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Invariante Funktionen iiber teilgeordneten
algebraischen Halbstrukturen

von Jurg Râtz in Bern

Meinem verehrten Lehrer Herrn Prof. Dr. W. Scherrer zum
70. Geburtstag gewidmet

Einleitung

Im AnscbluB an ein Seminar uber Integrationstheorie, welches im Sommer-
semester 1951 an der Universitat Bern stattfand, wurden von H.Hadwiger,
W.JSef und A. Kirsch Untersuchungen zur invarianten Inhalts- und
Integrationstheorie vorgenommen1) Dabei ist zwischen einigen inhaltstheoretischen
und gewissen integrationstheoretischen Studien eine auffallend grofie metho-
dische Âhnlichkeit zu bemerken. H.Hadwiger hat nun in einem Kolloquium
uber geordnete Strukturen, welches im Wintersemester 1958/59 im Mathe-
matischen Seminar der Universitat Bern abgehalten wurde, die Untersuchung
einer Struktur angeregt, die er dort ein «Gefuge» nannte und die es gestattet,
Inhaltstheorie und Integrationstheorie in einem allgemeineren Lichte zu sehen

und vor denselben abstrakten Hintergrund zu stellen. Es ist das Ziel der vor-
liegenden Arbeit, einige Satze der Théorie der Gefuge herzuleiten, deren
Korollarien in den beiden genannten Theorien wichtigste Stutzen bilden. Damit
ist eine Théorie gewonnen, welche die Inhalts- und die Integrationstheorie
als Spezialfalle enthalt. Geeignete Beispiele lehren aber, daB das vorliegende
Modell noch ganz andersartiger Deutungen fahig ist, und darin dûrfte vor
allem die Neuartigkeit bestehen.

Unser Vorgehen kann insofern als elementar bezeichnet werden, als es mit
elementaren Begriffen operiert und im wesentlichen nur die Kenntnis der ein-
facheren Analysis der reellen Zahlen voraussetzt. An einer einzigen Stelle kommt
eine auf dem Auswahlaxiom fuBende SchluBweise vor.

Bekanntlieh haben sich in neuerer Zeit zwei Richtungen in der abstrakten
Inhaltstheorie abgezeichnet, namlich die invarianzlos-verbandstheoretische
und die invariante Théorie2). Unsere Ausfuhrungen sind ganz der zweiten ver-

*) Vgl. [1] bis [12]. Zahlen in eckigen Klammern sollen stets auf das Literaturverzeiehms am
Schluû der Arbeit verweisen.

2) Vgl. etwa H.Hadwiger [13], p. 133/4. Fur die erstgenannte Richtung verweisen wir auf
P.R.Halmos [20], K.Mayrhofer [21], O.Haupt- G.Aumann-C.Patjc [22], C.Caratheo-
doby [23], G.Birkhoff [24] und fur weitergehende Verallgemeinerungen V.Glivenko [25] und
Ky Fan [26],
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bunden und folgen im groBen den bekannten grundlegenden Ideen von
S.Banach [14] und A.Tarski [15, 16], die seit ihrem Bestehen schon in man-
nigfacher Weise beniitzt wurden3).

Zum Aufbau der Arbeit : Im ersten Kapitel stellen wir die benôtigten Hilfs-
begriffe und Bezeiehnungen und im zweiten den Begriff des Gefiïges bereit,
wàhrend die hauptsâchliche Entwicklung im dritten Kapitel untergebracht ist.
Das vierte Kapitel enthâlt einige Beispiele zur Théorie der Gefiïge. Da die
Paragraphen 12 und 19 die Zusammenstellung der Hauptergebnisse umfassen,
kann hier auf eine solche verzichtet werden.

An dieser Stelle môchte ich den Herren Professoren Hadwiger und Nef
herzlich danken fur aile Fôrderungen, die mir zur Abfassung dieser Arbeit von
ihnen zuteil wurden, sei es im kritisehen Gesprâch oder durch die Lektûre der
von ihnen publizierten Arbeiten auf diesem Gebiete der Mathematik. Besonders
danke ich aber Herrn Professor Hadwiger fur die Anregung zu dieser Unter-
suchung iiberhaupt.

1. Kapitel: Hilîsbegrifle und Bezeiehnungen

§ 1. Ordnungs- und Âquivalenzrelationen

Ist Z eine Menge von Elementen x9y9z9... beliebiger Natur, so konnen
einer zweistelligen Relation R in Z unter anderem folgende Eigenschaften zu-
kommen, wobei die nachfolgenden Formelzeilen stets fur aile in Betracht fal-
lenden Elemente von Z Gûltigkeit besitzen sollen :

(RI) xRx (Reflexivitat)
(R2) xRy, yRz => xRz (Transitivitât)
(R3) x Ry9 y R x => x y (Antisymmetrie)
(R4) x,y€Z=>xRy und/oder yRx (Vergleichbarkeit)
(R 5) x R y => yRx (Symmetrie)

Im AnsehluB an dièse Eigenschaften legen wir fest :

Def. 1.1: Eine zweistettige Relation R in der Menge Z heifit

a) Quxisiordnung, wenn sie (RI), (R2) erfûllt,
b) Teilordnung, wenn sie (R 1), (R 2), (R 3) erfûllt,
c) Totalordnung, wenn sie (RI), (R2), (R3), (R4) erfûllt,
d) Àquivalenz, wenn sie (RI), (R2), (R5) erfûllt.

8) Vgl. etwa H.Hahn [17], S.Banach [18], J.v.Neumann [19] sowie einige der Arbeiten
[1] bis [13].
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Die Menge Z heifit dann durch die Relation R a) quasigeordnet, b) teilgeord-
net, c) totalgeordnet. Relationen der Typen a), b), c) nennen wir fortan Ordnungs-
relationen.

Die Ordnungsrelationen heben sich i.a. von den Âquivalenzrelationen
durch das Fehlen der Symmetrieeigenschaft (R5) ab. Dies bringen wir in der
Bezeichnung dadurch zum Ausdruck, daB wir fur Ordnungsrelationen das
Zeichen ^, fur Âquivalenzrelationen dagegen das Zeichen ^ (oder Abarten
derselben) verwenden. Bekanntlich induziert jede Âquivalenzrelation ~ in der
Menge Z eine Partition von Z in disjunkte Klassen, die sogenannten Âqui-
valenzklassen (^-Klassen).

Def. 1.2: Eine Âquivalenzrelation ^ und eine Quasiordnungsrelation ^ in der

Menge Z heifien vertràglich, wenn stets gilt:

x < y, xr ~x, y' ~y => xr < y'

Muhelos beweist man nun den nachfolgenden

Satz 1.3: Ist die Menge Z durch die Relation < quasigeordnet, so gilt:
a) Die durch x ~ y <=> x ^ y, y ^ x erklârte Relation ~ ist eine Âquivalenzrelation

in Z. b) ^ und ^ sind vertràglich.
Sei nun W eine Teilmenge von Z und Rz eine zweistellige Relation in Z.

Sind x, y e W und setzt man x Rw y <=> xRzy, so ist Rw eine zweistellige
Relation in W, und es ist leicht festzustellen, daB sich die Gultigkeit von (R 1)

bis (R5) von Rz auf Rw vererbt. So ergibt sich eine naturliche Môglichkeit,
der Teilmenge W eine Relation Rw aufzuprâgen. Wo wir nichts Gegenteiliges
bemerken, sollen Teilmengen stets dièse Relation aufweisen.

Den letzten Teil des Paragraphen widmen wir der Théorie der teilgeordneten
Mengen. Schon zu Beginn sei an das hier gultige Dualitâtsprinzip erinnert4).

Del. 1.4: Z sei eine durch < teilgeordnete Menge. Dann heifit
&>) x € Z maximales Elément von Z, wenn gilt: y € Z, x ^.y ^=> x y ;

b) x e Z kleinstes Elément von Z, wenn gilt: x <C y fur aile y € Z)
c) x e Z obère Schranke von W(c Z), wenn gilt: y < x fur aile y e W;
d) die Meinste obère Schranke von W(<z Z) das Supremum von W;
e) eine totalgeordnete Teilmenge W von Z eine Kette von Z.
Es ist klar, wie die dualen Begriffe (minimales und groBtes Elément, untere

Schranke, Infimum) erklàrt werden mussen. Elemente der genannten Art brau-
chen nicht zu existieren. Existiert aber ein kleinstes (groBtes) Elément, so ist
dièses im Hinblick auf (R3) eindeutig bestimmt, und es rechtfertigt sich die
Schreibweise sup W (inf W) fur das Supremum (Infimum) von W.

*) Vgl. etwa H. Hermès [27], p. 7.
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SchlieBlich erwâhnen wir das mit dem Auswahlaxiom gleichwertige

ZoRNsche Lemma: Besitzt jede nichtleere Kette einer nichtleeren teilgeordneten
Menge Z ein Swpremum in Z, dann gibt es mindestens ein maximales Elément
in Z.t)

In der Betrachtung der teilgeordneten Mengen ist der Begriff des Abschlie-
fiungsprozesses von groBem Nutzen fur eine einfache Sprechweise :

Def. 1.5: Ist Z eine durch ^ teilgeordnete Menge, so heifit eine Abbildung 0
von Z insichein Abschliefiungsoperatorin Z, wennfiiraileElementevon Z gilt:

(Cl) x ^0x (Extensivitât)
(C2) 00x < 0x (Idempotenz)
(C3) x < y => 0x < 0y (Isotonie)

Ein Elément x € Z heifit 0-abgeschlossen, wenn 0 x x.
Aus (Cl), (C2) und (R3) ergibt sich 00x 0x, das heifit die $-Abge-

schlossenheit von 0x. Ebenso leicht folgt:

Satz 1.6: 0x ist das kleinste 0-abgeschlossene Elément, das grôjier ist dis x,
genauer: das kleinste Elément der Menge {y \ 0y y, x ^y}.

§ 2. Pseudometrik und Metrik

Es sei Z wiederum eine Menge von Elementen x,y,z,... beliebiger Natur.
Hier studieren wir reellwertige Funktionen d liber Z X Z, denen unter ande-

rem die folgenden Eigenschaften zukommen konnen (die naehfolgenden Formel-
zeilen gelten fur aile Elemente von Z) :

(Ml) d{x9x) O

(M2) d(x,y) O=>x y
(M3) d(x,y)^d(x,z) +d(z9y)
(M 4) d(x,y)^d(x,z) +d(y9z)
(M5) d(x,y) d(y9x)
(M 6) d(x,y)^O
Durch einfache Ûberlegungen wird ersichtlich, daB die Postulatensysteme

{(Ml), (M4)} und {(Ml), (M3), (M5)} gleichwertig sind und aile genannten
Eigenschaften auBer (M2) nach sich ziehen. Hingegen ist {(Ml), (M3)} echt
schwâcher als {(Ml), (M4)}6). In diesem Sinne nennen wir (M4) die starke,

«) Vgl. H.Hermes [27], p.l36ff.
•) Umdieseinzusehen, wàhleman Z [0, 1 ]; d (xty) x — y[%^y]'t d(x,y) 1 [x < y],

Vgl. P.Albxandboff-H.Hopf [28], p. 29.
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(M 3) die schwache Dreiecksungleichung. Im AnschluB an die obige Liste setzen
wir fest:

Def. 2.1:7) Jede reellwertige Funktion d ûber Z x Z, die einem der Postu-
latensysteme {(Ml), (M4)} oder {(Ml), (M3), (M5)} genûgt, heiflt eine Pseudo-
metrik auf Z. Ist aujierdem (M2) erfûllt, so heijït d eine Metrik auf Z. Die
Menge Z heifit durch die Funktion d pseudometrisiert beziehungsweise metrisiert
oder bezûglich d ein pseudometrischer beziehungsweise metrischer Raum.

Durch die nâchste Aussage verbinden wir die bisherigen Ausfûhrungen unse-
res Paragraphen mit denjenigen des vorigen :

Satz 2.2: Ist d eine Pseudometrik auf der Menge Z, so wird durch die
Setzung x ~y <==>d(x9y) 0 eine Âquivalenzrelation ~ in Z definiert.

Der Beweis darf seiner Einfachheit wegen ûbergangen werden.

§ 3. Bezeichmmgen

In Anbetracht der Tatsache, dafi in § 1 Entwicklungen angebahnt wurden,
auf die mehrfach und in gànzlich verschiedener Weise zurûckgegriffen werden
wird, verwendeten wir bisher eine in bezug auf die nun festzulegende Bezeich-

nungsart vollig neutrale Symbolik. Fur das Nachstehende erweist sich dies
nicht mehr als nôtig, und wir bezeichnen fortan wie folgt (die genannten
Begriffe werden zu gegebener Zeit weiter unten erklârt werden) :

9ÏÎ: Grundmenge mit den Elementen A, B,C, D, E,0 und den Teilmengen
(insbesondere invariante Felder) (£,3f> ©,§,ïl, S,ï.
* : Halbverknûpfung auf SR.

F : Kommutative Gruppe eineindeutiger Abbildungen von 501 auf sich mit den
Transformationen a, r, f, rj und den f-Komplexen A,9,K,A,M,N,n,P,
T, 60, \n. i bezeichne das neutrale Elément von P.

©: Menge der Belegungen/, gfh,i,o ûber 501.

a,b,c9d, s: réelle Zahlen (e wird im iiblichen Sinne verwendet).
k,l9m9n9p,q,r, s,t: nichtnegative ganze Zahlen.
R : Menge der reellen Zahlen. U, V : Teilmengen von R.
k9 A,//, v, 7t, q: Indices.
9?, X, y), co: invariante Funktionen.

: Gefûge.
© : Menge von invarianten Systemen <g, <p>.

7) Vielerorts finden sich in dieser Définition unnôtige Postulate wie z.B. (M 6). Unseres Wissens
hat A. Lindenbaum [29], p. 211, erstmals ein minimales Postulatensystem fur die Metrik auf-
gestellt. Vgl. auch G.Aumann [30], p. 83.
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§ 4. Der Begriff der algebraischen Halbstruktnr

Def. 4.1: Eine Halbverknûpfung * auf einer Grundmenge 501 ist eine ein-
deutige Abbildung einer gewissen Teilmenge î> von 50i x 501 in 501. Zwei Ele-
mente A, B € 501 heifien in dieser Reihenfolge verknUpfbar, in Zeichen A * B def,
wenn dos Paar (A, B) zu*jù gehort; A * B hei/it dos dabei resultierende Elément.

Ist insbesondere ï) 501 X 9J£, so ist * eine Verknûpfung auf 501. Die durch
die Définition 4.1 realisierte Verallgemeinerung besteht also im Verzicht auf
die allgemeine Ausfûhrbarkeit der Verknûpfung.

Def. 4.2: Eine algebraische Halbstruktur <50l; *i,..., *n> besteht ans der
Grundmenge 501 und den Halbverknûpfungen *x,..., *n auf 501.

