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Differenzierbarkeit in topologischen Vektorriumen

von H. H. KELLER*)

Einleitung

Wenn X und Y normierte lineare Rdume sind und wenn M eine offene
Teilmenge von X ist, so sind auf Abbildungen f von M in Y die Differentia-
tionsdefinitionen von FrRECHET und von GATEAUX anwendbar. In der vor-
liegenden Arbeit werden verschiedene Differentiationsbegriffe aufgestellt und
zueinander in Beziehung gesetzt fiir den Fall, daBl X und Y mit allgemeineren
Topologien versehen sind. Mehrere der Ansitze sind im Laufe der letzten Jahre
bereits von anderen Autoren in zum Teil anderer Form gemacht worden.
Hinweise werden an Ort und Stelle gegeben.

Die im folgenden aufzustellenden Differentiationsbegriffe zerfallen im we-
sentlichen in zwei Gruppen, diejenigen vom Typus (F) (FrREcHET-Typus) und
diejenigen vom Typus (G) (GATEAUX-Typus). Bei der ersten Gruppe sind X
und Y als lokalkonvex vorausgesetzt, wobei fiir die Definition der Differenzier-
barkeit von f je eine zulidssige Familie I’y bzw. I'y von stetigen Seminormen
herangezogen wird. Bei der zweiten Gruppe braucht zunidchst nur Y ein topo-
logischer Vektorraum zu sein. Die (;-Differenzierbarkeit einer Abbildung
f: M — Y wird dann definiert relativ zu einer beliebigen vorgegebenen Uber-
deckung X von X. Letztere bestimmt in X in natiirlicher Weise eine trans-
lations- und homothetie-invariante Topologie Ty mit der folgenden Eigenschaft:
Falls M offen ist fiir T, und f : M — Y (z-differenzierbar, so ist f auch stetig
fiir T,. Die tiblichen Differentiationsregeln, mit Ausnahme der Kettenregel,
gelten fiir alle Arten der Differenzierbarkeit, die Kettenregel im allgemeinen
nur fiir diejenigen vom Typus (F).

Allen Arten der Differenzierbarkeit einer Abbildung f: M — Y an der
festen Stelle x ¢ M wird die Darstellung

fz+ k) —f(x) = D(h) + r(h), (he M —2), (D)

zugrunde gelegt, wobei @ eine lineare Abbildung von X in Y ist, die als stetig
fiir die urspriingliche lokalkonvexe Topologie bzw. fiir die Topologie Ty in X
vorausgesetzt wird. Die verschiedenen Differentiationsbegriffe werden dann

*) Mit Dankbarkeit sei erwihnt, da8 dem Verfasser die Arbeit an der vorliegenden Publi-
kation durch die Gewdhrung eines Forschungskredites aus dem Schweiz. Nationalfonds zur For-
derung der wissenschaftlichen Forschung ermoglicht wurde.
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bestimmt durch die Forderungen, die an das «Restglied» » : M —z— ¥
gestellt werden. Der erste Teil der Arbeit ist den Definitionen und Eigenschaf-
ten der verschiedenen Arten von Restgliedern gewidmet. Die im zweiten Teil
formulierten Sétze iiber Differenzierbarkeit ergeben sich mehr oder weniger
direkt aus den Resultaten des ersten Teils.

Die topologischen Vektorraume werden durchwegs als reell und hausdorffsch
vorausgesetzt. Eine Familie I" von Seminormen in einem lokalkonvexen
Raum X wird zuldssig genannt, wenn die Mengen {x e X |p(x)<e} fir
pel,e> 0 eine Nullumgebungsbasis in X bilden. Eine solche Familie I’
existiert nach [1] (Chap. II, § 5, prop. 4) immer. Mit i wird der Nullumgebungs-
filter in X bezeichnet. Unter einer Zuordnung ¢— 4§, (bzw. ¢ — U,) wird still-
schweigend eine Abbildung von (0, o) in (0, o) (bzw. von (0, co) in Y) ver-
standen. (4) =—> (B) bedeutet: (4) impliziert (B). Mit R ist der Korper der
reellen, mit N die Menge der natiirlichen Zahlen bezeichnet.

1. Restglieder

1.1. Restglieder vom Typus (F). Seien X, Y zwei lokalkonvexe Réume,
versehen mit je einer zuldssigen Familie I'y bzw. I'y von Seminormen.

