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Unions and intersections in Homotopy Theory

by B. Eckmann and P. J. Hilton*)

1. Introduction

Much of the algebra of category theory has been concerned with abelian
catégories : this is natural in view of the importance of homological algebra and
the fact that, for such catégories G, the set of morphisms M^ (A, B) has the
rich algebraic structure of an abelian group with respect to which composition
is distributive. However in representing group theory or homotopy theory it is

no longer possible to confine attention to abelian catégories: the resulting
algebraic theory of catégories which émerges from a generalization of such
mathematical théories has been discussed in [5, 6, 7] and [8], In both thèse
works one has retained from homological algebra at least the notion of the
existence of kernels and cokernels, and unions and intersections. However it
was remarked in [6] that, for example, even where there are no kernels in the
strict sensé one always has a kernel idéal; but it is not necessarily the case that
this idéal is principal, let alone principal and generated by a monomorphism.

Our interest in this paper is almost exclusively in the homotopy category
Zh belonging to X, the category of based spaces of the based homotopy type of
CW-complexes and based maps; the morphisms [/] of Xh are the based homotopy

classes (of based maps / in X). In this category Xh it turns out that the
kernel, cokernel, union, intersection and equalizer ideals are ail principal but
are not furnished with canonical generators. Let us exemplify the situation
with regard to kernels and cokernels. Consider first the fibration (in X)

S1 —^-> 80(3) —^ SK (1.1)

kernel of [p] in Xh, so that [q] i
Xh, we would hâve the following commutative diagram
Were X SO (3) the kernel of [p] in Xh, so that [q] is a monomorphism in

0 ?7i1(Z) ?7i1(£0(3)) > 0

This would imply ^(X) Z2 and <x/5 1, an évident contradiction. Now
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consider the cofibration (in X), where P2 is the real projective plane and S1

an embedded projective Une,

S1—L+p2_jL+ s*. (1.2)
[q]

Were P2 X the cokernel of \j] in %h, so that [q] is an epimorphism in %h,

we would hâve the foliowing commutative diagram (cohomology with integer
coefficients)

H1 (S1) H* (S*) tf^P2) 0

This would imply H2(X) Z2 and oc fi 1, an évident contradiction.
It is plain that in thèse examples [i] générâtes the kernel idéal of [p] and [Je]

générâtes the cokernel idéal of \j]; clearly thèse statements generalize to em-
beddings of fibres in any fibration and projection onto cofibres in any cofibration.

Thèse observations are the basis of the study of thèse and related ideals
in Zh.

We hâve preferred to work in an arbitrary (pointed) category (£ rather than
in the category % and its related homotopy category %h. Our reason has not
been primarily that of increased generality nor even the exploitation of the
duality principle; but rather to exhibit how little of the richness of the
catégories % and %h is required to prove the ideals in question principal. Essentially
one requires only an équivalence relation compatible with composition to
associate a homotopy category (£h with any category (£. Then one may define
fibrations and cofibrations in G and our results apply to any category (£ in
which maps may be expressed as compositions of homotopy équivalences and
fibrations (cofibrations and homotopy équivalences). Thus we hâve deli-
berately stressed the simplicity, indeed triviality, of our arguments, in order
to achieve clarification. The universality thereby achieved does in fact enable

us to apply the results to abelian catégories furnished with the notions of p-
homotopy or i-homotopy; see [3]. It is worth remarking that the explicit
constructions of generators of equalizer ideals, for example, are quite différent
in the case of the category %h and the homotopy category associated with an
abelian category; but their existence admits a common, and elementary proof.

The désire to elucidate some of the algebraic structure of the category Xh
did not constitute the only motive for assembling the facts presented hère. In
his paper [2], Bbown pushes through a rather subtle 5-lemma argument (in the
absence of group structure in ail the terms) by means of a construction of a
certain space Wf auxiliary to a map /. In reporting on Bbown's paper, one of
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the authors found that this construction, together with the crucial property
enjoyed by the space Wf, rested on the facts that equalizer ideals were principal
(in the category Zh and in the category of sets) and that the « cohomology »

functors Bbown considers préserve equalizers. Thus it seemed désirable to
présent the necessary category-theoretical background to this approach to
Brown's argument. We should further explain that, having Brown's
construction in mind, we were led to give préférence in our exposition to cokernels,
unions, and right equalizers over their duals.

