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Differenzierbarkeit in topologischen Vektorrâumen

von H. H. Keller*)

Einleitung

Wenn X und Y normierte lineare Ràume sind und wenn M eine offerte

Teilmenge von X ist, so sind auf Abbildungen / von M in Y die Differentia-
tionsdefinitionen von Fréchet und von Gâteaux anwendbar. In der vor-
liegenden Arbeit werden verschiedene Differentiationsbegriffe aufgestellt und
zueinander in Beziehung gesetzt fur den Fall, daB X und Y mit allgemeineren
Topologien versehen sind. Mehrere der Ansâtze sind im Laufe der letzten Jahre
bereits von anderen Autoren in zum Teil anderer Form gemacht worden.
Hinweise werden an Ort und Stelle gegeben.

Die im folgenden aufzustellenden Differentiationsbegriffe zerfallen im we-
sentlichen in zwei Gruppen, diejenigen vom Typus (F) (FRÉCHET-Typus) und
diejenigen vom Typus (6?) (GÂTEAtrx-Typus). Bei der ersten Gruppe sind X
und Y als lokalkonvex vorausgesetzt, wobei fur die Définition der Differenzierbarkeit

von /je eine zulâssige Familie Fx bzw. Fy von stetigen Seminormen
herangezogen wird. Bei der zweiten Gruppe braucht zunâchst nur Y ein topo-
logischer Vektorraum zu sein. Die (r^-Differenzierbarkeit einer Abbildung
/ : M -> Y wird dann definiert relativ zu einer beliebigen vorgegebenen Ûber-
deckung E von X. Letztere bestimmt in X in natûrlicher Weise eine
translations- und homothetie-invariante Topologie T's mit der folgenden Eigenschaft :

Falls M offen ist fiir Tz und / : M->Y G^-differenzierbar, so ist / auch stetig
fur Tz* Die ûblichen Differentiationsregeln, mit Ausnahme der Kettenregel,
gelten fur aile Arten der Differenzierbarkeit, die Kettenregel im allgemeinen
nur fur diejenigen vom Typus (F).

Allen Arten der Differenzierbarkeit einer Abbildung / : M-> Y an der
festen Stelle x c M wird die Darstellung

f(x + h) —f(x) 0(h) + r(h), (heM-x), (D)

zugrunde gelegt, wobei 0 eine lineare Abbildung von X in Y ist, die als stetig
fur die ursprungliche lokalkonvexe Topologie bzw. fur die Topologie Ts in X
vorausgesetzt wird. Die verschiedenen Differentiationsbegriffe werden dann

*) Mit Dankbarkeit sei erwàhnt, dafi dem Verfasser die Arbeit an der vorliegenden Publi-
kation durch die Gewahrung eines Forschungskredites aus dem Schweiz. Nationalfonds zur For-
derung der wissenschaftlichen Forschung ennoglicht wurde.
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bestimmt durch die Forderungen, die an das «Restglied» r : M —x-> Y
gestellt werden. Der erste Teil der Arbeit ist den Definitionen und Eigenschaf-
ten der verschiedenen Arten von Restgliedern gewidmet. Die im zweiten Teil
formulierten Sàtze tiber Differenzierbarkeit ergeben sich mehr oder weniger
direkt aus den Resultaten des ersten Teils.

Die topologischen Vektorrâume werden durchwegs als reell und hausdorffsch

vorausgesetzt. Eine Familie F von Seminormen in einem lokalkonvexen
Raum X wird zulâssig genannt, wenn die Mengen {x cX | p(x) < e} fur
p e F, e > 0 eine Nulluingebungsbasis in X bilden. Eine solche Familie F
existiert nach [1] (Chap. II, § 5, prop. 4) immer. Mit U wird der Nullumgebungs-
filter in X bezeichnet. Unter einer Zuordnung e -> ôe (bzw. e —>• Ue) wird still-
schweigend eine Abbildung von (0, oo) in (0, oo) (bzw. von (0, oo) in U) ver-
standen. (^4) => (B) bedeutet: (.4) impliziert (B). Mit R ist der Kôrper der
reellen, mit N die Menge der natûrlichen Zahlen bezeichnet.

1. Restglieder

1.1. Restglieder vom Typus (F). Seien X, Y zwei lokalkonvexe Râume,
versehen mit je einer zulâssigen Familie Fx bzw. Fy von Seminormen.