Definition 1. Eine Funktion r, defintert in einer Nullumgebung von X, mit
Werten in Y, heipt ein F-, F'-, Fy- oder Fy-Restglied von X in Y, wenn die
entsprechende der folgenden Bedingungen erfillt ist:

(F) Zu jedem q € I'y ¢ibt es ein p € I's und eine Zuordnung &—> 8,> 0, so daf
p(x)< 6,== g (r(x)) < e p(x);

(F') Zu jedem q e I'y gibt es ein p e I'x und eine Zuordnung ¢ — U, € U, so dap
xelU,= q(r(z)) <ep(x);

(F,) Es gibt ein p, € 'y mit der Eigenschaft, daf zu jedem q e I'y eine Zuord-
nung e—> 6,> 0 so existiert, daf

Po(2) < 8, = q(r(2)) < epo(2);

(F!) Es gibt ein p, € I'x mit der Eigenschaft, da zu jedem g € I'v eine Zuord-
nung ¢— U, e U so existiert, daf

z e U, = q(r(z)) < epo(«) -

Die durch Definition 1 eingefiihrten vier Restgliedarten seien im folgenden
als Restglieder vom Typus (F) zusammengefaBt. Aus der Definition 1 folgt
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unmittelbar, daB zwischen den Bedingungen (F), (F'), (F,) und (F;) die
folgenden Implikationen bestehen:

(Fo) => (F)
Il 1)
(Fo) => (F') .

Die folgenden beiden Beispiele zeigen, dal3 weder (F') => (F,) noch (F;) = (F).
Insbesondere sind daher keine zwei der vier Bedingungen dquivalent.

Beispiel 1. Sei X = Y = RY = Raum aller reellen Zahlenfolgen = = (£;); ¢n»
versehen mit der Topologie der koordinatenweisen Konvergenz. Als I'y = I'y
werde die Folge (p.)iexy vOn Seminormen in RN gewihlt, wobei p,(x) =
=max {(§;| ;4 =1,2,...,n}. Dann ist die Abbildung 7: (£.)zex = (£3)ken
ein F-, aber kein F,-Restglied von RN in RV .

Beispiel 2. Sei X = R" wie in Beispiel 1, Y = R. Die Abbildung

7 Eren—>6 2 27 & (L + | &)

Tl

ist ein F;-, aber kein F-Restglied von RY in R.

1.2. Unabhiingigkeit von den Seminormen. Die Definition 1 nimmt Bezug
auf je eine zuldssige Familie von Seminormen in den lokalkonvexen Riumen
X und Y. DaB die Bedingungen (F), (F'), F,), (F,) jedoch rein topologischer
Natur sind, ergibt sich aus der folgenden, etwas allgemeineren Feststellung:

Lemma 1. Es seien I'y, I'y zwei Familien von Seminormen auf dem Vektor-
raum X und I'y, I'y zwei Familien von Seminormen auf dem Vektorraum Y .
Die durch I'y (bzw. I'y) in X (bzw. Y) bestimmte lokalkonvexe Topologie ses
feiner als die durch I'x (bzw. I'y) bestimmie. Sei r ein Restglied vom Typus (F)
von X in Y in bezug auf I'x, I'y. Dann ist r ein Restglied gleicher Art in bezug
auf I’"r, Iy.

Nach der Voraussetzung iiber I'yx und I'y gibt es zu jedem pelx ein
p’' € I'y und eine positive Zahl &, so daB p << «p’. Entsprechendes gilt fiir
I'y und I'y;. Daraus folgt Lemma 1 unmittelbar.

Seien X und Y wieder lokalkonvexe Riume. Die Klasse der F-Restglieder
von X in Y sei im folgenden mit Rr (X, Y) bezeichnet. Entsprechend seien
Rp(X,Y), Rp (X, Y) und Rr; (X, Y) eingefiihrt. Als Folgerung aus Lemma 1
ergibt sich, daB diese Restgliedklassen nicht von den speziell gewihlten zu-
lassigen Familien I'y bzw. I'y abhingig sind. Diese Tatsache wird im folgenden
Satz zum Ausdruck gebracht.
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Satz 1. Seten X und Y lokalkonvexe Riume. Die Restgliedklassen Rp(X, Y).
Rp(X,7Y), Rp (X, Y) und Ry, (X, Y) sind invariant gegeniiber den Auto-
: 0 0
morphismen von X und Y.

1.3. Restglieder vom Typus (G). Es seien X ein linearer und Y ein topo-
logischer linearer Raum. In X sei ein System ' von Teilmengen ausgezeichnet,
das X iiberdeckt. Eine Teilmenge D von X heile dann X-absorbierend, wenn
es zu jedem B e X eine Zahl > 0 so gibt, da 1 Bc D, sobald |41]|<6.