The last two sections of the paper lead in a différent direction. In section 4

we look at the relation between the very gênerai homotopy notion of the
previous three sections and the homotopy notion which arises from a homotopy
System in the category. In section 5 we consider the circumstances under which
a Mayer-Vietoris séquence may be valid in a category with homotopy.

The notations and terminology of this paper are based on those of [5, 6], but
the inverse product A * B of two objects A, B is written A V B in the
catégories X and Zh. - A monomorphism / : A -> B in (E is sometimes also called
an «embedding». By convention, since the catégories we consider are always
pointed, functors will always be supposed to transform zéro morphisms to zéro
morphisms.

2. Catégories and associated homotopy catégories

Let (E be an /-category; i.e., a category with inverse products. We call (E

an A-category (or, more strictly, we furnish (E with an A-structure) if, for each

Ay JScCE, the set of maps M^A^B) is furnished with an équivalence
relation ~ such that

(i) if g~gf:A-+B, f:B-+C, h:D-+A, then

fgh~fg'h:D->C; (2.1)
aild

(ii) i£gi~g'i:Ai-+B, i=l,2, then

<g1,g*>~<g'1,g't>:A1*A%-+B. (2.2)

Plainly if (E is an A-category we may form a new category Ç£h whose objects
are those of (E and whose maps are équivalence classes of maps in (E ; moreover
(£h is again an /-category and the évident functor (E-> ($,h, which we will also

designate by H, is an /-functor. We will sometimes write [g] for H (g), where g
is a map in (E. We call (£A the homotopy category associated with the h-category (E.

An /-functor T from the A-category (£ to the A-category 35 is called an h-functor
if it transforms équivalent maps into équivalent maps. Evidently H is itself an
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A-functor if we furnish (£^ with the trivial A-structure given by the equality
relation. A map g in (£ is called a homotopy équivalence if [g] is an équivalence in &h.

Let g : A ~> B be a map in the A-category (£. We call g a cofibration if, for
ail X € (£ and ail maps f0: B-> X, h±: A->X with fog ~ h, there exists

/x:jB->X with /0~/i and hg h±.

Proposition 2.3. // A can be embedded in a contractible object1), then every
cofibration g : A-> B is a monomorphism.

Proof: Let hx embed A in the contractible object X and let f0 0 : jB-> X.
Then fog ~ Ax since X is contractible. Since g is a cofibration, there exists

ft: B-> X with ftg h±. Since Ax is a monomorphism so is g. -
Any map g : A-+ B has a cokernel idéal, coker gr. This is the family of maps /,

with domain B, such that fg 0. We say that coker g is principal if there
exists c c coker g such that every / e coker <7 is of the form f'c ; we then call c

a generator of coker gr. Note that à is also a generator of coker g if and only if
d uc, c vd for some u, v. If gr is a cofibration then coker g may also be
called the cofibre idéal of <7, and written cofib g.

Now let T be a covariant functor from G to 3) and let g : A-+ B in G. Then
plainly î7 (coker g) c coker Tgr. We say that T préserves cokernels if

T (coker gr) coker (Tg) (2.4)

for ail g in (£. If coker <? is principal then (2.4) holds for g ifand only ifcoker (Tg)
is principal and T maps generators of coker g to generators of coker Tg ; indeed
T maps every generator of coker g to a generator of coker Tg if it so maps
one generator.

Proposition 2.5. Let g : A-> B be a cofibration in the h-category G and let

H : £ -> (£fc 6e £&e homotopy classification functor. Then

H (cofib gr) coker (WgO.

Proof: Let [/] € coker (Wgr). Thus fg ~ 0. Since g is a cofibration, there
exists /' ~ / with f'g 0. Thus /' € cofib £ and [/] [/'] c H (cofib g).

Corollary 2.6. // g is a cofibration and cofib g is principal, generated by c,
then coker (Hg) is principal, generated by Hc.

Proposition 2.7. Let g ~qu: A-> B where q is a homotopy équivalence with
homotopy inverse j. Then

(coker Hu) Hj coker Hg.

*) X is contractible if 1 Cl 0 : X->X.
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We omit the proof but draw the immédiate conclusion :

Theorem 2.8. AU morphisms in %h hâve principal cokernels and kernels.

