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Uber den Begriff der uniformen Struktur
und die Konvergenz in BooLeschen Algebren

von HEINRICH MATZINGER, Ziirich

Einleitung

Die von FiscHER (Math. Annalen Bd. 137 (1959) definierten «Limesrdume»
verallgemeinern den Konvergenzbegriff topologischer Raume. Jedem Punkt
wird die Menge von Filtern zugeordnet, die gegen diesen Punkt konvergieren.
Viele Satze aus der Theorie der topologischen Réume lassen sich auf Limes-
rdume verallgemeinern.

Jeder uniformen Raum ist ein Konvergenzbegriff (eines topologischen
Raumes) zugeordnet. Umgekehrt lassen sich nur gewisse spezielle topologische
Réume uniformisieren.

Es stellt sich die Frage, ob es Verallgemeinerungen der uniformen Réume
gibt, deren zugeordneter Konvergenzbegriff derjenige eines Limesraumes ist.
Diese Frage wird beantwortet durch die Definition der «Quasiuniformen Struk-
turen» (Kapitel I). Es werden einige Sdtze iiber quasiuniforme Strukturen
bewiesen, insbesondere wird gezeigt, dafl jeder quasiuniforme Raum vervoll-
stindigt werden kann, das heiflt, dicht in einen umfassenden Raum eingebettet
werden kann, in welchem alle Cauchyfilter konvergieren.

In BoorEeschen Algebren kann in bekannter Weise ein Konvergenzbegriff
eingefiihrt werden. In Kapitel II wird gezeigt, da dieser Konvergenzbegrift
quasiuniformisierbar ist. Im Falle einer atomaren BooLEschen Algebra ist diese
Struktur sogar eine uniforme Struktur (Kapitel IIT). Im Spezialfall einer Potenz-
menge induziert diese uniforme Struktur die bekannte «Mengenkonvergenzy.

Zwischen (nicht notwendigerweise separierter) Metrik und uniformer Struk-
tur besteht bekanntlich der folgende Zusammenhang: Jede Metrik induziert
eine uniforme Struktur mit abzéhlbarer Basis. Umgekehrt existiert zu jeder
uniformen Struktur mit abzdhlbarer Basis eine Metrik, welche die gegebene
Struktur induziert. Analoge Sitze gelten, wenn der Begriff der «Metrik» zum
Begriff des «Durchmessers» verallgemeinert wird (Kapitel 1V). Jeder Durch-
messer induziert eine quasiuniforme Struktur mit abzdhlbarer Basis, und zu
jeder quasiuniformen Struktur mit abzéhlbarer Basis existiert ein Durchmesser,
der diese induziert.

Der Begriff des «Durchmessers» (mit reellen Werten), 1a8t sich verallgemei-
nern zum Begriff des «Pseudodurchmessers» (mit Werten in einer Halbordnung)
(Kapitel V). Jeder solche Pseudodurchmesser definiert in natiirlicher Weise
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eine quasiuniforme Struktur. Zu jeder quasiuniformen Z7,-Struktur 148t sich
ein Pseudodurchmesser angeben, der diese Struktur induziert. Im Spezialfall
topologischer Rdume fiihrt die analoge Verallgemeinerung des Wertebereichs
der «Metrik» zur «Pseudometrik». Jeder uniforme Raum ist pseudometrisier-
bar und jeder Pseudometrik induziert eine uniforme Struktur.

I. Quasiuniforme Strukturen

Das Ziel, Strukturen zu definieren, die den uniformen Strukturen verwandt
sind, deren zugeordnete Konvergenzstruktur aber nur diejenige eines «Limes-
raumes» ist, kann nicht dadurch erreicht werden, daB die Axiome der Nach-
barschaften uniformer Strukturen abgeschwicht werden. Die notwendiger-

weise durch & - x <> § A & Cauchyfilter»

definierte Konvergenzstruktur ist bei jeder Abschwichung der Axiome der
Nachbarschaften von der Struktur eines Limesraumes verschieden.

Es muB} auf die Definition verzichtet werden, dal eine Menge genau dann
klein von einer gewissen Ordnung V sein soll, wenn alle ihre Punkte nahe von
der Ordnung V sind. Als Grundbegriff wird die GréBenordnung von Mengen
eingefiihrt. (4 klein von der Ordnung. ..) Es la8t sich dann zwar immer noch
definieren, wann zwei Punkte x und y nahe von der Ordnung V hei3en sollen
(genau dann, wenn die Menge {z,y} Kklein von der Ordnung V ist), aber aus
der Groflenordnung der zweipunktigen Mengen, 1463t sich nicht die GroBen-
ordnung beliebiger Mengen bestimmen.

Das (unten formulierte) Axiom U ist eine Verallgemeinerung der Dreiecks-
ungleichung. Intuitiv wird man folgendermaflen darauf gefiihrt:

Die Axiome der Metrik haben formale Ahnlichkeit mit den Axiomen einer
Aquivalenzrelation. Besonders deutlich wird die Analogie, wenn anstatt
d(x, y) { a geschrieben wird zay:

zaz fir alle a0
ray=>yax
TaY, yaz=>x2az

Die sich aufdringende Vermutung, dafl «im Limes a—>o dadurch eine
Aquivalenzrelation definiert» sei, heiBlt exakt formuliert, daB die Cauchyfilter
sich in gewisser Weise in Aquivalenzklassen einteilen lassen. Das Axiom UJ
ist die dazu benotigte Transitivititsbeziehung. Auch in metrischen Riaumen
wird in vielen Beweisen, in denen die Dreiecksungleichung benutzt wird, im
Grunde nur die dadurch bestehende Transitivitat der Cauchyfilter gebraucht.
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I.1. Detinition der quasiuniformen Struktur

Sei F eine Menge, B (&) ihre Potenzmenge, IT eine Familie von Systemen von
Teilmengen von E. Die Elemente von I sollen mit kleinen griechischen Buch-
staben bezeichnet werden: If = {x, 8, ...}. II erfiille die folgenden Axiome:

U,: Alle héchstens einpunktigen Mengen liegen in jedem Element von /7.

U,: IT «gerichtet» im Sinne der Inklusion in P (%), das heiBt zu «, eIl
existiert y e/l mit yca~ f; und aus 4D B und 4 ex folgt Bex.

Ul: Seien &, ®,$ Filter auf E. Falls fiir jedes ax ¢IT ein X eF 2 ® und
ein Ye®AH existiert mit X ex, Yex, so existiert zu jedem « eIl ein
ZeFAH mit Zex.

Aus U, und U, folgt, daB IT eine Filterbasis auf P (¥) ist. Der von IT erzeugte
Filter heifle @.

Definition. Falls ein Filter @ auf B (%) eine Basis IT besitzt, die U,, U,, U2
erfiillt, sagt man, @ erzeuge eine quasiuniforme Struktur » auf £.

Die Gesamtheit aller quasiuniformen Strukturen auf E heile ©7,. Anstatt
A eox(x € D) sagt man auch: 4 ist klein von der Ordnung «. Falls ein Filter
eine Menge A e« enthiilt, sagt man: § ist fein von der Ordnung «.

Aquivalent zum Axiom UJ ist das Axiom

UY: Seien &, ® Filter auf E. Sup (F, ®) existiere. Falls fiir jedes « e IT ein
X ex und ein Yeon existiert, mit X e und Y e ®, so existiert zu jedem
xell ein ZeFA® mit Z ex.

Beweis. Sei Uy vorausgesetzt. &, ® sollen die Voraussetzungen von UY'
erfiillen, dann erfiillen &, sup(F, ®), ® die Voraussetzungen von UJ. Also
enthilt F A G zujedem « eI eine Menge Z ex. Gelte umgekehrt UY. §, ®, 9
sollen die Voraussetzungen von U} erfiillen. Dann erfiillen (A &) und (® A$)
die Voraussetzungen von UY' . Es existiert alsoin (FArG)A(GAH) =FaGrH
eine Menge Z ex. Dann gehort Z auch zu Fa G.

IT sei wieder eine Familie von Mengensystemen, die aber die folgenden
Axiome erfiille:

U,, U, und

U;: Zu jedem « eIl existiert ein B(x)ell, so daB aus A~ B # 2,
B~AC#@ und Av Beff, BvCep folgt,daB 4 v C ex.

Wie oben ist I7 eine Filterbasis auf B (E) und erzeugt einen Filter @. Jeder
solcher Filter definiert auf E eine (spezielle) quasiuniforme Struktur. Die
Gesamtheit dieser Strukturen heile Z7; .

