

An affine connection is a G®M-structure on the bundle of frames L (M),
where G consists of the identity in G'L(n, R)® alone, i.e., g® = 0 (cf.
Remark 1, Section 5). Theorem A applies; hence, the maximal dimension of the
automorphism group of an affine connection will be

N =n + dim gl(n, R) = n + n?.

4. Almost complex structure

Let M be a compact differentiable manifold of dimension 7 = 2m, and let
G=GL(m,C) c GL2m,R).
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T : . i __ o idm om4i i "
a = (a})eq if and only if o} = aji7, a7 = —a,,  ;;
t,)=1,2,...,m; p,gq=1,2,...,2m.
Computation of g (cf. Section 2):

i itm itm i _ i

@iy =  Qiimr =  iem =™ T Cppmjrm ™ T Viimkm o
i+m __ R — —_pit+m — —__pitm

G = T imk = T Ojim = T Ukimjrm = T Citmktm

Since af ;4 a¥,,, i1m = 0, We obtain
h = (%) = (a,- 6") < hW (cf. Definition 4).

The KrRONECKER Delta, 6%, is a unit matrix and hence, positive definite;
therefore, the corollary to T'heorem B applies. The automorphism group of an
almost complex structure on a compact differentiable manifold is a L1z group.

9. Further Examples

1. Tensor product structure on a manifold A .

Let M be a manifold of dimension p - ¢ where p,q > 2. Let G be the Lir
subgroup of GL(p - q, R) whose LiE algebra is given by the tensor product
representation of g; ® g, on V; ® V,. The actionofgon V=V, ® ¥V, is

given by (@,b)(v; Q) =av, @ vy, + v, bv,,

where a = (a)eg, and b = (b})eg,.

V has a basis e ;) = e; ® f;, where (e,) and (f,) are bases in V, and V,
respectively.

An element in g is denoted by A = (A%R) = (a}6] + 8;bf). This gives
rise to the following four equations:

For i #£j, k#1, AWRB =0; (1)
For isj, AGD =AGn ; AG3 =403 (2)
A — 4G = AGD — AL (3)
Alem) __ gGm) . g(Gm) _ A(4,m) (4)

(t,m) (i, n) (4, m) (4,n)*

We show that g® = 0. Let A = (AQ)) 6.1.ko) be an element in g®.

It is easy to show that unless all index pairs coincide, the corresponding
component of 4 vanishes as the following computation illustrates. Assume

l£m, i, k%L

(i,1) — AW1) — A0 — At k) —
A(i,m),(i,l),(i,l) - A(i,m),(i,l), (7Y A(i,l),(y‘,m),(i,l) - A(i.k),(i,l),(i,l) = 0.
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This is true because of equations (1) and (2). If all index pairs coincide,
equation (3) or (4) is used to reduce this case to the previously solved case.

The group of automorphisms of a tensor product structure is therefore, by
Theorem A, a L1k group.

2. (-structures for which the LIt algebra g of ¢ acts irreducibly on V.
Let g be an irreducible Lie algebra of endomorphisms of a real vector space V

of dimension n. There are six classes of Lie algebras which are of infinite type
(see Y. MaTsSUSHIMA [8]):

g = gl(n, R) LiE algebra of all endomorphisms of V; (1)
g = sl(n, R) LIk algebra of all endomorphisms of V of trace zero; (2)

g=s9sp(2m, R)n = 2m, g is the Lie algebra of endomorphisms of V which
leave the following skew symmetric bilinear form of maximal rank, Q(«, y),

invariant.
Q(x,y) =2y — Ty + oo + Xy 1Y — X, Y0 (3)

= sp(2m, R) + Z, where Z = center of gl(2m, R); (4)

g=sl(m,C)+ U c gl(2m, R), where U is a certain real subspace of the
center of gl(m, C); (5)

g=sp(2m,C)+ U c gl(4m, R), where U is a certain real subspace of the
center of gl(2m, C). (6)

Let M be a compact manifold of dimension n > 2, and let P(M,G) be
a (-structure on M . If the Lik algebra g of G is one of the LiE algebras in (5)
or (6), it follows immediately from Example 4, Section 8, that the automor-
phism group of P (M, G) is a Lie group. If the L1k algebra g of @ is one of the

Lir algebras in (1), (2), (3), and (4), the group of automorphisms of a G-
structure P (M, G) is not in general a Lie group.

Counterexample. All groups corresponding to (1), (2), (3), and (4) contain
SL(2,R) x I, , as a Lie subgroup. SL(2, R) denotes the special linear
group acting on the space spanned by the first two elements of a basisin V'; I, _,
is the identity on the space spanned by the last n — 2 elements of the same
basis. Let 7' be the torus obtained from R? by identifying the points (x, ) and
(x 4+ p,y + q), where p and q are integers. The frame field (7690—, ——a%/——)

defines a SL(2, R) structure on 7'. The vector field f(y) _56_5, where f(p) =

= f(q9), p, ¢ integers, is an infinitesimal automorphism of this SL(2, R)
structure. The vector space of infinitesimal automorphisms is of infinite
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dimension. The automorphism group is therefore not @ Lie group. (Since T is
compact, every infinitesimal automorphism generates a 1-parameter group of
automorphisms.)

Additional applications of Theorem B can be obtained by considering non-
irreducible L1 algebras.

Let M be a compact differentiable manifold of dimension » = 2m and let g
be a commutative LiE algebra of endomorphisms on a 2m-dimensional vector
space V such that for any element a = (a?)eg the following equations hold:

i

_ i+m im0 . o4
;= —@;lpm, @ " =G, ¥,)=1,2,...,m.

Let G denote the L1t subgroup of G L(n, RB) whose L1k algebra is equal to g.
Computation of g :

i - T+m i4+m . 1 . 1
d Ajg = —jimrk = O, jom™ —Uymijitm ™ —Vjymktm>s
an
t+m __ T . i . i+m . i+m
k=  Qiimr—  Cjrm = —Qimitm— — Yiimkim-

For every a = (a,)eV*, h = (a,- ") ehW . The corollary to Theorem B ap-
plies. The automorphism group of a G-structure is a L1z group.
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