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Unions and intersections in Homotopy Theory

by B. EckMaNN and P. J. HiLToN*)

1. Introduetion

Much of the algebra of category theory has been concerned with abelian
categories: this is natural in view of the importance of homological algebra and
the fact that, for such categories €, the set of morphisms M (4, B) has the
rich algebraic structure of an abelian group with respect to which composition
is distributive. However in representing group theory or homotopy theory it is
no longer possible to confine attention to abelian categories: the resulting
algebraic theory of categories which emerges from a generalization of such
mathematical theories has been discussed in [5, 6, 7] and [8]. In both these
works one has retained from homological algebra at least the notion of the
existence of kernels and cokernels, and unions and intersections. However it
was remarked in [6] that, for example, even where there are no kernels in the
strict sense one always has a kernel ideal; but it is not necessarily the case that
this ideal is principal, let alone principal and generated by a monomorphism.

Our interest in this paper is almost exclusively in the homotopy category
¥, belonging to T, the category of based spaces of the based homotopy type of
CW-complexes and based maps; the morphisms [f] of T, are the based homo-
topy classes (of based maps f in T). In this category I, it turns out that the
kernel, cokernel, union, intersection and equalizer ideals are all principal but
are not furnished with canonical generators. Let us exemplify the situation
with regard to kernels and cokernels. Consider first the fibration (in I)

st 80(3)—L> 8. (1.1)

Were X ——[—g—L SO(3) the kernel of [p]in I,, so that [¢] is a monomorphism in

T,, we would have the following commutative diagram
73 (8%) ——> 7, (8') —> m (80(3)) — 0
e |
0— 1 (X) — 7, (8O(3)) —— 0

This would imply m,(X) = Z, and xf = 1, an evident contradiction. Now

*) This research was partly supported by the U.S. Department of Army through its European
Research Office.
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consider the cofibration (in I), where P2 is the real projective plane and St
an embedded projective line,

]

k
St P25 S, (1.2)

Were P2 ——[gl> X the cokernel of [j]in T,, so that [¢] is an epimorphism in T,

we would have the following commutative diagram (cohomology with integer
coefficients)
H'(8') —> H?*(8%) — H2?(P?)—— 0

|

0——> H*(X) —> H?2(P?)——> 0.

This would imply H?*(X) = Z, and xf = 1, an evident contradiction.

It is plain that in these examples [¢] generates the kernel ideal of [p] and [k]
generates the cokernel ideal of [j]; clearly these statements generalize to em-
beddings of fibres in any fibration and projection onto cofibres in any cofibra-
tion. These observations are the basis of the study of these and related ideals
in¥,.

We have preferred to work in an arbitrary (pointed) category € rather than
in the category T and its related homotopy category I,. Our reason has not
been primarily that of increased generality nor even the exploitation of the
duality principle; but rather to exhibit how little of the richness of the cate-
gories I and I, is required to prove the ideals in question principal. Essentially
one requires only an equivalence relation compatible with composition to
associate a homotopy category €, with any category €. Then one may define
fibrations and cofibrations in € and our results apply to any category € in
which maps may be expressed as compositions of homotopy equivalences and
fibrations (cofibrations and homotopy equivalences). Thus we have deli-
berately stressed the simplicity, indeed triviality, of our arguments, in order
to achieve clarification. The universality thereby achieved does in fact enable
us to apply the results to abelian categories furnished with the notions of p-
homotopy or ¢-homotopy; see [3]. It is worth remarking that the explicit
constructions of generators of equalizer ideals, for example, are quite different
in the case of the category I, and the homotopy category associated with an
abelian category; but their existence admits a common, and elementary proof.