Aquivalent zum Axiom U} ist das folgende Axiom:

UY: Zu jedem « eIl existiert ein B(x)ell, so daB aus F ~ @ # @ und
Fef, Gep folgt,daBl F v G ex.

3 CMH vol. 388
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Zum Beweise von Ui’ aus Ui wihle man einen Punkt z in F ~ @. Dann
erfiillen die Mengen F, {z}, @ die Voraussetzungen von U;. Es gilt also
Fov@Gex.

Sei umgekehrt U}’ erfiillt. Man setzt F = A v B und G = B v C. Dann
folgt sofort, daB FovG@=A4Av BvCex. Also ist auch A v Cex. Man
zeigt leicht, daB auch folgende Bedingung dquivalent zum Axiom U3} ist:

Uy': Zu jedem o eIl existiert ein B,(x) eIl, so daB aus Ay~ A; # &

(t=1,...n) und A,v 4, ¢p,(z), folgt,daB U A4, ex.
=0

Eine dritte Art von Strukturen auf £ wird definiert durch Filter @ auf P(E),
die eine Basis I7 besitzen, welche folgende Axiome erfiillt:

U,, U, und

U3: Zu jedem « eIT existiert ein f(x) ell, sodaBaus 4y~ 4, # 3 (jel;
I beliebige Indexmenge) und 4, v A4, ¢ § (fiir alle ) folgt, daBl U 4;e«.

Die Gesamtheit dieser Strukturen heile 7, . e

Eine letzte Art von Strukturen auf £ wird erzeugt durch Filter @, welche
eine Basis IT besitzen, die folgende Axiome erfiillt:

U,, U,, U} und

U,: A ist genau dann klein von der Ordnung «, wenn fiir jedes Punkte-
paar z,y aus A4 gilt: {z, y}ex.

Die Gesamtheit dieser Stukturen heile Z7.

Man sieht sofort, dal T, > W, > U,> U.

Die Axiome fiir die @7-Strukturen bilden kein minimales Axiomensystem.
Zum Beispiel 148t sich U2 beweisen aus U,, U,, U3, U,.

Jede TZ/-Struktur ist eine uniforme Struktur und umgekehrt. Zum Beweise
ordne man jedem xell ein V,c E X E zu: V,= {{z, y} ex}. Man zeigt
dann sofort, daBl die V, eine Basis von Nachbarschaften einer uniformen
Struktur sind.

Umgekehrt geht man aus von einer symmetrischen Basis der uniformen
Struktur und definiert: 4 sei klein von der Ordnung oy, genau dann, wenn
A x AcV. Die Axiome U,, U,, Ui, U, folgen dann sofort.

I.2. Feinheit quasiuniformer Strukturen

Definiton. u, heilt feiner als u, (v, » u,), wenn I1; »Il,, m.a.W. wenn &, » D, .

Die feinste TZ,-Struktur, die diskrete @7,-Struktur, wird bestimmt durch
den Filter @ = {N: @, {z} ¢ A fir alle xeE}. Die grobste T -Struktur
wird bestimmt durch @ = {P(X)}.

Supremum. Seien u,; die durch gegéebene @, definierten T7-Strukturen. Dann
existiert sup w; = # und wird durch @ = sup @; bestimmt. Zum Beweise
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geniigt es, zu zeigen, dal sup @, eine T -Struktur definiert: Die Axiome U,
und U, sind trivialerweise erfiillt. Es ist noch U9 zu beweisen:
Jedes « ¢ @ lift sich darstellen als o = oy ~ Ogy ™+ v Gy, ML 0y, € (p‘i "

Zu xe® existiere ein X eFA® undein Ye®BA$H mit X, Yex. Dann
ist auch X, Yeo; . Firjedes @; sind die Voraussetzungen von Axiom U3

erfiillt. Es existiert demnach zu jedem & ein Z,’, € oy, mit Zf,- eFrH. Sei

n
Z=nN Ze,-- Dannist Zex und ZeFa $H.
j=1
Infimum. Seien u,; die durch gegebene @, definierten @ ,-Strukturen. Dann
existiert infu, immer: % = infu, = sup {u:u «u,;}. Dagegen ist der inf u,
erzeugende Filter im allgemeinen nicht identisch mit inf &@;. Inf @, erzeugt
im allgemeinen keine 7 ,-Struktur.

Gegenbeispiel. Seien zwei Partitionen von F gegeben: 4, v B, = £ und
A,v B,=F. Es gelte: A,, B, #3 und A4,> 4,. Jede solche Partition
erzeugt eine T ,-Struktur: II;, = {X:X c 4, oder X c B,}. Die Axiome U,
und U, sind trivialerweise erfiillt. Zum Beweis von Uj: Sei § A & beliebig
fein, dann existieren F und @, mit F v G, e FAa® und F v @G, c A (oder c B).
Sei ® A% Dbeliebig fein, dann existieren G, und H mit G, He G A $H und
G,vHc A (oder c B). Da G,~G, # &, so liegen entweder G; und @, in 4
oder @, und G, in B. Deshalb gilt # v Hc A (oder c B), d.h. A $H ist be-
liebig fein. Anderseits erfiillt yp = inf(®,, D,) = der von {X: X c 4, oder c B}
erzeugte Filter Us nicht: Man betrachte die von A4,, 4, ~ B,, B, erzeugten
Filter. Das inf der ersten beiden ist der von 4, erzeugte Filter und deshalb
beliebig y-fein. Das inf der beiden letzten ist der von B, erzeugte Filter, also be-
liebig y-fein. Das inf des ersten und des dritten ist {E£}, also nicht beliebig y-fein.

Kriterium. w,, u, seinen erzeugt durch @,, ®D,. u = inf(u,, uw,). # wird
genau dann von inf(®,, d,) erzeugt, wenn aus

& A ® bel. fein (u,) und
® A $ bel. fein (u,)

Beweis. Notwendig. Wire § A ® bel. u,-fein, ® a § bel. u,-fein, aber Fa H
nicht bel. u-fein, dann wire A ® bel. u-fein, G A § bel. u-fein, aber Far H
nicht bel. u-fein, was U? widerspricht.

Hinreichend. Sei § A ® Dbeliebig u-fein, dann ist Fa ® beliebig u,-fein
oder beliebig wu,-fein. (Da sonst «, e P, existieren wiirden, so da Fa G
keine Mengen in «; enthilt. Dann enthilt §a ® auch keine Mengen in
o, v, das heiBt § A G ist nicht beliebig u-fein.) Sei z.B. F A & beliebig
u,-fein. Dann ist

folgt: & A $ bel. fein (u) .
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Fall1: G A beliebig u,-fein, das heit Fa $H beliebig u,-fein, das heildt
FA9H beliebig u-fein; oder
Fall 2: ® A $ beliebig u,-fein, das heit § r $H beliebig u-fein (Krit.).

I.3. Urbild einer quasiuniformen Struktur

Sei f: X— Y eine Abbildung von X in Y. Die induzierte Abbildung der
Potenzmengen heile ebenfalls f. €, und €, seien die Systeme aller hochstens
einelementigen Mengen von X bzw. von Y.

Auf Y sei durch @ eine quasiuniforme Struktur gegeben. Zu « ¢ ® wird
gebildet o* c P(X) = {4:f(4) ex}. Die Menge aller solchen x* bildet auf
P (X) eine Filterbasis, die eine quasiuniforme Struktur, das Urbild der gege-
benen Struktur, erzeugt.

Beweis. 1. f(€x) cCy

2. 0y = f(oq), g = f(ox3), dann ist f(ay ~ay) Coy A &y.

3. Eine Menge A c X ist genau dann klein von der Ordnung «*, wenn f(A4)
klein von der Ordnung « ist. Ein Filter ist also genau dann beliebig fein, wenn
sein Bild die Basis eines beliebig feinen Filters ist.

Spurbildung. Sei auf E eine quasiuniforme Struktur gegeben. A4 sei eine Teil-
menge von E. Dann wird auf 4 eine quasiuniforme Struktur induziert, die
Spur von u auf 4(u,) - v, ist das inverse Bild von % unter der Einbettung k
von 4 in K.

I.4. Separierte quasiuniforme Strukturen

Definition. Eine quasiuniforme Struktur hei3t separiert, wenn nur die hoch-
stens einpunktigen Mengen klein von jeder Ordnung sind.

