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Fixed Point Sets and Equivalence
of Differentiable Transformation Groups

by T.E.STEWART!

MoNTGOMERY and SAMELSON have shown that given a compact LIE group
G there exists an integer n such that there are a countable number of different-
iable actions of G on 8", the m-sphere with mutually nonhomeomorphic
fixed point sets. The problem then arises as to what can be said if the fixed
point set is specified in advance. In particular in the case of 8* we might wish
to determine the actions with fixed point set diffeomorphic to a sphere S¥.

In the first three sections we will be interested in the more general aspects of
the relations between the fixed point set and the differentiable action. In § 1 we
consider the isotropy representations at points in the fixed point sets and the
normal bundle of the fixed point set. In § 2 we restrict our attention to the
circle group operating differentiably with two types of orbits. In particular,
we show that in order that the action have the simplest possible form near
the fixed point set F' it is necessary that F be in the zero cobordism class.

In § 3 we apply recent results of SMALE in differential topology to study free
actions of G on M x D* Dk a disk.

Finally in § 4 we give a recipe for obtaining all possible differentiable actions
of the circle group on 8™ with two types of orbits and fixed point sets diffeo-
morphic to 87, with suitably severe restrictions on ¢ and m (see Theorem 4. 2).
We mention here that the recipe might possibly give the same action (up to
equivalence) several times. One can proceed further then we have here and
actually reduce the classification of such actions to a problem in the extension
of diffeomorphisms. Since at this point nothing precisely calculable comes
out we did not undertake this here. It does, however, seem likely to the author
that there are probably at most a finite number of equivalence classes of these
actions for suitable dimensions.

§ 1. By a manifold we shall mean a differentiable manifold of class C*° with
or without boundary. A manifold is said to be closed if it is compact and
without boundary. If G is a compact Lie group, M a manifold, then by a
group action of @ on M we will mean a differentiable function (of class C*)
¢: 3 X M—> M satisfying the usual composition rules

P@193; ) = @(g1; 9(9; 7)) (1.1)
ple; x) ==
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Fixed Point Sets and Equivalence of Differentiable Transformation Groups 7

e the identity of G. We will also write ¢,(z) = ¢(g; ). We denote by M*
the orbit space M /G . Recall that if the action is free (i.e. g # e then ¢, (z)#%)
then M* is a manifold and the natural map p: M — M* is the projection
of a differentiable, principal G-bundle. In the general case we can, by averaging
over G a RIEMANNian metric on M, obtain a RIEMANNien metric @ such that
each ¢, is an isometry. We shall suppose that @ is given and fixed throughout
and shall then use freely the terms and notations of normed vector spaces,
e.g. length, orthogonality etc.

The set of # in M for which ¢(g; ) = « for all g will be denoted F(p),
the fixed point set. If M, is the tangent space to M at z e F(p) we have a
linear, orthogonal representation «, of G in M, via the differential i.e.

Xy (9) = (d(Pa)m s

called the isotropy representation of p at . If (%,,..., %,) are normal coordi-
nates at  and U a sufficiently small disk in these coordinates we see that U is
invariant under ¢ and ¢| U is equivalent to «, restricted to a disk in M ,, (each
@, sends geodesics to geodesics). In particular, F(p) is a submanifold of M.

Lemma 1.1. If F(p) 18 connected and x,, %, e F(p), then the isotropy
representations of ¢ at x, and x, are equivalent representations of G in the ortho-
gonal group O(m), m = dim M.

Proof. Let S(x) be the set of points of F(p) at which the isotropy represent-
ation is equivalent to a fixed representation o«:G— O(m). Since at each
x € F'(p) the action ¢ is locally linear S(x) is clearly an open and closed set,
and hence the lemma. \

Suppose now that @ is connected and let 7' be a maximal torus of G. Let y
be the restriction of p to 7' X M.