The desire to elucidate some of the algebraic structure of the category I,
did not constitute the only motive for assembling the facts presented here. In
his paper [2], BRowN pushes through a rather subtle 5-lemma argument (in the
absence of group structure in all the terms) by means of a construction of a
certain space W, auxiliary to a map f. In reporting on BROWN’s paper, one of
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the authors found that this construction, together with the crucial property
enjoyed by the space W,, rested on the facts that equalizer ideals were principal
(in the category I, and in the category of sets) and that the «cohomology »
functors BROWN considers preserve equalizers. Thus it seemed desirable to
present the necessary category-theoretical background to this approach to
BrowN’s argument. We should further explain that, having BRowxN’s con-
struction in mind, we were led to give preference in our exposition to cokernels,
unions, and right equalizers over their duals.

The last two sections of the paper lead in a different direction. In section 4
we look at the relation between the very general homotopy notion of the
previous three sections and the homotopy notion which arises from a homotopy
system in the category. In section 5 we consider the circumstances under which
a MAYER-VIETORIS sequence may be valid in a category with homotopy.

The notations and terminology of this paper are based on those of [5, 6], but
the inverse product 4 * B of two objects 4, B is written 4 \V B in the cate-
gories ¥ and I,. — A monomorphism f: 4 — B in € is sometimes also called
an «embedding». By convention, since the categories we consider are always
pointed, functors will always be supposed to transform zero morphisms to zero
morphisms.

2. Categories and associated homotopy categories

Let © be an I-category; i.e., a category with inverse products. We call ¢
an h-category (or, more strictly, we furnish € with an k-structure) if, for each
A,BeC, the set of maps M(4, B) is furnished with an equivalence
relation ~ such that

(i) if g~g':A—- B, f:B—~>C, h:D—> A4, then

fgh>~fg'h: D— C; (2.1)
and (ii) if g,~gi:A4,~ B, ©=1,2, then
<91:92>:<g{,g;>:A1*A2">B' (2.2)

Plainly if € is an k-category we may form a new category €, whose objects
are those of € and whose maps are equivalence classes of maps in € ; moreover
¢, is again an [-category and the evident functor € — €,, which we will also
designate by H, is an I-functor. We will sometimes write [g] for H(g), where g
is a map in €. We call €, the homotopy category associated with the h-category .
An I-functor T from the h-category € to the i-category D is called an A-functor
if it transforms equivalent maps into equivalent maps. Evidently H is itself an
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h-functor if we furnish ¢, with the trivial A-structure given by the equality re-
lation. A map g in € is called a homotopy equivalence if [g] is an equivalence in ©, .

Let g: A— B be a map in the Ah-category €. We call g a cofibration if, for
all X QG and all maps f,: B~ X, h,: 4—-> X with f,g >~ h, there exists
fi: B> X with f,~f, and f,g =h,.

Proposition 2.3. If A can be embedded in a contractible object!), then every
cofibration g : A — B is a monomorphism.

Proof: Let hy, embed A4 in the contractible object X and let f, = 0: B— X.
Then f,g >~ h, since X is contractible. Since ¢ is a cofibration, there exists
fi: B—>X with f,g = h,. Since &, is a monomorphism so is g. -

Any map g: 4 — B has a cokernel ideal, coker g. This is the family of maps f,
with domain B, such that fg = 0. We say that coker ¢ is principal if there
exists ¢ € coker g such that every f ¢ coker ¢ is of the form f'c¢; we then call c
a generator of coker g. Note that d is also a generator of coker g if and only if
d = uc, ¢ = vd for some u, v. If g is a cofibration then coker g may also be
called the cofibre ideal of g, and written cofib g.

Now let 7' be a covariant functor from € to D and let g: A — B in €. Then
plainly 7' (coker g) < coker T'g. We say that 7' preserves cokernels if

T (coker g) = coker (T'g) (2.4)

for all g in €. If coker g is principal then (2. 4) holds for g if and only if coker (7'g)
is principal and 7' maps generators of coker g to generators of coker 7'g ; indeed
T maps every generator of coker g to a generator of coker 7'g if it so maps
one generator.

Proposition 2.5. Let g: A— B be a cofibration in the h-category € and let
H: € — §, be the homotopy classification functor. Then

H (cofib g) = coker (Hg).

