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Invariante Funktionen iiber teilgeordneten
algebraischen Halbstrukturen

von JURG RATZ in Bern

Meinem verehrten Lehrer Herrn Prof.Dr. W. ScHERRER zum
70. Geburtstag gewidmet

Einleitung

Im AnschluBl an ein Seminar iiber Integrationstheorie, welches im Sommer-
semester 1951 an der Universitit Bern stattfand, wurden von H. HADWIGER,
W.NEF und A.KirscH Untersuchungen zur invarianten Inhalts- und Integra-
tionstheorie vorgenommen?). Dabei ist zwischen einigen inhaltstheoretischen
und gewissen integrationstheoretischen Studien eine auffallend grofie metho-
dische Ahnlichkeit zu bemerken. H. HADWIGER hat nun in einem Kolloquium
iiber geordnete Strukturen, welches im Wintersemester 1958/59 im Mathe-
matischen Seminar der Universitit Bern abgehalten wurde, die Untersuchung
einer Struktur angeregt, die er dort ein « Gefiige» nannte und die es gestattet,
Inhaltstheorie und Integrationstheorie in einem allgemeineren Lichte zu sehen
und vor denselben abstrakten Hintergrund zu stellen. Es ist das Ziel der vor-
liegenden Arbeit, einige Sitze der Theorie der Gefiige herzuleiten, deren
Korollarien in den beiden genannten Theorien wichtigste Stiitzen bilden. Damit
ist eine Theorie gewonnen, welche die Inhalts- und die Integrationstheorie
als Spezialfille enthilt. Geeignete Beispiele lehren aber, daBl das vorliegende
Modell noch ganz andersartiger Deutungen fihig ist, und darin diirfte vor
allem die Neuartigkeit bestehen.

Unser Vorgehen kann insofern als elementar bezeichnet werden, als es mit
elementaren Begriffen operiert und im wesentlichen nur die Kenntnis der ein-
facheren Analysis der reellen Zahlen voraussetzt. An einer einzigen Stelle komm?t
eine auf dem Auswahlaxiom fuBende Schlu3weise vor.

Bekanntlich haben sich in neuerer Zeit zwei Richtungen in der abstrakten
Inhaltstheorie abgezeichnet, nimlich die invarianzlos-verbandstheoretische
und die invariante Theorie?). Unsere Ausfiithrungen sind ganz der zweiten ver-

1) Vgl. [1] bis [12]. Zahlen in eckigen Klammern sollen stets auf das Literaturverzeichnis am
SchluB3 der Arbeit verweisen.

%) Vgl. etwa H.Hapwricer [13], p. 133/4. Fiir die erstgenannte Richtung verweisen wir auf
P.R.Haumos [20], K.MAYRHOFER [21], O.HAUPT — G.AUMANN ~ C.PAavuc [22], C.CARATHEO-
DORY [23], G.BirxHOFF [24] und fiir weitergehende Verallgemeinerungen V.GLIVENKO [25] und
Ky Fan [26].
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bunden und folgen im groBen den bekannten grundlegenden Ideen von
S.BaNAcH [14] und A.TAgsk1 [15, 16], die seit ihrem Bestehen schon in man-
nigfacher Weise beniitzt wurden3).

Zum Aufbau der Arbeit: Im ersten Kapitel stellen wir die benotigten Hilfs-
begriffe und Bezeichnungen und im zweiten den Begriff des Gefiiges bereit,
wihrend die hauptsidchliche Entwicklung im dritten Kapitel untergebracht ist.
Das vierte Kapitel enthélt einige Beispiele zur Theorie der Gefiige. Da die
Paragraphen 12 und 19 die Zusammenstellung der Hauptergebnisse umfassen,
kann hier auf eine solche verzichtet werden.

An dieser Stelle méchte ich den Herren Professoren Hapwicer und NEF
herzlich danken fiir alle Forderungen, die mir zur Abfassung dieser Arbeit von
ihnen zuteil wurden, sei es im kritischen Gespréich oder durch die Lektiire der
von ihnen publizierten Arbeiten auf diesem Gebiete der Mathematik. Besonders
danke ich aber Herrn Professor HADWIGER fiir die Anregung zu dieser Unter-
suchung iiberhaupt.