Definition 2. Eine Funktion r, definiert tn einer X-absorbierenden Teilmenge
von X, mit Werten in Y heifit ein G g-Restglied von X in Y, wenn folgende Be-
dingung erfillt ist:

lim t—17r(r2) = 0, gleichmdfSig in x tn jeder Menge Be X . (Gx)
>0

Die G -Restglieder, fiir alle moglichen Uberdeckungen X von X, werden
unter dem Namen Restglieder vom Typus (G) zusammengefafit. In trivialer
Weise kann jedes G s-Restglied » von X in Y zu einem G ;-Restglied 7 fortgesetzt
werden, das in ganz X definiert ist. Fir v 7 0 ist dann die Abbildung
r, :x—> v 17(rz) ein Element von F(X, Y), und die Bedingung (G5) besagt
limr, =o0eF(X,Y) fir r— 0 in der Topologie der gleichméfigen Kon-
vergenz in jeder Menge B ¢ 2.1)

Fiir eine gegebene Uberdeckung X von X werde die Klasse der G -Restglie-
der von X in Y mit R;(X, Y) bezeichnet. Aus der Definition 2 folgt der

Satz 2. Sei X ein linearer Raum, X ein System von Teilmengen von X, das X
iberdeckt, und sei Y ein lokalkonvexer Raum. Dann ist die Klasse Rz(X, Y)
aller G 5-Restglieder von X in Y invariant gegeniiber allen linearen Transforma-
tionen von X, die X in sich dberfithren, und gegeniiber allen Automorphismen
von Y.

Die Klasse aller Uberdeckungen X von X ist in natiirlicher Weise teilweise
geordnet durch die Verfeinerungsrelation: 2’'< 2, wenn es zu jedem B’ e 2’
ein BeZX so gibt, dal B’ c B. Aus der Definition 2 folgt dann sofort:

(Gy) = (Gy,) falls 2'< X. (2)

Bezeichnet X, das System aller einpunktigen Teilmengen von X, und schreibt
man (@G,) statt (Gz,), so gilt (G5) = (@,) trivialerweise fiir jedes 2. Wird
jedes B e X ersetzt durch seine kreisformige Hiille B® = {Az |z ¢ B, | 1| <1},
8o entsteht ein System X°. Dann ist zwar X'< 2°, jedoch sind (G'50) und
(Gz) dquivalente Bedingungen.

1) F(X, Y) bezeichnet den linearen Raum aller Abbildungen von X in Y.
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Der wichtigste Fall liegt vor, wenn X auch ein topologischer Vektorraum ist.
Die Topologie von X bestimmt dann das System X', aller fopologisch beschrink-
ten Teilmengen von X. Schreibt man (G,) statt (Gy,), so gilt (@,) = (Gy)
fiir jede Uberdeckung X von X durch beschrinkte Mengen. Zwei Topologien
auf X, fiir die die gleichen Teilmengen von X beschrinkt sind, bestimmen
dieselben G,-Restglieder von X in Y. Ist insbesondere X lokalkonvex, so hat
man noch die gleichen G,-Restglieder von X in Y, wenn die urspriingliche
Topologie von X durch die schwache ersetzt wird.

Die Topologie von X bestimmt ferner das System X, der prikompakten
Teilmengen von X. Setzt man G, statt G, so gilt (G,) = (G}) = G,).
Die Bedingungen (@,) und (G,) sind immer dann dquivalent, wenn jede be-
schrinkte Menge in X préikompakt ist. Dies ist der Fall fiir die Montel- Riume
([2], Chap. 1V, §3), zu denen alle endlich-dimensionalen Vektorraume gehoren.

1.4. Beziehungen zwischen den Restglied-Bedingungen. Nun seien X und Y
lokalkonvexe Riume. Mit X sei stets eine Uberdeckung von X durch topo-
logisch beschrinkte Teilmengen von X bezeichnet. Uber die Beziehungen zwi-
schen den Restgliedbegriffen vom Typus (F) gibt das Schema (1) AufschluB.
Die allgemeinste entsprechende Aussage fiir die Restglied-Bedingungen vom
Typus (@) wird durch die Relation (2) geliefert. Aus dem nichsten Satz folgt
nun, daBl jede der Restglied-Bedingungen vom Typus (F) jede Bedingung
(G5) impliziert, falls X' aus beschrinkten Mengen besteht.

Satz 3. Jedes F'-Restglied r von X in Y st ein G,-Restglied von X in Y.

Seien I'x, I'y zuldssige Familien von Seminormen in X bzw. Y; r erfiille
die Bedingung (¥'), dabei kann U, als kreisférmig angenommen werden. Sei
BelX,, >0 und § > sup {p(x) | z ¢ B} . Die Zuordnung &— §,> 0 werde
so gewiéhlt, daB | 7| < d,= v Bc U,g1. Dann hat man (zeB,|7|<4d,) =
= q((r(zx)) < le|lz|pE)<e|7]; also limzlq(r(r z)) =0 fir v—
— 0 ¢ R, gleichméfBig fir zeB. Dies gilt fiir jedes gel'y. Somit ist (G,)
erfiillt.

Das folgende Beispiel zeigt, daB (F') und (G,) im allgemeinen jedoch keine
dquivalenten Bedingungen sind.