Proposition 1. 1. If F(y) is connected and wx,, x, € F'(p) then the isotropy
representation of @ at x, and x, are equivalent as representations of G in Gl(m, C).

Indeed, (dy)z; and (dy)s, are equivalent by lemma 1.1. But these are
precisely the restrictions of «z, and «z, to 7'. Since every complex represent-
ation of @ is determined by its weights, [5], which are linear functionals on
the universal covering space of 7', a complex representation of @ is determined
by its restriction to 7' and the proposition follows.

Corollary. If ¢ 18 a differentiable action of a compact, connected LIE group
on a contractible manifold, the dimension of every component of F(p) 18 the same.

For such manifolds we know that F (y) is connected by SmiTH theory ([6]) and
the dimension of F (p) is then the number of times the trivial representation occurs
in an isotropy representation (considered as a complex representation of G).
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Remark. One would hope, of course, that on such manifolds F (p) is connected.
This would seem to be related to the question of whether fixed points exist at
all on contractible manifolds. For example, in the continuous case, if there
exists a continuous action ¢ of G on euclidean space R™ without fixed points
then there is a continuous action ¢; on R""! with F(p,) the disjoint union
of two half rays. One simply adjoins co to RB” and extends ¢ to an action of
G on S™. Taking the suspension of this action to S»+! and deleting co we
obtain ¢, .

We wish to determine now what the action ¢ looks like near F(p). We
assume that there exists a fixed orthogonal representation «: G— O(k),
m = n + k, such that for each x e F (p) coordinates exist (u,,...,u,,) so that

(1) (uy,..., u,, 0,..., 0) forms a coordinate system at z in F(p)
() é é

Juy " S
orthogonal to the tangent space of F (¢) at z, for z sufficiently near z,z ¢ F(p).
é

aun+1 e aum

forms an orthonormal base of the subspace of M,

(3) «, restricted to the space spanned by
ation « when expressed in this base.

It is not difficult to see that this will be the case if F () is connected. We will
also assume that M is compact.

Let N be the total space of the normal vector bundle of F(p) in M. N is the
set of all pairs (x,y), x e F(p), y e M, orthogonal to the tangent space of
F(p) at . N, will denote the total space of the associated disk bundle char-
acterized by ||y|| < e. Let u be the action of G on N, defined by

V’g(xa y) = (x30‘z(g) : y) .

Lemma 1. 2. There exists a tubular neighborhood V of F(p) diffeomorphic
to N,, invariant under ¢ and ¢ |G X V 18 equivalent to the action y.

is the represent-

Proof. For each pair (z,y) e N we have a unique geodesic y(¢) in M such
that y(0) = z, y'(0) = y. Recall then that the map Exp: N, M defined
by Exp(z,y) =y(1) is a C* map and that for sufficiently small ¢ it is a
diffeomorphism of N, onto a tubular neighborhood V of F(p) [3]. Again since
@, is an isometry the map Exp is equivariant and hence the lemma.

Theorem 1. 1. The structural group of the normal bundle of F(p) in M 1is
reducible to the centralizer P of «(@) in O(k).

Proof. Let F(p) be covered by coordinate neighborhoods U, such that for
zeW,=U;~ F(p), U, satisfies the hypotheses (1), (2), (3) above. For each
z ¢ W,, the last k coordinates then determine a basis A?(z) of the fibre over 2
of the normal bundle of F(p). From (3) we see that for z¢ W,~ W,, «,(g)
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restricted to the subspace of M, normal to F(p),, is «(9) when expressed in
either of the bases A¢(z) or A7(z). It follows that if f,,: W,~ W,—> O(k) are
the transition functions which assign to ze W,~ W, the transformation
sending A*(z) to Ai(z) we have

f1i(2) - o(9) = x(9)  };:(2), g G (1.2)

These transition function values therefore lie in P and hence the theorem.

We remark that in case « is complex irreducible it follows from ScHUR’s
lemma that the normal bundle is then the WHITNEY sum of one or two dimen-
sional bundles.