Aquivalent ist die Formulierung: N & = {z , {{z}} } Ebenfalls dquivalent
acd z€E

ist die Forderung: Zu jeder mehrpunktigen Menge A c F existiert ein x ¢ ®,
8o daB3 A nicht klein von der Ordnung « ist.

Die folgenden einfachen Sitze sind leicht zu beweisen:

1. Jede quasiuniforme Struktur, die feiner ist als eine separierte quasi-
uniforme Struktur, ist separiert.

2. Das sup einer Familie von separierten quasiuniformen Strukturen ist
separiert.

3. u; und %, seien separierte quasiuniforme Strukturen. Falls inf(wu,, u,)
von inf(®d,, D,) erzeugt wird, so ist inf(u,, u,) separiert. (Zu 4, mehrpunktig
existieren «; e ®;, soda A¢x;. Danngilt A¢ox, v, e®.)
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4. Gegeben eine Abbildung f: X — Y. Auf Y sei eine quasiuniforme
Struktur % gegeben. In diesem Fall ist f genau dann eineindeutig, wenn aus u
separiert folgt, da f-1(u) separiert.

5. Die Spur einer separierten quasiuniformen Struktur = (auf E) auf einer
Teilmenge A c K ,(u,), ist separiert.

Seioxe®. Sei é(x) = {X: ExA4,,4,; Ay, A ex; Agn A, #2;Xc U A,-}
Ag=A,4
» sei nicht notwendigerweise separiert. "
Dann wird eine Aquivalenzrelation definiert durch:

x~y:¢ {x,y}ex (firalle x e D).

x~zx, und z ~y<>y ~ z sind trivial. Ferner folgt aus z ~y und y ~z,
daB {z,y}, {y, 2} ex (fiir alle x e ®). Die von {z,y} und {y,z} erzeugten
Filter sind also beliebig fein. Dann folgt, dall auch der von {z, 2z} erzeugte
Filter beliebig fein ist. Man sieht leicht, dal dies nur méglich ist, wenn {z, y}
in allen « liegt. Also ist * ~z.

Diese Aquivalenzrelation R induziert in P(E) eine Aquivalenzrelation:
A~ B:¢> zu aeA existiert b e B, sodall ¢ ~b (und umgekehrt).

Sei g(x) = {X: X S(4); A ex}, wobei S(A) die in bezug auf R saturierte
Menge darstellt.

Dieselben saturierten Systeme erhilt man durch Projektion: p: £ — E/R,
p: B(#)— P(Z/R) und anschlieBende Bildung des Inversen.

Sei u e @ ,. Dann siecht man leicht, daBl die &(x) eine Basis von @ bilden.
Da o(x) c 6(x), bilden auch die o(x) eine Basis von @.

Auf E/R wird dadurch in natiirlicher Weise eine separierte T7,-Struktur
definiert: die zu u assoziierte separierte T/ ,-Struktur. Es wurde dadurch eine
Ubersicht iiber alle ZZ,-Strukturen gewonnen: Zu einer gegebenen Menge E,
zu einer gegebenen Aquivalenzrelation R auf E und zu gegebener separierten
U ,-Struktur » auf E/R existiert genau eine @7 ,-Struktur auf F, deren asso-
ziierte separierte Struktur « ist: Das inverse Bild von % unter der Projektion
p:E—~> E|R.

I.5. Cauchyfilter

Definition: Ein Filter § heiBt Cauchyfilter, wenn zu jedem o« e®P ein
F ¢ existiert, mit F ex.

Anschaulich: Ein Filter heifle Cauchyfilter, wenn er beliebig kleine Mengen
enthilt.

Man sieht leicht, daB folgende Sitze gelten:

1. uy » u,. Sei § ein u,-Cauchyfilter, dann ist er auch ein «,-Cauchyfilter.
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2. Sei § » ®. Sei ferner G ein Cauchyfilter. Dann ist auch § ein Cauchyfilter.
3. Alle z sind Cauchyfilter.
4. Falls A beliebig klein, so ist 4 ein Cauchyfilter.

Aquivalente Cauchyfilter. In der Menge der Cauchyfilter wird eine Aqui-
valenzrelation definiert durch:

§F ~ G : <= Falls inf (F, ) ein Cauchyfilter ist.

Zum Beweise bemerke man, daB

LG =§

2. g A (ﬁ = @ A ‘i}

3.300, 6rH CF=Fr$H CF (nach Axiom UY).

Seien endlich viele Filter §, 4quivalent, dann ist auch ihr infimum, /'\ &, ein

Filter derselben Aquivalenzklasse. Zusammen mit Satz 2 (siehe oben) folgt
also:

Die Aquivalenzklassen von Cauchyfiltern sind A-Ideale in der Familie aller
Filter auf E.

1.6. Konvergenz

Gegeben sei auf der Menge K eine quasiuniforme Struktur ». Auf E wird
dadurch ein Konvergenzbegriff fiir Filter induziert:

Definition: § konvergiert nach (¥ — x), genau dann, wenn inf(g, z)
ein Cauchyfilter ist.

Dieser Konvergenzbegriff definiert auf E einen Limesraum, da

l. x> 2

2. Sei F»®. Sei ®—x. Dannist Gaz «Faz. Da G Az ein Cauchy-
filter ist, ist auch & A z ein Cauchyfilter, also konvergiert § nach z.

3. Seien § -« und G — z. Dann folgt aus F A z Cauchyfilter (CF), und
Grxz CF, daB F A G ein CF ist. Die Filter §, ®, « sind dquivalent, also
ist (¥AG)az ein OF, das heiBt (Fa G)— .

Falls alle Cauchyfilter konvergieren, heit der quasiuniforme Raum voll-
stéindig.

Falls ein Cauchyfilter (nicht) konvergiert, konvergieren auch alle dquiva-
lenten Cauchyfilter (nicht).

Falls die quasiuniforme Struktur % auf E separiert ist, so ist auch der
zugehorige Limesraum separiert.

Beweis: x #y, dann ist = Ay kein Cauchyfilter. Wiirde ein Filter § exi-
stieren, der nach x und nach y konvergiert, so wiren Faz und Fay CF.
Dann wiire 5 ~y, das heit xay ein CF.
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I.7. Vervollstindigung

Satz. Sei (E, u) ein quasiuniformer Raum. Dann existiert ein vollstindiger
quasiuniformer Raum (£, ') mit folgenden Eigenschaften: (E’',«') besitzt
einen zu (&, u) isomorphen Unterraum (E*, u*), welcher dicht liegt in (E’, u').

Beweis. K’ sei die Menge aller C F auf E . k sei die eineindeutige Abbildung von
Ein B’ ,diedem Punkt = ¢ £ den CF z zuordnet. E* sei das Bild von E unterk.
In E’ wird eine quasiuniforme Struktur definiert :

Definttion. A' c ' heifit klein von der Ordnung «', genau dann, wenn ein
F c B existiert, so da F ex und F einf §F.
Fed’
Es ist zu zeigen, daf3 die Axiome der quasiuniformen Struktur erfiillt sind:

1. 4’ sei einpunktig, das heifit, 4’ enthilt genau einen Cauchyfilter 6.

Dann ist inf § = &. ® enthilt beliebig kleine Mengen, also ist A’ klein von
Fed’
jeder Ordnung.

2. Es soll gezeigt werden, dal (x ~ ) =o' ~ g’ ist. M’ sei klein von der

Ordnung (x ~ ). Dann existiert ein Fe® =inf§, so dal Fex ~ .
geM’
Dann gilt auch Fex und F epf. F'ist also klein von der Ordnung o' ~ 8.

Sei anderseits M’ klein von der Ordnung (x ~ 8)’, dann existieren Mengen
Aund B (in ) mit A und Be® =inf{§f und Aex, Bex. F=A~ B

FeM’
liegt dann auch in ®, ferner gilt F ex, F ef, das heiit, Fex~fg. M' ist
also klein von der Ordnung (x ~ ). Damit ist gezeigt, daB (x ~ f) =

= o' ~ §'. Daraus folgt, daBl die {«'} eine Filterbasis aut P (&) bilden.