Beispiel 3. Wird in einem normierten Raum £ von unendlicher Dimension
mit Norm z— || || die schwache Topologie zugrunde gelegt, so entsteht ein
nicht normierbarer lokalkonvexer Raum E,,. Die reelle Funktion r: z — ||z ||®
ist ein G,-Restglied von £, in R, jedoch kein F'-Restglied.

Die folgenden beiden Sitze behandeln Spezialfille.

Satz 4. Seten X ein normierbarer und Y ein beliebiger lokalkonvexer Raum.
Dann sind die Bedingungen (F,), (F.), (F), (F'), (@,) dquivalent.
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Ist ndmlich z— || # || eine zuldssige Norm in X, so reduziert sich jede der
in Satz 4 erwihnten Bedingungen auf das Bestehen der Relation

lim S48
>0 || 2 ||
Satz b. Seien X und Y lokalkonvexe Riume. Alle Bedingungen (F,), (F,), (F),
(F), (@), (G,) sind dann und nur dann dquivalent, wenn X eindimensional ist.
Im Fall dim X = 1, X = R ist ndmlich jede der in Satz 5 genannten Be-
dingungen gleichwertig dem Bestehen der Relation

0. (3)

lim ) =0. (4)
>0 t
Bereits im Fall dimX = 2 existieren bekanntlich Funktionen r, die (G,),
jedoch nicht (G,), erfiillen.

Sowohl die bei der F-Differenzierbarkeit im Sinne von HyExrs [5] auftre-
tenden als auch die Restglieder im Sinne von FiscHER [3] sind mit unseren
F-Restgliedern identisch. Fiir die von MIicHAL eingefithrten M- bzw. M-
Restglieder (1 = 1, 2, 3, 4) sei auf [6] verwiesen. Der Vollstindigkeit halber
sei lediglich folgendes erwihnt: (M;) = (Fy), (F) = (M) und (M) = (G,).
Die bei GiL, bE LAMADRID [4], in den Begriff der « 2-strict derivative » eingehen-
den Restglieder sind mit unseren G ;-Restgliedern identisch. Das gleiche gilt
fiir die «Differenzierbarkeit im weiteren Sinne» bei SEBasTIAO E SILva [10].

Eine etwas andere Definition der Restglieder von X in Y (in bezug auf eine
Uberdeckung X von X durch beschrinkte kreisformige Mengen) gibt SEBA-
STIAO E SILVA in [9] unter dem Namen «infiniment petit d’ordre supérieur & 1».
Diese, hier S -Restglieder genannt, sind wie folgt definiert:

Definition 3. Eine Abbildung r, definiert in einer X-absorbierenden Teilmenge
von X, mit Werten in Y, heif3st ein S z-Restglied von X in Y, wenn folgende Be-
dingung erfallt ist:

(S5) Zu jedem B e X existiert eine beschrinkte Menge C in Y und eine Zuordnung
e—>06,>0, sodaf
|7]|<d,= 7 ir(zB)celC.

Es ist unmittelbar klar, dal (S;) = (G;) fiir jedes zuldssige System X'
Wenn Y normierbar ist, sind (S;) und (G;) dquivalent. Statt S;, werde S,
gesetzt. Das niichste Beispiel zeigt, daBl (S,) und (G,) im allgemeinen keine
gleichwertigen Bedingungen sind.

Beispiel 4. Es sei X der normierte Raum der beschrinkten reellen Zahlenfolgen
& = (&;)sex Mmit der Norm z— || @ || = sup {| &, ||k e<N} und essei ¥ =R".
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Fir keN bezeichne ¢, :R—R die Funktion ¢, () = ¢t2(1 —k¢)~! fiir ¢ £ k1,
@x(k~1) = 0. Dannist die Abbildung 7 : (£.)ren— (91 (62)) zen €in Fo-Restglied,
also auch ein G,-Restglied, jedoch kein §,-Restglied von X in Y, da r keine
beschrinkte Menge der Form {xeX ||| z|| < ¢}, 0> 0 in eine beschrinkte
Menge von Y iiberfiihrt.

Aus dem Beispiel 4 folgt gleichzeitig, dal (S,) im allgemeinen nicht einmal
durch (F,) impliziert wird, selbst dann nicht, wenn X normierbar ist. Anderer-
seits zeigt das Beispiel 3, dal im allgemeinen aus (S,) nicht einmal (#') folgt.

Das folgende Schema gibt eine Ubersicht iiber die Implikationsrelationen,
die zwischen den in diesem Abschnitt vorkommenden Restglied-Bedingungen

immer bestehen.
(Fo) = (F) => (M)

U

(M) = (Fo) = (1’,",’) (5)

(8y) == (Gy) = (G)
Im folgenden werden die M,- und die M-Restglieder nicht mehr betrachtet.