1. Kapitel: Hilfsbegriffe und Bezeichnungen

§ 1. Ordnungs- und A quivalenzrelationen

Ist Z eine Menge von Elementen x, y, z,... beliebiger Natur, so kénnen
einer zweistelligen Relation R in Z unter anderem folgende Eigenschaften zu-
kommen, wobei die nachfolgenden Formelzeilen stets fiir alle in Betracht fal-
lenden Elemente von Z Giiltigkeit besitzen sollen:

(R1) xR x ( Reflexivitdit)
(R2) xRy, yRz—= z Rz (Transitivitit)
(R3) 2Ry, yRe—x =1y (Antisymmetrie)
(R4) z,YyeZ=—>x Ry undfoder y R x ( Vergleichbarkeit)
(R5) xrRy—yRx (Symmetrie)

Im Anschlu an diese Eigenschaften legen wir fest:

Def. 1.1: Eine zweistellige Relation R in der Menge Z heif3t

a) Quasiordnung, wenn sie (R1), (R2) erfallt,
b) Teilordnung, wenn sie (R1), (R2), (R3) erfallt,
c) Totalordnung, wenn sie (R1), (R2), (R3), (R4) erfullt,
d) Aquivalenz, wenn sie (R1), (R2), (R5) erfullt.

3) Vgl. etwa H.HawN [17], S.Banacre [18], J,v.NEUMANN [19] sowie einige der Arbeiten
[1] bis [13].
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Die Menge Z heifst dann durch die Relation R a) quasigeordmet, b) teilgeord-
net, c) totalgeordnet. Relationen der Typen a), b), ¢) nennen wir fortan Ordnungs-
relationen.

Die Ordnungsrelationen heben sich i.a. von den Aquivalenzrelationen
durch das Fehlen der Symmetrieeigenschaft (R 5) ab. Dies bringen wir in der
Bezeichnung dadurch zum Ausdruck, daBl wir fiir Ordnungsrelationen das
Zeichen <, fiir Aquivalenzrelationen dagegen das Zeichen ~ (oder Abarten
derselben) verwenden. Bekanntlich induziert jede Aquivalenzrelation ~ in der
Menge Z eine Partition von Z in disjunkte Klassen, die sogenannten Aqui-
valenzklassen (~-Klassen).

Def. 1.2: Eine Aquivalenzrelation ~ und eine Quasiordnungsrelation < in der
Menge Z heiflen vertrdglich, wenn stets gilt:

/

rLy, ¥ ~z,yY ~y= a2 <y'.
Miihelos beweist man nun den nachfolgenden

Satz 1.3: Ist die Menge Z durch die Relation < quasigeordnet, so gilt:
a) Die durch x ~y<=x <y, y < x erklirte Relation ~ ist eine Aquivalenz-
relation in Z. b) ~ und << sind vertrdglich.

Sei nun W eine Teilmenge von Z und Rz eine zweistellige Relation in Z.
Sind z,y ¢ W und setzt man = Rw y<=> « Rz y, so ist Ry eine zweistellige
Relation in W, und es ist leicht festzustellen, daB sich die Giiltigkeit von (R 1)
bis (R5) von Rz auf Rw vererbt. So ergibt sich eine natiirliche Mdglichkeit,
der Teilmenge W eine Relation Rw aufzuprigen. Wo wir nichts Gegenteiliges
bemerken, sollen Teilmengen stets diese Relation aufweisen.

Den letzten Teil des Paragraphen widmen wir der Theorie der teilgeordneten
Mengen. Schon zu Beginn sei an das hier giiltige Dualitdtsprinzip erinnert?).

Def.1.4: Z sei eine durch < teilgeordnete Menge. Dann heif3t

a) x € Z maximales Element von Z, wenn qilt: yeZ, v <y=—>x =y,
b) x € Z kleinstes Element von Z, wenn qilt: x <y firalle yeZ;

c) xeZ obere Schranke von W(c Z), wenn qilt: y < x fir alle ye W;
d) die kleinste obere Schranke von W (c Z) das Supremum von W,

e) eine totalgeordnete Teilmenge W wvon Z eine Kette von Z.

Es ist klar, wie die dualen Begriffe (minimales und grotes Element, untere
Schranke, Infimum) erklirt werden miissen. Elemente der genannten Art brau-
chen nicht zu existieren. Existiert aber ein kleinstes (gro3tes) Element, so ist
dieses im Hinblick auf (R 3) eindeutig bestimmt, und es rechtfertigt sich die
Schreibweise sup W (¢nf W) fiir das Supremum (Infimum) von W.