Proof: Let [f] e coker (Hg). Thus fg ~ 0. Since g is a cofibration, there
exists ' ~ f with f'g = 0. Thus f' € cofib g and [f] = [f'] ¢ H (cofib g).

Corollary 2.6. If g is a cofibration and cofib g is principal, generated by c,
then coker (Hg) 1s principal, generated by Hc.

Proposition 2.7. Let g ~ qu: A — B where q 18 a homotopy equivalence with
homotopy inverse j. Then

(coker Hu)Hj = coker Hg.

1) X is contractible if 1 =~ 0: X — X,
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We omit the proof but draw the immediate conclusion:
Theorem 2.8. All morphisms in I, have principal cokernels and kernels.

Proof: The mapping cylinder functor provides a factorization ¢ = qu of
every map ¢ in I, where ¢ is a homotopy equivalence and w is a cofibration.
All cokernels in ¥ are principal. Thus by Corollary 2.6 coker Hu is principal
and then by Proposition 2.7 coker Hg is principal.

The dual assertion about kernels in I, follows immediately from the obser-
vation that every g may be factorized in I as u’'q’, where ¢’ is a homotopy
equivalence and «’ a fibration. —

We now consider unions in € and §,; we are content to discuss a pair of
maps (¢, g.) in €, where g,: A — B,, and leave generalizations to the reader.
The union ideal, UN (g,,9,), of (g,,¢.) is the family of pairs (f,,f,) such
that f; has domain B, and f,g9, = f,9,. We say that UN (g,, g,) is principal
if there exists a pair (c;,c,) e UN(g;,9.) such that every pair (f,,f,) in
UN(g,,¢,) is of the form (f'¢c,, f'c;); we then call (c,,c,) a generator of
UN (g:, g.). The concept of union-preserving functor is easily formulated and
remarks analogous to those made for principal cokernels may be made for
principal unions. We prove

Proposition 2.9. Let g,: 4 - B;, ¢ = 1, 2, be maps in the h-category € and
let g, be a cofibration. Then

H(UN (9, g2)) = UN (Hg,, Hg,).
Proof: Of course, for any covariant functor 7': € - D,
T(UN(g,9.)) € UN(Tg,, Tgs). (2.10)

Thus it remains to establish the converse inclusion. Let ([f,], [f.]) € UN([g,], [9.]),
so that f g, ™~ fog.. Since g, is a cofibration, f, ~ f; with fg, = f,9,. Thus

(f1»f:) € UN (g1, g2) and ([A], [f]) = ([f1], [fa]) = H(f1, f2) e H(U N(gy, 2)) -

Corollary 2.11. If UN(g,, g;) 18 principal generated by (c,,c,) and g, s a
cofibration then U N (Hg,, Hhy) ts principal generated by (Hc,, Hc,).

Proposition 2.12. Let g, ~q,u,: A— B;, 1 =1, 2, where q, is a homotopy
equivalence with homotopy inverse j;. Then?)

(UN (Huy, Hu,)) (Hjy, Hjs) = UN (Hgy, Hge).

We omit the proof but draw the immediate conclusion:

?) The composition on the left of the equality if that of maps in €, x .
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Theorem 2.13.

(i) Ifg,:A—>B;,1=1,2, in T then ([¢,),[g.]) has a principal union in T,

(i) If g;:A;—> B,i=1,2, in I then ([g,], [¢:]) has a principal inter-
section in I,

The proof follows the lines of that of Theorem 2.8, using the fact that
(provided their ranges and domains are appropriate) pairs of maps in T have
principal unions and also have principal intersections. In fact, of course, pairs
of maps in T have untons, that is, essentially unique canonical generators for
their union ideals. In this case we may, given g,,g,, construct canonical
generators for UN (Hg,, Hg,) by expressing g, as ¢q,u, through the mapping
cylinder functor, taking the union (v, v,) of (u,, u,) in I and setting ¢, =v,7,,
¢ = 1, 2, where j,is homotopy inverse to ¢;. Then UN (Hg,, Hg,) is generated
by ([c,], [c;]). Similarly a canonical procedure may be applied to obtain a
generator of the intersection ideal, I N (Hg,, Hg,), of the homotopy classes of
maps ¢,: A,—~ B.