1.5. Stetigkeit im Nullpunkt. Seien X und Y lokalkonvexe Réume. Fiir ein
Restglied » von X in ¥ hat man r(o) = o, gleichgiiltig, welche der Restglied-
Definitionen zugrunde gelegt wird. Aus der Definition 1 folgt unmittelbar der

Satz 6. Ein Restglied vom Typus (F) von X in Y ist stetig tm Nullpunkt von X.

Das Beispiel 3 zeigt, dall die entsprechende Behauptung fiir die S,- (und
daher auch fiir die G,-)Restglieder falsch ist. Nun gilt jedoch der folgende
nichttriviale

Satz 7. Seten X ein metrisierbarer, Y ein beliebiger topologischer Vektorraum,
und sei X eine Uberdeckung von X, die alle Nullfolgen in X enthdlt. Dann ist
jedes Q z-Restglied von X in Y stetig tm Nullpunkt.

Der Beweis wird im folgenden Abschnitt gegeben werden.

Korollar. Falls X metrisierbar ist, ist jedes G-Restglied (und folglich jedes
G,-Restglied ) von X in Y stetig im Nullpunkt von X.

1.6. Die Z-Topologien. Sei X ein linearer Raum. Eine beliebige Uberdeckung
2 von X durch Teilmengen von X bestimmt in natiirlicher Weise eine Topo-
logie in X, durch die folgende Auszeichnung ihrer offenen Mengen:

Definition 4. Eine Teilmenge M von X heifle Z-offen, wenn fir jedes a e M
die Menge M —a = {xeX |2+ ae M} X-absorbierend (Abschnitt 1.3.) sst.
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Dre eindeutig bestimmte Topologie in X, filr die die X-offenen Teilmengen von X
die offenen Mengen sind, heifle die X-Topologie in X und sei durch T 5 bezeichnet.

Fiir jede 2-Topologie in X sind alle Translationen x — = + a, (@ ¢ X), und
alle Homothetien z— Az, (A ¢ R, A % 0) Hom6omorphismen von X auf X.
Sind X, 2’ zwei Uberdeckungen von X und hat man 2’ < X im Sinne von
Abschnitt 1.3., so ist Ty, stdrker als 7. Unter allen 2-Topologien in X gibt
es eine stirkste, die X -Topologie T,.

Sei T eine beliebige translationsinvariante Topologie im linearen Raum X.
Eine Teilmenge B wird dann T-beschrdnkt genannt, wenn B von jeder Null-
umgebung fiir T absorbiert wird. Dann hat man die folgende Charakterisierung
der Topologie T:

Satz 8. Seien X ein linearer Raum und X eine Uberdeckung von X. Unter
allen translationsinvarianten Topologien T in X, fiir die jedes B € X T-beschrinkt
18t, gibt es eine stirkste. Diese st die Topologie Ty.

Falls jedes B e 2 T-beschrinkt ist, so ist jede fiir T offene Menge auch
T s-offen. Also ist T stirker als T. Andrerseits ist trivialerweise jedes B e X
T s-beschrinkt.

Korollar. Seien X ein linearer Raum, X eine Uberdeckung von X, und Z*
das System der T g-beschrinkten Teilmengen von X. Dann 18t Tgx = Ty.

Zunichst ist 2 < 2*, und daher T schwicher als 7,. Nach Satz 8, auf
das System 2* angewandt, ist jedoch T g stérker als T .

Der folgende Satz driickt eine wichtige Eigenschaft der 2-Topologien aus:

Satz 9. Sei X ein linearer Raum, versehen mit einer Z-Topologie, und sei Y
ein topologischer Vektorraum. Eine lineare Abbildung @ von X in Y ist dann
und nur dann stetig, wenn sie jede Menge B e X in eine beschrinkte Menge
@ (B) c Y uberfithrt.

Sei @ stetig, Be 2. Fir jede Nullumgebung V in Y, ist @-1(V) eine
Nullumgebung in X und absorbiert daher B. Also absorbiert V die Menge
@(B). Nun sei vorausgesetzt, dall @(B) beschrinkt ist fir jedes Be 2.
Dann sei Q eine beliebige offene Menge in Y und @ ¢ @-1(Q). Zu beliebigem
BeZX gibt es eine Zahl >0, sodall |A| <= 2P (B)c@Q —P(a)=
=3 ABc ®1(Q) —a, das heilt, ®-1(Q) ist Z-offen. Also ist P stetig.

Korollar. Seien X ein linearer und Y ein topologischer linearer Raum. Jede
lineare Abbildung von X in Y ist stetig fir die Topologie T, in X.

Lemma 2. Seien X ein linearer Raum, X eine Uberdeckung von X, Y ein
topologischer Vektorraum und r ein G z-Restglied von X in Y. Fir jede Null-
umgebung V in Y ist r~1(V) eine Z-absorbierende Menge in X.
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Bemerkung. Hieraus folgt nicht, dafl r stetig ist im Nullpunkt fiir T.