Définition 1. Eine Funhtion r, definiert in einer Nullumgebung von X, mit
Werten in F, heifit ein F-, F1-, Fo- oder Ff0-Restglied von X in Y, wenn die

entsprechende der folgenden Bedingungen erfilllt ist:

(F) Zu jedem q c Fy gibt es ein p e Fx und eine Zuordnung e -> ôe > 0, so dafi

P(x)<ô6=>g(r(x))<ep(x);
(F') Zu jedem q c Fy gibt es ein p e Fx und eine Zuordnung e-> UB€VL,so da/3

X€ Ue=>q(r(x))<ep(x);
{FQ) Es gibt ein p0 e Fx mit der Eigenschaft, dafi zu jedem q e Fy eine Zuord¬

nung e -> ôe > 0 so existiert, dafi

Po(x) < àB=>q(r(xj) < epo(x);

(F'o) Es gibt ein p0 c Fx mit der Eigenschaft, da/S zu jedem q e Fy eine, Zuord¬

nung e -> Ue € lï so existiert, daji

X€ U'e=> q(r(x)) < epQ{x).

Die durch Définition 1 eingefûhrten vier Restgliedarten seien im folgenden
als Restglieder vom Typus (F) zusammengefaBt. Aus der Définition 1 folgt
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unmittelbar, daB zwischen den Bedingungen (F), (F1), (Fo) und (F'o) die
folgenden Impbkationen bestehen:

(F9) => {F)

{F'o)

Die folgenden beiden Beispiele zeigen, daB weder (F) => (F'o) noch (Ff0) =>
Insbesondere sind daher keine zwei der vier Bedingungen âquivalent.

Beispiel 1. Sei X Y RN Raum aller reellen Zahlenfolgen a;

versehen mit der Topologie der koordinatenweisen Konvergenz. Aïs Fx - Fy
werde die Folge (2>*)*€n von Seminormen in RN gewâhlt, wobei pn(cc)

max {(£ | ; i 1, 2, n} Dann ist die Abbildung r: (f*)*€N
ein J7-, aber kein ^-Restglied von RN in RN

Beispiel 2. Sei X RN wie in Beispiel 1, F R. Die Abbildung

€
1

ist ein jPq-, aber kein jF-Restglied von RN in R.

1.2. Unabhângigkeit von den Seminormen. Die Définition 1 nimmt Bezug
auf je eine zulâssige Familie von Seminormen in den lokalkonvexen Ràumen
X und F. DaB die Bedingungen (F), (F'), Fo), (F'o) jedoch rein topologiseher
Natur sind, ergibt sich aus der folgenden, etwas allgemeineren Feststellung :

Lemma 1. Es seien Fx* F'x zwei Famïlien von Seminormen auf dem Velctor-

raum X und Fy9 Fy zwei Famïlien von Seminormen auf dem Vekiorraum Y.
Die durch Ffx (bzw. Fy) in X (bzw. Y) bestimmte lokalkonvexe Topologie sei

feiner dis die durch Fx {bzw. Fy) bestimmte. Sei r ein Restglied vom Typus (F)
von X in Y in bezug auf Fx, FfY. Dann ist r ein Restglied gleicher Art in bezug

auf Frx, Fy.
Nach der Voraussetzung ùber Fx und Frx gibt es zu jedem p e Fx ein

pr e Fx und eine positive Zahl a, so daB p< ocpf. Entsprechendes gilt fur
Fy und Fy. Daraus folgt Lemma 1 unmittelbar.

Seien X und Y wieder lokalkonvexe Râume. Die Klasse der JP-Restglieder
von X in Y sei im folgenden mit Rf (X, Y) bezeichnet. Entspiechend seien

RF, (X, Y) y Rf (X, Y) und RF,(X, Y) eingefûhrt. Als Folgerung aus Lemma 1

ergibt sich, daB dièse Restgliedklassen nicht von den speziell gewâhlten zu-
lâssigen Familien Fx bzw. Fy abhângig sind. Dièse Tatsache wird im folgenden
Satz zum Ausdruck gebracht.
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Satz 1. Seien X und Y lokalkonvexe Ràume. Die Restgliedklassen Rf(X, Y).
RF,{X, Y), RF (X, Y) und RF,(X, Y) sind invariant gegenilber den Auto-
morphismen von X und Y.

1.3. Bestglieder vom Typus (G). Es seien X ein linearer und Y ein topo-
logischer linearer Raum. In X sei ein System Z von Teilmengen ausgezeichnet,
das X ûberdeckt. Eine Teilmenge D von X heiBe dann Z-absorbierend, wenn
es zu jedem B e Z eine Zahl /?> 0 so gibt, daB X BcD, sobald | A | < /?.

