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On the Local Triviality of the RestrictionMap for Embeddings

by Elon L. Lima1)

Let F, M be C00 manifolds, F compact. A map / : M -> M is said to
hâve compact support if it agrées with the identity outside of a compact set.
For 1 < r < oo, we consider the foliowing spaces endowed with the Cr-top-
ology: c?r(F, M) ail C00 embeddings of Vin M; er{M) ail 000 maps,
with compact support, of M into M] Qf{M) ail C00 diffeomorphisms,
with compact support, of M onto M. We remark that Qr(M) is an open
subset of 6>r(-M).

R. Palais proved [1] that if F is a submanifold of W then the restriction
map j : (5r{W, M)-> £r(V, M) is a locally trivial fibration. Previously,
R. Thom had observed [2] that j has the covering homotopy property for
polyhedra. The local triviality of j foliows easily from the theorem below,
(see [1], or Remark 2), at the end of this note), which was also proved by
J. Cerf [3]. We présent hère a very simple proof of this theorem. For implications

and applications, see the bibliography.

Theorem: Oiven f e <?r(F, M), ttiere is a neighborhood U of f and a
continuons map £ : U -> 2>r (M) such that g £{g) o / for every g e U.

Proof: We may assume that F is a submanifold of M, / inclusion, and
M is embedded in some euclidean space Rk, Let tz' : T'' ~> M be a tubular
neighborhood of M in Rk and n : T -> F a tubular neighborhood, of radius
e> 0, oî V in Rk, with T <z T'. Dénote by \T the tubular neighborhood
of F with radius e/2. Since the shortest line from a point in Ek to F is a
normal segment, any line segment of length < e/2 which intersects \ T lies

entirely within T. Choose a neighborhood U1 of / in c?r(F, M) so small that
\ff(y) ~ y\ <el2 for ail g c U' and ail yeV. Let A:2î->[0, 1] be a C00

fonction with A(J) 1 for \t\ < e/4 and A(«) 0 for |^| > e/2. Define a

map |; : U' -> (?r(M) as foliows. Given g e U', put $'(g) (x) x, if z cM -
~T, and |;(g) (z) n1 {x + X(\z - nz\) • [flr(^») - tt^]} if ^cî7. One

sees that f7 is continuous and f ' (/) is the identity map of if, so f; (/) e Qr(M).
Since Qr(Jf) is open in (^(M), a smaller neighborhood U of f can be

chosen so that |'(J7) c Qr(if). Put f f'| Ï7.

Remarks: 1) Let 9j(if) c 9r(if) be the subset of C00 diffeomorphisms,
with compact support, that are diffeotopic to the identity. It is known that
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is open in Qr(ibf). (This can be seen by a construction similar to, and
simpler than, the above one.) So, if needed, U may be taken such that
S{U) c %{M).

2) Given / e 9r(F, M), take f and U as in the theorem, let F j^if)
and define a homeomorphism ip : F X U->j"x(U) by ip(f, g) £(g) o /,
for / € ^, g € U. This shows that ?' is a locally trivial fibration.

3) When r=oo, £œ(V, M) and 9°°(J) are C00 (infinité dimensional)
manifolds, locally homeomorphic with Fbéchet spaces. The reason why |
is continuous is that, in the last analysis, it is obtained as a séries of compositions

of the variable map g with fixed C°° maps. Now, composition is a
differentiable map in the C00 topology. (See [4], pages 182? 183.) So, by the
same token, | is a C00 map when r oo. It follows from this and Remark 2)
above that j : (f?°°(Tf, M) -> c?°°(F, M) would be a C00 fibration, in the
sensé that the local trivializing maps \p : F X U->j~l{U) are C00, provided
one could show that F is a differentiable manifold.
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