Es geniigt, die Aussage des Lemmas 2 fiir eine beliebige kreisférmige Null-
umgebung ¥V in Y zu beweisen. Aus der Bedingung (G;) folgt, daB es zu
jedem Bel2 ein deR, 0<d<1 so gibt, dall

lt|<d=r(rB)ctVcV=rBcr (V).

Nun sei X ein topologischer Vektorraum. Die Topologie T von X bestimmt
u.a. folgende Uberdeckungen von X : Das System X, aller beschrinkten Men-
gen und das System 2, aller praikompakten Mengen in X. Man hat X, < Z,.
Jede dieser Uberdeckungen X,, X, bestimmt eine X-Topologie in X, diese
seien als T, bzw. T, bezeichnet. T, ist starker als T,, T, stidrker als 7. Dann
und nur dann, wenn 7 eine 2-Topologie ist, hat man T, = T. Falls T eine
lokalkonvexe 2-Topologie ist, so ist X bornologisch.

Lemma 3. Seien X ein metrisierbarer topologischer Vektorraum und X eine
Uberdeckung von X , die alle Nullfolgen in X enthilt. Dann ist jede X-absorbierende
Menge M in X eine Nullumgebung.

Sei (U,),ex eine Nullumgebungsbasis in X, sodaBl U,,, < U, fiir jedes
n ¢ N. Es geniigt zu beweisen, dafl M eine Menge der Form n~'U, enthilt.
Wire dies nicht der Fall, dann gibe es eine Punktfolge (x,),n, so dal}
z,en1U,, z,¢ M. Dann wire (nz,),.y €ine Nullfolge in X, die von M
nicht absorbiert wiirde, im Widerspruch zur Voraussetzung iiber M.

Aus dem Lemma 3 folgt insbesondere der

Satz 10. Seien X ein metrisierbarer topologischer Vektorraum, T die Topo-
logie von X und X eine Uberdeckung von X durch beschrinkte Mengen, die alle
Nullfolgen in X enthdlt. Dann ist T = Ty.

Korollar. Seten X etn metrisierbarer topologischer Vektorraum wund T seine
Topologie. Dann hat man T =T, = T,.

Der in Abschnitt 1.5. formulierte Satz 7 ist eine direkte Folgerung von
Lemma 2 und Lemma 3.

2. Differenzierbarkeit

2.1. Differenzierbarkeitshegriffe. Den verschiedenen im folgenden aufzu-
stellenden Definitionen der Differenzierbarkeit einer Abbildung f im Punkte x
wird generell eine Darstellung der Form

f(x + ) —f(x) = P(h) + r(h) (D)
zugrunde gelegt, wobei @ eine stetige lineare Abbildung und r ein Restglied ist.
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Definition 5. Seten X, Y lokalkonvexe Riume und M eine offene Menge in X.
Eine Abbildung f von M in Y heifit F -, Fy-, F- bzw. F'-differenzierbar im Punkte
x e M, wenn es eine stetige lineare Abbildung @ von X in Y und ein Fy-, Fy-,
F-bzw. F'-Restglied r von X in Y so gibt, daf3 die Relation (D) identisch in he M —x
besteht. Dann wird @ die F-, Fy-, F- bzw. F'-Ableitung von f im Punkte x
genannt und durch ' (x) oder Df(x) bezeichnet.

Definition 6. Seien X ein linearer Raum, X eine Uberdeckung von X, M eine
Z-offene Teilmenge von X und Y ein topologischer Vektorraum. Eine Abbildung f
von M in Y heifit Sy bzw. G g-differenzierbar im Punkte x € M, fulls es eine fiir
die Topologie T 5. stetige lineare Abbildung @ von X in Y und ein Sz bzw. G-
Restglied r von X tn Y ¢ibt, so daf3 die Relation (D) identisch in he M — x
besteht. Dann heiffit @ die Sz bzw. G 5-Ableitung von f im Punkte x und wird
mat f'(x) oder Df(x) bezeichnet.

Unter S,- bzw. G -Differenzierbarkeit sei S;- bzw. G y-Differenzierbarkeit
fir 2 = X verstanden. Wenn X ein topologischer Vektorraum ist, so heif3e
G,- bzw. G -Differenzierbarkeit soviel wie G s-Differenzierbarkeit fiir X=X},
bzw. X=2X,. Analog seien S,- und S,-Differenzierbarkeit definiert.

Es ist klar, daf3 fiir die verschiedenen Arten der Differenzierbarkeit die
gleichen Implikationen bestehen wie fiir das Bestehen der entsprechenden
Restgliedbedingungen. So ist die F-Ableitung von f: M — Y im Punkte
x e M zugleich F’-Ableitung und G -Ableitung von f im Punkte z fiir jede
Uberdeckung X < X,. Dies rechtfertigt die Verwendung des gleichen Sym-
bols f () bzw. Df(x). In jedem Fall ist f'(z), falls es existiert, durch f ein-
deutig bestimmt. Es geniigt, dies fiir die G -Differenzierbarkeit zu verifizieren.