Définition 2. Eine Funktion r, definiert in einer Z-absorbierenden Teilmenge
von X, mit Werten in Y heijit ein GE-Restglied von X in Y, wenn folgende Be-

dingung erfilllt ist:

lim t"1 r(rx) 0, gleichmajUg in x in jeder Menge B e Z {Gs)
T-X)

Die (rj.-Restglieder, fur aile môglichen tïberdeckungen Z von X, werden
unter dem Namen Restglieder vom Typus (G) zusammengefaBt. In trivialer
Weise kann jedes G^-Restglied r von X in Y zu einem G^-Restglied r fortgesetzt
werden, das in ganz X definiert ist. Fur r ^ 0 ist dann die Abbildung
rT : x-> i~1r(xx) ein Elément von F(X, Y), und die Bedingung (Os) besagt

lîmrr o eF (X, Y) fur t->0 in der Topologie der gleichmâBigen Kon-
vergenz in jeder Menge B e 27.1)

Fur eine gegebene Ûberdeckung Z von X werde die Klasse der G^-RestgUe-
der von X in Y mit R£{X, Y) bezeichnet. Aus der Définition 2 folgt der

Satz 2. Sei X ein linearer Raum, Z ein System von Teilmengen von X, das X
ûberdeckt, und sei Y ein lokalkonvexer Raum. Dann ist die Klasse R£(X, Y)
aller G^Restglieder von X in Y invariant gegenilber allen linearen Transforma-
tionen von X, die Z in sich ûberfûhren, und gegenûber allen Automorphismen
von Y.

Die Klasse aller Ûberdeckungen Z von X ist in naturlicher Weise teilweise

geordnet durch die Verfeinerungsrelation : Z'< Z, wenn es zu jedem B' c Z'
ein B e Z so gibt, daB B! c B. Aus der Définition 2 folgt dann sofort:

(Q£) => (O£t) falls Z' < Z. (2)

Bezeichnet Zp das System aller einpunktigen Teilmengen von X, und schreibt
man (6?^) statt (Gs so gilt (GE) => (Gp) trivialerweise fur jedes Z. Wird
jedes B e Zersetzt durch seine kreisfôrmige Huile B° {Xx\ x e B, \ X \ < 1},
so entsteht ein System Z°. Dann ist zwar Z< Z°, jedoch sind (G^o) und
(Gz) àquivalente Bedingungen.

x) F (X, Y) bezeichnet den linearen Raum aller Abbildungen von X in Y.
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Der wichtigste Fall liegt vor, wenn X auch ein topologischer Vektorraum ist.
Die Topologie von X bestimmt dann das System Sb aller topologisch beschrànk-
ten Teilmengen von X. Schreibt man (Gb) statt (G^), so gilt (Gh) => (Gs)
fur jede Ûberdeckung 2J von X durch beschrânkte Mengen. Zwei Topologien
auf X, fur die die gleichen Teilmengen von X beschrànkt sind, bestimmen
dieselben Cr6-Restglieder von lin 7. Ist insbesondere X lokalkonvex, so hat
man noch die gleichen 6?&-Restglieder von X in Y, wenn die ursprûngliche
Topologie von X durch die schwache ersetzt wird.

Die Topologie von X bestimmt ferner das System Sk der prâkompakten
Teilmengen von X. Setzt man Gk statt G£k, so gilt (Gb) => (Gk) => Gv).
Die Bedingungen (Gb) und (Gk) sind immer dann âquivalent, wenn jede
beschrânkte Menge in X prâkompakt ist. Dies ist der Fall fur die Montel-Ràume
([2], Chap. IV, § 3), zu denen aile endlich-dimensionalen Vektorràume gehôren.

1.4. Beziehungen zwischen den Restglied-Bedingungen. Nun seien X und Y
lokalkonvexe Râume. Mit S sei stets eine Ûberdeckung von X durch
topologisch beschrânkte Teilmengen von X bezeichnet. Ûber die Beziehungen
zwischen den Restgliedbegriffen vom Typus (F) gibt das Schéma (1) AufschluB.
Die allgemeinste entsprechende Aussage fur die Restglied-Bedingungen vom
Typus (G) wird durch die Relation (2) geliefert. Aus dem nâchsten Satz folgt
nun, daB jede der Restglied-Bedingungen vom Typus (F) jede Bedingung
(Gz) impliziert, falls Z aus beschrânkten Mengen besteht.

Satz 3. Jedes F'-Restglied r von X in Y ist ein Gb-Restglied von X in Y.
Seien /x, /V zulâssige Familien von Seminormen in X bzw. Y; r erfulle

die Bedingung (F'), dabei kann U6 als kreisfôrmig angenommen werden. Sei

B c Zb, P > 0 und /S > sup {p{x) \ x e B} Die Zuordnung e-> ôe> 0 werde
so gewâhlt, daB | t| < ôe=> r Bcz Uefri. Dann hat man (xeB,] r\<ôe) =>
=> q((r(r x)) < p-h \ r \ p(x) < e \ r \ ; also lim T~1g(r(r x)) 0 fur r->
->0cR, gleichmâBig fur xeB. Dies gilt fur jedes qeFy Somit ist (Gb)

erfullt.
Das folgende Beispiel zeigt, daB (F') und (Gb) im allgemeinen jedoch keine

âquivalenten Bedingungen sind.