734
Sei A’> B'. Sei ferner A’ ea’. Das heilit, es existiert eine Menge M e«

mit M einf§. Da aber inf§ »inf &, so liegt M auch in inf§F. Also ist
B ea'. fed’ geB’ Fed’ &eB’

3. Zum Beweise des 3. Axioms werde zunichst ein Hilfssatz bewiesen :

Hilfssatz. Ein Filter ' auf E' enthilt genau dann eine Menge, die klein ist
von der Ordnung o', wenn der Filter $ =V A § eine Menge enthilt,

die klein ist von der Ordnung «. Fleg’ Ger’
Beweis des Hilfssatzes.
a) & enthalte eine Menge F,' ea’. Dann enthilt A & eine Menge 4, die
FeFy’
klein ist von der Ordnung . Da V AF» A §F, liegt 4 auchin Vv A §,
Fey’ Fer’ Wﬂ' Fley’ FeF’

das heiit, dieser Filter enthélt eine Menge A, die klein ist von der Ordnung .

b) § = V A enthalte eine Menge H, die klein ist von der Ordnung «.
ey’ GeF’
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Als Abkiirzung sei Gy = A §. Es existieren endlich viele 7, ¢ §', so daB
GF’

H=G~ ... ~GqG,, WobeiLYf G; e Gp,.. H liegt alsoin V Gp, . Da HeGp,
(fiir alle 2), so gilt H e A Gp, -
Sei nun Fy=F/~ ... ~F,. Dann gilt fir alle FeF,: Gp, «F.
Also ist auch A (SFi' «AE .
Fo’

Da der Filter links H enthilt, mufl auch der Filter rechts H enthalten; dies
bedeutet, dal F;' die gesuchte Menge in ' ist, welche klein ist von der Ord-
nung «’.

Bemerkung. Insbesondere folgt aus dem Hilfssatz, daBl §’ genau dann ein
Cauchyfilter ist, wenn $ = V A § ein Cauchyfilter ist.
F'e§’ FeF
Das 3. Axiom kann jetzt leicht bewiesen werden:
Seien ' A ®’' und G'aH’ Cauchyfilter. Dannsindauch Vv A = V

HeF' A6 'FeH F'eF’ G'e®’

A & und V AG = \Y A & Cauchyfilter. Es folgt, daBl
FeF'wa’ HeG'AH’ FeH H'€H’ G'€6’ Feq'wH’
vV A § ein Cauchyfilter ist; dann ist um so mehr V A & ein
He§' A6’ 7D’ FeH HeF'AH’ FeH

Cauchyfilter. F A $’ enthilt also beliebig kleine Mengen, womit Uj (in E')
nachgewiesen ist.

Es soll jetzt gezeigt werden, daB die quasiuniformen Strukturen von E und
von E* (Spur von E’) isomorph sind. Jeder Menge A c £ entspricht die
Menge A' = {x:xeA}. Da A= A #, so gilt offenbar: A’ ist klein von

zed

der Ordnung &', genau dann, wenn 4 eine Menge von der Ordnung « enthilt,
also genau dann, wenn 4 klein ist von der Ordnung «.
Die Vollstandigkeit von E’ wird wie folgt gezeigt:

Sei §§' ein beliebiger Cauchyfilter auf E’, das heilt § = Vv A & ist ein
Fey’ GeF’

CF auf E. Es wird gezeigt, dafl §' konvergiert, und zwar gegen $:§ — 9.

Dazu ist notwendig und hinreichend, daB &' A § ein Cauchyfilter ist. Es

geniigt also, zu zeigen, daB V A § ein Cauchyfilter ist. Wie man leicht

Fe§'aH FeF
sieht, ist dazu nur zu beweisen, dafl V A § ein Cauchyfilter ist. Da A & « 9,
Feg’ FeF' () FeF’
sogilt: AN =AFE, alsoistV A F =9 ein CF.
FeF'v (D} FeF’ FeF’ FeF'v{H}

Es mu8 jetzt nur noch gezeigt werden, da8 £* dicht liegt in £’. Dazu nimmt
man einen beliebigen Punkt § ¢ £’ und zeigt, daB auf ¥ ein Filter existiert,
dessen Bild unter der Einbettung k: £ — E' nach § konvergiert. Der gesuchte
Filter ist § als Filter auf £ betrachtet. k(§)) als Filterbasis auf £’ konvergiert

nimlich gegen §: esist § = V A , woraus die Behauptung wie oben folgt.
Fe$ zeF



Uber den Begriff der uniformen Struktur und die Konvergenz in BooLEschen Algebren 41

II. BooLEsche Algebren

I1.1. Eine quasiuniforme Struktur

Gegeben sei eine BooLksche Algebra E, mit den Elementen a,b, ....
o sei das kleinste, ¢ das grofite Element.

Satz. Die Mengensysteme
.a, = {X: Ex s mit s >z (firalle z¢X), und
Ex i mit + <z (fir alle z e X),
sodaB s —i[Za,(k=1,...n)}"
fiir alle natiirlichen n bilden eine Filterbasis in B(Z), welche eine quasi-
uniforme Struktur « definiert.

“dl, .

Bewets. 1. Jedes «,, enthélt alle einpunktigen Mengen: {x}. Dabei ist
§=1==2x.

2. Die «,, bilden eine Filterbasis, da o, . o, ~ %5, .. 5, = %ay, ... ap, by, ... by

3. Seien Fa®, ®aH Filter, die beliebig kleine Mengen enthalten, das
heif3t, zu beliebigen a,, ... a, existieren ¥ und G;,s0dal F v G, ex

By e0e Gy ?
und zu by, ...b, existieren G, und H, so dafl Gy v Hea, ., . Sei
G = G, ~ G,, dann erfiillt G dieselben Bedingungen wie G; und G,. Seien jetzt
a, ... a, gegeben. Dann zeigt man sofort, dall # und @, existieren, so daf

(85 v 3g,) — (iy ~ ig) > ay .

Man wihle jetzt . .
: by = ap — ((8p v 801) — (g ~ /"Gl))°

Dann ist offenbar b, #40. Zu b,, ... b, existieren G,, H, so daB

(3(;'2 v 8g) — (7:02 ~ ig) ’? by .

Dann gilt . .
8 dpa = (85 v 86) — (ip ~ ig) [> as

YGH = (sq v 85) — (ig ~ig) > by,

woraus leicht folgt, daBl p, existieren mit p, <b, <@, und p,~dgg =0
und pp~dgg =o0. Setzt man dgpgg = (8p v 8g v 8g) — (ip ~ tg ~ tg), 80
zeigt man (z. B. durch Zerlegen in eine Normalform), dal dpgg =dpg v dgg.
Es gilt also p, ~ dpgy = o und daraus folgt p, ~ dpy = 0. Es existieren also
Pr < @; mit

und

(87 v 8g) — (tp ~ ig) l> P>

woraus folgt . .
s (87 < 87) — (i ~ i) [> as .

Setzt man 8 =8p v 8y und 7 =1y~ iz, so heillt dies, daB zu beliebigen

a,, ... a, Fund H existieren,sodal s > z(xeF v H) und + < z(x e F v H)

1) Aus technischen Griinden ist die Verneinung der Beziehung > durch |> und die Ver-
neinung von < durch <| wiedergegeben.
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und 8 — ¢ ]2 a,, das heiflt, F v H €Xg, ...a,- §AD enthilt also beliebig
kleine Mengen.
Die u zugeordnete Limitierung heifle 7.

I1.2. Eine Konvergenzstruktur in BooLEschen Algebren

In einer BooLEschen Algebra E kann neben der durch die quasiuniforme
Struktur « induzierten Limitierung = noch eine zweite Limitierung ¢ definiert
werden :

Definition: & —> x (& konvergiert nach z), genau dann, wenn fiir alle
Fe® ein s > x(xeF) und ein 1p << z(x ¢ F) existieren, so dal n sy =
) ’l:F = . Feg
Fe§ .

Es gilt offenbar: x > x. Ferner folgt aus F » ® und & —»> z leicht § —> x.

Falls §—>« und ® —> =2, so gilt N s und N sp=2. Dann folgt sofort,

Fef Fe6

daBl n g oF, = % Entsprechend folgt U zF or, = .
F e¥
F2€‘5

Also ist ¢ eine Limitierung.
Diese bekannte Konvergenzstruktur wird quasiuniformisiert durch die in
II.1 angegebene Struktur »:

Satz. § konvergiert genau dann nach z im Sinne von ¢, wenn § nach «
konvergiert im Sinne von 7.

Beweis. a) Gelte F—>«. Dann gilt n sp= U ip=2. Es folgt n

) = Feg Fe Feg
(8 — 1p) = 0.
Zu a, existiert F, , so daB sy, — ip, [>a;. Seien a,, ... a, 7 0 gegeben.
n
Sei Fy= n F, . Dann gilt sp — iz [>a, (fir alle k). Also ist § ein

k=1
u-Cauchyfilter. Es ist noch zu zeigen, dal & im Sinne der Limitierung v nach «

konvergiert. Dazu muB $ A z ein Cauchyfilter sein.