Proof: The mapping cylinder functor provides a factorization g qu of
every map g in %, where q is a homotopy équivalence and u is a cofibration.
AU cokernels in % are principal. Thus by Corollary 2.6 coker Hu is principal
and then by Proposition 2.7 coker Hg is principal.

The dual assertion about kernels in %h follows immediately from the
observation that every g may be factorized in % as u'q1, where qr is a homotopy
équivalence and uf a fibration. —

We now consider unions in (£ and &h ; we are content to discuss a pair of
maps (gx, g2) in (£, where gt: A-> Bt, and leave generalizations to the reader.
The union idéal, UN(gly g2), of (gx, g2) is the family of pairs (fl9 f2) such
that f% has domain Bt and f1g1 — f2g2. We say that UN(g1, g2) is principal
if there exists a pair (c1} c2) € UN(gl9 g2) such that every pair (flff2) in
UN(g1, g2) is of the form (fc1, f'c2); we then call (cl9 c2) a generator of
UN(g1, g2). The concept of union-preserving functor is easily formulated and
remarks analogous to those made for principal cokernels may be made for
principal unions. We prove

Proposition 2.9. Let gt: A-> Bxi i 1,2, be maps in the h-category G and
let gx be a cofibration, Then

Proof: Of course, for any covariant functor T : (£ -> D,

c UN(TglyTg2). (2.10)

Thus it remains to establish the converse inclusion. Let ([/J, [/2]) c UN(\g{\, [g2]),

so that flg1/^if2g2. Since gx is a cofibration, A^l/i with f1g1 hg2- Thus
(K,h)cUN{gl9g%)

Corollary 2.11. // UN(g1,g2) is principal generated by (cl9c2) and gx is a
cofibration then UN(Hgx, Hh2) is principal generated by (Wcl5Wc2).

Proposition 2.12. Let gt~qtut: A-> Bt,i 1,2, where qt is a homotopy
équivalence with homotopy inverse jt. Then2)

Hu2)) (Hjl9 Hj%) UN(Hgl9 Hg2).

We omit the proof but draw the immédiate conclusion :

2) The composition on the left of the equality if that of maps in d£h x dh.
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Theorem 2.13.

(i) // gt : A -> Bt, i 1,2, in X ihen {[gx), [g2]) has a principal union in Xh.
(ii) // g% : At-> B, i 1, 2, in X ihen ([gx], [g2]) has a principal

intersection in Xh.
The proof follows the Unes of that of Theorem 2.8, using the fact that

(provided their ranges and domains are appropriate) pairs of maps in X hâve
principal unions and also hâve principal intersections. In fact, of course, pairs
of maps in % hâve unions, that is, essentially unique canonical generators for
their union ideals. In this case we may, given glfg2, construct canonical
generators for UNiHgx, Hg2) by expressing gt as qtut through the mapping
cylinder functor, taking the union (vx, v2) of (%, u2) in % and setting ct vtjt,
i 1,2, where jt is homotopy inverse to qt. Then UN (Hgx, Hg2) is generated
by ([cj, [c2]). Similarly a canonical procédure may be applied to obtain a
generator of the intersection idéal, IN(Hgl9 Hg2), of the homotopy classes of
maps gt : At-+ B.

Before closing this section we exemplify the main ideas by considering
catégories other than Xh to which the results apply. Let 21 be an abelian cate-

gory and let us déclare (see [3]) two maps g,gf : A-> B to be homotopic if
g —g' may be factored through an injective object of 21. Then 21 is thereby
furnished with an A-structure. Moreover every monomorphism is a cofibration
and (Proposition 2.3) if 21 has sufficient injectives every cofibration is a
monomorphism. Also if 21 has sufficient injectives every map g : A-> B may
be factored as g qu where g is a homotopy équivalence and u is a
monomorphism. Thus we infer

Theorem 2.14. Let 21 be an abelian category with sufficient injectives and let %n

be the associated injective-homotopy category, Then in 21^ cokernels and unions
are principal.

Note that the set of morphisms M%h(A, B) has the natural abelian group
structure of the quotient of M%(A, B) by the subgroup of nullhomotopic
maps; and, of course, composition is distributive over addition.

3. Equalizers and a Lemma of E. H. Brown

We now consider (right) equalizers in the A-eategory G and its associated

homotopy category (£h. We are again content to discuss a pair of maps
gt: A-+ B,i l, 2, in G. Then their right equalizer idéal, RE(g1, g2), is
the family of maps /, of domain B, such that fgx fg2. It is clear what is

meant by the statement that RE (g, g2) is principal, generated by c, and what
is meant by a right-equalizer-preserving functor. We prove
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Lemina 3.1. Let (£ be an I-category in which union ideals are principal. Then
right equalizer ideals in (£ are principal.