4) Vgl. etwa H.HErRMES [27], p.T.
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SchlieBlich erwidhnen wir das mit dem Auswahlaxiom gleichwertige

Zornsche Lemma: Besitzt jede nichtleere Kette etner nichtleeren teilgeordneten
Menge Z ern Supremum tn Z, dann gibt es mindestens ein maximales Element
i Z.5)

In der Betrachtung der teilgeordneten Mengen ist der Begriff des Abschlie-
Pungsprozesses von groflem Nutzen fiir eine einfache Sprechweise:

Def. 1.6: Ist Z eine durch < teilgeordnete Menge, so heif3t eine Abbildung @
von Z in sich ein Abschlieffungsoperator in Z, wenn fiir alle Elemente von Z gilt:

(C1) r<Dx (B xctensivitit)
(C2) PDx L Dx (Idempotenz)
(C3) r <L y= P < Dy (Isotonie)

Ein Element x ¢ Z heif3t D-abgeschlossen, wenn Px = x.
Aus (C1), (C2) und (R3) ergibt sich ®Px = Pz, das heillt die P-Abge-
schlossenheit von @ x. Ebenso leicht folgt:

Satz 1.6: D« ist das kleinste D-abgeschlossene Element, das gréfer ist als «,
genauer: das kleinste Element der Menge {y | Py = y, x < y}.

§ 2. Pseudometrik und Metrik

Es sei Z wiederum eine Menge von Elementen z, y, 2, . . . beliebiger Natur.
Hier studieren wir reellwertige Funktionen d iiber Z X Z, denen unter ande-
rem die folgenden Eigenschaften zukommen koénnen (die nachfolgenden Formel-
zeilen gelten fiir alle Elemente von Z):

(M1) d(z,z) =0

(M2) dz,y)=0—=ax =y

(M3)  d(x,y) <d(x,2) +-d(z,9)

(M4)  d(z,y) <d(z,2) +d(y,?)

(M6) d(x,y) =0

Durch einfache Uberlegungen wird ersichtlich, daB die Postulatensysteme
{M1), (M4)} und {(M1), (M3), (M5)} gleichwertig sind und alle genannten
Eigenschaften auBler (M2) nach sich ziehen. Hingegen ist {(M1), (M3)} echt
schwicher als {(M1), (M4)}%). In diesem Sinne nennen wir (M4) die starke,

8) Vgl. H.HErMES [27], p.136ff,
¢) Um dies einzusehen, wiahleman Z = [0, 1]); d(z,y) = 2 —y[z > y]; d(z,y) = 1 [z <y].
Vgl. P.AvexaNDRO¥F - H.Horr [28], p. 29.
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(M 3) die schwache Dreiecksungleichung. Im Anschlufl an die obige Liste setzen
wir fest:

Def. 2.1:7) Jede reellwertige Funktion d iber Z X Z, die einem der Postu-
latensysteme {(M1), (M4)} oder {(M1), (M3), (M5)} geniigt, heift eine Pseudo-
metrik auf Z. Ist auPerdem (M2) erfillt, so heifit d eine Metrik auf Z. Die
Menge Z heifit durch die Funktion d pseudometrisiert beziehungsweise metrisiert
oder beziglich d ein pseudometrischer beziehungsweise metrischer Raum.

Durch die ndchste Aussage verbinden wir die bisherigen Ausfiihrungen unse-
res Paragraphen mit denjenigen des vorigen:

Satz 2.2: Ist d eine Pseudometrik auf der Menge Z, so wird durch die
Setzung x ~y<=>d(x,y) = 0 eine Aquivalenzrelation ~ in Z definiert.
Der Beweis darf seiner Einfachheit wegen iibergangen werden.

§ 3. Bezeichnungen

In Anbetracht der Tatsache, daf} in § 1 Entwicklungen angebahnt wurden,
auf die mehrfach und in génzlich verschiedener Weise zuriickgegriffen werden
wird, verwendeten wir bisher eine in bezug auf die nun festzulegende Bezeich-
nungsart vollig neutrale Symbolik. Fir das Nachstehende erweist sich dies
nicht mehr als nétig, und wir bezeichnen fortan wie folgt (die genannten
Begriffe werden zu gegebener Zeit weiter unten erklirt werden):

IR : Grundmenge mit den Elementen A, B, C, D, E, O und den Teilmengen
(insbesondere invariante Felder) €, &, &, H, N, S, I.

*: Halbverkniipfung auf 9.

I': Kommutative Gruppe eineindeutiger Abbildungen von I auf sich mit den
Transformationen ¢, 7, &, und den ' -Komplexen A, O,K, A, M,N,IT,P,
T, ®,1,. ¢ bezeichne das neutrale Element von I".