§ 5. Die Transformationsgruppe

Dadurch, daB wir eine Gruppe von Transformationen einer Grundmenge in
Betracht ziehen und die Invarianz gewisser Funktionen gegenùber jenen
Transformationen fordern, verpflichten wir uns der invarianten Richtung im
Sinne der Einleitung.

Wir beschrânken uns in der vorliegenden Arbeit auf kommutative Transfor-
mationsgruppen. Es zeigt sich, daB allein dadurch noch keine Garantie fur eine

positive Beantwortung der Existenzfrage gegeben ist, wie dies an anderen
Orten der Fall ist8). Die Kommutativitât wird an entscheidenden Stellen der
Théorie wichtige Schlûsse gestatten.

Sei nun f eine kommutative Gruppe eineindeutiger Abbildungen einer
Grundmenge 501 auf sich und i das neutrale Elément von F. Es bezeichne aA
das cr-Bild des Elementes A e50l. A und aA nennen wir T-gleich, in Zeichen
A ^ aA. Selbstverstândlich ist die F-Gleichheit ^ eine Âquivalenzrelation
in 501.

Der folgende Hilfsbegriff dient hauptsâchlich beweistechnischen Zwecken:
Ist jedem Index v einer endlichen nichtleeren Indexmenge {1,..., n) ein-
deutig eine Transformation rv e F zugeordnet, so ist dadurch ein f-Komplex
N [t1? tw] gegeben. Die Mâchtigkeit der Indexmenge soll Màchtigkeit
| N | des V-Komplexes N hei/ien, so daB in unserem Falle also | N | n gilt.
Ergànzend definieren wir den leeren T-Komplex 0 als die leere Teilmenge von
F; |0| 0. Fur eine natûrliche Zahl n sei speziell ln \rv 11 v 1,...,%];
die Mâchtigkeit ist somit direkt als Index angeschrieben. Da bei der Bildung
eines F-Komplexes verschiedenen Indices dieselbe Transformation zugeordnet

8) Vgl. [1], p.351; [4], Satz 5, p.316; [6], Satz 6.10, p.221; unser §24 enthâlt ein entspre-
chendes Gegenbeispiel.
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sein kann, braucht [xx,..., rn] keine Menge im ubliehen Sinne zu sein, weshalb
wir eckige statt geschweifter Klammern verwenden und in Anlehnung an
analoge Situationen «Komplex» sagen9). Fur 0 ist die Unterscheidung zwi-
schen Menge und Komplex unerheblieh. Ein f-Komplex ist somit eindeutig
dadurch charakterisiert, da6 gesagt ist, welehe Transformationen mit welchen
Vielfachheiten in ihm enthalten sind. DemgemàB heiBen zwei f-Komplexe
M, N gleich, in Zeichen M N, wenn sie dieselben Transformationen mit
denselben Vielfachheiten enthalten. Ist N [rl5..., rn] und acT, so
bezeichne oN den f-Komplex [arly..., orn]. Ausgehend von zwei f-Kom-
plexen M [c^,..., am], N [xx,..., tw] erklàren wir noch folgende Bil-
dungen :

a) M A N ist der grôBte gemeinsame F-Komplex von M und N; er umfaBt
die gemeinsamen Transformationen von M und N in der kleineren der beiden
Vielfachheiten.

b) M + N [a1,...,am,T1,...,rnl; M+ 9 M.
c) M-N [r1(T1,...,r1(7m,...,Tnor1,...,Twam]; M-9 9.

Man verifiziert leicht, daB die soeben definierten Operationen + und • asso-
ziativ und kommutativ und in ihrer Verbindung distributiv sind; insbesondere ist

M.N N.M (1)

eine Folge der Kommutativitât von T. AuBerdem gilt fur die Mâchtigkeiten :

|M + N| |M| + |N|, (2)

|M-N| |M|.|N| (3)

§ 6. Der Begriff der Belegung

Def, 6,1 : Eine Belegung f ilber einer Grundmenge 2R ist eine eindeutige Ab-
bildung von 9ft in die Menge der nichtnegativen ganzen Zahlen, die aberfûr hôch-

stens endlich viele A e StR nicht verschwindet. Spezielle Belegungen sind: Null-
belegung o mit o(A) Q[alle A e SOÎ] und Charalcteristik Îa von A e 2R mit
iA(D) l[D A], iA(D) 0 [D # A]. Zwei Belegungen /, g ilberWlheifïen
gleich, in Zeichen f g, wenn f(A) g (A) [aile A e 501],

Auf ganz natûrliche Weise lâBt sich in der Menge © der Belegungen ûber SDÎ

eine Addition einfûhren :

(/ + g) (A) f(A) +g(A) [aile A .m]. (4)

Offensichtlich ist SB bezûglich dieser Addition eine kommutative Halbgruppe

•) Vgl. etwa E.ICamke [31], p. 45.
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mit dem neutralen Elément o. Mit Kueksicht auf die Gûltigkeit der Beziehung

/= Zf(A)iA (5)

kann dièse Halbgruppe durch die Menge {o, iA \ A e 2R} erzeugt werden.
Nach der Définition 6.1 ist die in (5) auftretende Summe endlich; fortan wird
die Summationsklausel A e 9JI meistens weggelassen.

Nach diesen eMeitenden Bemerkungen und im AnschluB an § 5 ziehen wir
nun eine kommutative Gruppe eineindeutiger Abbildungen der Grundmenge
9JI auf sich in Betracht und beschreiben deren Wirkung auf die Belegungen
liber 3Jt wie folgt : Fur jede Belegung / e 23 und jede Transformation r ef gelte :

fT:A->f (r^A) [aile AeW]. (6)

Durch einfachste Ûberlegungen uberzeugt man sich von der Richtigkeit der
folgenden Aussagen:

/e», tc T => /r€93, (7)

r e r => oT o, (8)

A*m, rcT => iTA irA, (9)

/,?€»; T€T => (f

Simultané Wirkung der Addition und der Gruppe f in 93 fuhrt zu einem
weiteren nutzlichen Hilfsbegriff :

Deî. 6.2: Ist N ein F-Rompiez und f eine Belegung ûber 501, so heifit die
Bildung |fl+...+r, falls N [r1?... ,rj

'~(o faUs N=0 l >

die Vervielfachung von f mit dem V-Komplex N.
Fur ïn-f schreiben wir in naheliegender Weise auch nf. Offenbar gelten

die folgenden Beziehungen :

/€® =>N./c» (12)

/)9rc33 => N.(/+<7) =N./+N.? (13)

/€93 => (M +N)-/=M./ +N-/ (14)

Die Itération des Vervielfachungsprozesses fûhrt auf die in § 5 definierte
Komplexmultiplikation: Sind M [ol9..., am] und N [rx,..., rn] zwei

f-Komplexe, so gilt im Hinblick auf (1) :

m n n m

M.(N-/) 27 i;/T^ (M.N)./ (N.M)./=i: U f anr» N- (M-/) (15)

Kunftighin kônnen also solche Klammern ohne EinbuBe an Klarheit
weggelassen werden.
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2. Kapitel: Der Begrifl des Geîiiges

In diesem Kapitel befassen wir uns mit einer Konzeption, die geeignet
erscheint, eine Théorie uber invariante Funktionen zu algebraisieren. Der
algebraische Standpunkt ist hier insofern hervorgehoben, als daB keine Vor-
aussetzungen metrischer oder topologischer Art von vorneherein gemacht
werden. Spatere Ausfuhrungen lassen aber erkennen, daB unter Ausnutzung
der algebraischen Situation eine Pseudometrik gewonnen werden kann (§ 10).

§ 7. Die Postulate des Geîûges

<50l, *> sei eine algebraische Halbstruktur, f eine kommutative Gruppeein-
eindeutiger Abbildungen von 501 auf sich (bezuglich der Komposition) und < eine

zweistellige Relation in der Menge der Belegungen uber 501. Durch Zusammen-

fassung dieser Grundgegebenheiten entsteht ein Oefuge <50Î, *, F, <) wenn
folgende Postulate erfullt sind10) :

(I) A * B def => B*A def

(II) A* B, A*C, B*Cdef <=> (A * B) * C def

(III) 3 0 c 501 mit A*O def, A*O A [aile A e 501]

(IV) /</, f<g, g<h=>f<h
(V) %A 5 ÏB, ÎB 5 ÎA => ÎA *B

(VI) f<g, f'<g'=ïf+f'<g+g'
(VII) f+f'<g+g>9 g<f=>f'<g>

(VIII) A* Bdef => iA* B<iA + %b < M * jb

(IX) f<g, r€r=>fr<gr
(X) A * Bdef, te V=>rA *rBdef

Ein kurzes Wort zu einigen Postulaten: (III) besagt die Existenz eines neu-
tralen Elementes 0 in der Halbstruktur <50l, *>. Nach (IV) ist die Menge S
der Belegungen durch < quasigeordnet und die Menge der Charakteristiken %a

im Hinblick auf (V) teilgeordnet. Die drei letzten Postulate sind Vertraglich-
keitsforderungen zwischen *, T und <. Im ubrigen ist es das Ziel des nachsten

Paragraphen, den Gehalt der Postulate anhand einfacher Folgerungen zu
prazisieren.

10) Fur die Bezeichnungen sei an § 3 ennnert. Es sind dies bis auf geringfugige Anderungen die

Postulate, die H. Hadwigbb in dem in der Einleitung genannten Kolloquium vorgeschlagen hat.

9 CMH vol 38
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§ 8. Einfache Folgerungen aus den Gefugepostulaten

Satz 8.1 : Erklàrt man fur f9ge%5

f~g<=>f<g, g<f, (16)

so ist ~ eine mit < vertràgliche Âquivalenzrelation in 93. Sic hat ûberdies die
Eigenschaften:

f~g, f ~g' => f +f'~g+g',
f + /' ~g +g\ f~g=>f'~g', (18)

f~g, tef=>fr ~gr (19)

Beweis: Die erste Behauptung folgt aus (IV) und Satz 1.3; (17), (18), (19)
ergeben sich aus (VI), (VII), (IX) und (16).

Nun lassen wir einige Aussagen ùber die Halbverknûpfung folgen :

(A * J5) *Cdef<=>A * (B * C) def (20)

A*Bdef=>A*B B*A, (21)

{A * jB) * Cdef=> (A* B)*C A*(B*C), (22)

A * Bdef,A *Cdef,A * B A *C=>B C (23)

Beweise: (20): (II) und (I) gestatten folgende Schlûsse: (A * JB) *Cdef<=>
<=>A *J5, A*C, B*Cdef<=>B*C, B*A, C * A def <=> (B* C)* A
def <=> A*(B*C)def.- (21) : Aus (I) folgt B*Adef. Mit (VIII) und der
Transitivitât von ~ ergibt sich iA * B ^^ iB * A und hieraus mit (V) die
Behauptung. - (22): Mit (20) resultiert A * (B * C) def, mit (VIII), (17) und der
Transitivitât von ~ weiter i{A * B) * c ~ iA * {B * o und daraus mit (V) die

Behauptung. - (23) : Nach (VIII) und der Transitivitât von ~ ist %a +Îb r^f

~Îa +ic und naeh der Reflexivitât von ^^ und (18) sodann %b ~ic, also
nach (V) B G9 wzbw.

Wir verabreden die folgende Sprechweise : A± * * An def bedeute fortan,
da8 Al9..., An fur jede Art der Klammersetzung verknlipfbar seien und
das resultierende Elément von der Klammersetzung unabhângig sei. Es gilt
dann:

A* *Andef<=>Afl*Avdef(/x^v; p,v= 1,..., n) (24)

Ein einfacher Induktionsbeweis stellt dièse Aussage sicher. Ebenso leicht
zeigt man : Bezeichnet (vx,..., vn) eine Indexpermutation, so gilt :

Ax * *Andef=>AVi * *AVndef, Ax* ...*An AVi* *AVn (25)

Somit ist unsere Halbverknûpfung ûber ihrer Definitionsmenge assoziativ
und kommutativ. Durch die nâchste Aussage erfâhrt Postulat (III) eine Ver-
sehârfung:
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Satz 8.2: Es gibt genau ein neutrales Elément O e S01. Dièses erfûllt die
Beziehunq* io~o (26)

und ist Fixelement jeder Transformation von F, dos heifit, es gilt:

r e T ==> rO O (27)

Beweis: Sind O und O' neutrale Elemente im Sinne von (III), so gilt
O! *O def, Or *O O' und O * O' def, O*O! 0

und wegen (21) O' O, womit die Einzigkeit feststeht. Nach (III) und (VIII)
folgt %a + o %a iA* o ~ Îa + *o, also %a +o r^iA -f- i0, und (18) lie-
fert o~io. Die Ànwendung von (26), (8), (19) und (9) ergibt io ~ o

oT ^/ *q iTo, also io ~ iTo oder mit (V) O — rO, wzbw.
An dieser Stelle sei auf den Begriff der Kategorie von Eilenberg und

Maclane hingewiesen11) und bemerkt, da8 eine algebraische Halbstruktur,
die unseren Postulaten (I), (II), (III) nebst den Bedingungen (20), (21), (22)
genugt, nicht notwendig eine Kategorie ist und umgekehrt eine Kategorie
nicht notwendig dièse Postulate und Bedingungen erfûllen muB. Trotzdem
besitzen die Betrachtungen dieser beiden Begriffe einige Beriihrungspunkte.
So erbringen zum Beispiel (20) und (22) den direkten Nachweis des einen
Kategorienpostulates, und (23) besagt im Hinblick auf (I) und (21), daB jedes
Elément der Grundmenge regulàr im Sinne von M.Hasse [34] ist.

Unter Heranziehung des in § 5 bereitgestellten Begriffes des f-Komplexes
erklàren wir hier in volliger Analogie zur Def. 6.2:

Def. 8.3: Ist N ein f-Komplex und A e 9DÎ, so heifit die Bildung

\xxA * *tnA, falls N [rl5..., tJ
\O faUs N 9 (28)

die Vervielfachung von A mit dem f-Komplex N unter der ausdrilcklichen Vor-

aussetzung rxA * *rnAdef, was von nun an durch die Anschrift stets

impliziert werde.
Ebenfalls im AnschluB an die F-Komplexe resultieren zwei nutzliche Aus-

Sagen: /<<7=>N./<N.<7, (29)

iH.A~N'iA. (30)

Beweise: Fur N 0 wird (29) trivial, und (30) geht in die schon als richtig
erkannte Beziehung (26) liber. Fur N^0 folgt (29) aus (IX) und (VI), (30)
aus (VIII) und (9).

n) Vgl. S.Eilenberg-S.Maclane [32], C.Ehbesmann [33], M.Hasse [34].
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Die Quasiordnungsrelation < in der Menge 33 der Belegungen ist verantwort-
lich fur eine Teilordnung in der Grundmenge 501 :

Satz 8.4: Erklàrt man fur A, B e 9JI

A < B <=» iA < iB (31)

dann ist ^C eine Teïlordnungsrelation in der Grundmenge 30t.