Proof: Given g^.A-^B in (£, let (clyc2) generate UN(g1}g2) and let
(c,s) generate UN((1, 1>, (cl9 c2», where c{ : B-> U, <1, 1> : B*B-+B,
(cl9c2}: B* B-> U. We assert that c:B->C générâtes RE(gl9g2). First
(c,c} c <1, 1> s(cltc2} (sclfsc2y, so c «c1 ac2, and cg1

«sc^i sc2g2 cg2. Second, let fg1 /^2, Then / f'cx /'ca so that
/<1,1> </,/> <//c1,//c8> /'<c1,c1>. Thus / /"c (and /'=/''*)
and the lemma is proved.

We note that Lemma 3.1 may also be proved by showing that if (t, c)

générâtes £7iV«l, 1>, <gr1, gr2», then c générâtes RE{glig2).

Corollary 3.2. Right and left equalizer ideals in Zh are principal.

Proof: Apply Theorem 2.13.

Remark 3.3. (i) Theorem 2.8 is, of course, a spécial case of Corollary 3.2.
Note however that Theorem 2.8, restricted to cokernels, generalizes to any
&h in which £ has principal cokernels and maps in G factorize as qu where q
is a homotopy équivalence and u a cofibration. On the other hand Corollary
3.2, restricted to right equalizers, generalizes to any Ç£h in which (£ has principal
unions and maps in £ factorize as qu.

(ii) We may, of course, construct a generator of RE(Hglf Hg2) in %h quite
explicitly. Namely, we consider the union (A x /) V B, where / is the unit
interval, and construct C by way of the identifications g±a (a, 0), g2a (a, 1).
Then c: B->C is induced by the embedding of B in A x /) V B.

Before proceeding to discuss Brown's lemma, we record a further
conséquence of Lemma 3.1, for abelian catégories.

Corollary 3.4. Let S&h be as in Theorem 2.14. Then in %h right equalizers are

principal.

In [2] Brown considers a contravariant functor H : (£ -> S where (£ is a

category of based spaces and S is the category of sets3); and he imposes certain
axioms, including two axioms designated by h) and e), on the functor H.
Interpreting H as a covariant functor T : (£ -> ®*, where G is structured as

an A-category in the usual way and Q * is the category dual to S furnished with
the trivial A-structure given by the equality relation, it is easy to see that
axioms h) and e) together assert that T is an A-functor with the further property
that TlUNfatUt)) UNiTu^, Tu2) (3.5)

if %, u2 are cofibrations.

•) Hère we prefer to regard S, as we may, as the category of based sets.
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We wish to fit Lemma 2.6 of [2] into the category-theoretic framework set

up in this paper. First we prove a gênerai resuit whose applicability to the
situation described above is évident.

Let Th : dh -> T)h be the /-functor induced by an A-functor T : G -> î)
having property (3.5). Assume (i) that every map g in (£ may be factored as

g qu, where q is a homotopy équivalence and u is a cofibration, and (ii)
that the classifying functor H : X) -> T>h préserves unions. We prove

Theorem 3.6. Under thèse hypothèses Th préserves unions and right equalizers.

Proof: Observe first that since T is an A-functor it transforms homotopy
équivalences into homotopy équivalences. Now let gt : A -> Bt in (£, i 1,2;
factorize gt as qtut and let jt be homotopy inverse to qt. Then

Th(UN(Hglt Hg%)) T^UNiHu^ Hu2))(Hj^ Hj2)) (Prop. 2.12)
u2)))(ThHj1} ThHj2) (Prop. 2.9)

u2)))(HTjl9 HTj2), since TisanA-functor
Tu2)){HTjXi HTj2), by (3.5)
HTu2) {HTjx, HTj2), by assumption (ii)

UN(HTg1} HTg2) (Prop. 2.12)
UN(ThHgi,ThHg2),

and thus Th préserves unions.
To show that Th préserves right equalizers, it is convenient to remark that,

in any category (£, RE(g1, g2) is characterized as follows : / € RE (gx, g2) if and
only if there exist maps flff2,s such that (/l5 /2) € UN(g1} g2) and (f,s)e
UN (< 1, 1 >, </x, /2 ». We omit the proof of this assertion4).