Beispiel 3. Wird in einem normierten Raum E von unendlicher Dimension
mit Norm x-> 11 x\\ die schwache Topologie zugrunde gelegt, so entsteht ein
nicht normierbarer lokalkonvexer Raum Ew. Die réelle Funktion r: #-> || x ||2

ist ein Gf6-Restglied von Ew in R, jedoch kein .F'-Restglied.
Die folgenden beiden Sâtze behandeln Spezialfâlle.

Satz 4. Seien X ein normierbarer und Y ein beliebiger lokalkonvexer Raum.
Dann sind die Bedingungen (Fo), (F'Q), (F), (F')9 (Gb) âquivalent.
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Ist nâmlich #-> \\ x\\ eine zulâssige Norcn in X, so reduziert sich jede der
in Satz 4 erwâhnten Bedingungen auf das Bestehen der Relation

Satz 5. Seien X und Y lokallconvexe Baume. Aile Bedingungen (Fo), (F'0)f (F),
{F'), (Gb), (Gp) sind dann und nur dann âquivalent, wenn X eindimensional ist.

Im Fall dim X — 1, X R ist namlich jede der in Satz 5 genannten
Bedingungen gleichwertig dem Bestehen der Relation

lim IK o (4)
*->o *

Bereits im Fall dimX 2 existieren bekanntlich Funktionen r, die (GJ))i

jedoch nicht (Ob), erfullen.
Sowohl die bei der J^-Differenzierbarkeit im Sinne von Hyers [5] auftre-

tenden als auch die Restglieder im Sinne von Fischer [3] sind mit unseren
i^-Restgliedern identisch. Fur die von Michal eingefuhrten M- bzw. M[-
Restglieder (i 1, 2, 3, 4) sei auf [6] verwiesen. Der Vollstàndigkeit halber
sei lediglich folgendes erwâhnt: {Mx) => (F'o), (F) => (M) und (M) => (Q9).
Die bei Gil de Lamadrid [4], in den Begriff der « i7-strict derivative » eingehen-
den Restglieder sind mit unseren Cr^-Restgliedern identisch. Das gleiche gilt
fur die « Differenzierbarkeit im weiteren Sinne» bei Sebastiao e Silva [10].

Eine etwas andere Définition der Restglieder von X in Y (in bezug auf eine
Ûberdeckung S von X durch beschrânkte kreisformige Mengen) gibt Sebastiao

e Silva in [9] unter dem Namen «infiniment petit d'ordre supérieur à 1 ».

Dièse, hier /S^-Restglieder genannt, sind wie folgt definiert:

Définition 3. Eine Abbildung r, definiert in einer Z-absorbierenden Teilmenge
von X9 mit Werten in Y, hei/it ein SL-Bestglied von X in Y, wenn folgende Be-

dingung erfûllt ist:

(82) Zu jedem B e E existiert eine beschrânkte Menge C in Y und eine Zuordnung
e~-> ôe> 0, so dafi

\r\<Ôe=> x-xr(r B) c sC

Es ist unmittelbar klar, daB (Sz) => (Oz) fur jedes zulâssige System S.
Wenn Y normierbar ist, sind (8E) und (Gz) âquivalent. Statt 8Sh werde 8b

gesetzt. Das nâchste Beispiel zeigt, daB (8b) und (Gb) im allgemeinen keine
gleichwertigen Bedingungen sind.

Beispiel 4. Es sei X der normierte Raum der beschrânkten reellen Zahlenfolgen
x (^)i€N mit der Norm x-> \\ x \\ sup { | ffc 11 k eN} und es sei Y RN.
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Fur kcN bezeichne <pk : R-»R die Funktion <pk(t) t2(l —ht)-1 fur t ^ kr1,
<Pk{k~x) 0 • Dann ist die Abbildung r : (èk)k€x-> (<Pk(h))k€n e*n ^VRestglied,
also auch ein (?Ô-Restglied, jedoch kein #5-Restglied von X in F, da r keine
beschrânkte Menge der Form {x € X \ \ \ x \ | < q} q > 0 in eine beschrânkte
Menge von F uberfuhrt.

Aus dem Beispiel 4 folgt gleichzeitig, daB (Sb) im allgemeinen nicht einmal
durch (-Fo) impliziert wird, selbst dann nicht, wenn X normierbar ist. Anderer-
seits zeigt das Beispiel 3, daB im allgemeinen aus (8b) nicht einmal (F') folgt.

Das folgende Schéma gibt eine Ûbersicht ûber die Implikationsrelationen,
die zwischen den in diesem Abschnitt vorkommenden Restglied-Bedingungen
immer bestehen.

(Fo) => (F) => (M)

(Mt) => (F'o) => (F1) (5)

(S») => (Ot) ==> {G,)

Im folgenden werden die Mr und die Jf-Restglieder nicht mehr betrachtet.