Before closing this section we exemplify the main ideas by considering
categories other than I, to which the results apply. Let U be an abelian cate-
gory and let us declare (see [3]) two maps ¢,g': A — B to be homotopic if
g — ¢’ may be factored through an injective object of . Then U is thereby
furnished with an A-structure. Moreover every monomorphism is a cofibration
and (Proposition 2.3) if U has sufficient injectives every cofibration is a
monomorphism. Also if U has sufficient injectives every map ¢g: A - B may
be factored as g = qu where ¢ is a homotopy equivalence and » is a mono-
morphism. Thus we infer

Theorem 2.14. Let U be an abelian category with sufficient injectives and let U,
be the assoctated injective-homotopy category. Then in W, cokernels and unions
are principal.

Note that the set of morphisms Mgy, (4, B) has the natural abelian group
structure of the quotient of My (4, B) by the subgroup of nullhomotopic
maps; and, of course, composition is distributive over addition.

3. Equalizers and a Lemma of E. H. BRowN

We now consider (right) equalizers in the h-category € and its associated
homotopy category €,. We are again content to discuss a pair of maps
g;:A—B,1=1,2, in €. Then their right equalizer ideal, RE(g,,¢,), is
the family of maps f, of domain B, such that fg, = fg,. It is clear what is
meant by the statement that RE(g, g,) is principal, generated by c, and what
is meant by a right-equalizer-preserving functor. We prove
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Lemma 3.1. Let € be an I-category in which union ideals are princitpal. Then
right equalizer ideals in € are principal.

Proof: Given g,: A— B in €, let (c;,c,) generate UN (g,,9,) and let
(c, s) generate UN ((1,1),{¢,,¢,>), where ¢,: B—~U,<{1,1>: B*B— B,
(€, ¢y B* B~ U. We assert that ¢: B— C generates RE(g,,g,). First
{c,cd>=1c¢ {1,1>=258(c;,C» =<8¢;,8C,», SO ¢ =8¢ =38C,, and cg, =
= 8C;§; = S$Cyfs = Cg,. Second, let fg, =fg,, Then f=f'¢;,=f¢, so that
<L =L = e fe) = flea,e). Thus f=fc (and f = f's)
and the lemma is proved.

We note that Lemma 3.1 may also be proved by showing that if (¢, c)
generates UN ((1,1)>,{¢,,¢,>), then c generates RE (g,,g,).

Corollary 3.2. Right and left equalizer ideals in I, are principal.
Proof: Apply Theorem 2.13.

Remark 3.3. (i) Theorem 2.8 is, of course, a special case of Corollary 3.2.
Note however that Theorem 2.8, restricted to cokernels, generalizes to any
¢, in which € has principal cokernels and maps in ¢ factorize as qu where ¢
is a homotopy equivalence and u a cofibration. On the other hand Corollary
3.2, restricted to right equalizers, generalizes to any ¢, in which € has principal
unions and maps in ¢ factorize as qu.

(il) We may, of course, construct a generator of RE(Hg,, Hg,) in I, quite
explicitly. Namely, we consider the union (4 X I)V B, where I is the unit
interval, and construct C by way of the identifications g,a = (,0), g,a = (a, 1).
Then c¢: B— C is induced by the embedding of Bin (4 X I)V B.

Before proceeding to discuss BROwN’s lemma, we record a further conse-
quence of Lemma 3.1, for abelian categories.

Corollary 3.4. Let A, be as in Theorem 2.14. Then in W, right equalizers are
principal.

In [2] BROWN considers a contravariant functor H: € — & where € is a
category of based spaces and & is the category of sets?); and he imposes certain
axioms, including two axioms designated by h) and e), on the functor H.
Interpreting H as a covariant functor 7': € - GS*, where € is structured as
an h-category in the usual way and & * is the category dual to S furnished with
the trivial h-structure given by the equality relation, it is easy to see that
axioms h) and e) together assert that 7' is an hA-functor with the further property

that T(UN (uy, ug)) = UN (T'uy, Tup) (3.5)

if wu,,u, are cofibrations.