2.2. Stetigkeit. Aus der Stetigkeit der F’-Restglieder im Nullpunkt folgt
unmittelbar der

Satz 11. Ist die Abbildung f : M — Y F'-differenzierbar an der Stelle x ¢ M,
80 181 ste auch stetig im Punkte x.

Die gleiche Aussage ist a fortiori richtig fiir F-, Fo- oder F-differenzierbare
Abbildungen. Eine entsprechende Aussage kann fiir G s-differenzierbare Ab-
bildungen (in bezug auf die Topologie T ;) nicht gemacht werden. Man beachte
jedoch den Satz 16 in Abschnitt 2.8. Hingegen gilt der folgende speziellere

Satz 12. Seien X ein metrisierbarer, Y ein beliebiger topologischer Vektorraum,
M eine offene Menge in X und X eine Uberdeckung von X durch beschrinkte
Mengen, die alle Nullfolgen enthdilt. Falls eine Abbildung f: M — Y @ g-diffe-
renzierbar ist im Punkte x ¢ M, so ist f auch stetig an der Stelle x.

Nach Satz 10 ist die Topologie T von X mit T, identisch; daher ist A—f'(x)A
stetig fiir T, ebenso ist nach Lemma 2 und Lemma 3 A—r (h) stetig im Nullpunkt.
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Korollar. Falls X metrisierbar ist, so ist jede tn einem Punkte x G,- oder
G,-differenzierbare Abbildung stetig an der Stelle x.

2.3. Spezialfall. Sowohl die G- als die F-, F,-, F-, F'-Differenzierbarkeit sind
Verallgemeinerungen der FrRECHET-Differenzierbarkeit:

Satz 13. Seien X ein normierbarer, Y ein beliebiger topologischer Vektorraum
und M eine offene Menge in X. Die G,-Differenzierbarkeit einer Abbildung
f: M- Y in einem Punkte x e M ist identisch mit der FRECHET-Differenzier-
barkeit von f an der Stelle x. Falls iberdies Y lokalkonvex ist, sind F,-, Fy-,
F-, F'- und G,-Differenzierbarkeit gleichwertiqg.

Die Topologie von X ist mit T, identisch nach Satz 10. Ist «— || x || eine
zuldssige Norm in X, so reduziert sich die Restgliedbedingung (¢/,) auf das
Bestehen der Relation (3) von Abschnitt 1.4., die von FRECHET und NEVAN-
LINNA [7] der Definition der FricHET-Differenzierbarkeit zugrunde gelegt
wurde, allerdings nur fiir den Fall, dal neben X auch Y normierbar ist. Diese
letztere Voraussetzung ist fiir die Begriffsbildung jedoch entbehrlich. Der zweite
Teil von Satz 13 folgt unmittelbar aus Satz 4.

2.4. Die Richtungsableitung. Wenn X, Y normierte lineare Raume sind
und M eine offene Teilmenge von X ist, so ist es iiblich, als Richtungsableitung
f'(z, k) einer Abbildung f: M — Y an der Stelle ze M in der Richtung
h e X den Grenzwert

7—>0 T

zu bezeichnen, falls er existiert. Ist A — f'(x, h) iiberdies stetig linear, so sagt
man, f sei differenzierbar im Sinne von GATEAUX an der Stelle 2. Es ist jedoch
klar, dafl durch (6) der Ausdruck f (xz, %) bereits sinnvoll erklirt wird, wenn
nur X ein linearer und Y ein topologischer linearer Raum ist. Unter diesen
Voraussetzungen sei X eine Uberdeckung von X . Dann stellt die G 5-Differen-
zierbarkeit eine Verallgemeinerung und zugleich eine Modifikation der GA-
TEAUX-Differenzierbarkeit dar, und zwar im folgenden Sinne: Die Abbildung
f: M— Y ist dann und nur dann G -differenzierbar an der Stelle z e M,
wenn die Richtungsableitung f'(z, k) gleichmiBig in % in jeder Menge B e X
existiert und A—f'(z, k) eine fiir T stetige lineare Abbildung von X in Y ist.

2.5. Der Modul der in einem Punkte differenzierbaren Abbildungen. Seien
X ein linearer Raum, X eine Uberdeckung von X und Y ein topologischer
Vektorraum. Fiir einen festen Punkt z ¢ X bezeichne D, (X, Y) die Klasse
der je in einer Umgebung von z (fiir die Topologie T ») definierten, im Punkte x
G s-differenzierbaren Abbildungen mit Werten in Y. Dann gilt
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Satz 14. (i) D, (X, R) st etn Ring (fir die gewshnliche Addition und Multr-
plikation reeller Funktionen). (i) D,(X, Y) ist ein Modul iber dem Ring
D.(X,R). (i) Far o e D,(X,R), f,ge D (X, Y) hat man

(f+ 9) (=) = f'(2) + ¢'(2),
(@) (x)h = (¢'(x)h) f(x) + @ ()f (2)h .