Beweis: Dièse Aussage folgt unmittelbar aus der Tatsache, da8 die Menge
der Charakteristiken durch < teilgeordnet ist.

Dièse Teilordnungsrelation besitzt die folgenden einfach zu beweisenden

Vertrâglichkeitseigenschaften :

A < B, A1 < B', A * A1 def, B * B' def => A * A' < B * B' (32)

A * A1 def, B* B' def, A*A'^B*B', B < A => A' < B1 (33)

^[ < B, aeV => aA ^aB (34)

Damit ist <$ft, *, F, "5) eine teilgeordnete algebraische Halbstruktur. Fur
die Vertrâglichkeit zwischen * und F gilt noch :

A * Bdef, ref => r(A* B)=tA*tB (35)

Beweis: Nach (X) ist rA * r.B de/. Durch Anwendung von (9), (VIII),
(19) und (10) ergibt sich ir{A * B) ixA* b ~ (îa + ^)T iA +ixB Ka +
+ iTB ~ iTA * tb oder also mit der Transitivitât von ~ und (V) die Be-
hauptung.

§ 9. Normierte Geîûge

Durch eine Zusatzforderung greifen wir eine ganz spezielle Klasse von
Gefûgen heraus, die eine weitgehend selbstândige Théorie besitzen und sich
durch das Vorhandensein einer Eigenschaft auszeichnen, welche dem archi-
medischen Axiom verwandt ist. Dadurch wird ein relativer Beschrânktheits-
begriff erzeugt (vgl. Def. 9.1).

Es seien im folgenden <3DÎ, * F, <y ein Gefuge und E e$R ein
nichtneutrales und définîtes Elément, so daB also gilt :

E ^0, 0 ^E (36)

Def. 9.1: Ein Elément A cSOÎ heifit E-beschrânkt, wenn es passende Yerviel-

fachungen von %e so gibt, dafi gilt:

io<iA +Tl.iE<P-iE* (37)

Ist jedes Elément A von 501 E-beschrânkt, so heijit E ein Normelement des

Gefliges ?•



Invariante Funktionen uber teilgeordneten algebraischen Halbstrukturen 133

Nachdem ein bestimmtes Normelement E in einem Gefuge fest gewahlt
und dadurch ausgezeichnet ist, da8 man es zur Normierung heranzieht, heiBt
das Gefuge normiert oder kurz ein n-Gefuge, und E spielt die Rolle einer
funften unabanderKch gedachten Grundgegebenheit, was wir durch die Schreib-
weise D <5ft, *, F, <, E} zum Ausdruck bringen.

Satz 9.2: Ist ein n-Gefuge, so gilt: a) Jeder f-Komplex N erfidlt die Be-
ziehung o<N-iE. (38)

b) Zu je endlich vielen Elementen Al7..., An e SR gibt es zwei F-Komplexe

' io<iAr+Tl-iE<P-iE(v=l,...,n), (39)

iAp<P-iE (v=l,...,n). (40)

(40) besagt also die Existenz einer Belegung, die endlich viele vorgegebene
Charakteristiken simultan majorisiert.

Beweis. (38): Aus (36), (31) und (26) ergibt sich mit (16) und Satz 8.1
o<iE. Daraus folgt mit (8) und (29) die Behauptung (38). - (39): Nach (37)

gibt es TT^, ?v mit i0 $ iA + T\v-iE $ Pv-iE(v 1,. n). Mit Rucksicht

auf (38) gilt mit n - T\± + + Un9 P U + Px + + Pn wegen (VI)
und (14) aueh (39). - (40): Im Hinblick auf (39) genugt es, zu bemerken, daB

lAv^iAv +Tl-iE gilt.

3. Eapitel: Invariante Funktionen iiber normierten Geîûgen

In den folgenden Paragraphen wird ein kurzer AbriB der Théorie der ^-Gefuge
und der invarianten Funktionen uber ihnen gegeben, mit bewuBter Beschran-

kung auf deren Hauptsatze. Die Théorie ist noch mancher Erweiterung fahig,
was jedoch im Rahmen der vorliegenden Arbeit nicht gezeigt werden kann.

§ 10. Belegungsâquiyalenz

Im ganzen Paragraphen bedeute <2R, *, F, <, E} ein festgedachtes

n-Gefuge. Wir entwickeln aus den Grundgegebenheiten heraus eine Pseudo-

metrik und daraus sodann eine Âquivalenzrelation in der Grundmenge 9JI.

Dièse erlangt ihre voile Bedeutung erst bei weiterem Ausbau der Théorie.
Die hier gegebene Einfuhrung ist bereits fur den Weiterausbau angelegt; der
Mehraufwand gegenuber einer direkten Behandlung ist gering und wird durch

allgemeinere Einsichten gerechtfertigt.
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Satz 10.1: Fur jedes geordnete Paar (A, B) von Elementen von $01 existiert
die réelle Zahl

a(A,B) infpln[N1'iA<N2.iB + Tl'iE', |Nx| |Na! =n>0, |TT|=p>0]. (41)

Beweis: Mit (26), (39), (40) sehlieBt man auf das Bestehen von Beziehungen
o < Ib + TI-Îe, (a 5 P'ijB. Ohne Einschrankung der Allgemeinheit darf
| P + FT | > 0 angenommen werden, da dies durch Addition von iE zur rechten
Seite einer der Beziehungen erzwingbar ist. Durch Addition ergibt sich nach
(VI) %a "5 iB + (P +Tl)'is, womit die Realisierbarkeit der Klausel in (41)
erwiesen ist. Da 0 eine untere Schranke fur die in Frage stehenden Zahlen p\n
ist, so folgt die Existenz des Infimums, also die Behauptung.

Satz 10.2: Die soebendejïnierte Funktion a hat folgende Eigenschaften:

A*m, Te T => a(A,rA) 09 (42)

A,Bem; A <£ => a(A,B) 0, (43)

A,B,C eWl => a(A,C) ^a{A,B) +a(B,C) (44)

A,B,C,Dem;A*Cdef,B*Ddef=^>a(A*C>B*D)^a(A,B)+a{C,D), (45)

A,B,C,De(m;A*Cdef,B*Ddef==>a(A,B)^a(A*C,B*D)+a(DiC). (46)

Beweis: (42): Zu jedem s > 0 gibt es eine naturliche Zahl n mit l/n < s,
Nach (38), (9) und (VI) gilt dann nixA < niTA +îe9 womit (42) erledigt ist.
Vôllig analog ist das Vorgehen bei (43), wenn man iA ^ is bedenkt. - (44) :

Zu beliebigem e> 0 gibt es die Beziehungen

P| r >0,r)m<a{BiC) +e/2.
Es folgt daraus Mx. Nx • iA < Mx • N2 • iB + Mx. FT. iE, N2 - M± • iB < N2 • M2. ic +

Nach (41) ergibt sich daraus a (A,C)^(pln) +(r/m) <a(A,B) +a(B,C) +e.
Da e beliebig war, so resultiert die Behauptung (44). - (45)12) : Zu jedem e > 0

gibt es Beziehungen Nj-Ù < N^iB +T]'-iE, |K| |N2| n' > 0, |nf|
p'>09 p'jn' <a(A,B) +e, M'x • ic < Mr2 • iB + Pf • iE, |M{| - |M2'|
m1 > 0, |P'| rr > 0, r'\ml <a(C,D) +e. Durch Vervielfachung mit

\m, bzw. In/ und die Setzungen n m'n', p m'pf9 r n'r' folgt
die Existenz von Beziehungen Nx • iA 5 N2 • iB + FF • iE, N3 • ic $ N4 • iD +
+ P-is mit |N1| |Na| |N8| |N4|=n>0, |n| =p>0, |P|=r>0,
p/n p7n/, rln r'lm'. Mit ^ [fx,..., fn], Na [%,..., qj, N3

[(Tu an], N4 [rl9...,tJ bildenwirfur q 2,3,... die P-Komplexe

12) Dieser Beweis ist einem unpublizierten Beweis von H.Hadwigeb fur Lemma (d) m [5],
p. 118, nachgebildet.
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fc fr • • • o^îfi rdnn\ 1 < ay,bv,cv,dv ^q natur-
liche Zahlen (v 1,..., w)].

Es ist |(ûfl| g471. Aus den beiden letzten Belegungsrelationen erhâlt man
durch Vervielfachung mit (ûg und (VI) : (a) 6ûff • Nx • iA + 6ùa • N3 • ic < (ùq • N2 • ib +
+ 6)tf • N4 • iD +(j)q- (H + P) • Îe. Eine Transformation von (ùq gehort sicher
dann zu ÇvCùQ /\ rvLùQ, wenn simultan die folgenden Bedingungen erfûUt sind :

2<a, <g, 2<c,<g; 1 < aA,cA <g(A #i>); 1 <6A,dA <?(A 1,...,»).
Somit gilt ||v(ùff A cr^al > ^4n"2 (q — If {v l,..., n). Demzufolge
enthâlt der f-Komplex Lùq- Hx /\ iùq- N3 gewiB einen Teilkomplex Kx mit
| Kj| nq*n~*(q — l)2 k> 0 Es gilt also 0)a • Nx Kx + A1? 0)ff • N3

Kx + A3 und analog lùq • N2 K2 + A25 0), • N4 K2 + A4 mit | Kt\
|K2| Je, |Al| - |A2| |A3| |A4| =l nq*n —Jc>0. Nach dieser Zer-

spaltung der f-Komplexe in (a) lautet (a) unter Anwendung von (VIII):
(b) Ki • iÂ*c + Ax • iA + A3 • ic < K2 • iB*D + A2 • iB + A4 • iD +0)a • (TT +P) • i^.
Aus (38), (39), (40) làBt sich leicht auf die Existenz eines f-Komplexes T mit
o < iA + T • Îe, o < ic + T • %e, iB $ T • is, iD 5 T • i# schlieBen. Aus (b),
(38), (VI), (VII) folgt dann (c) Kx • iA*c < K2. iB*D + A • iE mit A T •

(Ax + A2 + A3 + A4) + 0)ff • (11 + P). Ist | T | t, so folgert man aus (2) und (3)
s =z | A| 4:11 + q*n(p + r). Beachtet man, daB t ausschlieBlich von A,B,C,D
abhângig ist, so resultiert die Konvergenzaussage sjk -> (p + r)/n (q -> oo).

Wegen (p +r)jn < a (A, B) -\-a(C,D) +2e gibt es ein passendes q mit
(s/k) < a (A, B) +a(C, D) + 2e. Da s beliebig gewâhlt war, so folgt nach (c)
und (41) die Behauptung (45). - (46): Dieser Beweis verlâuft in groBen Zugen
analog zum vorigen und kann jenem leicht nachgebildet werden.

Satz 10.3: Die Funktion

d(A,B) Max{a(A,B), a(B,A)} (47)

ist eine Pseudometrik auf der Grundmenge 501 mit den zusâtzlichen Eigenschaften

(48)

(49)

(50)

Beweis: (48) folgt aus (42) und (Ml) hieraus durch die Setzung r t.
(M3): Mit Rucksicht auf (44) gilt d(A, C) < Max {a(A, B) +a(B9 C),
a(C,B) +a(B,A)} ^d(A,B) +d{B,C). — (M5) ergibt sich direkt aus

(47). Somit ist d in der Tat eine Pseudometrik auf 501. Die Nachweise von (49)
und (50) verlaufen im Hinblick auf (45) und (46) gleich wie derjenige von (M 3).

Mit Satz 10.3 ist die Moglichkeit gegeben, mit Hilfe der Pseudometrik auf
bekannte Weise der Grundmenge 501 eine Topologie aufzupràgen : Die Mengen
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S (A ; c) {D€2R| d(A, D) < c} mit A e9JI, c> 0 bilden nàmlich eine Basis einer
Topologie, in welcher die Q(A; c) offen, die X (A ; c) {Z> e 2R | c? J., D) < c}
dagegen abgeschlossen ausfallen13); wir nennen sie im folgenden die d-Topologie.
Diesem Gesichtspunkt kommt aber in der vorliegenden Arbeit nicht primâre
Bedeutung zu; wir werden nur gelegentlich diesbezugliche Hinweise geben. An
dieser Stelle sei lediglich bemerkt, daB durch (49) die Stetigkeit der Abbildung
(A, B)-> A * B garantiert wird. Die algebraische Halbstruktur <2ft, *> ist
somit « topologisch » im Sinne der topologischen Algebra. Das Vorhandensein
einer Pseudometrik wird hier in einer anderen Hinsicht verwendet :

Deî. 10.4: Die gemafi Satz 2.2 durch den Ansatz

A & B<=>d(A,B) 0 (51)

definierte Àquivalenzrelation in der Grundmenge SOI heifie Belegungsâquivalenz.
Die Erklârungen (41) und (47) ergeben die folgende Kennzeichnung der

Belegungsâquivalenz :

Satz 10.5: Zwei Elemente A, B der Grundmenge eines n-Gefûges sind
genau dann belegungsàquivalent, wenn sich zu jedem e > 0 Vervielfachungen so
angeben lassen, dafi gilt:

=|Na| =n>0, |TT|

| |Mt|=w>0, |P|=r>0; rjm<e.
Naeh den Vorbereitungen ist es nun leicht, wichtige Eigenschaften der

Belegungsâquivalenz zu erkennen:

A € 9JI, r c r => A te xA (53)

A,B,G,D^m\ A*Cdef,B*Ddef,A te B, C teD => A* C te B* D, (54)

A,B,C,D€m;A*Cdef,B*Ddef,A*CteB*D,CteD=>A teB, (55)

A te By |M| |N|=>M-^^N-JS, (56)

0=>-4 teB. (57)

In naheliegender Weise kann man (54), (55), (56), (57) mit Additions-, Sub-
traktions-, MultipliJcations- und Divisionssatz anspreehen.

Beweise: (53), (54), (55) ergeben sich muhelos aus (48), (49), (50), wenn man
(M6) bedenkt. (56) folgt induktiv aus (53) und (54). — (57): Zu beliebigem
e > 0 gibt es naeh Satz 10.5 eine Beziehung Ax • iM.A < A2 • iNmB +U - is
mit | Ai| | A2| l > 0, | TT| p > 0, p/l < e. Naeh (29) und (30) resul-

13) Fùr die hier auftretenden topologischen Begriffe verweisen wir auf irgendein einfuhrendes
Werk der mengentheoretischen Topologie, insbesondere etwa N.Bourbaki [35], chapitre I.
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tiert Aj • M • iA < A2 • N • iB + IT • iE- Wegen pjnl ^pll<e folgt a(A,B) 0,
wobei n | M | | N |. Analog ergibt sich a(B, A) 0 und damit die Be-
hauptung (57), wzbw.

§ 11. Invariante Felder, Funktionen und Système

Im ganzen Paragraphen bedeute D <S0rl, *, F, <, E} ein fest gedachtes
w-Gefuge.

