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On the Local Triviality of the Restriction Map for Embeddings

by Eron L. Lima?)

Let V, M be C* manifolds, V compact. A map f: M — M is said to
have compact support if it agrees with the identity outside of a compact set.
For 1 <7 <oo, we consider the following spaces endowed with the Cr-top-
ology: &"(V, M) = all C* embeddings of V in M; ¢r(M) = all C* maps,
with compact support, of M into M; 9r(M) = all C* diffeomorphisms,
with compact support, of M onto M. We remark that 97 (M) is an open
subset of @r(M).

R. Pavais proved [1] that if V is a submanifold of W then the restriction
map j:C8"(W, M) — & (V, M) is a locally trivial fibration. Previously,
R. THOM had observed [2] that j has the covering homotopy property for
polyhedra. The local triviality of j follows easily from the theorem below,
(see [1], or Remark 2), at the end of this note), which was also proved by
J. CERF [3]. We present here a very simple proof of this theorem. For implica-
tions and applications, see the bibliography.

Theorem: Given fe &7 (V, M), there is a neighborhood U of f and a
continuous map &: U — Q7 (M) suchthat g = &(g) of forevery ge U.

Proof: We may assume that ¥V is a submanifold of M, f = inclusion, and
M is embedded in some euclidean space R*. Let n':7T'— M be a tubular
neighborhood of M in R¥ and =:7 — V a tubular neighborhood, of radius
e>0, of V in Rk, with T < 7". Denote by 47 the tubular neighborhood
of V with radius &/2. Since the shortest line from a point in R* to V is a
normal segment, any line segment of length < ¢/2 which intersects 7' lies
entirely within 7'. Choose a neighborhood U’ of fin &7(V, M) so small that
lg(y) —y|<e/2 for all geU' and all ye V. Let A: R—[0,1] bea C®
function with A(f) = 1 for [t] <e¢/4 and A(f) = 0 for |t| > /2. Define a
map & : U — @ (M) as follows. Given g e U', put &(g9) (x) ==, ifx e M —
— T, and &'(g9) (x) =a'{x + A(|z — =nx|) - [g(wz) — mx]} if xeT. One
sees that &' is continuous and &'(f) is the identity map of M, so & (f) e 2"(M).
Since Qr(M) is open in (7(M), a smaller neighborhood U of f can be
chosen so that & (U) c 9" (M). Put ¢ =¢'|U.

Remarks: 1) Let (M) c 9r(M) be the subset of C* diffeomorphisms,
with compact support, that are diffeotopic to the identity. It is known that
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25 (M) is open in @r(M). (This can be seen by a construction similar to, and
simpler than, the above one.) So, if needed, U may be taken such that
£(U) ¢ 95(H).

2) Given fe"(V, M), take & and U as in the theorem, let F = j-1(f)

and define a homeomorphism wo: F X U—4§1(U) by »(f,9) = &(g)-f,

for feF, g e U. This shows that j is a locally trivial fibration.

3) When r =co, &*(V, M) and 9%(J) are C*® (infinite dimensional)
manifolds, locally homeomorphic with FrEcHET spaces. The reason why &
is continuous is that, in the last analysis, it is obtained as a series of compo-
sitions of the variable map g with fixed C* maps. Now, composition is a
differentiable map in the C*® topology. (See [4], pages 182, 183.) So, by the
same token, £ is a C® map when 7 = co. It follows from this and Remark 2)
above that §: &*(W, M) - &*(V, M) would be a C” fibration, in the
sense that the local trivializing maps y: F X U — j72(U) are C*, provided
one could show that F is a differentiable manifold.
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