3) Here we prefer to regard S, as we may, as the category of based sets.
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We wish to fit Lemma 2.6 of [2] into the category-theoretic framework set
up in this paper. First we prove a general result whose applicability to the
situation described above is evident.

Let T,:€,— D, be the I-functor induced by an A-functor 7':¢€— D
having property (3.5). Assume (i) that every map ¢ in € may be factored as
g = qu, where g is a homotopy equivalence and » is a cofibration, and (ii)
that the classifying functor H: ® — D, preserves unions. We prove

Theorem 3.6. Under these hypotheses T', preserves unions and right equalizers.

Proof: Observe first that since 7' is an A-functor it transforms homotopy
equivalences into homotopy equivalences. Nowlet g,: A — B, in €, ¢ =1, 2;
factorize g, as q,u,; and let j, be homotopy inverse to g;. Then

T (UN (Hgy, Hgo) = To((UN (Huy, Hu)) (Hjy, Hj))  (Prop. 2.12)
= T, (H(UN (uy, %)) ) (TwHj1, TyHjz) (Prop. 2.9)
= H(T(UN (uy, u5)))(HTj,, HT'j,), since T is anh-functor
= UNHTwu, HTuw,)(HTj,, HTj,), Dby assumption (ii)
=UN(HTg,, HTg,) (Prop. 2.12)
= UN(THgy, T, Hy,),

and thus 7', preserves unions.

To show that 7', preserves right equalizers, it is convenient to remark that,
in any category €, RE(g,, g,) is characterized as follows: fe¢ RE(g,, ¢,) if and
only if there exist maps f,, f;, s such that (f,,f,) e UN(g;,¢9.) and (f,$s) e
UN((K1,1>,<{fi, [>). We omit the proof of this assertion?).

Of course 7,(RE(x,) € RE(T)0, Tyo5),06,00: A— B in €,. To
prove the opposite inclusion, let fe RE(T,«,T,x,). Then there exist
Br, B2y o with (B, B;) e UN (T, Txs) and (8, 0) e UN((1, 13, {By, B2))-
Since 7', preserves unions, B, = T,y,, where (y;, ;) e UN(x;,%,). Then
since 7', is an I-functor, {1,1> =T,{1,1>,{By, B> = T, {y1, 7> and

(B, 0) € UN(Th<1: l>’Th<71’ Y2))-

Again, it follows that §=71,y,0 =T,7, where (y,t)e UN ({1, 1), {p1,%5))-
Thus y e RE(x,,;), T,y = f, and the theorem is proved.

Remark 3.7. The second part of the proof simply shows that if an 7-functor
preserves unions it preserves right equalizers; this was already known if maps
of the category have unions in the precise sense.

4) Cf. the proof of Lemma 3.1.
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We now recapitulate rapidly the background to Lemma 2.6 of [2]; BROWN’s
category ¢ is essentially our category ¥, so we discuss a covariant functor
H:.3T->GC.

Let f: A— B be amapin T and let  be obtained by attaching the cone on
A to B by means of f. Let ¢: B—~@ be the embedding. Then there is a
cooperation®) r:Q—>QV XA (where 2 denotes suspension), obtained by
pinching the cone C 4 half-way up, and, as observed by BrowN, an induced
exact sequence of sets

...%H(ZB){I(—Z{)H(ZA)——E—» H(Q)—I—:-’—Eg-)» H(B)—I—{—(‘—QH(A).

Moreover H (X' B), H(X' A) are groups and H (Xf) is a homomorphism. Also
H (X A) operates on H(Q) through H(r): H(Q) Xx H(ZA)=H((QV 2 A)~H(Q);
and two elements u,u’' e H(Q) satisfy H(q)u = H(q)u' if and only if
u' = ux for some x in H(XA4).