Deî. 11.1: Ein zu D gehdriges invariantes Feld («i-Feld») ist eine Teilmenge
g von SDÎ mit den folgenden Eigenschaften:

(FI) A, B e g; A * jB de/ => A * ^ € g (Additivitat)14),

(F2) ^1 € 5; r € T => TJ[ c g (f-Freiheit),
(F3) E,0 e% (Normalitàt)

Vorerst schlieBen wir einige mitzliche Begriffsbildungen um das i-Feld an:

Def. 11.2: Unter dem durch eine nichtleere Teilmenge Jl von 9JI erzeugteni-Feld
verstehen wir die Menge der Aggregate K • E * Mx • Ax * * Mn • -4n mi^

Aly...,Ane9l; n= 1,2,
Man verifiziert leicht, daB der Ûbergang von einer Menge zum erzeugten

i-Feld ein AbschlieBungsprozeB ist. Die i-Felder sind dabei die abgeschlossenen
Elemente, und nach Satz 1.6 ist das von 5ft erzeugte i-Feld das kleinste aller
i-Felder, welches 91 umfaBt.

Def. 11.3: ErfUllt eine Teilmenge $' eines i-Feldes g schon die Feldpostulate
(F 1), (F 2), (F 3), so hei/St g; ein Unterfeld von $ und 5 ein Oberfeld von g'.

Zwei in einem gewissen Sinne extremale i-Felder sind von vorneherein aus-

gezeichnet :

1. Das durch die Menge {E} erzeugte i-Feld © {N - E\ \ N | 0,1, 2,...},
welches wir das Normfeld nennen15),

2. das universelle i-Feld 9W; in der Tat erfullt 9W die Feldpostulate (FI),
(F2), (F3).

Die Extremalitât von (£ und 9K besteht nun darin, daB jedes zu gehôrige
i-Feld g der Relation (£ c g c 9K genugt, so daB (£ als das kleinste, 2Jt hin-

gegen als das groBte i-Feld in Erscheinung tritt.
14) Die Wahl der Bezeichnung «additiv» erfolgt ohne Prajudiz fur eine noch vorzunehmende

konkrete Deutung der Halbverknupfung *.
15) Es sei ausdrucklich darauf hingewiesen, daB |N|unter Umstanden nur endlich vieler Werte

fahig ist, da fur zu groBe INI die Vervielfaehungen nicht unbedingt gebildet werden konnen.
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Der Ûbergang von der Grundmenge 501 zu einem beliebigen i-Feld g
eine neue BegrifFsbildung fur die Belegungen nahe :

Def. 11.4: Eine Belegung /c93 heiflt dem i-Feld g assoziiert, in Zeichen

f -7- g, wenn gilt: f(A) 0[alle A e m — g].
Man uberzeugt sich dann leicht von der Gûltigkeit der folgenden Aussagen:

f,g + %=>(f+g) + tt, (58)

/H-af=>N./^s. (59)

An dieser Stelle kann nun die Erklârung des Hauptbegriffes unserer Aus-
fûhrungen erfolgen:

Def. 11.5: Eine invariante Funktion («i-Funktion») <p ist eine ûber einem
i-Feld % erklàrte reellwertige Funktion mit den folgenden Eigenschaften:

/,g-f g; f<g—>Zf(A)<p{A)^Zg(A)ip(A) (Belegungsmonotonie)1*), (II)
A e gf ; r c F => cp(rA) cp(A) (f-Invarianz) (12)

<p(E) 1 (Normiertheit). (13)

Deî. 11.6: Ein dem n-Gefûge assoziiertes invariantes System («i-System»)
<2f> Ç>> entsteht durch Zusammenfassung eines zu gehôrigen i-Feldes Qf

i-Funktion cp ûber 5» ^e Elemente von 5 heijien im i-System <3f?

AnschlieBend an die soeben genannten obligatorisehen Postulate fur i-Felder
und i-Funktionen kennzeichnen wir eine Eigenschaft, die einem i-Feld ûberdies
zukommen kann:

(F 4) Dos i-Feld g besitzt die Eindeutigkeitseigenschaft, wenn fur beliebige

i-Systeme <©, y)} und <$, co> gilt: ip{A) co(A) [aile A e 3r ^ © ^ §]•
Im folgenden befassen wir uns mit Eigenschaften der i-Funktionen, also mit

den Folgerungen aus den Funktionspostulaten (II), (12), (13).

Satz 11.7: Ist <p eine i-Funktion ûber dem i-Feld 5, so gilt:

f,g + %l f~g=>Zf{A)<p{A) Zg(A)<p(A), (60)

/ + g => 27(N • /) (A) <p(A) | N | Zf{A) <p(A), (61)

(62)

(63)

(64)

; 0 ^A=><p(A) >0, (65)

i«) Fur das Summensymbol vgl. die Bemerkung nach (5). Statt Zf(A)<p{A) schreiben wir
gelegentlich knapper 27/ <p.
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A,Be%=>\<p(A)-(p(B)\ ^d(A,B), (66)

A,Be%; A & B=><p(A) cp(B). (67)

An anderen Orten wird (62) als Additivitàt, (64) als Monotonie, (65) als

Definitheit und (67) als Àquivalenzinvarianz bezeichnet17). (66) bringt zum
Ausdruck, da8 jede i-Funktion bezuglich der d-Topologie ûber dem betref-
fenden i-Feld gleichmâBig stetig ist.

Beweise: (60) ist eine triviale Folgerung von (16) und (II), und (61) folgt
ebenfalls mit einfachen Schlûssen aus (II) und (12) unter Berûcksichtigung
von (6) und (59). — (62): Nach (VIII) ist iA * b ~iA +Îb und nach (60)
sodann y (A * B) q>(A) + <p{B)> Setzt man hierin A B 0, so resul-
tiert (63). — (64): Nach (31) ist iA<iB, und mit (II) folgt q>(A) < <p(J3). —
(65): folgt aus (63) und (64). — (66): Zu beliebigem e> 0 gibt es eine Bezie-

hung Nj - iA < N2 • iB + TT • iE mit | N^ | N2| n > 0, | TT| p > 0,
pln<a(A, B) +e. Aus (II), (13) und (61) ergibt sich ncp(A) < ny(B) +p
und hieraus y (A) <cp(B) -{-a (A, B) -{- e. Da e beKebig war, so gilt

^(.4) < <p{B) -\-a(A,B) undanalogdazu q>(B) ^.<p(A) -\-a(B, A).
Mit Rucksieht auf (47) folgt \<p(A)—<p(B)\ ^d(A,B). — (67) ist im Hin-
blick auf (51) eine triviale Folgerung von (66).

Fur beweistechnische Zwecke wird sich noch die folgende Sachlage als nutz-
lich erweisen:

Satz 11.8: Ist g ein i-Feld und f -f- ^, so gibt es eine durch f eindeutig be-

stimmte natûrliche Zahl n und eindeutig bestimmte Elemente Al9. 9Anc% mit

f +*o iJi +... +iAn. (68)

Ist aufierdem cp eine reellwertige Funktion uber g mit q>(0) 0, «so gilt:

Uf(A)cp(A)=cp(A1) +... +<p(An). (69)

Beweis: Im Hinblick auf (5) ist / eine Summe von eindeutig durch / bestimm-
ten Charakteristiken von Elementen von 5 • Durch die Addition von %o wird
erzwungen, daB deren Anzahl positiv ist. Wegen y(O) 0 folgt auch (69),
wzbw.

Von (62) und (64) gibt es eine Art Umkehraussage :

Satz 11.9: Ist * eine Verknûpfung und g ein i-Feld, so ist jede monotone und
additive reellwertige Funktion ûber gf belegungsmonoton.

Beweis: Seien f, g -t- $', f 1S 9> <P uber 5 monoton und additiv. Nach (68)

gilt / + i0 iAi + +iAn> 9 +io=iB1+ •-• + W also nach Vor"

17) Fur dièse Benennung in der Inhaltstheorie vgl. [36], Abschnitt II.
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aussetzung auch iA + • • • + i>An ^ ^b + • • • + ^Bm • ^a * eine Verkniip-
fung ist, so fûhrt (VIII) auf iA * * Afl < iB * * Bm die Monotonie auf
<p(Av* *An) < (p(B^ * .rfj und die A^ditivitât auf ç?^) + +
+ 9? (-4J ^ 9 (^i) + • • • + <P {Bm) • Berùcksichtigt man nun, daB (69) aus (63), das

heiBtletztenEndesaus(62)folgt,soresultiert mit (69) Ef{A)<p (A)^Zg(A)<p(A),
also die Belegungsmonotonie von cp, wzbw.

SchlieBlich formalisieren wir einen im folgenden oft vorkommenden Sach-
verhalt :

Def. 11.10: Ein i-System <©, y>y heifit Fortsetzung des i-Systems <5, (p),
in Zeichen <$,<p}^\ <©, y>> wenn gilt: g c ©; ^(^4) ^(^1) \alle A € g]-
Dièse, beiden i-Systerne hei/ien gleich, wenn % — ©, ^(^4) <p(A) [aile A e g],

Ohne Muhe beweist man :

Satz 11.11: Die Menge © der dem n-Gefûge assoziierten i-Systerne wird
durch die Relation «( teilgeordnet.

Zum SchluB trefiFen wir die Abmaehung, ein i-System, dessen i-Feld das
universelle Feld 2R ist, ein universelles i-System zu nennen.

§ 12. Allgemeine Fragestellungen

Naeh der Einfùhrung des Begriffes des i-Systems ist es jetzt ganz natùrlich,
die folgenden Hauptfragen der Théorie zu stellen :

A. Gibt es zu jedem n-Gejuge ein assoziiertes i-System'1.

Fur die Formulierung weiterer Fragen erachten wir die naehfolgende Be-

griffsskala als zweckmâBig18) : Ein Elément A der Grundmenge SOI eines n-
Gefùges heiBt a) absolut bewertbar, wenn fur je zwei zu gehôrige i-Systeme
<g, <p) und <©, ip} mit A e 5> -4 e© gilt: <p(A) y (A); h) unbedingt
bewertbar bzw. unbedingt unbewertbar, wenn fur jedes zu gehôrige i-System
<g, ç>> gilt : A € 5 bzw. A £ g. Falls die Existenz von i-Systemen gesichert
ist, lauten die weiteren Fragen :

B. Gibt es absolut bewertbare Elemente in 501

C. Gibt es unbedingt bewertbare und unbedingt unbewertbare Elemente in 501

Es ist das Ziel der anschlieBenden Entwicklung, dièse Fragen zu beant-
worten und bei positiver Beantwortung eine Charakterisierung der betreffenden
Elemente zu geben.

18) Sie ist einem Vorgehen in der Inhaltstheorie nachgebildet. Vgl. H.Hadwiger [13], p. 124.
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§ 13. Ober- und Unteriunktion einer invarianten Funktion

In diesem Paragraphen konstruieren wir zwei einer i-Funktion zugeordnete
reellwertige Funktionen, die iiber der ganzen Grundmenge erklàrt sind und
uns weitere Konstruktionen ermôglichen.

Wir setzen voraus, daB <g, <p> ein dem w-Gefuge Q <3Jt, *, T, < E}
assoziiertes i-System sei, betrachten Belegungsrelationen der folgenden zwei

Typen:

h+M-iD<f2 mit AJa^af; DcSR; |M| =w>0, (70)

g1<g*+N'iD mit glyg2 -f- g; D € 2R; |N| n > 0 (71)

und ordnen jeder solchen Beziehung die réelle Zahl

aD [Zf2(A)<p(A) -Z^iJDviAïtim, (72)

bD tZg1(A)(p(A) -Zg2(A)<p(A)]ln (73)

zu16). Die Mengen der auf dièse Weise zum Elément D e ÏR gehôrigen reellen
Zahlen bezeichnen wir mit Ud und Vd •

Satz 13.1 : Die Mengen Ud und Vd sind fur jedes D € 501 nichtleer, und aus

Beweis: Nach (37) gilt mit passenden f-Komplexen io 5 ^z) + H • i^ < P • i#.
Setzt man /x 17 • iE, /a P • ^, M 'i5 ^i io, g% n ' *jb> N Il5 so

sind (70) und (71) realisiert und somit Ud und Vd nichtleer. — Sind an e Ud,
ft^eYi), so entspringen &d und bn den Beziehungen ^ + M • i& < /2 und

g^^+N- tx,. Daraus folgt N • /x + N • M • iD < N • /2, M • g± < M • g2 +
+ M • N • Îd und wegen (VI), (1), (IV), (VII) N • fx + M • g1 < N • /2 + M • g2. Nach
(58), (59), der Belegungsmonotonie von cp und (61) ergibtsich n Efx(A)<p(A)-\-
+ mEg1(A)<p(A) ^nE f2(A)<p(A) + mEg2(A) cp(A) oder nach (72) und (73)

Satz 13.1 lehrt auBerdem, daB die nichtleeren Zahlenmengen Ud und Vd
einseitig beschrànkt sind. Dièse Sachlage ist hinreichend fur die Existenz der
Zahlen infJJD und supYD, was AnlaB gibt zu folgender

Def.13.2:19) Die fur aile DeSR gemâ/3 y(D) infVD bzw. <p(D) =supYD
erklârte Funktion heiftt die zum i-System <5? <p) gehôrige Ober- bzw, Unter-
funktion.