Let D¥ denote the unit disk of euclidean %-space. If « is as above then we
define an action, also denoted x, on F X D* by «(g; (x,¥) = (z, x(9) (%)) .

Definition. We say an action ¢ is totally linear at F(p) if there exists a
tubular neighborhood V of F(p) invariant under ¢ and |V is equivalent to «.

A totally linear action ¢ at F(p) has the simplest possible form near its
fixed point set. Now by reasoning completely analogous to the proof of theorem
1.1 we can obtain

Theorem 1.2. ¢ is totally linear at F (@) if and only if the P-bundle defined
wn Theorem 1.1 is the trivial P-bundle.

§ 2. In this section we shall assume that @ is the circle group S*, which we
represent as the reals modulo 1, acting on a closed orientable manifold M. It
is then easy to see that F(p) is an orientable manifold. On the action ¢ we
make the rather severe restriction

(A) If z¢ F(p) and ¢,(x) = « then t=0 (mod 1).

If ze¢F(p) and N, is the subspace of M, orthogonal to F(p), we see
that ¥ = dim N, is even, ¥ = 2§. Let R?5 be given a decomposition as
the direct sum of S orthogonal planes R?*S = L, 4 ---- 4 Ls. We define an
orthogonal representation « of ¢ in R%?S by

o ()| L; = (

cos wt sin 7wl )
—sinwt cosmt )

It follows easily from the hypothesis (4) that «, is equivalent to the represent-
ation « for each xz e F(p). The centralizer of (@) in O(28) is clearly just

the unitary group U (S). Thus the action ¢ on M assigns a complex vector
bundle over F(gp).

Example. Let P»(C) denote the complex projective space of complex
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dimension %, (2,..., 2,) homogeneous coordinates in Pn(C). Define the
action ¢ of G on P»(C) by
FB(t; (Zor v es20) = (Zos+-s 2 €™ s, .., 8. 2) (2.1)

¢¥ satisfies (4) and F (@) is just P*¥(C). Note that for every & the com-
plex vector bundle over P*(C) induced by ¢* is non-trivial (its first CHERN
class is non-zero), and consequently the action is not totally linear at F (¢!¥).
We shall show that in half the cases this last fact is due to the character of the
fixed point set rather than the ambient space.

Theorem 2. 1. If ¢ 18 totally linear at F(p) then F(p) bounds a compact,
orientable manifold. Conversely if F 18 a manifold tn the zero cobordism class
there exists a closed orientable manifold M and an action ¢ of G on M satis-
fying (A) with F(p) diffeomorphic to F and ¢ is totally linear at F(p).

Proof. Suppose that ¢ is totally linear at F(p) and let ¥V be chosen as
in the definition of total linearity. The boundary 2V of V is then clearly
B = F(p) X §25-1, Denoting by W the complement of the interior of ¥
in M we see that W is an orientable, compact manifold with boundary B and
@ is a free action af G on W. Thus W* is a compact manifold with §W* =
= B* = F(p) X P5-1(C). The remainder of the proof is divided into two
cases. (a) If § is odd it follows that F(p) X PS-1(C) bounds a compact, orient-
able manifold W*. Now according to WALL ([8]) it follows that both the
STIEFEL-WHITNEY and the PONTRJAGIN numbers of F(p) X PS-1(C) vanish.
Since PS-1(C) for S—1 even has both non-zero STIEFEL-WHITNEY numbers
and non-zero PONTRJAGIN numbers [2] it follows that these numbers vanish
for F(p) which, again according to Wall, shows that F(¢) bounds. (b) We
consider now the case S even. Let > 2-dim W* + 1. Let f: B*— Pr(C)
be a characteristic map for the bundle B— B*. It is clear that f can be
chosen transverse regular on

Pr-3(C) (see [2]) and [=(Pr1(0)) = F(p) X PS2(C).