Let ve H(B) and H(f)v = 0 so that v = H(q)u for some wu e H(Q),
and let H, be the subgroup of H (X' A4) consisting of those x e H(XA) such
that o = w. Plainly if H(2'A4) is abelian (e.g. if 4 is itself a suspension)
then H, depends only on v; we may then write H, for H,. BROwN proves the
following lemma.

Lemma 3.8. If H(XZA) s abelian, then there is a space W and maps
h:B—>W, k:2XA— W, depending only on f, such that H, = H(k)H (h)(v)
for all v e ker H(f).

This lemma is an obvious consequence of

Proposition 3.9. There is a space W and maps j:Q—> W, k:ZA—> W,
depending only on f, such that H, = H (k)H (j)(u) for u e H(Q).

For we take h = jq. Then H(h)v= « H(j)?u, so

H(g)u=v
HE)HMR) v = v H(k)H@G) u
H(gju=v
= v H,, if Prop. 3.9 is assumed,
H(gu=v
= Hv if H(XZA) is abelian.

Proof of Proposition 3.9, Let ¢:Q ~>QV 24 be the inclusion. Let
[c]:QV ZA— W generate RE([r],[:]) in T, (Corollary 3.2). We set
¢ = <{j,k> and must show that wx = » if and only if there is f e H(W)
with H(j)f = u, H(k)f = «.

5) See [4, 9].
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Now H(r)(w,x) = ux, H(i)(u,n) = v and, by Theorem 3.6 (recall that
H, as a functor from T to S, is contravariant and homotopy-invariant and
that H:S— &, is the identity functor), LE (H(r), H (1)) is generated by
H(c). Thus ux = u if and only if there is e H(W) with H(c)8 = (u,«),
and H(c)p = (H(j), H(k)p).

Remark 3.10. Proposition 3.9 clearly has a dual in the same category T .

4. Homotopy systems, cofibrations, unions

We have worked, in the previous two sections, with a very general — and
emasculated — homotopy concept. In this section we relate this concept to the
richer notion of a homotopy system (see [6]).

We recall that a (left) homotopy system S on a category € consists of a
cylinder I-functor Z: € — @ together with certain natural transformations

t,b: 1> Z,
p:Z—>1,
r:Z—>27,

such that®) pt = pb = 1,7t =b,rb =1¢. We may then introduce the notion
of strict homotopy in € by declaring that g ~g': 4 — B if there exists
F:ZA—-> B such that Fby = g, Fty = ¢g'. The relation ~ is then reflexive
and symmetric. Let ~  be the equivalence relation generated by ~. Then
(Proposition 6.2 of [6])

Proposition 4.1. If S 1is a left homotopy system on € then © acquires an
h-structure through the relation ~,.

We suppose henceforth that ¢ is furnished with a fixed homotopy system S.
We then call the k-structure of Prop. 4.1 the canonical h-structure on €.

Let g: A— B be amapin €. We say that g has the H E-property if (bp, Zg)
generates UN(g,bs). We justify this terminology by observing that g
has the H E-property if and only if it has the homotopy extension property in the
following sense: for all X and all F:ZA—->X,h: B— X, with hg = Fby,
there exists F': ZB—> X with F'bg=h,F'Zg=F.

Theorem 4.2. If g has the H E-property then g is a cofibration with respect
to the canonical h-structure on €.

%) I is the identity functor. We did not explicitly require the reversal  in [6] but it is convenient
to have it here.
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Proof: Let f,: B— X, h;: A— X be maps such that f,g >~ h;; we seek
fi: B> X with f,~.f, and f,g = h,. Since ~ is reflexive and symmetric
we may suppose there are maps «°% u!,...,u": 4d—-> X with fg =4~
~ul~...~u*=h;. Thus there exists F:Z4—-> X, with f,g = Fby
and u!= Fty. Since g has the HE-property there exists F':ZB-—»> X
with F'bp=f,, F'Zg=F. Set F'tg =v'. Then f, ~v' and vlg = ul.
We repeat the argument with o', 4? replacing f,, ; to obtain ' ~? and
v’g = uw?*. Thus we obtain a sequence of maps o!',%,...,v" with
fo~vi~RE~.. . ~v and vg = u* = h;. Set f, = V. -