1.6. Stetigkeit im Nullpunkt. Seien X und Y lokalkonvexe Ràume. Fur ein
Restglied r von X in F hat man r(o) o, gleichgultig, welche der Restglied-
Definitionen zugrunde gelegt wird. Aus der Définition 1 folgt unmittelbar der

Satz 6. Ein Restglied vont Typus (F) von X in Y ist stetig im Nullpunkt von X.
Das Beispiel 3 zeigt, daB die entsprechende Behauptung fur die 8b- (und

daher auch fur die 6?&-)Restglieder falsch ist. Nun gilt jedoch der folgende
nichttriviale

Satz 7. Seien X ein metrisierbarer, Y ein beliebiger topologischer Vektorraum,
und sei S eine Vberdeckung von X, die aile Nullfolgen in X enthâlt. Dann ist
jedes GZ-Restglied von X in Y stetig im Nullpunkt.

Der Beweis wird im folgenden Abschnitt gegeben werden.

Korollar. Falls X metrisierbar ist, ist jedes Gk-Restglied (und folglich jedes

Gb-Restglied) von X in Y stetig im Nullpunkt von X.
1.6. Die 17-Topologien. Sei X ein linearer Raum. Eine beliebige Ùberdeckung

S von X durch Teilmengen von X bestimmt in natûrlicher Weise eine Topo-
logie in X, durch die folgende Auszeichnung ihrer offenen Mengen:

Définition 4. Eine Teilmenge M von X heijie E-offen, wenn fur jedes a € M
die Menge M — a {x c X | x -{- a e M} S-absorbierend (Abschnitt 1.3.) ist.
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Die eindeutig bestimmte Topologie in X, fur die die E-offenen Teilmengen von X
die offenen Mengen sind, heifie die E-Topologie in X und sei durch 7'L bezeichnet.

Fur jede 27-Topologie in X sind aile Translationen #-> x + a, (a e X), und
aile Homothetien x-> Àx, (A € R, A 7^ 0) Homôomorphisrnen von X auf X.
Sind 27, E' zwei Ûberdeckungen von X und hat man 27' < E im Sinne von
Abschnitt 1.3., so ist 7E, stârker als Fv. Unter allen 27-Topologien in X gibt
es eine stârkste, die 2^-Topologie Tv.

Sei T eine beliebige translationsinvariante Topologie im linearen Raum X.
Eine Teilmenge B wird dann T-beschrânkt genannt, wenn B von jeder Null-
umgebung fur T absorbiert wird. Dann hat man die folgende Charakterisierung
der Topologie TE:

Satz 8. Seien X ein linearer Raum und E eine Vberdechung von X. Unter
allen translationsinvarianten Topologien Tin X, fur die jedes B e £ T-beschrdnht

ist, gibt es eine stârkste. Dièse ist die Topologie TL.
Falls jedes B e S ÎT-beschrànkt ist, so ist jede fur T offene Menge auch

7Voffen. Also ist TL stârker als F. Andrerseits ist trivialerweise jedes B e E
r^-beschrànkt.

Korollar. Seien X ein linearer Ramn, E eine Vberdeckung von X, und E*
dos System der Ts-beschrânkten Teilmengen von X. Dann ist T£* TL.

Zunâchst ist E< 27*, und daher T?* schwâcher als T£. Nach Satz 8, auf
das System 27* angewandt, ist jedoch T£* stârker als 7V

Der folgende Satz druckt eine wichtige Eigenschaft der 27-Topologien aus:

Satz 9. Sei X ein linearer Raum, versehen mit einer E-Topologie, und sei Y
ein topologischer Vektorraum. Eine lineare Abbildung 0 von X in Y ist dann
und nur dann stetig, wenn sie jede Menge B e E in eine beschrânkte Menge

0(B)œY ûberfûhrt.
Sei 0 stetig, BeE. Fur jede Nullumgebung V in Y, ist 0~1(V) eine

Nullumgebung in X und absorbiert daher B. Also absorbiert F die Menge

0(B). Nun sei vorausgesetzt, da6 0(B) beschrânkt ist fur jedes BeE.
Dann sei Q eine beliebige offene Menge in Y und a e 0~1(Q). Zu beliebigem
B e E gibt es eine Zahl 0 > 0, so daB | À \ < fi => X 0{B) c Q — 0(a) =>
=^> XBœ0-1(Q) — a, das heifit, 0~1(Q) ist 27-offen. Also ist 0 stetig.

Korollar. Seien X ein linearer und Y ein topologischer linearer Raum. Jede

lineare Abbildung von X in Y ist stetig ftir die Topologie Tv in X.