Im folgenden leiten wir einige Eigenschaften der Ober- und Unterfunktion
her, die unter anderem erkennen lassen, daB dièse zwei neu konstruierten
Funktionen keine i-Funktionen im Sinne unserer Théorie sind, da ihnen die Additi-

19) Vgl. A.Tarski [16],Def. 1.25, p. 52. In der inhaltstheoretischen Studie [36], Abschnitt VI,
wurde gleich vorgegangen.
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vitât (62), also erst recht die Belegungsmonotonie (II) im aUgemeinen nicht
zukommt. Es gelten die folgenden Beziehungen :

D e m => £(2>) < v(D), (74)

(75)

(76)

A, B€m; A & B=>y(A) y(B), ç(A) ç_(B), (77)

AeW, te r=>y(TA) y(A)9 v{rA) y (A) (78)

Beweise: (74) folgt unmittelbar aus Satz 13.1 und Def. 13.2. — (75) : Wegen
A e g ist die Klausel (71) durch die Setzung gx iA, g2 — io> N \±, D A
erfullt. Die gemâB (73) resultierende réelle Zahl ergibt sich zu bA <p{A)-
Nach Def. 13.2 gilt <p(A) < <p(A) und analog îp(A) < <p{A). Mit (74) folgt
hieraus die Behauptung. — (76): Nach Satz 13.1 ist die Existenz von
Beziehungen hx < h2 + M • iA, gx < g2 + N • iB mit h1} h2, gl9 g2 -f- Ç; |M|

m>0, \N\=n>0 sichergestellt. Es folgt mit (13) und (29) N • \ < N • h2 +
+ N • M • iA, M.• gx < M • g2 + M • N • iB und wegen (VI), (1) und (VIII)
N • hi + M • gt < N • h2 + M • g2 + M • N • Îa*b Dies ist eine Beziehung vom
Typus (71) und liefert gemâB (73) die Zahl 6^*b [2iA1ç?—Zh2(p]jm +
+ [£Çi 9 —£92<p]ln f>A +bs- Wegen 6^*^ ^ cp(A*B) gilt fur aile zu
Beginn gesetzten Beziehungen bA +bs ^(p(A*B), woraus sich leicht die
erste Behauptung ergibt. Fur die zweite verlàuft der Beweis analog. — (77):
Seien A & B und s > 0 beliebig. Dann besteht nach (52) eine Beziehung
(d) M1-iB< M2-iA +P'iE mit IM^ |M2| m > 0, |P| =r>0,rlm<e.
Wegen der Realisierbarkeit der Klausel (70) existiert eine weitere Beziehung
(e) A + N • iA < U mit fl9 f2 -f- g; | N | n > 0. Durch Itération der Ver-
vielfachungen in (d) und (e) folgt unter Anwendung von (VI), (1), (IV) und
(VII) : (f) M2 • ft + N • Mx • iB < M2 • /2 + N • P • iB. (f) ist eine Klausel vom
Typus (70), und da aus ihr die Zahl as [27/2 ç? —Z fx^/n + (r/ra) resul-
tiert, so gilt (g) ïp(jB) < [Ef2q> —Eh<p\ln +s. (e) ist vom Typus (70) und
von e unabhângig, also folgt aus (g): q>(B) < y {A) + e. Da e beliebig gewâhlt
wurde, so folgt y(B) ^.qi(A). Auf entsprechende Art und Weise ergibt sich
<p(A) ^ (p{B), also insgesamt die erste Behauptung. Fur die zweite verlàuft
der Beweis analog. — (78) folgt wegen (53) aus (77).

Die Bedeutung der Ober- und Unterfunktion tritt ein erstes Mal in der
folgenden Aussage hervor :

Satz 13.3: Voraussetzung: Es seien <5, y) und <©, ip} zwei dent n-Gefiige
assoziierte i-Systeme mit <g, <p} << <©, ^>. Behauptungen:

a) Fur aile Elemente D e 3R gilt:
(79)
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b) Fur aile Elemente A c (g gilt-

(80)

Die Behauptung b), die sich im Hinblick auf (75) als einfaches Korollar der
Behauptung a) erweist, besagt die Existenz zweier Schranken fur die i-Funk-
tionswerte, die einem Elément A in beliebigen Fortsetzungen von <g, 99) zu-
geordnet werden konnen. Die Behauptung a) bringt zahlenmaBig zum Aus-
druck, daB ein umfassenderes i-System in einem gewissen Sinne feiner bewertet
als ein weniger umfassendes.

Beweis. Wegen g c (5 ist jede auf das i-Feld g bezogene Klausel vom
Typus (70) oder (71) auch auf das i-Feld © bezogen, und die Zahlenmengen
Uz> und Yd sind fur © umfassender als fur $• Daraus ergibt sich mit der
Def. 13.2 q>(D) < w(D), y{D) < y{D) und mit (74) die Behauptung.

§ 14. Existenzkriterium und Normsystem

Es sei 0R, *, F, <, E} ein w-Gefuge. Wir nehmen in diesem Para-
graphen zu der in § 12 gestellten Frage A, der Existenzfrage fur i-Systeme,
Stellung. Ein Existenzkriterium, das anschlieBend aufgestellt wird, soll die
Einsicht daruber vermitteln, welche Sachverhalte in unserer Struktur fur
Existenz oder Nichtexistenz maBgebend sind. Man wird dadurch auf ganz
naturliche Weise zu einem î-System gefuhrt, dem in der Théorie eine aus-
gezeichnete Stellung zukommt, namlich dem Normsystem.

Existenzkriterium 14.1:20) Zum n-Oefuge gibt es genau dann ein i-System,
wenn gilt: ^ Kl IMI .IKII /O1Xy M -%s 5 N -ie=> |M| < |N| (81)

Beweis: Sei <gr, y} ein i-System und M • î# < N • %e Wegen M • iE, N - iE

- g und (11) folgt mit (61) und (13) : | M| < | N|. Also ist (81) erfuUt. — Sei

umgekehrt (81) erfullt. Dann gilt • M-^ N-J0=>|M|==|N|. In der Tat :

iMmJE iH.E, daraus nach (30) und Satz 8.1 M • iE ~ N • %e und hieraus
nach (16) und (81) | M| | N |. Auf Grund dieser Sachlage ist durch

*(N.JB) |N| (82)

auf eindeutige Weise uber dem Normfeld (Ê eine reellwertige Funktion % erklart,
welche trivialerweise F-invariant und normiert ist. Wir zeigen, daB % auch bele-

gungsmonoton ist. Seien /, g ~ <&; / < g. Mit /' / + i0 iMi.E + + iMrE ~
20) Vgl. A.Tabski [16], Satz 1 58, p. 56; H.Hadwigeb - W.Nef [4], p. 308, W.Nef [6],

p.219ff.
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N E + +V^(l +
folgt (Mi + + M j) • %b < (Ni + + Na) • iE und daraus nach (81) und (2)
|Mx| +... + |M,| <|NX| + +|NJ oder Zf (A) X(A) ^ Zg'(A) X(A).
Mit der direkt aus (82) folgenden Beziehung %{0) 0 ergibt sich schlieBlich
Zf(A) %(A) < Zg(A) %{A). Somit ist <(£,#> ein i-System und das Kriterium
bewiesen.

Ist die Existenzbedingung (81) erfùllt, so nennt man das im Beweis des Kri-
teriums konstruierte t-System <(£, %) das Normsystem. Offensichtlich wird
<©, %) von jedem beliebigen i-System fortgesetzt.

Aus (81) ergibt sich weiter die Unmôglichkeit der Beziehung E ^ 0. Wâre
sie nâmlich erfullt, so wurde mit (67) der Widersprueh 1 X(E) X(0) 0

folgen.

§ 15. Permanenzsatz und abgeschlossene Huile

Hier stellen wir den Permanenzsatz der Belegungsmonotonie bereit, der ein
i-System auf Grund von Eigenschaften der Ober- und Unterfunktionen zu
einem neuen i-System fortzusetzen gestattet. Der Kerngehalt dièses Satzes
besteht in der Tatsache, dafi sich die Belegungsmonotonie (II) auf das neue
System iïbertrâgt. Allerdings lâBt sich i.a. das Fernziel, die Konstruktion uni-
verseller i-Systeme, allein mit diesem Satz nicht erreichen; dazu wird sich ein
im folgenden noch zu entwickelnder typischer FortsetzungsprozeB eignen.

Permanenzsatz 15.1:21) Voraussetzungen: 1) <g, cp) sei ein zum n-Gefûge
gehoriges {System; 2) g* {A e 9K | 7j>(A) v(A)}; 3) <p*{A) y{A) y{A)
[aile -4 c Qf*]. Behauptung: <5*> q>*y ist ein zu gehoriges i-System mit

Beweis: Ç* ist additiv nach (76) und (74), f-frei nach (78), und es gilt JÇ c 5*
nach (75); also sind 0, E eJÇ** und es ist g* ein i-Feld. 99* ist f-invariant
nach (78) und eine Fortsetzung von <p nach (75), also normiert. Es bleibt die
Belegungsmonotonie von 99* nachzuweisen. Seien /, </ -r 3f* ; fiSg. Nach Satz
11.8 gilt /; / + i0 iAi + + iAn, g' g + io ^ + + iBm

mit
cp

und
es g
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ul '

n

gibt

— Zg^q
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—
mil

/v2 -

5 (3)

9?*(J3
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Sei
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.)-<
fi

* *B

1,.
>=]

£ >
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<

L,..
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</¦
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beliebig.
»/2 + <TV •

.,n).

Wegen çp* (^4,

•^,; in,| pK

Analog dazu

rM > 0 und

>0
gibt
(k)

Wirbildendie F-Komplexe
i), n i\-... nn, a

21) Vgl. A.Tabski [16], insbesondere pp. 54/55, wo die analoge Bildung natûrliche Erweite-
rung genannt wird. Fiir eine andersartige Herleitung vgl. [36], Satz 9.
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Pi- • • • -P^-i-P/x+i- • • .-Pm(fi l, ¦ ¦ ¦ ,m),P P1- .PmmitdenMachtig-
keiten|n|=p, |K,|=p/pF(r=l,.. ,n), |P| =r, |AJ =r/rF(^= 1,... ,m).
Aus (h) folgt dann Kv • fvl < Kv • fv2 + TT • iAv(v 1, n) und hieraus mit
(VI) und (13) K1-fn + +Kn-fnl< Kx •/„ + + Kn • fn2 + TT • /' und
entsprechend Ax • gn + + Am • gml + P • gr' < Ax • g12 + +Am- gm2.
Durch Weitervervielfachung dieser Beziehungen und Berucksichtigung von
(VI), f < g\ (1), (29) und (VII) schliefit man auf P • (Kx • /n + + Kw • fnl) +
+ n • (A2 • gn + + Am • gml) < p • (Kx • /12 + + Kn • fn2) + U (\ • gr12 +
+ + Aw • <7w2) • Aile hier vorkommenden Belegungen sind dem i-Feld g
assoziiert, und mit (II) und (61) folgt

m n

V=1 fl l V l // 1

m
oder Z[Ifvl(p —Zfv2cp]lpv ^Zllg^q) —Ug^cp^r^. Hieraus und aus (i),

V=l /i l
n m

(k) entspringt die Ungleichung Z<p*(Av)—ne < 27ç?*(jB/[X) -\-me. Dabei

sind m, n von s unabhângig, und es gilt 27^* (Av) < S9?* (i?^) und mit Rûck-

sieht auf 9?* (0) 0 und (69) Zf{D)(p*{D) ^Zg{D)<p*{D), womit die Bele-

gungsmonotonie von 99* feststeht. Es sei noch vermerkt, daB sich im Falle
n 1 bzw. m 1 vieles vereinfacht; insbesondere ist Kx Ix bzw. Ax Ix

zu setzen.
Das mit Satz 15.1 konstruierte ^'-System <2f*, Ç5*) heiBt die abgeschlossene

HilUe des ^-Systems <$f, 99).

Der Permanenzsatz garantiert, daB der Ûbergang von einem i-System zu
seiner abgeschlossenen Huile insofern die Ausgangssituation reproduziert, als

daB dabei wieder ein i-System entsteht. Dadurch wird die Moglichkeit erôffnet,
diesen Ûbergang zu iterieren, und es stellt sich folgendes heraus :

Satz 15.2: Ist <$, ç>> ein i-System und <5*, ç>*> dessen abgeschlossene Huile,
so gilt fur aile Elemente der Grundmenge 3DÎ :

<p{A) (83)

Beweis: Die Beziehung (1) <p{A) ^^_(A)[alleA e 9K] ergibt sich aus Satz

15.1 und (79). — Sei £>0 beliebig. Dann gibt es /i,/2-r-5* m^ (m)
A 5/2 +T-iA; |T| ^>0; \Zfx(p* —Zf2cp*]lt>y*_(A) —e, wobei A ein

beliebiges fest gedachtes Elément von 501 bedeutet. Ist j[ fx + io Îa

+ if / + i i + + f ilt it Rkiht f d-f iAn, /2 /2 -f- io is + • • • + iBm so g^t mit Rucksicht auf die
n

1 m _Définition von q>*:[Zv{Av)—Zv{BIÂ)]lt> <p±{A)—e (n). Nun gibt es

10 CMH vol. 38
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weiter fvl, fv2i g^, g^ -4- g mit (o) fvl < fv2 + Tlv • iAp\ |TTV| pv> 0 und

(P) DE'/vi? —Zfv2<P]IPv><P*(Av) —el{m +n) sowie (q) ^ + P^ • iB^ < g^;
IP^ I ^ > 0 und (r) \Zg^ <p — Zg^ tf/r^ < y* (BJ + e/(m + n), wobei

v=l9... ,n;/ji=l,... 9m.DurchdasselbeVorgehenwieimBeweisvonSatz 15.1
erreieht man mit denselben f-Komplexen wie dort : P • (Kx • fn + -f Kn • fnl)
+ n.^.flru + +Am-gml) +n.P-/i<P.(K1-/12 + +Kn-/W2) +
+ n-(A1-<712 + +Aw-^w2) +P-n-/{. Mit (m) ergibt sich f[ < f2 +
+ T • iA. Aus den zwei letzten Beziehungen folgt mit (1), (29), (VI) und (VII):
P ' (Kx • /n + + Kn • /nl) +U' (A1.g11 + + Am ¦ grwl) < P • (^ • /12 +
+ ..- +Kn-/na) +n-(A1-flr12+ +Am-gm2) +n.p.T-û. Diesisteine
Klausel vom Typus (71), und es folgt:

2 n m

V(A)>T{Z tëfviV —ZfvMiVv — Z I^9a2 — ^9ai <p\lru} und hieraus mit
n m

(p), (r) und (n): <p{A) > [ Z-<p*(Av) — Z<p*(BJ]/t — e/txp* (A) —2e. Da s

beliebig gewâhlt wurde, so gilt ç?(^l) ^ çp* (^L), also in Verbindung mit (1) die

Behauptung. Fur <p geht ailes analog. Da schlieBlich A ein beliebiges Elément
der Grundmenge war, so ist der Satz vollumfânglieh bewiesen.

Satz 15.3: Der Ûbergang von einem i-System zu seiner abgeschlossenen Huile
ist ein Abschliefîungsprozefi im Sinne von Def. 1.5.

Beweis: Nach Satz 11.11 ist die Relation <( zwischen i-Systemen eine Teil-
ordnung. (Cl) folgt aus Satz 15.1, (C2) aus (83) und (C3) aus (79).

Nun haben wir AnschluB an die Betraehtung liber AbschlieBungsprozesse in
§ 1 und nennen von nun an ein i-System genau dann abgeschlossen, wenn es mit
seiner abgeschlossenen Huile tibereinstimmt. Nach der allgemeinen Erorterung
ist die abgeschlossene Huile eines i-Systems <5, <p} das kleinste abgeschlossene
Obersystem von <5 (py - Durch dièse Sachlage erscheint die Benennung
«abgeschlossene Huile» durchaus natûrlich.