Of course Th(RE{<xx, *2)) c RE(T7^, Thoc2), <xx, oc2 : A -> B in <£h. To
prove the opposite inclusion, let /? € RE(Thoc1,Th(x2). Then there exist
A, A, a with (Pl9h)€UN(ThohL,Th*t) and (/?, <r) c fftf«l, 1>, <ft, ft».
Since Th préserves unions, /5t Thyl} where (yi, y2) € ^^(^î*^)- Then
since Thi8 an /-functor, <1, 1> Th <1, 1>, <ft, ^3) Th <n, y2> and

Again, it foUows that p Thy,o ThT, where (y, t)
Thus y € RE(ocl9 <x2), Thy /?, and the theorem is proved.

Remark 3.7. The second part of the proof simply shows that if an /-functor
préserves unions it préserves right equalizers; this was already known if maps
of the category hâve unions in the précise sensé.

*) Cf. the proof of Lemma 3.1.
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We now recapitulate rapidly the background to Lemma 2.6 of [2]; Brown's
category (£ is essentially our category ï, so we discuss a covariant functor

Let f:A->B be a map in % and let Q be obtained by attaching the cône on
A to B by means of /. Let q: B->Q be the embedding. Then there is a
coopération5) r:Q->Q\J EA (where E dénotes suspension), obtained by
pinching the cône GA half-way up, and, as observed by Brown, an induced
exact séquence of sets

_> H (SB) HH) H{EA) -L* H(Q)^ H (B) ^â H (A).

Moreover H(EB),H(EA) aregroupsand H(Ef) is a homomorphism. Also
H {SA) opérâtes on H(Q) through H(r) :H(Q)x H (SA) H (Q V EA)->H(Q) ;

and two éléments u,u' eH(Q) satisfy H(q)u H{q)u' if and only if
u' uoc for some oc in H(EA).

Let v c H(B) and H(f)v — 0 so that v H(q)u for some u e H(Q),
and let Hu be the subgroup of H(ZA) consisting of those oc e H(EA) such
that uoc u. Plainly if H(EA) is abelian (e.g. if A is itself a suspension)
then Hu dépends only on v ; we may then write Hv for Hu. Brown proves the
following lemma.

Lemma 3.8. // H(EA) is abelian, then there is a space W and maps
h: B->W, Jc:EA->W, depending only on /, such that Hv H{k)H{h)~1{v)
for ail v cker//(/).

This lemma is an obvious conséquence of

Proposition 3.9. There is a space W and maps j:Q-+ W,k: EA-> W,
depending only on f, such that Hu~H{k)H{j)~1{u) for U€H(Q).

Forwetake h jq. Then H(h)~1v= w Hij^u, so

Hu, if Prop. 3.9 is assumed,

Hv if H(EA) is abelian.

Proof of Proposition 3.9. Let i:Q ->Q V EA be the inclusion. Let
[c]:Q V EA-+ W generate BE([r],[i]) in %h (Corollary 3.2). We set
c (j, jfc) and must show that uoc u if and only if there is p e H(W)
with

»)See[4,9].
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Now H(r)(u,oc) uoc, H(i)(u,oc) u and, by Theorem 3.6 (recall that
H, as a functor from ïtoS, is contravariant and homotopy-invariant and
that H:G->Sh is the identity functor), LE(H(r), H(i)) is generated by
H{c). Thus uoc u if and only if there is PeH(W) with H(c)P (u,oc),
and H(c)P

Remark 3.10. Proposition 3.9 clearly has a dual in the same category X.

4. Homotopy Systems, coîibrations, unions

We hâve worked, in the previous two sections, with a very gênerai - and
emasculated - homotopy concept. In this section we relate this concept to the
richer notion of a homotopy System (see [6]).

We recall that a (left) homotopy System S on a category G consists of a
cylinder J-functor Z : G -> G together with certain natural transformations

t,b: I->Z,

such that6) pt p6 1, rt b, rb t. We may then introduce the notion
of strict homotopy in G by declaring that g ~gf ; A-> B if there exists
F : ZA -> B such that FbA g, Fïa g1. The relation ^ is then reflexive
and symmetric. Let ~s be the équivalence relation generated by ~. Then
(Proposition 6.2 of [6])

Proposition 4.1. // S is a left homotopy System on G then G acquires an
h-structure through the relation ~s.