Lemma 2. Seien X ein linearer Raum, E eine Vberdeckung von X, Y ein

topologischer Vektorraum und r ein G£-Restglied von X in Y. Fur jede

Nullumgebung V in Y ist r~l(V) eine E-absorbierende Menge in X.
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Bemerkung. Hieraus folgt nicht, da8 r stetig ist im Nullpunkt fur TE.
Es genugt, die Aussage des Lemmas 2 fur eine beliebige kreisfôrmige Null-

umgebung F in Y zu beweisen. Aus der Bedingung (0^) folgt, da8 es zu
jedem B e 27 ein ô eH, 0< <5< 1 so gibt, da8

| T|< 6=>r(rB)c:rVc: V => rBcr^F).
Nun sei X ein topologischer Vektorraum. Die Topologie T von X bestimmt

u.a. folgende Ûberdeckungen von X: Das System 276 aller besehrânkten Men-

gen und das System 27fc aller prâkompakten Mengen in X. Man hat Zk < 27&.

Jede dieser Ûberdeckungen Zb, Zk bestimmt eine 27-Topologie in X, dièse
seien als Tb bzw. Tk bezeichnet. Tk ist stàrker als Tb, Tb stârker als T. Dann
und nur dann, wenn T eine 27-Topologie ist, hat man Tb T. Falls T eine
lohalkonvexe 27-Topologie ist, so ist X bornologisch.

Lemma 3. Seien X ein metrisierbarer topologischer Vektorraum und 27 eine

Vberdeckung von X, die aile Nullfolgen in X enthâlt. Dann ist jede Z-absorbierende

Menge M in X eine Nullumgebung.
Sei (Un)n€x eine Nullumgebungsbasis in X, so da8 Un+1 c Un fur jedes

n eN. Es genugt zu beweisen, da8 M eine Menge der Form n~1Un enthâlt.
Wàre dies nicht der Fall, dann gàbe es eine Punktfolge (#n)n€N, so dafi
xn€nr1Un9 xn$M. Dann wâre (nxn)n€fi eine Nullfolge in X, die von M
nicht absorbiert wurde, im Widerspruch zur Voraussetzung xiber M.

Aus dem Lemma 3 folgt insbesondere der

Satz 10. Seien X ein metrisierbarer topologischer Vektorraum, T die Topologie

von X und Z eine Vberdeckung von X durch beschrànkte Mengen, die aile

Nullfolgen in X enthâlt. Dann ist T 7V

Korollar. Seien X ein metrisierbarer topologischer Vektorraum und T seine

Topologie. Dann hat man T — Tb Tk.
Der in Abschnitt 1.5. formulierte Satz 7 ist eine direkte Folgerung von

Lemma 2 und Lemma 3.

2. Differenzierbarkeit

2.1. Differenzierbarkeitsbegriffe. Den verschiedenen im folgenden aufzu-
stellenden Definitionen der Differenzierbarkeit einer Abbildung / im Punkte x
wird generell eine Darstellung der Form

zugrunde gelegt, wobei 0 eine stetige lineare Abbildung und r ein JRestglied ist.
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Définition 5. Seien X, Y lokalkonvexe Baume und M eine offene Menge in X.
Eine Abbildung f von M in Y heifit Fo-, Ff0-, F- bzw. F'-differenzierbar im Punicte

x e M, wenn es eine stetige lineare Abbildung 0 von X in Y und ein FQ-, F;o-,

F- bzw. F''-Restglied r von XinY so gibt, daji die Relation (D) identisch in heM—x
besteht. Dann wird 0 die Fo-, Ff0-, F- bzw. F'-Ableitung von f im PunJcte x
genannt und durch f'(x) oder Df(x) bezeichnet.

Définition 6. Seien X ein linearer Raum, E eine Vberdeckung von X, M eine

E-offene Teilmenge von X und Y ein topologischer Vektorraum. Eine Abbildung f
von M in Y hei/it S^- bzw. G£-differcnzierbar im Punkte x e M, falls es eine fur
die Topologie Ts stetige lineare Abbildung 0 von X in Y und ein 8S- bzw. Gz-
Restglied r von X in Y gibt, so dafi die Relation (D) identisch in heM — x
besteht. Dann heifit 0 die SE- bzw. Gz-Ableitung von f im Punkte x und wird
mit f'(x) oder Df(x) bezeichnet.

Unter Sp- bzw. G^-Differenzierbarkeit sei SE- bzw. tr^-Differenzierbarkeit
fur Z — Ep verstanden. Wenn X ein topologischer Vektorraum ist, so heiBe
GJc- bzw. 6?&-Differenzierbarkeit soviel wie G^-Differenzierbarkeit fur S==Eki
bzw. Z=Zb. Analog seien Sk- und $6-Differenzierbarkeit definiert.