Der Beweis ist eine Routineangelegenheit und wird hier weggelassen. Je
ein entsprechender Satz gilt fiir die F-, F,-, F- und F'-Differenzierbarkeit,
falls X und Y lokalkonvex sind.

2.6. Die Kettenregel der Differentialrechnung ist im allgemeinen nur fiir
F,-, F[-, F-, F'- und 8,-differenzierbare Abbildungen richtig.

Satz 15. Seien X, Y, Z lokalkonvexe Riume, M eine offene Menge in X,
f eine Abbildung von M in Y, M’ eine offene Menge in Y, die f(M) enthdlt und
g eine Abbildung von M' in Z. Falls f F-differenzierbar ist im Punkte x e M
und g F-differenzierbar ist im Punkte f(x)e M', soist gof : M — Z F-diffe-
renzierbar im Punkte x, und es gilt

Gof)(x) =g'(f(x)) o f'(2).
Die Aussage bleibt richtig, wenn F durch F,, F,, F' oder S, ersetzt wird.
Im letzteren Falle kénnen X, Y, Z beliebige topologische Vektorrdume sein.

Folgerung: Es seien X und Y lokalkonvexe Riume. Falls eine bijektive Ab-
bildung einer offenen Teilmenge M von X auf eine offene Teilmenge f(M) von Y
existiert, so daf f in einem Punkte x e M und f~! 9m Punkte y = f() ¢ f (M)
F'-differenzierbar sind, so sind X und Y isomorph.

Nach Satz 15 sind f'(z) und (f~!)'(y) zueinander inverse stetige lineare
Abbildungen von X auf Y bzw. von Y auf X.

2.7. Das Umkehrproblem. Ein allgemeiner Umkehrsatz, wie er fiir FRECHET-
differenzierbare Abbildungen zwischen Banachriumen X, Y besteht, [7],
gilt nicht mehr, wenn X und Y beliebige lokalkonvexe Rdume sind, selbst
dann nicht, wenn es sich um FrEcHET-Réume handelt. Dies wird im folgenden
Beispiel gezeigt.

Beispiel 5. Die Abbildung f: (&), (En-fi)neu von RN in RN hat fol-
gende Eigenschaften: (i) f ist in jedem Punkte von R F-differenzierbar;
(ii) (z, b)—~ f'(x)h ist eine stetige Abbildung von RN x RN auf R"; (iii) wird
der Raum L(RY) der stetigen linearen Selbstabbildungen von RN mit der
Topologie der gleichméBigen Konvergenz in allen beschrinkten Mengen ver-
sehen, so ist #— f'(x) eine stetige Abbildung von R¥in L(R"); (iv) f(0) = o;
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(v) f'(0)h =k fiir jedes heRN. Trotzdem gibt es keine Nullumgebung in
RY, in der f eineindeutig ist. Fiir die Punktfolge x, = (3,,) reN € RN hat man
lim , = o fiir n—> o0 und f(z,) = o fiir jedes n ¢N.

2.8. Stetigkeit der G -differenzierbaren Abbildungen. Eine in einem Punkte
x e M (@ y-differenzierbare Abbildung f: M — Y braucht nicht stetig zu sein
fiir die 2Z-Topologie in X . Jedoch gilt folgendes:

Satz 16. Seien X ein linearer Raum, X eine Uberdeckung von X, M eine
2-offene Teilmenge von X und Y ein topologischer Vektorraum. Eine in jedem
Punkte x e M G g-differenzierbare Abbildung f von M in Y ist stetig fir die
Topologie Ts.

Sei ndmlich @ eine offene Menge in Y, P = f~1(Q). Es ist zu beweisen,
dafl fiir jedes @ ¢ P die Menge P —a X-absorbierend ist. Man wihle eine
Nullumgebung Vin Y,sodal V + V c @ —f(a) . Man setze f(a 4+ k) —f(a) =
= f'(a)h + r(k) . Dann ist [f'(a)]"2(V) Z-absorbierend, ebenso ist nach
Lemma 2 r-1(V) ZX-absorbierend. Daher ist auch [f'(a)]"*(V) ~ r—1(V)
2-absorbierend. Aus & e [f'(a)]"2(V) ~ (V) folgt aber f(a + k) ef(a)+
+ V 4+ V@, das heiBt [/ (a)](V)~rY(V)cP —a.

Ann Arbor, Mich., den 2. Juni 1963
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