We suppose henceforth that (£ is furnished with a fixed homotopy System S.
We then call the A-structure of Prop. 4.1 the canonical A-structure on G.

Let g : A -> B be a map in G. We say that g has the HE-property if (6b Zg)
générâtes UN(g,bA). We justify this terminology by observing that g
has the HE-property if and only if it has the homotopy extension property in the

following sensé: for ail X and ail F : ZA -» X, h : B-* X, with hg FbA,
there exists Ff : ZJ5-> X with F'bB h, F'Zg F.

Theorem 4.2. // g has the HE-property then g is a cofibration with respect
to the canonical h-structure on G.

•) I is the identity functor. We did not explicitly require the reversai r in [6] but it is convenient
to hâve it hère.
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Proof: Let /0 : B -> X, hx: A -> X be maps such that fog ~ahx ; we seek

/x : B-> X with /0 ~,/i and fxg A1. Since ^ is reflexive and symmetric
we may suppose there are maps u°, u1, un : A -> X with /0^ u° ^
~ u1 ^ ^ un hx. Thus there exists F : Z^4 -> X, with fog FbA
and u1 FtA- Since ^ has the .ffjff-property there exists F' : ZB-> X
with F'bB f0, F'Zg F. Set F'ts^v1. Then /o^v1 and v1g ul.
We repeat the argument with v1, w2 replacing /0, ^ to obtain v1 ~ v2 and
v2g u2. Thus we obtain a séquence of maps v1, v2, vn with
f0 ~ v1 ~ v2 /^ <^ vn and vngr ^» hx. Set ft vn. -

Now let #t : ^4 -> £t, i 1, 2, in G and let {cx, c2) be the union of (grx, g2)

in the strict sensé of [6] : that is to say, (c1? c2) générâtes the UN(gx> g2) and

(c1,c2}: Bx* B2-> C is an epimorphism. We then call

G (4.3)

a union-diagram, and prove

Theorem 4.4. Let the homotopy system S be faithful1) and let g1 in the

union-diagram (4.3) hâve the HE-property. So then does c2.

Proof. Consider, in addition to (4.3), the diagrams

Bx G ZBX

ZA zc

ZB2

(4.7)

Then (4.7) is a union-diagram since S is faithful; in (4.5) (bm, Zgx) générâtes
UN(gl9 ôa); and we wish to prove, in (4.6), that (bc, Zc2) générâtes

7) See [7]; Z is union-preserving, in the strict sensé of [6]
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UN(c2,bB2). Thus let k: C-> X, l: ZB2-> X be maps with kc2
Consider the maps kcx : Bx -> X, lZg2 : ZA-+ X. Then

kcxgx kc2g2 Ibs^ lZg2bA.

Thus (since gx has the jff^-property) there exists u: ZBX-^ X with -h 6^
&cl5 %£& ZZg2. This last equality yields, from the union-diagram (4.7)

a map v : ZC~> X with vZ^ u, vZc2 L
It remains to show that vbc ifc. Since (4.3) is a union-diagram, it suffices

to show that vbccx kcx, vbcc2 kc2. Now

vbccx vZcxbs

so the theorem is proved.
We remark that we hâve only used hère the fact that (Zcx, Zc2) générâtes

UN(Zgl9 Zg2). It would thus appear to be asking too much that Z préserve
strict unions. But any J-funetor preserving unions (in the sensé of this paper)
certainly préserves right-equalizers (see Remark 3.7) and hence zero-cokernel

maps; thus it is asking little more that Z préserve strict unions and S be faithful.
Of course the usual homotopy System (and its adjoint system) in X is

faithful. The right homotopy system in the category of es.s. groups is also
faithful and the dual of Theorem 4.4 naturally holds for that category.

5. The Mayer-Vietoris Theorem

We revert to the union-diagram (4.3) and prove

Proposition 5.1. The rule v -> vcx sets up a one-to-one correspondance
between the ideals coker c2 and coker gx under which epimorphisms are mapped
to epimorphisms,

Proof: Certainly if v e coker c2 then vcx e coker gx. Set P(v) ~ vcx so

P : coker c2 -> coker g1. Now let u e coker gx. Then ugx 0 0g2 so there
is a unique v such that vcx u, vc2 0. Set Q(u) v, so Q : coker g1-^
coker c2. It is plain that PQ 1, QP 1.