Es ist klar, daB fur die verschiedenen Arten der Differenzierbarkeit die

gleichen Implikationen bestehen wie fur das Bestehen der entsprechenden
Restgliedbedingungen. So ist die .F-Ableitung von / : M ~> Y im Punkte
x c M zugleich F'-Ableitung und G^-Ableitung von / im Punkte x fur jede
Ûberdeckung 27< Sh. Dies rechtfertigt die Verwendung des gleichen Sym-
bols f (x) bzw. Df{x). In jedem Fall ist fr (x), falls es existiert, durch / ein-

deutig bestimmt. Es genùgt, dies fur die G^-Differenzierbarkeit zu verifizieren.

2.2. Stetigkeit. Aus der Stetigkeit der i^-Restglieder im Nullpunkt folgt
unmittelbar der

Satz 11. Ist die Abbildung f : M-* Y F'-differenzierbar an der Stelle x e M,
so isi sie auch stetig im Punkte x.

Die gleiche Aussage ist a fortiori richtig fur Fo-, F'o- oder jF-differenzierbare

Abbildungen. Eine entsprechende Aussage kann fur G^-differenzierbare Ab-
bildungen (in bezug auf die Topologie Tz) nicht gemacht werden. Man beachte

jedoch den Satz 16 in Abschnitt 2.8. Hingegen gilt der folgende speziellere

Satz 12. Seien X ein metrisierbarer, Y ein beliebiger topologischer Vektorraum,
M eine offene Menge in X und E eine Vberdeckung von X durch beschrânkte

Mengen, die aile Nullfolgen enthalt. Falls eine Abbildung f:M->Y G^-diffe-
renzierbar ist im Punkte x e M, so ist f auch stetig an der Stelle x.

Nach Satz 10 ist die Topologie T von X mit TL identisch; daher ist h-+f (x)h
stetig fur T, ebenso ist nach Lemma 2 und Lemma 3 h->r(h) stetig im Nullpunkt.
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Korollar. Falls X metrisierbar ist, so ist jede in einem Punkte x Gb- oder

Gk-differenzierbare Abbildung stetig an der Stelle x.

2.3. Spezialfall. Sowohl die Gb- als die Fo-, F'o-, F-, .F'-Differenzierbarkeit sind
Verallgemeinerungen der FRÉCHET-Differenzierbarkeit :

Satz 13. Seien X ein normierbarer, Y ein beliebiger topologischer Vektorraum
und M eine offene Menge in X. Die Gb-Differenzierbarkeit einer Abbildung
f : M ~> Y in einem Punkte x e M ist identisch mit der ¥B,Êcm&T-Differenzier-
barkeit von f an der Stelle x. Falls ûberdies Y lokalkonvex ist, sind Fo-, F'o~,

F-, F'- und Gb-Differcnzierbarkeit gleichwertig.
Die Topologie von X ist mit Tb identisch nach Satz 10. Ist x-> \\ x || eine

zulàssige Norm in X, so reduziert sich die Restgliedbedingung (Gb) auf das
Bestehen der Relation (3) von Abschnitt 1.4., die von Fréchet und Nevan-
linna [7] der Définition der FRÉCHET-Differenzierbarkeit zugrunde gelegt
wurde, allerdings nur fur den Fall, da8 neben X auch Y normierbar ist. Dièse
letztere Voraussetzung ist fur die Begriffsbildung jedoch entbehrlich. Der zweite
Teil von Satz 13 folgt unmittelbar aus Satz 4.

2.4. Die Richtungsableitung. Wenn X, Y normierte lineare Râume sind
und M eine offene Teilmenge von X ist, so ist es ûblich, als Richtungsableitung

f'(x, h) einer Abbildung / : Jf-> Y an der Stelle x e M in der Richtung
h e X den Grenzwert

f'(x,h) (6)

zu bezeichnen, falls er existiert. Ist A-> f'(x,h) ûberdies stetig linear, so sagt
man, / sei differenzierbar im Sinne von Gâteaux an der Stelle x. Es ist jedoch
klar, daB durch (6) der Ausdruck f'(x, h) bereits sinnvoll erklârt wird, wenn
nur X ein linearer und Y ein topologischer linearer Raum ist. Unter diesen

Voraussetzungen sei E eine Ûberdeckung von X. Dann stellt die G^-Differen-
zierbarkeit eine Verallgemeinerung und zugleich eine Modifikation der GÂ-

TEAUX-Differenzierbarkeit dar, und zwar im folgenden Sinne : Die Abbildung
f : M-> Y ist dann und nur dann C?r-differenzierbar an der Stelle xe M,
wenn die Richtungsableitung f (x, h) gleichmàBig in h in jeder Menge B € S
existiert und h->ff(x,h) eine fur Ts stetige lineare Abbildung von X in Y ist.