Nowlet g,: 4— B,,t=1,2, in € and let (c,, ¢;) be the union of (g,, g,)
in the strict sense of [6] : that is to say, (c,, ¢,) generates the UN (g,, g.) and
{15 >: By ¥ By— C is an epimorphism. We then call

B,
91 51
A %, (4.3)
B,

a unton-diagram, and prove

Theorem 4.4. Let the homotopy system S be faithful') and let g, in the
union-diagram (4.3) have the H E-property. So then does c,.

Proof. Consider, in addition to (4.3), the diagrams

B,
7, 7 bB1 / \ / \
A ZB, Z0 ZA ZC
ZA
(4.5) (4@) (4J)

Then (4.7) is a union-diagram since § is faithful; in (4.5) (bp,, Zg,) generates
UN(g,, bs); and we wish to prove, in (4.6), that (by, Zc,) generates

7) See [7]; Z is union-preserving, in the strict sense of [6].
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UN(cz,bgz). Thus let k:C— X, l:ZB,— X be maps with kc2——=leE.
Consider the maps kc,: B,— X,1Zg,: ZA - X. Then

kclgl —_— k0292 - lezgz = lZgsz.

Thus (since g, has the H E-property) there exists w: ZB,— X with ubp, =
= ke¢,, uZg, = 1Zg,. This last equality yields, from the union-diagram (4.7)
amap v:ZC— X with vZ¢;, = u,vZ¢c, = 1.

It remains to show that vb, = k. Since (4.3) is a union-diagram, it suffices
to show that vb,c, = ke;, vbyc, = kcy,. Now

vbye, = chle1 == ubB1 = k¢,,
g vbots = vZeybs, = lbs, = key,
so the theorem is proved.

We remark that we have only used here the fact that (Z¢c,, Zc¢,) generates
UN(Zg,, Zg,). It would thus appear to be asking too much that Z preserve
strict unions. But any /-functor preserving unions (in the sense of this paper)
certainly preserves right-equalizers (see Remark 3.7) and hence zero-cokernel
maps; thus it is asking little more that Z preserve strict unions and § be faithful.

Of course the usual homotopy system (and its adjoint system) in T is
faithful. The right homotopy system in the category of c.s.s. groups is also
faithful and the dual of Theorem 4.4 naturally holds for that category.

5. The MAYER -VIETORIS Theorem

We revert to the union-diagram (4.3) and prove

Proposition 5.1. The rule v-— vc, sets up a one-lo-one correspondence
between the ideals coker ¢, and coker g, under which epimorphisms are mapped
to eptmorphisms.

Proof: Certainly if ve coker c, then wvc, ¢ coker g,. Set P(v) = ve, so
P : coker ¢, > coker g;,. Now let u ecokerg,. Then ug, = 0 = 0g, so there
is a unique » such that ve, = u, ve, = 0. Set Q(u) =v, so @:cokerg, —
coker ¢,. It is plain that PQ = 1,QP = 1.

Now suppose v an epimorphism and let fve, = f'vc,. But foc, = fve,(=0),
so that fv = f'v, and, v being an epimorphism, f=f. This shows that vc,
is an epimorphism when v is.

Corollary 5.2. The map g, has a strict cokernel if and only if the map c, has
a strict cokernel. Moreover, if v is the cokernel of c, then vc, s the cokernel of g,.
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Now let € be an h-category and let 7',: € - A (—oo < n <oo) be a se-
quence of functors from € to the abelian category U with the property that if

a-7%,8-%,9
is a cofibre-sequence there is a natural transformation

w == wn(g3Q) : Tn(Q) - Tn—~1 (A)
such that

Ta(9) n(Q)

= T,(4) —> T,(B)—> T,(Q)

is an exact sequence. Then we infer from Corollary 5.2

> Tn_l(A)—-‘f . e

Theorem 5.3. (MAYER-VIETORIS sequence) Suppose in (4.3) that g, and c,
are cofibrations with strict cokernels. Then there is an exact sequence

S T(A) e T (BY®T,(B) T (0) YT () ... (5.4)

where o = (T, (91), T, (92)}, B=<T(er), —To(co)), and y = w, (g1, key) T, (),
k:C—Q being the coﬁbre of c,.