Es gilt allgemein: sp>c¢ = 8p g = 8p und ip = tp (. FALT =
= {F v {z}: F ¢§}. Also folgt sofort, daB § A = ein Cauchyfilter ist.

b) Sei § ein Cauchyfilter, der im Sinne von r nach z konvergiert. Dann ist
¥ rz ein Cauchyfilter. Man zeigt leicht, daB dann sy > x > ip. Es folgt

Nsp=Nsg=x=Uip > U ip.
FeFaz Fe Fe§ FeFaz

Zu a) (a ~ 2 = 0) existiert F' mit sp. |> a und
zu b) (bcz) existiert F” mit ip <|b, so daB fir F*=F ~ F" gilt:
8p«|[=> a und ip, <| b, das heiBt, n (.31,1 —ip)=o0. Esfolgt N sp= U ip=

=nN8p=U 7’1’ = . Fegaz Fegaz
Fe§ Fe§
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I1.3. Beispiel eines nicht konvergenten Cauchyfilters

Die abzihlbare Menge £ bestehe aus den Elementen:

Xy, Xy, Xg, ... und Yy, %, Ys, - .-

A c E sei die Teilmenge aller ;.
B sei die Teilmenge der Potenzmenge B (Z), bestehend aus

1. allen endlichen Teilmengen von £,

2. allen Komplementen endlicher Teilmengen von E.

B ist eine BooLEsche Algebra, wenn man als Operationen in B die von den
Mengenoperationen in ‘B (Z) induzierten Operationen betrachtet. In B sei eine
Folge A, gegeben:

A, = {x} A, = {y,)° Ay = {2, 2} A= {y1,%)° ...

Man betrachte den zur Folge gehorigen Elementarfilter ¢. Er besitzt eine ab-
zdhlbare Basis:
&= {4,, 4,41, ...}. Man sieht sofort,dal S, = U 4, und n 4,=1,

existieren. Es gilt 4€Tn 4i€¥n
8 == {?/p Yas - - - yn,z}", wenn n gerade
" W Yoo -+« Yngrp)'s wenn » ungerade
7 — [ {zy, @y, ... ), wenn n gerade
" l {2, 2y, ... xn+1/2}’ wenn 7 ungerade
[« -] [+ ]

n 8, und U In existieren nicht, das heilt, ¢ konvergiert nicht. Anderseits
n=1 n=1

existiert

D =8 —1 — {1 - Topes Y15 o - Ynpa}®s wenn n gerade
n n n ¢ d
{1, ... Zpyyy2 Yo -« Ynyyye)®,  Wenn n ungerade.

Es gilt N D, = @, das heilit, ¢ ist ein Cauchyfilter.

n=1

ITI. Atomare BooLEsche Algebren

II1.1. Eine uniforme Struktur in atomaren BooLeschen Algebren

Gegeben sei die atomare BooLEsche Algebra 8. In B X B werden die
Mengen betrachtet von der Form

BA,, 4y, ... A, ={X,Y): XAYDA,(i=1,...0)},

wobei A4,, ... A, eine endliche Auswahl von Elementen von B sind.
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Satz. Die Gesamtheit aller oben definierten B ... bildet auf B X B eine
Filterbasis, die in B eine uniforme Struktur definiert.

Beweis. Seien B;c A;, dann sieht man leicht, dal B, 5By, . . Da
B atomar, geniigt es, zu zeigen, daB3 die Mengen

By ooy =X, Y): X AY3a,0=1,...0)},

wobei z,, x,, ... x, endlich viele Atome von B sind, eine Filterbasis auf
B x B darstellen, welche auf B eine uniforme Struktur definiert.

1. Die Diagonale von B X 8:D = {(X, X): X « B} liegt in allen B .
Es ist ndmlich X A X = o p = (fir alle z ¢ E).

2. By sy ...z0n By, = Bay,...op0y, .0, WObeL eventuell doppelt auf-
tretende Indexelemente gestrichen werden kénnen. Aus formellen Griinden
setzt man: Bre 1nd menge = B X B. Damit ist gezeigt, dahl die B eine
Filterbasis bilden. Da die 8  symmetrisch sind, ist fiir den Beweis, daf} sie
eine uniforme Struktur definieren, nur noch zu zeigen, dafl zu jedem B  ein
I existiert, so daB W* < B . Dies ist insbesondere dann bewiesen, wenn
die schirfere Aussage B? = B gezeigt wird.

B0, = (X, 2):Ex Y mit XA Ypz, und Y AZ3z}.
Sei jetzt
2 ¢ XAY=(X— Y)o(Y—X)
e (X -V nZ 4+ (X = V)nZe A (Y —X)nZ + (Y — X)n Ze

=X~A"YA"Z+XA~AYARZ+XAYAZ+ XA YA Ze.
Sei ferner

2,8 YNZ=XrYnrnZ+XA~Y~Z+X~AYn~nZ+ Xn YenZ°,
so folgt leicht, daBl dann auch gilt

2 XNZ=X~nYrnZe+ XY nZ+XAnYr~Z+ Xn Yen Z.
Das heifit, aus (X,Z) B} , folgt (X,Z)eB, ,, . .., Esgiltalso

2
%zl....a:n c SBa:l,...a:n *

Anderseits zeigt man leicht, daB fiir jede Teilmenge U von B x B, welche die
Diagonale enthilt, gilt 42> Y. Daraus folgt, dal

2 —
SBazl,...a:,, - stl,...z,, .

Damit ist bewiesen, dafl die oben definierten Nachbarschaften eine uniforme
Struktur auf B definieren. Diese Struktur heile ».
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Separiertheit von w: w ist separiert. Sei namlich X, = Y,, dann existiert
ein Punkt ze¢ X, A Y,. Man betrachte B, = {(X, ¥):2¢ X A Y}, dann
liegt (X,, Y,) ¢ B,. Also ist u separiert.

Cauchyfilter @ auf B sind Mengensysteme, so dafl zu beliebigen, aber end-
lichvielen Elementen 4,, ... 4, von B ein § e von @ existiert, so daB fiir
jedes Paar X', Y' von Elementen von Fgilt: X' A YDA, it =1,...n).

Falls 2, ¢ X A Y(¢=1,...n), so heilen X und Y nahe von der Ord-
nung , ... &,.

Falls fiir alle Paare X, Ye¥q gilt: z;¢ X A Y, so heiit A klein von der
Ordnung =z, ... z,.

II1.2. Die induzierte Topologie in B

Die separierte uniforme Struktur » auf B induziert eine separierte Topologie
7 auf B.

Umgebungsbasis von Xo. B, . 5 (X)) = {X: (X, X) e B, .}
={X: X ANXypz,(t=1...n)}.
Die B, . . ,,(X,) bilden sogar eine offene Umgebungsbasis:
Sei ndmlich Y e®B, ., (X), dann gilt X, A Yz, (i =1, ... n).
Fir X e B, ..., (Xo) gilt X, AXpaz;(i=1,...n). Es folgt sofort, daBl

dann X A Y3z,(i=1,...0). Das heilt XeB, , (Y). Es gilt also
By,,...2,(Xo) € By, 4, (Y).

Entsprechend wird die umgekehrte Inklusion bewiesen, woraus folgt, dafl
B T, (Y)=12 = gy (Xy), wenn Ye %xl,...z (Xo) -

Damit ist gezeigt, daBl die angegebene Umgebungsbasis aus offenen Mengen
besteht.

Tyyee- Zys.-

Offene Mengen. Aus den obigen Uberlegungen folgt sofort, daB die B, 1. 7 (X)

eine Basis der offenen Mengen von (B, 7) bilden. Eine Menge O ist deshalb
genau dann offen, wenn fiir jedes X O 2,, ... z, existieren, so daBl aus
X AX pux, folgt,daBl X' eDO.

Konvergente Filter. @ — X, genau dann, wenn zu 2,, ... %, ein Fed
existiert, so daB fiir alle FeJ gilt: FA X 3 2, ... 2,.

Separiertheit von B. Folgt aus der Separiertheit von u oder direkt: Sei
X # Y, dann existiert xeX A Y. Es mull dann B,(X) ~ B,(Y) = leer
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sein, da sonst Z existieren wiirde mit X AZpa2 und Y A Z » x, woraus
leicht folgt, daB X A Y » «, entgegen der Voraussetzung.