§ 16. Fortsetzungssatz

Aufbauend auf einer Idée von S.Bastach22) konstruieren wir in diesem Para-
graphen Fortsetzungen eines i-Systems, welche in der Lage sind, ganz bestimmte
vorgegebene Elemente der Grundmenge zu bewerten. Es gilt nàmlich der

folgende

2a) [14], Théorème 14, p. 16.
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Fortsetzungssatz 16.1 : Voraussetzungen: 1) <$,<py sei ein abgeschlossenes dem

n-Gefilge <2K, *, T, <, E> assoziiertes i-System; 2) 0 e 2R, G <t% ; 3)$rsei
das durch % ^ {C} erzeugte i-Feld. Behauptungen: a) Ist (p(C) ^ a < <p((7)

^o £s£ rf^rcA efew Ansatz

<p'{A *N .C)=ç>(4) +|N|a[^e5] (84)

ineindeutiger Weise einei-Funktioncp' uber^1 erklârt. b) <$',cp'y ist die einzige Fort-
setzungvon <5,ç>> auf W mit(p'(C) a. o) Auf dièse Weiseerhâlt man aile Fort-
setzungen von <g, ç>) cm/ 5' • d) Zu jeder reellen Zahl a mit <p(C) ^a ^ 99 (G)

gibt es mindestens ein abgeschlossenes i-System <©, ip), welches dem n-Gefiige
assoziiert ist und den Bedingungen <3f, ç>> ^ <(5 5 y> ; Ce©; tp(C) a

genûgt.
Als unmittelbare Folgerung dièses Satzes ergibt sich die Einsicht, daB im

Falle (p (C) < cp (C) kontinuierlich viele verschiedene i-Systeme existieren, die
das i-System <5, <p> auf das i-Feld gr fortsetzen.

Beweis: aa) Eindeutigkeit voncp': Sei ,4 * N • C J5 * M • C [,4, J5 e g]. Es

gilt zu zeigen: <p(A) + \ N |a <p(B) + \M\a. — 1. Fall: |M|>|N|. Dann
ist M N; +Tmit |N;| |N| und |T|=J>0. Nach(56)ist N^C^N-G,
also nach (55) A & B * T • C. Zu beliebigem e > 0 gibt es also nach (52)
eine Beziehung T^ • iA 5 n2 • iB*T.c +P-i^; | TTx 1 ln2l V > 0, | P |

r > 0 ; r/p < s, (VIII) und (30) liefern hieraus TTX • iA 5 TT2 • iB + P • i^ +
+ TT2 • T ¦ ic- Wegen A, B, E e g ist dies eine Klausel vom Typus (71),
und es folgt ç{C) > [pcp (A) — p<p(B) — rq>(E)]/pt und daraus ç>{C) >
[<p(A) — (p(B)]jt — ejt. Da e beliebig gewâhlt war, so schlieBt man auf q> (G) ^
[q>(A) —<p(B)]/t. Eine vollig analoge Argumentation fûhrt auf die Beziehung
y(C) < [<p{A) —(p(B)]jt. Mit Kucksieht auf (74) ergibt sich ^(C) =<p(C),
also mit der Abgeschlossenheit von <g, 99) auch Ceg, im Widerspruch zur
Voraussetzung 2) des Satzes. Damit ist die Unmôglichkeit des Falles | M | >| N |

und gleichzeitig des Falles |M|<|N| dargetan, und es bleibt: 2. Fall:
| M | |N |. AusA*M-C B*M-C folgt mit (56) und (55) A & B und
hieraus mit (67) cp(A) (p(B), also auch (p(A) + | N \a <p(B) + |M|a,
womit die Eindeutigkeit von y' feststeht.

ab) (p' ist eine i-Funktion liber g7 : Die Normiertheit (13) ist trivial verifizier-
bar. — (12): Nach (X) und (35) gilt: tpr(r(A * N • C)) cpf(rA *r(N • G))

(p(rA) +\rN\a=z<p(A) +\H\a (pl(A * N • C). — Es bleibt die Bele-

gungsmonotonie (II) nachzuweisen: Seien f, gf-t-%', f 5 g1. Setzt man
n m n m

f + i0 ^Û,*kv.c> 9' + io Ziis^Au-o f SiAvy 9 SiBu> K Ki +
+ +Kn, A Ai +... +AW, sogiltoflfenbar (s) / +K • tc < g + A • ic
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mit /, g -7- 5 • Ohne Einschrànkung der Allgemeinheit kann hier | K | k > 0,
| A | l > 0 vorausgesetzt werden, da dies durch beidseitige Addition von ic
erzwingbar ist. — 1. Fail: l^Jc: Zu beliebigem s > 0 gibt es eine Beziehung
(t) ?i<flra +T'ic; ^ijfc-r-S; |T| =«>0mit(u) [27^^ — Zg2cp]lt>^(C) — e.
Wird (s) mit T und (t) mit K vervielfaeht, so ergibt sich mit (VI) und (VII) :

(v) T • / + K • g± < T • g + K • g2 + T • A • ic. (v) ist vom Typus (71), und es

gilt <p(C) > [27<p —29<P\ll +[29i<P —Egtfp\lcllt oder unter Heranziehung
von (u) g (C) > [-£/?> — Z9<p]/l + Wl) (2 (0) — e) und daraus fy> (C) > 27/ç? —
— Zgcp + ^((7) — Ae. Da dièse Ungleichung fur aile s > 0 gilt, so folgt (w)
27#<p + Zç?(O) > 27/ç? + ^(c)- Wegen a — <p(C) > 0, l > i > 0 hat man
(x) Za —l(p(C) > fea —k(p(C), und durch Addition von (w) und (x) ergibt
sich 27<79? + la > 27/ç? + ha. Nach den Vorbereitungen schlieBt man hieraus
muhelos auf Egf cp1 ^ 27/' <pf. Im 2. ifyzZZ (Z < h) verlauft der Beweis analog,
womit (II) nachgewiesen ist.

b) Aus (84) folgt <p'(C) a. Sei <g',co> ein i-Systemmit <g,9?>< <!&'><»>

und û>(C) a. Es gilt dann nach (62) co(A * N • C) co(^) + | N | co((7)

ç?(J.) + | N | a <p' (A * N • C), also stimmen co und 99; uberein.
c) Sei <g,ç>>< <$', a>>. Aus (80) folgt g((7) < cd(O) < ^(C). Wegen

o>(^[ * N • C) ç>(J.) + | N | co (C) hat œ dieselbe Gestalt wie <p' nach (84) und
der aus (80) folgenden Ungleichung.

d) Man setze <©, ip} <$'*> Ç?'*)» un(l das gesuchte abgeschlossene
i-System ist gefunden.

§ 17. Das absolute i-System

Durch die Bemerkung nach dem Satz 16.1 wird man belehrt, daB der in
Satz 16.1 d) durchgefuhrte FortsetzungprozeB keineswegs eindeutig zu sein

braucht, was dazu fuhren kann, daB hinreichend groBe i-Felder unter Um-
standen die Eindeutigkeitseigenschaft (F 4) nicht mehr besitzen. Es ist daher
sinnvoll, nach dem groBten i-Feld mit der Eindeutigkeitseigenschaft zu fragen
und das zugehorige ï-System innerhalb der axiomatischen Théorie zu kenn-
zeichnen. Ausgehend vom Normfeld (£ und der Bezeichnung <(£*, #*> fur die
abgeschlossene Huile des Normsystems <(£, %) gilt der folgende

Satz 17.1 : ™) Ist die Existenzbedingung (81) erfullt, so ist (E* das grofite i-Fdd
mit der Eindeutigkeitseigenschaft', m. a. W. kein édites Oberfeld von (S* besitzt die

Eindeutigkeitseigenschaft.

Beweis: Das Erfulltsein von (81) gewahrleistet die Existenz des Normsystems.

28) Vgl. A.Tauski [15], insbesondere pp. 229/230.
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Fur ein beliebiges i-System <3f>Ç>> gilt <(£,%>< <5><P>> un<l aus (80) folgt
die fundamentale Beziehung

X(A) ^V{A) < x(A) [aile A eg]. (85)

Daraus ergibt sich unmittelbar die Eindeutigkeitseigenschaft von (g*. Sei nun
(5 ein echtes Oberfeld von (g*. Dann existiert ein Elément G e (g — Qc*, und
mit Rucksieht auf (83) gilt £^(C) %{G) < ~%{C) #*(C). Nach dem Fort-
setzungssatz 16.1 gibt es sodann kontinuierlich viele voneinander verschiedene

i-Systeme, die <(£*,#*> auf das durch (£* ^ {C} erzeugte i-Feld § fort-
setzen. Wegen <r> c © besitzt © somit die Eindeutigkeitseigenschaft nicht,
wzbw.

Bedenkt man, daB die Funktionen % und x im Falle ihrer Existenz ûber der

ganzen Grundmenge 3[R definiert sind, so lâBt sich der Gehalt der Ungleichung
(85) etwa in folgende Worte kleiden : Die Zahlen ^ (A) und % {A) stellen fur jedes
A in yii Schranken fur die Werte <p(A) dar, die dem Elément A durch beliebige
i-Funktionen ç> zugeordnet werden konnen. DaB dièse Schranken die best-

moglichen sind, lehrt der Fortsetzungssatz 16.1. Da sie nur von den funf
Grundgegebenheiten 501, *, F, <, E der Théorie abhângig sind, konnen sie

in diesem Sinne als absolute Schranken angesprochen werden. Nach Satz 17.1
besteht (g* genau aus denjenigen Elementen der Grundmenge, denen in jedem
i-System, zu dessen Feld sie gehoren, ein und derselbe Funktionswert zugeordnet

wird, der iiberdies mit den absoluten Schranken ubereinstimmt. Wir legen
deshalb fest: <(£*, #*> heiBe das absolute i-System.

§ 18. Universelle i-Système

Die in § 16 angebahnte Entwicklung soll hier zur Konstruktion universeller
i-Systeme weitergefûhrt werden. Es sei aber schon vorgângig betont, daB dazu
das Auswahlaxiom beansprucht werden muB.

Satz 18 .l:24) Jedes i-System kann zu einem universellen i-System fortgesetzt
werden.

Beweis: Seien <3f,<p> ein zum w-Gefûge <50l, *, F, <, E} gehôriges
i-System, © die Menge aller zu gehôrigen i-Systeme und

Nach Satz 11.11 ist -G- durch < teilgeordnet und wegen <$, ç?> e @ nicht-

M) Vgl. S. Banach [14], Théorèmes 15, 16.
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leer. Seien ferner A eine nichtleere Kette von -G- und g0 ^ (g [<©, ip} e A].
Man uberzeugt sich leicht davon, da6 g0 ein i-Feld ist. Durch die Festlegung
(po(A) ip(A) [A e ©, <©, y)} e A] ist in eindeutiger Weise uber $0 eine
i-Funktion cp0 definiert. Somit gehort <3f0,ç>0> zu -Q-. GewiB ist <$o,(poy
eine obère Schranke von A ; genauer ist <g0, ç?0> sup A. Wir haben jetzt
nachgewiesen, da8 O induktiv geordnet ist, und nach dem ZoRNschen Lemma
besitzt -0- mindestens ein maximales Elément <<r>, co>. <§, co> ist ein
universelles i-System. In der Tat: Wir treffen die Gegenannahme und unter-
scheiden zwei Falle :

1) <§,co> nieht abgeschlossen;
2) <§, co) abgeschlossen.
Im Falle 1) liefert der Permanenzsatz 15.1 und im Falle 2) der Fortsetzungs-

satz 16.1 den Widerspruch zur Maximalitat von <<r>, co). <<?), eo) <5DÎ, co)
ist also ein universelles i-System, welches das ursprungliche i-System /Ç, <p}

fortsetzt, und die Existenz eines solehen war die Behauptung.
Als einfaches Korollar dièses Fortsetzungssatzes und des Existenzkriteriums

14.1 ergibt sich der

Existenzsatz 18.2:25) Notwendig und hinreichend fur die Existenz eines dem

n-Gefuge assoziierten universellen i-Systems ist die Bedingung

M • iE < N • iE => | M | < | N | (81)

§ 19. Beantwortung der Kardinalîragen

Wir beziehen uns auf die Vorbereitungen in § 12 und stellen die gewonnenen
Resultate wie folgt zusammen :

A. Zum n-Gefuge gibt es dann und nur dann ein assoziiertes i-System, wenn
die das Wechselspiel zwischen f, < und E beschreibende Bedingung (81) erfullt
ist (vgl. § 14).

B. Genau die im absoluten i-System <(£*, #*) bewertbaren Elemente der

Grundmenge $R sind absolut bewertbar (vgl. § 17).

C. Genau die Elemente des Normfeldes (£ sind unbedingt bewertbar; dagegen

gibt es keine unbedingt unbewertbaren Elemente in der Grundmenge 9JI (vgl.
§§ 14, 18).

Die zuletzt erwahnte Sachlage kann man als Losbarkeit des allgemeinen
Bewertungsproblems in unserem Sinne bezeichnen.

26) Vgl. A.Tarski [16], Satz 1.58, p 56
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4. Eapitel: Beispiele

Die nachfolgenden Ausfiïhrungen haben zum Zweck, die im vorigen Kapitel
entwickelte allgemeine Théorie an Beispielen zu illustrieren. Gleichzeitig werden
noch Fragen beantwortet, die sich im Laufe der Théorie gestellt haben mogen.
Insbesondere wird die Existenz invarianter Funktionen liber normierten Ge-

fûgen belegt.

§ 20. Deckungsmonotone Inhaltsoperatoren

Es sei R ein abstrakter Raum mit den Elementen x,y,z,..., F eine Jcom-

mutative Gruppe eineindeutiger Abbildungen von R auf sich und E (J) ^E c R)
eine ein fur allemal ausgezeichnete Einheitsmenge. Eine Teilmenge A von R
heiBe E-beschrânkt2*), wenn endlich viele Transformationen aXi..., ar e F

r
so existieren, daB fur die F-Bilder oQE {aQx \ x c E} vonEgilt: 4 c ^ oQE.

Trivialerweise sind E und (|) i£-beschrânkt; mit A, B sind A ^ B und xA
(fur jedes ref) i£-besehrânkt. Es bezeiehne nun 9JI die Menge der 2£-besehrânk-

ten Teilmengen A, B, C,... von R. Zwei solche seien genau dann verknûpf-
bar, wenn sie disjunkt sind, und in diesem Falle gelte A * B A ^ B. Jede
Transformation aus F erzeugt offenbar einen Automorphismus in der Menge
Sft, und ohne EinbuBe an Klarheit kann gesagt werden, daB F eine kommutative
Gruppe eineindeutiger Abbildungen von 9JI auf sich sei. Genau genommen
werden zunâchst Automorphismen in der Menge aller Teilmengen von R
erzeugt, von denen man sodann die Restriktionen auf 9Jt bildet. Im AnschluB
an die Bezeichnung [A] fur die charakteristische Funktion der Menge A e 9JI

definieren wir eine binâre Relation < zwischen den Belegungen ùber 9JI wie folgt :

f<9<=> Z f(A)[A](x) < Z g(A)[A](x) [aile x e R].