Proof: We have a commutative diagram

o) B9 gy o Oy

l Tn (g2) l Tn (cl) l 1 l Tn—-l (g2)

- T, (B,) “‘—“* T.(C) 72 Th(Q) —— Tha(By)— . ...
Tu(cq) T.(k) @
Since there is an exact functor from 2 to the category of abelian groups we
may suppose that the functors 7', themselves take values in the category of
abelian groups and Theorem 5.3 is then a consequence of the theorem of
BARRATT-WHITEHEAD (see [1]).
We may readily combine Theorems 4.4 and 5.3 to obtain

Theorem b5.5. Let € be a category furnished with a faithful left homotopy
system. Then if g, has the H E-property and possesses a strict cokernel, the se-
quence (5.4) is exact.

Remark 5.6. The topological context in which Theorem 5.3 (or Theorem
5.5) becomes applicable is that in which the functors 7', are actually defined
on the maps of the category € and pass to the objects of € through an embed-
ding functor € — ¢2. Thus the assumptions made on the system of functors
T, would arise from hypothesizing the usual exact sequence of a cofibration.
Systems of functors 7', satisfying this latter exact sequence hypothesis are
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studied in detail in [10]. The additional excision hypothesis is also satisfied
by any homology theory in ¥, ordinary or extraordinary, so that the MAYER-
VIETORIS sequence is valid in any homology theory. If we replace U by the
dual category we obtain a MAYER-VIETORIS sequence for any cohomology
theory in T . Also we may pass to the dual category of T and obtain a MAYER-
VieTORIS sequence for any homotopy theory in I . In more detail, this would
relate to an intersection-diagram,

'Bl
2\
3 A

B,

in I, in which ¢, is a fibration; the functors 7', are required to convert a
fibre-sequence

(5.7)

q g

Q——> B—> A
into an exact sequence

> T,Q) > T(B)> T, (A) > T, 1 (@)~ . ...
We would then infer from Theorem 5.5 — and (5.7) — the exact sequence
.. >T,C)>T,(B)®T, (By))—>T,(A)>T,,(C)— ..., (5.8)
and the hypotheses would apply to the homotopy groups 7, = IT,(X, ).

Remark 5.9. On the other hand Theorem 5.3 also applies in purely alge-
braic contexts in which it appears less natural to regard the functors 7', as
defined on maps of the category. Indeed we would then take € to be itself an
abelian category and formally replace the notion of cofibration by mono-
morphisms8). Thus the 7', are to be a connected sequence of functors and we
infer, just as for Theorem 5.5

Theorem 5.10. Let € be an abelian category and let (4.3) be a unton-diagram
tn © in which g, 18 a monomorphism. Then, if T, is a connected sequence of functors
from € to the abelian category W, there is an exact (MAYER-VIETORIS) sequence

o .21, (A)>T,(B)® T, (By)~>T,(C)>T,,(4)—~. ..

8) Recall that these notions in fact coincide if € has sufficient injectives.
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For it is only necessary to observe that if g, is a monomorphism and (4.3)
is a union-diagram in an abelian category €, then c, is also a monomorphism.
As examples we may take 7, = Exzt™(K, ), n<0,T,=0,n>0; or,
if € has sufficient injectives, 7', = Exzt—"(K, ), n<0, T,==n,(K, ),
the n'* injective homotopy group functor, » > 0. There are also the obvious
duals.

Eidgenossische Technische Hochschule, Ziirich
Cornell University, Ithaca N. Y.
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