Zusammenhang. Die Mengen B, . , (F), wobei F eine Teilmenge von
{z;, ... z,} ist, sind offen und disjunkt. Sie iiberdecken B. Daraus folgt, daB3
sie alle auch abgeschlossen sind.

Da B, .. . ,,(X)= B.,,...en(Y), wenn {z, ... Zpn X ={z,...2,}n Y,
so folgt allgemein, daB alle Q},szn (X) offen und abgeschlossen sind.

Da zu X Y, wie oben gezeigt, immer eine der angegebenen offenen und
abgeschlossenen Umgebungen von X existiert, die Y nicht enthilt, folgt, daB
die Zusammenhangskomponente von X gleich {X} ist. Der Raum (B, 7) ist
also total unzusammenhingend.

Dichte Teilmenge. Die Vereinigungen von endlich vielen Atomen liegen
dicht in (B, 7). Zum Beweise wihle man X ¢ B. Es ist zu zeigen, daB zu einer
beliebigen Umgebung von X eine endliche Menge gehort. In jeder Umgebung
liegt eine Umgebung von der Form B, , (X). Darin liegt die «endliche
Menge» {z;, ... z,} ~ X.

II1.3. Mengenkonvergenz (Vgl. HAUSDORFF, Grundziige der Mengenlehre)

Sei E eine Menge. Sei A,(t = 1,2, ...) eine abzihlbare Folge von Teil-
mengen von k. Es wird definiert:

lim sup 4; = {x: 2 ¢ unendlich vielen A4,}
liminf 4, = {x:x e fast allen 4.}

Falls limsup 4; =liminf 4, = A, setzt man definitionsgemiB8 lim 4, = 4,
und nennt die Folge der 4, konvergent.
Man kann leicht zeigen, daf3
limsupA, =N UA4; und liminfd,=U n 4,.

n=1 i=n n=1 {=n
Es liegt nahe, den Begriff der Mengenkonvergenz auf Filter auszudehnen.
Es kann dann leicht gezeigt werden, dafl die Mengenkonvergenz auf P (%)
einen Limesraum definiert:

II1.4. Mengenkonvergenz und Limesriume

Sei E eine Menge. B(E) ihre Potenzmenge. Ein Filter @ auf P (X) ist eine
nicht leere Familie von Mengensystemen &, ®, ... mit:

1. Das leere System ¢ ¢ @

2. A, BeD=—S>A~BecD

3. UA»B, BeD—>NeD.
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Sei jetzt @ ein Filter auf P(Z). DefinitionsgemiB sei dann:
limsup@=nNn UA und liminfd=U n 4.
FeD AeF GeP Aey
Falls lim sup @ = liminf @ = A4, so setzt man lim® = 4.
Durch diese Definition wird jedem Element A ¢ P(Z) eine Menge ¢ A von
Filtern auf B () zugeordnet.

Satz. Die Abbildung A4 — 0 A definiert auf B (£) eine Limitierung.
Beweis. a) Sei y » @. Dann gilt allgemein

limsupyp climsup @ und
lim inf @ c lim infy.
Wenn speziell @ als konvergent vorausgesetzt wird, so folgt aus den obigen
Ungleichungen und aus lim inf @ c lim sup @ (fiir jeden Filter): lim infy =
= lim supp. Also konvergiert auch p.
b) A = {A: A «eA}. Dann folgt sofort, daB liminf A =limsup A = 4.
c) Sei @—>A4,. und p—>4,. Sei y=inf(D,y) = {F v O)geoge,. D2

g «®D, soist limsup y = N U 4o4,.
FeDGey AeFw O
Anderseits kann lim sup y auch nicht echt groBer als 4, sein, da zu jedem

x¢ A, ein F ¢ P existiert und ein G’ ey existiert, sodal ¢ U 4 und
Adef’
x¢ U A. Daraus folgt, dal ¢ U 4. Dann gilt offenbar x ¢ lim sup .
A€G’ A€’ U6’
Also ist lim sup y = 4,. Entsprechend wird bewiesen, dafl lim inf y = 4,,

das heiflt, dal y —> 4,.

In Anwendung der Ergebnisse von 3.1. und 3.2. kann auf P (#) eine uni-
forme Struktur « definiert werden. Sie definiert auf P (Z) eine Topologie .
Wie frither gezeigt, bilden die Mengen B,  , ={X, Y):X A YDA}
eine Basis des Filters der Nachbarschaften.

II1.5. Vergleich mit Mengenkonvergenz

Der durch die uniforme Struktur « induzierte Konvergenzbegriff v ist iden-
tisch mit dem auf Filter erweiterten Begriff der Mengenkonvergenz: o.

Beweis. Im ganzen Beweis sollen vorkommende Elemente z,, ... x, unter-
teilt werden in solche %,, ... y,e X, undin 2, ... 2, € X,°. Dann bedeutet
x; ¢ X, A\ X dasselbe wie y,¢ X, z, ¢ X.

a) Sei jetzt @ — X,, das heift N UF =U N F = X,. Dann gilt fir
Fed Fe§ FeD FeF
alle Fed, daB n F c X, U F. Seien y,, 2z, gegeben. Da U (NF) = X,
Feg Fe§ ged Fe§F
ist, so existieren §,e¢®P, sodall y,e N F.
Fegi
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8
& = N §; ist dann auch Element von @, und es gilt offenbar, dal y,e N F,
j=1 Feg
das heit y; e F (fiir alle F ¢{,). Analog wird gezeigt, daB §, existigrt,

mit 2z, ¢ U F, das heiBt 2z, ¢ F (fiir alle F e§,).
Fe§z
Sei F = Fy~F,. Dann gilt fir alle FeF :y,eF, 2, ¢ F. Mit den ur-

spriinglichen Bezeichnungen: z;e¢ X, A F'.

Es gilt also ' € B,, .. z.(Xp). Damit ist gezeigt, daB zu jeder 7-Umge-
bung von X, ein ¥ €D existiert, das ganz in dieser Umgebung liegt. Es gilt
also @ — X,. Esist demnach ¢ »7.

b) Sei anderseits @ -— X,. Dann existiert zu y;,...y,¢X, und zu

21, ... 2, ¢ Xy, ein ' € D, so daB fir alle F e F' gilt: y,e N Fund 2z, ¢ N F;
Feg Feg'’
woraus leicht folgt, daBl y;e U N F und 2,¢nN UF. Alsogilt U N F=
Fed Fey Fed Fey Jed FeF
=N UF=X, Esistdemnach o«7.
tePd Fel

III.6. Weitere Sitze iiber (‘B(Z), u)

Vollstindigkest. Sei @ ein Cauchyfilter. Dann existiert zu z;, ... z, ein

§, sodaB fir X, Ye® gilt 2,¢ YA Y. Dannist auch z,¢ U F — n F,
Feg’ Fe§’
(denn wiirde ein 2’ € {x,, ... %,} existieren mit ' ¢ U F — N F, so wiirde
Feg’ Feg’
ein F, e §' existieren, mit 2’ ¢ F;, und ein F, ¢ §’ existieren, mit z' ¢ F,;
dann wire 2’ ¢ F; A F, entgegen Voraussetzung.)

Es gilt alson (UF — N F) =g, das heillt limsup® =liminfd. P ist
Fed Fey Fey
also konvergent. Damit wurde bewiesen, daBl (‘B(Z), ») vollsténdig ist.

Kompaktheit. (P(E£), ) ist vollstindig und separiert.

Fiir die Kompaktheit ist noch zu zeigen, daB zu jeder Nachbarschaft 9B
eine endliche Uberdeckung aus Mengen existiert, die klein von der Ordnung B
sind. Sei B,, . ,, gegeben. {z,, ... z,} hat endlich viele Teilmengen: & , {,},
{x,, z,}, . ... Die endlich vielen Mengen

SBwl,...am (@), Bxy, ... xn(zl)“' S‘Bxl,...zn (21, ... 2,)

bilden dann eine offene Uberdeckung von P (E).

Lim sup und lim inf. Man konnte vermuten, die immer existierenden lim sup
und lim inf seien H#éufungspunkte des betrachteten Filters oder mindestens
Elemente der abgeschlossenen Hiille aller Haufungspunkte. Diese Vermutung
ist falsch. wie folgendes Gegenbeispiel zeigt:

Sei C=A4vB und 4~B=g. Sei ®={F:A4,BeF}. Dann ist

UF>C und n F = . Hiufungspunkte gibt es aber genau 4 und B.
Fe§ Feg



Uber den Begriff der uniformen Struktur und die Konvergenz in BooLeschen Algebren 49

Sei X eadh @. Dann ist fiir alle § e® und alle z,, ... z,:
%"‘ SB:vl,...zn (X) ?'L"eleers

das heilt, fiir alle & ¢ @ und alle z,, ... z, existiert ein F ¢, so dall aus
x; e X folgt =z; e F. Daraus folgt leicht, da U F > X und damit, daB
Fe§

limsup @ o X (firalle X eadh @). Entsprechend wird gezeigt, dal liminf® c X
(fiir alle X e adh @).