Wir behaupten nun, daB die Begriffsfiinfheit <9Jl, *, F, <, E} ein ^-Gefûge
sei. Dazu sind zunâchst die Postulate des Gefiiges nach § 7 zu verifizieren. Dies
bereitet keine Schwierigkeiten, und wir begnugen uns mit einigen Hinweisen :

Das nach (III) geforderte neutrale Elément 0 ist die leere Teilmenge von R.
Bei den Nachweisen von (VIII), (IX), (X) bedenke man [A * B] [A] +[B] ;

[rA](x) [A] (r^x); A ^ B 0 =>rA^rB (]). DaB die Einheitsmenge

E ein Normelement im Sinne von § 9 ist, ersieht man aus der aua

A c ^ gqE folgenden Beziehung i0 $ %a 5 E ié- ^s ue^ also em
e=i e=i

26) DaB hier die in § 9 eingefuhrte Benennung gebraucht werden darf, wird sich weiter unten
rechtfertigen.
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vor. Die nach Satz 8.4 in der Grundmenge 501 induzierte Teilordnungsrelation
ist die mengentheoretische Inklusion, so daB also A ^ JB <=> A c B gilt.

Nun durchsehreiten wir kurz die im dritten Kapitel dargelegte Théorie und
halten die wichtigsten Positionen fur das vorliegende Beispiel fest. Die Bele-
gungsâquivalenz von Mengen wird an anderen Orten Deckungsàquivalenz ge-
nannt27). Die Spezialisierung der BegrifFe i-Feld, i-Funktion und i-System
fuhrt auf die Begriffe Inhaltsfeld, Inhaltsoperator und Inhaltssystem28). Zut
Définition des Inhaltsoperators bemerken wir, daB dieser in der Inhaltstheorie
meistens als reellwertige Funktion mit den Eigenschaften Additivitàt (62),
F-Invarianz (12), Normiertheit (13) und Definitheit (65) gekennzeichnet wird.
Die aus der Belegungsmonotonie (II) durch Spezialisierung hervorgehende
Eigenschaft, die sogenannte Deckungsmonotonie, erscheint demnach in der
axiomatischen Inhaltstheorie als fakultative Eigenschaft eines Inhaltsoperators.
Es war aber ein Anliegen der beiden inhaltstheoretischen Studien [3] und [36]
zu zeigen, daB die bekannten klassischen sowie gewisse in der axiomatischen
Théorie ausgezeichnete Inhaltsoperatoren dièse Eigenschaft besitzen, weshalb
die durch (II) geforderte Beschrànkung auf deckungsmonotone Inhaltsoperatoren

nicht als Stôrung empfunden werden muB29). — Es existieren Inhalts-
felder ohne die Eindeutigkeitseigenschaft30), wodurch der Beweis dafûr er-
bracht ist, daB (F 4) von (Fl), (F 2), (F 3) logisch unabhângig ist. — Ober- und
Unterfunktion eines Inhaltsoperators heiBen àufierer und innerer Inhalt oder
Ober- und Unterinhalt31). — Aus den Ausfûhrungen von § 14 ist die Bedeutung
der aus (81) hervorgehenden Bedingung (y) Z[rE](x) < E [tE](x) [allexeR]

=> | M | ^ | N | klar ersichtlich; sie wurde beispielsweise fur die translations-
invariante Théorie der euklidischen Ràume mit dem halbabgeschlossenen Ein-
heitswurfel als Einheitsmenge als erfullt nachgewiesen32). Die Benennung
Normsystem findet sich auch in der Inhaltstheorie33). — Eine Bemerkung zum
Permanenzsatz und dessen Ideenkreis wurde frùher angefdhrt21). — In der
translationsinvarianten Théorie der euklidischen Ràume ist das absolute

27) [3], Def.3, p. 135; [36], Abschnitt I.
28) Vgl. [6], p.206; [36], Abschnitt II; fur euklidische Raume speziell [3], p. 123; [13], p.96.
29) Bekanntlich kommt dièse Beschrankung derjenigen auf zerlegungsmonotone

Inhaltsoperatoren gleieh, sobald eine gewisse Auslegbarkeitseigenschaft gewahrleistet ist (vgl. [36],
Satz 8). In jedem Fall ist sie weniger einschneidend als die Beschrankung auf Inhaltsfelder mit
der Kôrpereigenschaft (vgl. [36], Satz 3).

80) Vgl. H.Hadwiger [13], p. 122 und p. 135, Anm. 24. Das dort konstruierte Inhaltssystem
mit dem LEBESGUESchen Feld ist nach allgemeinen Satzen deckungsmonoton. Fur eine analoge
Sachlage vgl. S.Banach [14], Théorème 20, p. 27, wo erstmals eine Frage dieser Art behandelt
wurde.

«) Vgl. Fuûnote 19.
M) H.Hadwiger [3], Hilfssatz 2, p. 128.
»») [13], p. 130.
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Inhaltssystem bekannt als das TARSKische System**). — Die universellen In-
haltssysteme pflegt man auch als BANACHsche Système*5) zu bezeichnen.

Nach diesem kurzen Gang, der den AnschluB an die allgemeine Théorie
gewâhrleisten sollte, versetzt uns dièse in die Lage, die Hauptresultate der
Inhaltstheorie wie folgt zu formulieren :

A. Genau dann, wenn die Grundgegebenheiten der Bedingung (y) geniigen,
gibt es deckungsmonotone Inhaltsoperatoren.

Fur den Fall, da8 die Existenz deckungsmonotoner Inhaltsoperatoren gesi-
chert ist, ergibt sich weiter:

B. Genau die im absoluten System <(£*, #*> mefibaren E-beschrànkten Men-
gen sind absolut mefibar.

C. Genau die endlichen Vervielfachungen der Einheitsmenge E sind unbedingt
mefibar. Dagegen gibt es Iceine unbedingt unmefibaren E-beschrânkten Mengen,
positiv gewendet : Jede E-beschrânkte Teilmenge des abstrakten Baumes B kann
deckungsmonoton ausgemessen werden. Da dies zudem mit einem einzigen
(universellen) Inhaltssystem realisiert werden kann, so ist damit das allgemeine
Inhaltsproblem bei kommutativer Transformationsgruppe als lôsbar erkannt.

§ 21. Lineare Gefiige und lineare i-Système

Wir treffen in diesem Paragraphen die Vorbereitungen fur eine wichtige
Gattung von Beispielen, die unter einem einheitlichen Gesichtspunkt behandelt
werden kônnen.

Wir betrachten einen durch die Relation < teilgeordneten Vektorraum 3JI ûber
dem Korper R der reellen Zahlen, in welch ersterem eine kommutative
Transformationsgruppe F wirkt. Dabei sollendiefolgenden Vertrâglichkeitenbestehen :

(VI) A,B,Cem; A^B=>A +G <5 +C,
(V2) A,B€m; aeR; A ^B; a^0=>aA < aJ5

(V3) A,Bem; A < JS=>— B ^— A,
(V4) A, BeWl; re T; A ^B=>rA <r£,
(V5) A,BcWl; a,b€Tl;Te f=>r(aA +bB) axA +brB.

Insbesondere wird also dureh (V5) die Linearitàt der Transformationen von f
ausgesagt. Als einfache Folgerungen von (VI), (V2), (V3) und der Définition
des Vektorraumes ergeben sich :

84) Fur die Benennung vgl. Fufinote 23, fur den Begriff [3], p. 142; [13], p. 127.

8S) Vgl. Fufinote 24 und [13], p. 131.
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A,B9C,D€m; A < 5, C ^D=>A +C < J5 +D, (86)

A,B,C,D€m;A+C^B+D, B ^A=>C < 2), (87)

A eSDÎ; a,6eR; 0 <^4; a <6=>aJ. < 6 J. (88)

Bezeichnet / eine Belegung ùber 9K, so ist klar, was man unter dem Elément
E f(A) A von 9JI zu verstehen hat. Identifiziert man die Halbverknupfung *

mit der Addition + in 501 und setzt / < g <=> Ef(A)A < Eg(A)A, so ist
mûhelos einzusehen, daB <9Jl, + f, <> ein Gefûge ist. Die induzierte Teil-
ordnung in der Grundmenge 9Jt fallt mit der gegebenen Teilordnung ^ zusam-
men. LàBt sich weiter mit einem festen Elément E von 9JI mit 0 < E, 0 ^ E
fur jedes J. aus 2R die Beziehung (37) erfûllen, so heiBt <9K, +, T, <, E}
ein lineares n-Gefûge. Ferner nennen wir ein zu einem linearen n-Gefuge ge-
hôriges i-System <g, ç?> linear, wenn $ ein linearer Unterraum von 2R und ç?

ûber 5 linear ist; entsprechend heiBen ^ lineares i-Feld und 9? lineare i-Funktion.
Wir beweisen im folgenden zwei Sâtze, die den AnschluB der hier stattfin-

denden Betrachtung an die allgemeine Théorie herstellen.

Satz 21.1: Voraussetzung: Es seien ein lineares n-Gefûge und <$,<p} ein
zu D gehôriges nicht notwendig lineares i-System. Behauptung: Es gibt ein klein-
stes durch <$, 99) eindeutig bestimmtes zu gehôriges lineares i-System <gf, Ç>>

mit <%,(p>< <§^^>.
Wir nennen <5,^> die lineare Huile von <3f>9?>- Offenbar ist der Ûber-

gang zur linearen Huile ein AbschlieBungsprozeB.

Beweis:SB) Wir beweisen vorerst die Hilfsaussage A1,..., An, Bx,..., Bm e g ;

%
n m n m

an, &!,..., 6m€ R; E avAv^ E bfJLBfl=> Z av(p(Av) < E
l l l l

a) Seien vorerst die av, b^ natûrliche Zahlen. Dann folgt die Behauptung un-
mittelbar aus der Belegungsmonotonie von (p. — b) av, b^ ganze Zahlen: Der
Effekt von Null als Vorfaktor ist trivial. Dadurch, daB in der Voraussetzung
aile Glieder mit negativen Vorfaktoren auf die andere Seite geschafft werden,
làBt sich dieser Fall auf a) zurùckfûhren. — c) av, b^ rationale Zahlen : Durch
Multiplikation der Voraussetzung mit einem passenden Generalnenner wird die
Situation von b) hergestellt, und es folgt auch hier die behauptete Ungleichung. —
d) Es seien nun die av, b^ beliebige réelle Zahlen. Zu Ax,..., An, B±,..., Bm gibt
esnach (39) ein Elément C n-Ee% mit O^C; 0 ^Av + G (v=l,...,n);
0 ^ Bp + G(f/, 1,..., m). Zu einem beliebigen e > 0 gibt es rationale
Zahlen av, al, b^, b"^ mit av — e < a'v < av < anv < av + e (v 1,. n);

S6) Der hier vorgetragene Gedankengang ist zum Teil dem Beweis des Satzes 2 in [36] nach-
gebildet.
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bp — e < bp < bp ^ b^ < bp + £ (f* 1,..., m). Die Voraussetzung wird
n mm n

nach (VI) und (88) zu Z a'v(Av + C) + Z b'^C < Z b'^B^ +C) + Za",C.

Nach Fall c) und unter Beriicksiehtigung der aus (65) folgenden Beziehungen
n m

<p{Av + C) ^O^iB^+C) >0, cp{C) >0 resultiert Sav<p(Av) < Sb^(B^) +
n m v=l n—1

+ ce mit c Z(p(Av) +Z(p(B + 2(m + n)(p(C). Da c>0 von e unab-

hângig ist und e beliebig gewâhlt wurde, so gilt auch hier die behauptete Unglei-
chung, und die Hilfsaussage ist bewiesen. - Wir konstruieren nun das gesuchte

lineare i-System: g sei der durch Ç erzeugte lineare Unterraum von 2R, also

in der Tat ein lineares i-Feld, das ^ umfaBt. Nach der Hilfsaussage ist durch
n n ^

die Anschrift y( Z avAv) — Z av<p(Av) iiber g eindeutig eine lineare monotone
v=l v=l

f-invariante Funktion definiert, die iiber 5 niit cp ubereinstimmt. Im Hinblick
auf Satz 11.9 ist y eine i-Funktion und insgesamt <5 > ^) ein lineares i-System

mit <5, <p} K_ <5 > j offenbar ist es das kleinste dieser Art, wzbw.
Mit ganz âhnlichen Ùberlegungen uberzeugt man sich von der Richtigkeit

der folgenden Beziehungen fur die Ober- und Unterfunktion eines nicht not-
wendig linearen i-Systems :

AeWl; aeR; a> 0=>ç>(aA) cûp(A), <p(aA) a<p(A), (89)

A em=>y(—A) —<p(A). (90)

Daraus ergibt sich unmittelbar der

Satz 21.2 : Sind ein lineares n-Gefuge und <JÇ, ç?> ein zu D gehôriges nicht

notwendig lineares i-System, so ist die abgeschlossene Huile <3f*><p*> von
<3f? 9?) ein Uneares i-System.

Aïs Folgerungder beidenletzten Sâtze resultiert die Beziehung <5, <p} <( ($ *, (p *)
fiir die lineare und die abgeschlossene Huile eines nicht notwendigerweise
linearen i-Systems. Ferner lâBt sich mit Satz 15.3 miihelos die Gûltigkeit von

<§*,?*>- <g*,^*> bestâtigen.
Zur Konstruktion linearer i-Systeme kann folgendes bemerkt werden :

1. In der allgemeinen Théorie ist an drei Stellen die Rede von der Konstruktion

eines i-Systems: Beim Existenzkriterium 14.1, beim Permanenzsatz 15.1
und beim Fortsetzungssatz 16.1. Ist nun das in Betracht gezogene ?i-Gefiïge

linear, so vermittelt Satz 21.2 die Einsicht, daB die Sâtze 15.1 und 16.1 ins-
besondere aus einem vorgegebenen linearen i-System ein ebensolches hervor-
gehen lassen, wodurch die Théorie der linearen i-Systeme gegeniiber der

allgemeinen Théorie eine gewisse Selbstândigkeit erlangt.
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2. Mit Satz 21.1 kann aus dem Erfulltsein der Existenzbedingung (81) unter
Heranziehung des Normsystems ein lineares i-System gewonnen werden. Da-
durch erscheint (81) als eine auch fur lineare ^-Système kompetente
Existenzbedingung.