Since B — B* is a sub-bundle of W— W* and Pr(C) is an (r — 1) uni-
versal base space we see that f can be extended to a map ¢g: W*— Pr(C)
which is characteristic for W — W*. Further ([2, page 101]) g can be supposed
transverse regular on Pr-1(C). Then g¢g—'(Pr1(C)) is a compact, orientable
manifold with boundary F(p) X P5-2(C), We proceed then just as in (a) to
show that F (p) determines the zero cobordism class.

For the converse statement we suppose @ is a compact, orientable manifold
with 6Q = F. Then we have a free action of G on @ x S2S-1 simply by
taking the action « on the second factor. Taking the union of @ Xx §25-1 with
F x DAS and identifying boundaries we obtain M and the asserted action ¢.



Fixed Point Sets and Equivalence of Differentiable Transformation Groups 11

§ 3. In this section we apply the results of SMALE in differential topology
to the study of transformation groups. Again M will denote a closed manifold.
I will be the closed interval [0, 1]. If p is an action on M X I we shall denote
by @, the action ¢|G X (M x {0}).

Lemma 3. 1. If g isa free action of a compact, connecied group G on W=M x I
dim W — dim G > 6 and II,(M) = 0 then ¢ 1is differentiably equivalent to
the action p(g; (m, 1)) = (@o(g; m),?).

Proof. Set M, = M x {0}. First we see that M, is a deformation retract
of W*. For M; c W* and for their homotopy sequences we have the com-
mutative diagram:

--—> I (W) — II(W*) > II, ,(G) —---

0 ? ?
- (M) — (M) - O_(G) —---

the vertical maps being induced by inclusions. Since I7I,(M,)—II;,(W) is
bijective we see by the five lemma that IT,(My)—IT,(W*) is bijective. It
follows (for example, by obstruction theory) that M, is a deformation retract
of W*. Further, since @ is connected M is simply connected. Then ([7])
there exists a C* real valued function f on W* without critical points such
that fM) =0, f(M x {1D*¥) = 1. If n: W>W*
is the natural map, we set & = f-x. h therefore has no critical points and
further A is invariant under the action ¢. Let @ be an invariant. RIEMANNian
metric on W and let q(¢; m) m ¢ M be the integral curve of gradient % such
that ¢(0; m) = m. In the usual way (see [7]) ¢ is a diffeomorphism of W onto
itself. Let ¢’ be the action ¢-¢-¢1. ¢’ is then an action of the type described
in [4]. It follows that ¢’ is differentiably equivalent to y.

Now suppose ¢ is a free action of a connected, compact group G on W =
=M X D*, k>2, dim W — dim G > 6, II,(M") = 0. Further assume that
M,= M x {0} is invariant under ¢ My has trivial normal bundle in W*,.

Lemma 3. 2. Under the above conditions the action ¢ 18 differentiably equivalent
to 'P: y)ﬂ(x’ y) = ((pv(x)) 2/) ’ (xa ?/) € Mn X Dk-

Proof. Let N* be a tubular neighborhood of M* in W* diffeomorphic to
M* x D* and let V* be the complement in W* of the interior of N*. We
have §N* diffeomorphic to My X 8%, which is simply connected since
k > 2. We establish just as in the previous lemma that SN* is a deformation
retract of V*. Proceeding then just as before we conclude that V* is diffeo-
morphic to dN* X I. Since the integral curves which produce this diffeo-



12 T.E. STEWART

morphism could be chosen to be differentiable continuations of the ‘radial
lines” in N* we see easily that W* is diffeomorphic to M, x Dk,

Now let E,;— B; be a universal G-bundle, f: W* —» B, a characteristic
map inducing W-—> W*, and h=f|M;. On W* = M; X D* define A’
by A'(z,y) = h(x). Then f is homotopic to 2’ by the homotopy

H(z,y,s8) = f(z, sy) .