2.5, Der Modul der in einem Punkte differenzierbaren Âbbildungen. Seien

X ein linearer Raum, E eine Ûberdeckung von X und Y ein topologischer
Vektorraum. Fur einen festen Punkt xeX bezeichne DX(X, Y) die Klasse
der je in einer Umgebung von x (fur die Topologie Tz) definierten, im Punkte x
Gz-differenzierbaren Abbildungen mit Werten in Y. Dann gilt
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Satz 14. (i) DX(X, R) ist ein Ring (fur die gewôhnliche Addition und Multi-
plikation reeller Funktionen). (ii) DX(X, Y) ist ein Modul ilber dem Ring
DX(X, R). (iii) Fur <p c DX(X, R), /, g e Dx{Xf Y) hat man

(<pf)f(x)h (v'{x)h)f(x) + <p(x)f'(x)h

Der Beweis ist eine Routineangelegenheit und wird hier weggelassen. Je
ein entsprechender Satz gilt fur die Fo-, F^, F- und .F'-Differenzierbarkeit,
falls X und Y lokalkonvex sind.

2.6. Die Kettenregel der Differentialrechnung ist im allgemeinen nur fur
Fo-, Fr0-, F-, F1- und $&-differenzierbare Abbildungen richtig.

Satz 15. Seien X, Y, Z lokalkonvexe Râume, M eine offene Menge in X,
f eine Abbildung von M in Y, M' eine offene Menge in Y, die f(M) enthâlt und

g eine Abbildung von M' in Z. Falls f F-differenzierbar ist im Punkte x e M
und g F-differenzierbar ist im Punkte f(x) e M1, so ist g o / : M'-> Z F-diffe-
renzierbar im Punkte x, und es gilt

Die Aussage bleibt riehtig, wenn F durch F09 FfQ, F' oder Sb ersetzt wird.
Im letzteren Falle kônnen X, Y, Z beliebige topologische Vektorrâume sein.

Folgerung: Es seien X und Y lokalkonvexe Râume. Falls eine bijektive
Abbildung einer offenen Teilmenge M von X auf eine offene Teilmenge f(M) von Y
existiert, so dafi f in einem Punkte x € M und f~x im Punkte y f(x) € f(M)
F-differenzierbar sind, so sind X und Y isomorph.

Nach Satz 15 sind f'(x) und (f^Yiy) zueinander inverse stetige lineare
Abbildungen von X auf Y bzw. von Y auf X.

2.7. Das Umkehrproblem. Ein allgemeiner Umkehrsatz, wie er fur Fbéchet-
differenzierbare Abbildungen zwischen Banachrâumen X, Y besteht, [7],
gilt nieht mehr, wenn X und Y beliebige lokalkonvexe Râume sind, selbst
dann nieht, wenn es sich um FitÉCHET-Râume handelt. Dies wird im folgenden
Beispiel gezeigt.

Beispiel 5. Die Abbildung / : (ln)n€N~> i^l)n€N von RN in RN hat fol-

gende Eigenschaften : (i) / ist in jedem Punkte von RN jP-differenzierbar;
(ii) {x, h)-+f'(x)h ist eine stetige Abbildung von RN X RN auf RN; (iii) wird
der Raum L(RN) der stetigen linearen Selbstabbildungen von RN mit der

Topologie der gleichmâBigen Konvergenz in allen beschrânkten Mengen ver-
sehen, so ist x -> f (x) eine stetige Abbildung von RN in L (RN) ; (iv) f(o) o ;
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(v) f'(o)h h fïir jedes heU1*. Trotzdem gibt es keine Nullumgebung in
RN, in der / eineindeutig ist. Fur die Punktfolge xn (ônk) e RN hat man
Km xn o fur n-+ oo und f(xn) o fur jedes n €N.

2.8. Stetigkeit der G^-differenzierbaren Âbbildungen. Eine in einem Punkte
x e M G^-differenzierbare Abbildung / : M -> Y braueht nicht stetig zu sein
fur die Z-Topologie in X. Jedoch gilt folgendes :

Satz 16. Seien X ein linearer Eaum, Z eine Vberdeckung von X, M eine

Z-offene Teilmenge von X und Y ein topologischer VeJctorraum. Eine in jedem
Punkte x e M G^-differenzierbare Abbildung f von M in Y ist stetig fur die
Topologie Ts»

Sei nâmlich Q eine offene Menge in F, P /~1(Ç). Es ist zu beweisen,
daB fur jedes a c P die Menge P — a 27-absorbierend ist. Man wâhle eine
Nullumgebung F in 7, so daB V +VaQ—f(a). Man setze f(a + h) —/(a)

f'(a)h + r(h). Dann ist [/'(a)]""1 (F) 27-absorbierend, ebenso ist nach
Lemma 2 y-1 (F) i7-absorbierend. Daher ist auch [/'(a)]-1 (F) ^ r-1 (F)
T-absorbierend. Aus h € [/'(a)]-1 (F) ^ r-^F) folgt aber f(a + h)cf(a) +
+ F + Fc Q, das heiBt [/'(a)]"1 (F) ~

Ann Arbor, Mich., den 2. Juni 1963
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