Sei jetzt ein x ¢ £ gegeben. mit ze¢ U X. Dann zeigt man leicht, da@3

Xeadho
&' existiert, so daB fir alle Fe@' gilt: ¢ F. Dann ist auch 2¢ U F
und daraus folgt z ¢ lim sup @. Es gilt also: Fey’

lim sup @ = sup {X: X eadh &} und entsprechend
liminf® =inf {X: X eadh &}.

II1.%7. Abbildungen

Die Abbildung f der Menge £ in die Menge F': f: E— F induziert eine
Abbildung der Potenzmengen fg: PB(X)— P(F). Es soll das inverse Bild der
uniformen Struktur von B (¥) unter fq untersucht werden.

(fp X fp) ™ Byy,...0n = {(4, B): f(A) A f(B) 22}

Diese uniforme Struktur auf P(Z) heile f(ug).

S c P(E) sei das System aller, beziiglich der von f induzierten Aquivalenz-
relation, saturierten Mengen. Man sieht jetzt sofort, daBl die Spuren von u,
und f(uyp) auf S identisch sind.

Die Zuordnung Sg.g<—>{4:f(4) A f(B) = @} induziert einen Isomor-
phismus der uniformen Struktur ug . und der zu f~(up) assoziierten sepa-
rierten uniformen Struktur.

Falls die Aquivalenzklassen f1({z}) nur je endlich viele Elemente von K
enthalten, so existiert zu jedem B, , (Nachbarschaft in ¢B(F)) eine
Nachbarschaft in LB (E):

%f*l(zl)’ ¢ f—l(zn) o (fP X fP)_l SBz;,...zn *
Daraus folgt, daB fq gleichmiBig stetig ist.

I11.8. Bemerkung zur Vervollstindigung BooLEscher Algebren

Im Spezialfall atomarer BooLEscher Algebren liefert das topologische Vervoll-
stindigungsverfahren genau die triviale Einbettung in die Menge aller Atome.

4 CMH vol. 38
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IV. Durchmesser

IV.1. Durchmesser und quasiuniforme Struktur
Sei eine Abbildung d gegeben von B(E) in [o, oo].

Definition. d hei3t Durchmesser auf £, wenn

1. d(g) =d({z}) =0

2. Ac B=d(4) <d(B)

3. zu a existiert b(a) mit: aus 4~ B # g, d(4) <b, d(B) <b, folgt
d(Adv B)<a.

Es gibt Durchmesser. Zum Beispiel kann in einem metrischen Raume
definiert werden: d(A4) = sup {o(z,y):x e A, ye A}. b(a) kann dann gleich
a/2 gewdhlt werden.

Jedem Durchmesser ist eine quasiuniforme @7,-Struktur zugeordnet:

Sei &, = {4:d(4) <a}. Die «, erfiillen die Axiome der T7,-Strukturen:

U,: 3 ex, und {2} ex, fiiralle a %0

U, : x4 ~ % = Gipt(q,5- Monotonie trivial.

Uy : Sei «, gegeben. Man betrachtet b(a).

Sei jetzt A ~ B #* @ und seien A4 e oy, und B eox,,, dann sind
d(A) < B und d(B) <b. Alsogilt d(4 v B) < a, dasheiit A v Bex,.

Man sieht leicht, dafl die einem Durchmesser zugeordnete quasiuniforme
Struktur eine abzihlbare Basis besitzt: Die «,, (n ganz) bilden schon eine
Basis des Filters @.

Ein Durchmesser hei}t separiert, wenn aus d(4) = o folgt, da 4 hochstens
einen Punkt enthilt. Man sieht sofort, dal 4 genau dann separiert ist, wenn die
zugehorige T ,-Struktur separiert ist.

Der quasiuniformen Struktur « ist eine Limitierung = zugeordnet. Wenn u
von einem Durchmesser erzeugt wird, hei3t v die vom Durchmesser induzierte
Limitierung.

Konvergente Filter. § —> %, genau dann, wenn zu jedem a #o ein F ¢ g
existiert, so daBl d(F v {z}) < a.

Satz. Ein T ,-Raum besitzt genau dann eine abzihlbare Basis, wenn ein
Durchmesser d existiert, der  induziert.

Bewets. Es ist nur noch zu zeigen, daBl zu einem Z7,-Raum mit abzihlbarer
Basis ein Durchmesser d gefunden werden kann, dessen zugehorige @7,-Struktur
gleich u ist.

Sei &, x,, ... die abzihlbare Basis von @. Dann hat @ sogar eine geordnete
abzihlbare Basis: f,, f,, ... wobei f,2f,;.,.
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Sei definitionsgeméf3:
d(A) =inf {1/k: A € B;}. Diese Funktion ist ein Durchmesser:

d(2) = d({z}) = inf {1/k: {x} € B}
=inf{l/k:k=1... 0} =0.

Sei A~ B # 2@ und sei a gegeben. Sei d(X) <a, das heilt X ¢p8,, .
Man wihle y(B,,) nach Uj'. Dann sei b(a) = inf {1/k: g, c y}. Jetzt folgt
leicht aus d(4) < b und d(B) < b, dall d(4 v B) <a. Die vom Durchmesser
d induzierte €/,-Struktur ist identisch mit der Ausgangsstruktur, da die «,;
genau den §, entsprechen.

IV.2. Familien von Durchmessern

Sei eine Familie d,(y e I') von Durchmessern gegeben. « seien die zugehd-
rigen quasiuniformen Strukturen.

u = sup u, existiert dann immer, und soll «die von der Familie d, erzeugte
quasiuniforme Struktur heiflen».

Satz. Zu jeder T ,-Struktur existiert eine Familie von Durchmessern, die
die gegebene Struktur erzeugt.

Bewets. Zu « ¢ @ existiert «; e ® mit:
aus A~ B=g und Aex, und Bex, folgt A v Bex. Zu diesem «; kon-
struiert man entsprechend ein «,, usw.

Die x Dx; Dy Dy ... bilden eine Filterbasis auf 3 (), welche die Axiome
der T7,-Strukturen erfiillt. Die auf diese Art definierte Struktur heile u,. u,
besitzt nach Konstruktion eine abzihlbare Basis, also existiert ein Durch-
messer d,, der u, erzeugt. Es gilt «, « . Man denke sich diese Konstruktion
ausgefiihrt fiir alle x ¢ .

Man verifiziert sofort, da die von der Familie d (x ¢ @) erzeugte Struktur
identisch mit der durch @ bestimmten Ausgangsstruktur ist.

IV.3. Pseudodurchmesser

Sei H eine Halbordnung mit dem kleinsten Element o. d sei eine Abbildung
der Potenzmenge P (Z) einer Menge ' in H: d: P(H)—> H .

Definition. d heif3t Pseudodurchmesser, wenn

1. d(g) =d({z}) = o (fiir alle x ¢ E) :

2. zu aeH existiert b(a)eH, so daB aus A~ B # g und d(4)[>b
und d(B) !} b folgt: d(4 v B) ,} a.
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Jeder Durchmesser ist ein Pseudodurchmesser.
Einem Pseudodurchmesser ist eine @7,-Struktur zugeordnet, wenn man

definiert : Ggy,...on = 1A:d(A) B a6 =1, ... n)}

Es sind die Axiome der ©Z,-Strukturen zu verifizieren:
1. g,{z}ea,, .. q, firalle xcE undalle x, ..
2. Monotonie trivial. Ferner bilden die (x“r ...an ©ine Filterbasis auf P (E)

Xg ) .ooan ™ b =

a Ny Oy oo O ®

12° bm 1 1

3. Zu &q, . existiert ein «, (@), - bn(an)> SO daBaus A~B#g2, A €, ...bn
und Beocb b, folgt, d(4) |> bz, cl(B [>b;, woraus d(4 v B)[>a,, das
heifit 4 v Beoc G -

Jedem Pseudodurchmesser ist also ein (quasiuniformisierbarer) Limesraum
zugeordnet.