But clearly &' induces the bundle #n: My X D¥— M; X D* n(z,y) = (n(x),y)
and the lemma follows easily.

§4. We consider now the case of the circle group @ acting on the sphere
8™ with fixed point set diffeomorphic to 8% and satisfying (4). In this case we
see that m has the form ¢ 4 2S§. We will assume throughout that m > 6.
We first consider the case ¢ = 0.

Theorem 4. 1. If ¢ i¢s an action of G on the cell D™ satisfying (A) and
with exactly one fixed point then ¢ s differentiably equivalent to the linear
action with these properties.

Proof. We may suppose the fixed point is the origin O. Let U be a neigh-
borhood of O diffeomorphic to a cell on which the action ¢ is equivalent to
the linear action of the isotropy representation. Then D™ — U is diffeo-
morphic to S™-! x I. By lemma 3.1 the action ¢ restricted to D™ — U
is equivalent to the action (p | 6U) X I. By an argument similar to the one
used in the proof of lemma 3.2 we see the equivalence can be extended over U
and obtain the theorem.

Corollary. If ¢ acts on S™ with exactly two fixed points then ¢ 18 topologically
equivalent to a linear action.

If x, ¢ F(p) then we let U, be a cell about x, on which g is linear. ¢|8™ — U,
is an action as in the theorem and hence equivalent to a linear action. The
equivalence can be extended to a topological equivalence over U, simply by
regarding U, as the cone over éU,.

We turn now to the case ¢ > 1. We will assume m = ¢ + n 4 1 with
g <mn. In this case we have F(p) isotopic to the standard imbedding of §”
in 8. In particular, F (¢) has trivial normal bundle in S™. Further, if N is a
tubular neighborhood of F(p), we have 8™ — N diffeomorphic to D+ x 8»,
N diffeomorphic to 82 x Dntl, ‘

The first problem we encounter is whether ¢ is totally linear at F(gp). It is
easily seen to be equivalent to whether or not there is a nontrivial complex
vector bundle whose underlying real vector bundle is trivial and such that the
associated fibre bundle with fibre Pr,(2r =1 4 n), is diffeomorphic to
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S? X Pr. As far as I know this is quite possible even in the stable range.
However, by simply examining BoTT’s periodicity theorems [1] we see that:

Lemma 4. 1. For q # 4k + 2, ¢ 18 totally linear at F ().

Let N, be a tubular neighborhood of §? and K a diffeomorphism of X, onto
S? X D"t carrying @|N,; onto « (as defined in § 2). Let N be the tubular
neighborhood whose image under K has second coordinate of length < §.
The closure of 8™ — N then is diffeomorphic to D% X §". Further if
zoeS* and S§ = {y] llyll =%} we have @ = K1({z,} X 8}) invariant
under ¢ and ¢ is equivalent to « in a tubular neighborhood of Q. Applying
lemma 3.2 we find a diffeomorphism H: W — D% x 8* which carries
@|W to «. Let h,%k denote the restriction of H and K to boundaries. We

have then h-k-1: 8a X Sn_» Qe X S’n (4.1)
k) =0 (h-k2). (4.2)

Conversely if P is a diffeomorphism of 82 x 8* satisfying (4.2) we can
define a differentiable action ¢ on 8™ satisfying (4) and having 8¢ for fixed
point set. Thus:

Theorem 4. 2. For m > 6, ¢ A4k + 2, 1, 2¢g<m we can obtain every
differentiable action ¢ of G on 8™ having S* diffeomorphic to F(p) and
satisfying (A) by identifying the boundary of Dt X S™ with the boundary of
87 X D" by a diffeomorphism which commutes with .

We mention that it is possible that S™ is given an exotic differentiable
structure by such a diffeomorphism. In order that the action be differentiable
in the ordinary structure on S™ we have only to restrict the diffeomorphism
to lie in the proper class.

University of Notre Dame
Notre Dame, Indiana
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