§ 22. Invariante Intégrale

Sei R ein abstrahter Raum und F eine lcommutative Gruppe eineindeutiger
Abbildungen vonJîaufsich. WirbetrachtenreellwertigeFunktionen A,B,C,...
iiber R. Dureh die Setzung (rA)(x) A(rx) [aile x e R] wird die Wirkung
einer Transformation ref auf die Funktion A beschrieben, Es bezeichne E
eine ein fur allemal festgelegte besehrânkte nichtnegative reellwertige Einheits-
funktion, welche nicht identisch verschwinden soll. 30? sei die folgende Funk-
tionenmenge : Eine reellwertige Funktion A iiber R gehore genau dann zu 30?

r

wenn endlich viele Transformationen gx am € F existieren, die der Bedin-
m

gung | -4(#)| ^ S (o^E) (x) [aile x e R] genûgen. Die soeben zum Ausdruck

gebraehte Beschrânktheit von A bezxiglich E nennen wir fortan E-BeschrânJct-

heit26). Offensiehtlieh ist 501 ein Vektorraum iiber dem Kôrper der reellen Zahlen.
Âhnlich wie in § 20 legt man sich zurecht, daB F als kommutative Gruppe
eineindeutiger Abbildungen von 9Jt auf sich aufgefaBt werden kann. Wegen
der Beziehung [r(aA + bB)] (x) (aA +bB) (rx) aA(rx) + bB(rx)

a{xA) (x) -\-b(xB) (x) [aile x e R] erscheint jede Transformation r e T als
eine lineare Transformation des Vektorraumes 30?. Weiter sei durch

A < B <=> A (x) < B(x) [aile x e B]
eine zweistellige Relation zwischen den Funktionen von 9JI erklârt, von der
man leicht nachweist, daB sie 30? teilordnet und den Vertrâglichkeitsforderungen
(VI) bis (V4) von § 21 geniigt. Nach den Ausfûhrungen von § 21 liegt nun im
dort besprochenen Sinne ein Gefûge vor. Aus der Définition von SD? ergibt sich

m a m a
io "S Ïa + % i£ 5 ^ 27 i/, also die Tatsache, daB die Einheitsfunktion E ein

Normelement ist. Demzufolge stellt die Fùnfheit <30?, +> T, <, E} ein lineares

n-Gefuge dar.
Es werden nun ganz kurz die HauptbegrifFe der Théorie gemustert. Die

Belegungsâquivalenz von Funktionen heiBt an anderen Orten Deckungsâqui-
valenz*7), und die Spezialisierung der Begriffe lineares i-Feld, lineare i-Funktion
und lineares i-System fuhrt auf Integralfeld, Integra! und Integrationssystem*8)*

Die lineare Huile <(£, J> des Normsystems wird auch etwa als das elementare*

») [5], p. 117.

") [l],p.35O; [4],p.3O7; [5],p.l20; [7],p.l62.
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Integrationssystem bezeichnet39). Im ûbrigen beachte man die Bemerkungen
am SchluB des letzten Paragraphen. Es ergeben sich die folgenden Haupt-
aussagen der invarianten Integrationstheorie :

A. Notwendig und hinreichend fur die Existenz von Integrationssystemen ist
die Bedingung E (rE) (x) < E (rE) (x) [aile x e R] => \ M | < | N |.

reM reN
Unter Voraussetzung der Existenz von Integrationssystemen gilt weiter :

B. Genau die Funktionen von (£* sind in unserem Sinne absolut integrierbar.
C. Genau die Funktionen von (Ê sind unbedingt integrierbar. Jede E-beschrankte

reellwertige Funktion uber dem abstrakten Raum R ist integrierbar.

§ 23. Limitierung besehrânkter Zahlenfolgen

Die dem § 22 zugrunde gelegte Situation wird wie folgt spezialisiert : R sei die
Menge der naturlichen Zahlen, V die triviale nur aus i bestehende Transforma-
tionsgruppe und E die charakteristische Funktion von R. Die Menge 501 enthalt
sodann genau die besehrankten abzahlbaren Folgen reeller Zahlen. Es liegt
somit naeh dem Vorangehenden ein lineares w-Gefuge vor. Die in § 10 betrach-
tete Pseudometrik ist hier sogar eine Metrik, und die Belegungsaquivalenz
erweist sich mit der Gleichheit identisch : A ^ B <=> A B. Nur nebenbei
sei bemerkt, daB die Metrik im hier betrachteten Fall die Gestalt d(A, B)

sup \av — bv\ besitzt40). Das Normfeld besteht aus den konstanten Folgen

mit ganzzahligen nichtnegativen Gliedern, das i-Feld (£ aus allen konstanten
Folgen uberhaupt. Die Existenzbedingung (81) ist trivialerweise erfullt. Fur
die absoluten Schranken gemaB § 17 ergibt sich A (av) ==> %(A) supav,

X(A) inf av, womit sich genau die konstanten Folgen als zum linearen

i-Feld (g* gehôrig herausstellen, das hier mit (g ubereinstimmt. Eine Folge
heiBe fastkonstant, wenn sie von einem gewissen Index an konstant verlauft.
Aus dem i-Feld g der fastkonstanten Folgen lafit sich ein lineares i-System
<g, ç?> herstellen, wenn man jeder fastkonstanten Folge die betreffende Kon-
stante als 99-Wert zuordnet. Fur die Ober- und Unterfunktionen von 99 erhalt man

A (av)=> y {A) lim sup av, cp(A) liminf av (91)

Somit umfaBt das i-Feld 5* genau die konvergenten Folgen reeller Zahlen,
und 9?* ordnet diesen den gewohnlichen Grenzwert zu41).

39) [4], p. 309.
40) Vgl. L.A. Ljusternik-W.I.Sobolew [37], pp. 9, 10, 16, 33. Dort wird dièse Gestalt ver-

wendet, und die Grundmenge erweist sich bezuglich der Metrik als ein nichtseparabler Banach-
scher Raum.

41) Vgl. Ky Fan [26], exemple 1, p. 138.
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Im folgenden wird nun ein Zugang zu gewissen Fragen der Limitierungs-
theorie erortert42). Bezeichnet © das WirJcungsfeld der Limitierungsvorschrift
yj, so haben wir folgende Eigenschaften in Betracht zu ziehen : (L1) Permanenz-
bedingung und (L2) Erweiterungsbedingung. Von den fakultativen Eigenschaften
fassen wir ins Auge: (L3) Additivitât von (g und ip im Sinne von (F 1) und (62)
bzw. (L3') Linearitât von © und y) im Sinne von § 21 und schlieBlich (L4)
Monotonie von ip im Sinne von (64). Man stellt unter Berûcksichtigung der
Tatsache F {c} muhelos fest, daB sieh durch Zusammenfassung von ©
und yj ein i-System <©, t/>> ergibt, falls (Ll), (L2), (L3), (L4) erfullt sind.
Mit (L3;) statt (L3) ist <©, ipy ein lineares i-System; die Unterscheidung zwi-
schen diesen beiden Fâllen ist wegen § 21 fur die zu beantwortende Hauptfrage
unnôtig. (Ll) und (L2) besagen, daB jedes solche Limitierungssystem <©, yi)
eine echte Fortsetzung des vorgàngig betrachteten linearen i-Systems <$r* > 9^*^
darstellt. Nach (91), (83) und (80) gilt

A e © ; A — (av) =.> lim inf av < ip(A) < lim sup av (92)

und aus den Sâtzen 18.1 und 21.2 folgt das Hauptergebnis : Jede beschrânkte Folge
reeller Zahlen kann durch ein lineares und monotones Verfahren limitiert werden.
Der dabei erhaltene verallgemeinerte Grenzwert genugt der Ungleichung (92)43).

Nicht zuletzt war es ein Anliegen dieser Betrachtung zur Limitierungs-
theorie, zu zeigen, daB erstens die faktische Ausschaltung der Gruppe V durch
die Setzung F {t} nicht notwendig eine vollige Entartung der Théorie
bedeuten muB und zweitens die lineare Huile i.a. von der abgeschlossenen
Huile verschieden ist, wie dies am i-System <g, cp} der fastkonstanten Folgen
ersehen werden kann.

§ 24. Zwei Gegenbeispiele

Es sollen hieranhand ganz einfacher Beispiele folgendeAussagen belegt werden :

1. Es gibt Gefûge ohne Normelement.
2. Nicht in jedem n-Oefûge ist die Existenzbedingung (81) erfullt.
Damit ist in beiden Fâllen eine logische Unabhàngigkeit nachgewiesen.

42) Vgl. etwa K.Knopp [38], insbesondere pp. 479/480.
43) Auf etwas andere Weise erzielte S.Banach [39], p. 34, im wesentlichen dasselbe Résultat.

Der dort gegebene Beweis beruht auf einem allgemeinen Fortsetzungssatz fur spezielle Linear-
formen ([39], p.27), ([18], p.226), der dem HAHN-BANACHschen Ideenkreis angehort. Es ist
bernerkenswert, dafi man dort ohne Monotonieeigenschaft der Linearformen auskommt. Dies liegt
daran, dafî in der linearen Struktur ganz andersartige Moglichkeiten von vorneherein gegeben
sind; die dort vorkommenden subadditiven positiv-homogenen Funktionen gestatten die Schlusse

derjenigen Art zu ziehen, die bei uns aus Monotonieforderungen erwachsen. Fur etwas speziellere
Satze von diesem Typ vgl. H.Hahn [17], p.217; S.Banach [18], p. 212; N.Bourbaki [40],
chapitre II, p. 101.
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Zul.yjl: Menge der abzahlbarenFolgenreellerZahlen mit hôchstens endlich
vielen von Null verschiedenen Gliedern. *, F, < seien gleich erklart wie in
§ 23. GewiB ist <9K, *, F, <> ein Gefuge. Jedoch laBt sich mit keinem Elément
E e 2R die Bedingung (37) fur aile A e 9K erfullen.

Zu 2: 9JÎ : Menge der reellen Zahlen, * : Addition, F : Gruppe der Dilatationen
rc: A -> cA [c> 0 reell], / < g <=> Zf{A)A < Eg{A)A\ E 1. Ohne Muhe
verifiziert man, daB <ÏR, *, F, <, E} ein ^-Gefuge ist. Die in der Grund-

menge 9JI induzierte Teilordnungsrelation ist die gewôhnliche Ordnung der
reellen Zahlen. Fur die F-Komplexe M [r1/2, r1/2], N \i] ergibt sich
M %E 5 N • iE, jedoch ist 2 |M|>|N| 1, womit (81) verletzt ist. —-

Es liegt hier ein Beispiel vor, in welchem offenbar die Gruppe F fur das Nicht-
erfulltsein der Existenzbedingung verantwortlich ist44).

§ 25. Eine Kennzeichnung der reellen Logarithmusfunktion

Es handelt sich hier darum, mit gewissen Satzen unserer Théorie das folgende
bekannte Résultat der reellen Analysis zu bestatigen :

Ist 30Î die Menge der positiven reellen Zahlen und E > 1, so gibt es genau eine

reellwertige Funktion y uber 9Jt, die den Bedingungen

A,Bem=Xp(AB)=<p(A) +cp(B),A < B=><p{A) ^cp{B);<p(E) 1 (93)

genugt. Es ist somit cp{A) — ^log A [aile A e 501].

Beweis- * sei die Multiplikation in SDÎ und F {i}. Fur die Ordnungs-
relation < zwischen den Belegungen uber 9JI legen wir fest :

/ < g <=> n Df(D)
Deïïl DeTï

Man uberzeugt sich muhelos davon, daB <3J{, *, F, <, E} ein w-Gefuge mit
erfullter Existenzbedingung (81) darstellt und daB fur jede Zahl A effll die
absoluten Schranken %(A) und X(A) ubereinstimmen. Mit (85) resultiert die

Behauptung, wenn man bedenkt, daB im vorliegenden Fall die i-Funktionen
durch (93) charakterisiert werden.

§ 26. Drehungsinvariante Eibereichfunktionale45)

Es sei E die euklidische Ebene mit dem fest gedachten Ursprung z, und es

bezeichne 9K die Menge der nichtleeren beschrankten abgeschlossenen und

44) Auf ein ahnhches von H. Wielandt stammendes Gegenbeispiel wird in [4], p 308, Fui3-
note 4, hmgewiesen.

45) Dièses Beispiel verdanken wir Herrn H.Hadwiger.



160 JtJRG RÂT2

konvexen Teilmengen («Eibereiehe») von R. * bedeute die MiNKOWSKische
Addition bezuglich z, also in vektorieller Schreibweise

A* B {x +y\zeA, y e B}

Bekanntlich ist <9ïl, *> eine kommutative Halbgruppe mit dem neutralen
Elément 0 {z} ,46). Weiter erwâhnen wir zwei Vertrâglichkeitsaussagen zwi-
schen * und der mengentheoretischen Inklusion:

icJ?,CcD=>i*(JcB*I), (94)

A*C c B*D, B c A=>C c D. (95)

(94) ist klar und (95) eine einfache Folgerung bekannter Eigenschaften der
sogenannten Stutzfunktion47). Setzt man nA fur die w-malige Verknûpfung
von A mit sich selbst und 0A 0 [aile A eSOÎ], so verstehe man unter
S(f) Z f(A)A die MiNKOWSKische Summe aller A e SOI mit f(A) =£ 0 unter

Aeïïl
Beriicksichtigung der Vielfachheit f{A). Fur die Relation < bestehe der An-
satz / < g <=> 8(f) c S (g), so daB sich die in 501 induzierte Teilordnungs-
relation mit der Inklusion identifiziert. Ist schlieBlich f die (kommutative)
Gruppe der Drehungen der Ebene jR um z und E die Einheitskreisscheibe um z,
so ergibt sich leicht, daB <2R, *, f, <, J5> ein n-Gefiige darstellt. Bei der
Ûberprûfung der Postulate stutze man sich auf (94), (95), S (/ + g) /S (/) * S (gr),

$(^4) A, r(A * B) xA *r£. Die i£-Beschrânktheit jedes Eibereiches J.
beruht auf rE E [aller e F] und der Tatsache, daB eine passende âuBere

Parallelmenge48) Av A * ^jE7 mit ganzzahliger Spanne p den Ursprung z

einschlieBt und A9 ihrerseits Teilmenge einer hinreichend groBen Kreisscheibe
rE um z ist. Die Existenzbedingung ist erfûllt, und es kann nach den absoluten
Schranken gefragt werden. Es gilt die Beziehung ~%(A) X(A) [aile A eSDî],
und mit (85) folgt:

Vber der Menge 9JÎ der ebenen Eibereiehe gibt es genau eine reellwertige Min-
KowsKi-additive monotone drehungsinvariante Funktion, die der Einheitskreisscheibe

den Wert 1 zuordnet.
Nun sind bekanntlich Umfang c und mittlere Breite b zwei reellwertige

MiNKOWSKi-additive monotone drehungsinvariante Eibereichfunktionale mit
c(E) 2tc und b(E) 2. Nach dem soeben bewiesenen Satz gilt %*{A)

c(A)J2n b(A)/2 fur jeden ebenen Eibereich A, und als Korollar ergibt
sich die von Cauchy entdeckte Beziehung c(A) nb(A).*9)

4e) Vgl. [13], p. 142 und [41], p. 12.
47) Vgl. [13]: p. 145 (39) und p. 199 (1); [41]: p. 11 (5) und p. 13 (15); [42]: p. 24 unten.
*8) Vgl. [13], p. 147 und [41], p. 17.

*9) Vgl. [13]: p. 208 (36), p. 210b), p. 212 (44); [42]: p. 48 (1), p. 65 (3).
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