Now suppose v an epimorphism and let fvcx f'vcx. But fvc2 fvc2(~ 0),
so that fv fv, and, v being an epimorphism, / /'. This shows that vct
is an epimorphism when v is.

CoroUary 5.2. The map gx has a strict cokernel if and only if the map c2 has

a strict cokernel. Moreover, if v is the cokernel of c2 then vcx is the cokernel of gx.
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Now let G be an A-category and let Tn : (£-> 31 (—oo < n <oo) be a
séquence of functors from (£ to the abelian category 21 with the property that if

is a cofibre-sequence there is a natural transformation

such that

is an exact séquence. Then we infer from Corollary 5.2

Theorem 5.3. (Mayer-Vietoris séquence) Suppose in (4.3) that gx and c2

are cofibrations with strict cokernels. Then there is an exact séquence

where « {Tn (9l), Tn (g,)} ,fi <Tn (c.), - Tn (c2) >, and y «,, (9l, kcj Tn (k),
k:C-+Q being the cofibre of c2.

Proof: We hâve a commutative diagram

Since there is an exact functor from % to the category of abelian groups we
may suppose that the functors Tn themselves take values in the category of
abelian groups and Theorem 5.3 is then a conséquence of the theorem of
Barratt-Whitehead (see [1]).

We may readily combine Theorems 4.4 and 5.3 to obtain

Theorem 5.5. Let (£ be a category furnished with a faithful left homotopy
System. Then if gx has the HE-property and possesses a strict cokernel} the

séquence (5.4) is exact.

Remark 5.6. The topological context in which Theorem 5.3 (or Theorem
5.5) becomes applicable is that in which the functors Tn are actually defined
on the maps of the category (£ and pass to the objects of G through an embed-

ding functor (£-> S2. Thus the assumptions made on the system of functors
Tn would arise from hypothesizing the usual exact séquence of a cofibration.
Systems of functors Tn satisfying this latter exact séquence hypothesis are
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studied in détail in [10]. The additional excision hypothesis is also satisfied
by any homology theory in X, ordinary or extraordinary, so that the Mayer-
Vietoris séquence is valid in any homology theory. If we replace 31 by the
dual category we obtain a Mayer-Vietoris séquence for any cohomology
theory in X. Also we may pass to the dual category of X and obtain a Mayer-
Vietoris séquence for any homotopy theory in X. In more détail, this would
relate to an intersection-diagram,

(5.7)

in X, in which gx is a fibration; the functors Tn are required to convert a

fibre-sequence

Q—^-> B —g—>A

into an exact séquence

.-> Tn{Q)-+ Tn{B)^ Tn(A)-> Tn_x(Q)->

We would then infer from Theorem 5.5- and (5.7)- the exact séquence

...->Tn(C)->Tn(B1)@Tn(B2)->Tn(A)->Tn_1(C)->..., (5.8)

and the hypothèses would apply to the homotopy groups Tn JJn (X,

Remark 5.9. On the other hand Theorem 5.3 also applies in purely alge-
braic contexts in which it appears less natural to regard the functors Tn as

defined on maps of the category. Indeed we would then take (£ to be itself an
abelian category and formally replace the notion of cofibration by mono-
morphism8). Thus the Tn are to be a connected séquence of functors and we
infer, just as for Theorem 5.5

Theorem 6.10. Let (£ be an abelian category and let (4.3) be a union-diagram
in (E in which gx is a monomorphism. Then, if Tn is a connected séquence of functors
from (E to the abelian category 31, there is an exact (Mayer-Vietoris) séquence

.-+Tn(A)^Tn(B1)@Tn(B2)->Tn(C)->Tn_1(A)-+.

*) Recall that thèse notions in fact coincide if & has sufficient injectives.
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For it is only necessary to observe that if gx is a monomorphism and (4.3)
is a union-diagram in an abelian category (£, then c2 is also a monomorphism.
As examples we may take Tn Ext~n(K, n < 0, Tn 0, n > 0; or,
if (£ has sufficient injectives, Tn Ext~n(K, n < 0, Tn nn(K,
the nth injective homotopy group functor, n > 0. There are also the obvious
duals.

Eidgenossische Technische Hochschule, Zurich
Cornell Universjty, Ithaca N. Y.
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