Konvergente Filter. § konvergiert genau dann nach z, wenn zu endlichen
vielen a,, ... a,cH ein F ¢ existiert, so daB d(F v {z}) [>a, (fir alle 7).

Satz. Ein Limesraum ist genau dann T7,-quasiuniformisierbar, wenn ein
Pseudodurchmesser existiert, der die gegebene Limitierung erzeugt.

Beweis. Es geniigt, zu zeigen, daBl zu einem @7,-Raum (¥, u) ein Pseudo-
durchmesser d existiert, dessen zugeordnete @Z,-Struktur « ist.

Sei u gegeben. Dann definiert man: d(4) = {x: 4 ¢ x}. Dies ist ein Pseudo-
durchmesser, denn:

l.d(g)=d({z}) = {x: v ¢a} = Ay

2. Monotonie trivial. Ferner: 4 c @ = {x} gegeben. Dann sei B = {f#(«)},
wobei die f(x) nach Axiom U? gewéhlt sind.

Sei jetzt A~B#2 und d(A)p Bd(B)Dd B,
ﬁIEB mitl Beﬁl’

foe B mit Aep,,

dann existiert f=pf,vf, mit ¢ B und 4Aef und Bef, das heifit, es
existiert « e A mit A v B¢ «; das heilit d(4 v B)¢ 4.

Es ist jetzt noch zu zeigen, dal dieser Pseudodurchmesser die urspriingliche
Struktur « erzeugt:

1) gy ={4:d(A) D {y}} = {d:y¢d(4)} = {4: A ay}

=y, das heillt, {x,},co » D

2) y # Ajger, das heiBlt, es existiert y ey .

Sei jetzt A ey, dannist y ¢d(4), und y ey, das heilt 4 ex,. Es folgt
demnach y c«,, woraus folgt {x,} « @, womit der Satz bewiesen ist.

dann existiert

und
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Y. Pseudometrik
Y.1. Pseudometrische Riume

Pseudometriken sind Spezialfille von Pseudodurchmessern. Sei niamlich H
eine Halbordnung mit dem kleinsten Element o. Sei ferner d eine Abbildung
von E X E in H.

Definition. d heilt Pseudometrik auf £, wenn

1. d(z,x) =0

2. d(xa y) = d(y> )

3. zu aeH existiert beH, so daB fir z,y,z mit d(z,y) ]26 und
d(y, z) |> b gilt d(z, 2) |> a.

In einem pseudometrischen Raum kann eine Topologie  definiert werden:
Die Mengen

Us.,..on@=1{y:dz,y)|Za,G=1,...0)}

1

bilden eine Filterbasis. Man priift leicht nach, daBl sie die Axiome der Um-
gebungsbasen in einem topologischen Raum erfiillen. Ein Filter § konvergiert
genau dann nach x, wenn zu beliebigen, aber endlich vielen a;, ¢ H ein F ¢
existiert, so daB fiir alle y e F gilt: d(z, y) l> a;.

d heilit separierte Pseudometrik, wenn zusétzlich gilt

V. d(x,y) =0o=z =y,

dist offenbar genau dann separiert, wenn die zugehorige Topologie separiert ist.

Eine Pseudometrik induziert auf £ eine uniforme Struktur. Seien ndmlich in
E x E die folgenden Mengen gegeben:

Us,...on= {2, 9): (2, 9) [P aG =1, ... n), a, #0}.

Diese Mengen bilden die Basis eines Filters von Nachbarschaften einer uni-
formen Struktur. Beweis:

1. d(x, z) =o[>a (firalle a # o), dasheiit 4c U

2. Monotonie trivial; Ua1 ~ Ub o = Ua1 an b, ..

3. Seien U, . ,. gegeben. Zu a; existieren b, :(a,), so daB aus d(x Y) (> b,
und d(y, 2) {>b folgt: d(x, z) > a,. Seijetzt (z,2) e U2, .00 = {(%,2): 3y
mit d(x, y) |> b; und d(y,z2)[>b,}. Daraus folgt sofort, dasB d(z,2) [>a;,
das heiBt (z,2) e U, . Es gilt also U, .2 U? by e bn

Die von der umformen Struktur induzierte Topologle ist offenbar identisch
mit der von der Pseudometrik induzierten Topologie 7. Die induzierte uniforme
Struktur ist genau dann separiert, wenn die Pseudometrik separiert ist.

Im Spezialfall, wo H atomar ist, existieren zu a,, ... a, ¢ H Atome p,,...p,
mit a, > p,. Dann gilt U, .2 U, Demnach bilden die U, . .,
wobei die p endlich viele Atome aus H smd eme Basis des Filters der N. achbar-

yess B0 °
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schaften. Zu p; existieren aber g,(p;), so daB aus d(z, y) > ¢, und d(y, 2) ]2 q;
folgt d(x, z) [=> p;. Da die p, Atome sind, folgt p; = g;, das heiBit U s =
=U, .

LI Pn

V.2. Pseudometrische und uniforme Riume

Satz. Ein topologischer Raum ist genau dann uniformisierbar, wenn er
pseudometrisierbar ist.

Beweis. Der gegebene topologische Raum heie (#,7). Es mul nur noch
gezeigt werden, dall zu einem uniformen Raum (%, ) eine Pseudometrik D
angegeben werden kann, so daB die von ihr induzierte uniforme Struktur
gleich u ist.

Sei (E,u) gegeben. Der Filter der Nachbarschaften auf Z X E heile
U.D... usw., seien die Elemente von P (), insbesondere sei € die leere Teil-
menge von P (U).

Es wird definiert: D(z,y) = {V:(x,y) ¢V, wobei V eU}. Zuerst wird
gezeigt, dal D(x, y) eine Pseudometrik auf £ ist: D sind die Elemente einer
Halbordnung H, wenn man definiert, D, » D, genau dann, wenn D, 5 9D,.

D(x,z) ={V:(z,2)¢ V}=0C
Dy =Dy, 2).

Sei A gegeben; dazu existiert B = {W: existiert V e WA mit W2c V}. Sei
D(z,y)[>B und D(y,2)[>B, dann existiert WeB mit We¢D(z,y)
und W¢D(y,z). Also ist (x,y)e W und (y,z2)e W. Daraus folgt, daBl
(,2) e W2. Das heillt, es existiert Vel mit (z,2)eV, woraus folgt
V ¢D(x,2). Alsoist (z,y) e {(x,y): D(x,y) [>A}, das heibt D(z,y) [>U.
D ist demnach eine Pseudometrik.

Es ist jetzt noch zu zeigen, daB die von der Pseudometrik induzierte uni-
forme Struktur gleich # ist. Die induzierte Struktur » besitzt eine Basis von
Nachbarschaften:

Ve = {(2,9): D(@, 9) [> A} =
= {(x, y): esexistieren U, e, und U, ¢ D(x,y)}.

Um zu zeigen, daBl % = v, wird bewiesen:
1. Jedes W el st ein Vy.

Viry = {2, 9): D(x, y) [Z (W} = {(z,9): WeD(z,y)} =
={z,y):(x, ) eW}=W.

Es gilt also {Vg} »U.
2. In jedem Vg liegt ein W.
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Sei A #C¢, das heiBlt, es existiert ein W eUA. Dann ist W c Vy, da aus
(z,y) e W folgt: We¢D(x,y) und W U, was bedeutet, daB (z,y) e V.
Esist also {Vy} «U.

Damit ist gezeigt, dafl jeder uniforme Raum pseudometrisierbar ist.

Bemerkung. Dieselben Uberlegungen lassen sich durchfithren, wenn man
sich auf eine Basis des Nachbarschaftsfilters und deren Potenzmenge be-
schriankt.

Beispiel. Pseudometrik in der Potenzmenge einer Menge

A(A: B) = {%wl,...zn: (4, B) e Sle,...:vn} =
= {ﬂ;wl,...zn: Ly ed A B} .

In diesem Fall kann diese Pseudometrik durch idquivalente ersetzt werden.
Zum Beispiel wird durch die Zuordnung

513,1, .ag > {7, ... x,} die neue Distanz

DA,B)=(F:Fc A A B, wobei F endlich} gefunden.

Man verifiziert leicht, daBl D wieder die urspriingliche uniforme Struktur in
‘B(X) induziert, da fiir F = {x,, ... z,} die Nachbarschaften

B = {(4,B):D(4,B)s F} = {(4, B): F¢ A A\ B} genau den friihern
513,1, ...z, entsprechen.

Analog kann D(A, B) = A A B als Distanz in P (¥) eingefiihrt werden.

(Eingegangen den 23. Januar 1963)
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