B: Menge der Belegungen f, g, %, %, o iiber Ii.

a,b,c,d, c: reelle Zahlen (¢ wird im iiblichen Sinne verwendet).
k,l,m,n,p,q,r,s,t: nichtnegative ganze Zahlen.

R: Menge der reellen Zahlen. U, V: Teilmengen von R.

%, A, u,v, 7w, o: Indices.

®, %, ¥, o: invariante Funktionen.

[O: Gefiige.

@: Menge von invarianten Systemen (¥, ¢).

?) Vielerorts finden sich in dieser Definition unnétige Postulate wie z.B. (M 6). Unseres Wissens
hat A.LinpENBAUM [29], p.211, erstmals ein minimales Postulatensystem fiir die Metrik auf-
gestellt. Vgl. auch G. Auvmanx [30], p.83.



126 Jiora Rirz
§ 4. Der Begriftf der algebraischen Halbstruktur

Def. 4.1: Eine Halbverknipfung * auf einer Grundmenge YN ist eine ein-
deutige Abbildung einer gewissen Teilmenge D von M X M in M. Zwes Ele-
mente A, B € M heiflen in dieser Rethenfolge verkniipfbar, in Zeichen A * B def,
wenn das Paar (4, B) zu D gehort; A * B heif3t das dabet resultierende Element.

Ist insbesondere ® = IR X M, soist * eine Verkniipfung auf M. Die durch
die Definition 4.1 realisierte Verallgemeinerung besteht also im Verzicht auf
die allgemeine Ausfiihrbarkeit der Verkniipfung.

Def. 4.2: Eine algebraische Halbstruktur <{IN; *,,..., *,> besteht aus der
Grundmenge I und den Halbverkniipfungen *,...,*, auf M.

§ 5. Die Transformationsgruppe

Dadurch, da8 wir eine Gruppe von Transformationen einer Grundmenge in
Betracht ziehen und die Invarianz gewisser Funktionen gegeniiber jenen
Transformationen fordern, verpflichten wir uns der invarianten Richtung im
Sinne der Einleitung.

Wir beschrinken uns in der vorliegenden Arbeit auf kommutative Transfor-
mationsgruppen. Es zeigt sich, dafl allein dadurch noch keine Garantie fiir eine
positive Beantwortung der Existenzfrage gegeben ist, wie dies an anderen
Orten der Fall ist®). Die Kommutativitdt wird an entscheidenden Stellen der
Theorie wichtige Schliisse gestatten.

Sei nun ' eine kommutative Gruppe eineindeutiger Abbildungen einer
Grundmenge M auf sich und ¢ das neutrale Element von I'. Es bezeichne ¢ A
das ¢-Bild des Elementes A ¢ Pt. A und oA nennen wir [-gleich, in Zeichen
A =~ 0A. Selbstverstindlich ist die [-Gleichheit ~ eine Aquivalenzrelation
in M.

Der folgende Hilfsbegriff dient hauptsichlich beweistechnischen Zwecken:
Ist jedem Index » einer endlichen nichtleeren Indexmenge {1,..., n} ein-
deutig eine Transformation 7, e I' zugeordnet, so ist dadurch ein I'-Komplex
N =T[r,...,7,] gegeben. Die Michtigkeit der Indexmenge soll Mdchtigkest
IN| des I'-Komplexes N heifen, so dal in unserem Falle also |N| == gilt.
Erginzend definieren wir den leeren '-Komplex © als die leere Teilmenge von
I'; |©] = 0. Fiir eine natiirliche Zahl n seispeziell |, = [z, =t¢|v=1,...,n];
die Michtigkeit ist somit direkt als Index angeschrieben. Da bei der Bildung
eines -Komplexes verschiedenen Indices dieselbe Transformation zugeordnet

8) Vgl. {11, p.351; [4], Satz 5, p.316; [6], Satz 6.10, p.221; unser § 24 enthalt ein entspre-
chendes Gegenbeispiel.
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sein kann, braucht [z,,..., 7,] keine Menge im iiblichen Sinne zu sein, weshalb
wir eckige statt geschweifter Klammern verwenden und in Anlehnung an
analoge Situationen «Komplex» sagen®). Fiir © ist die Unterscheidung zwi-
schen Menge und Komplex unerheblich. Ein I'"Komplex ist somit eindeutig
dadurch charakterisiert, dafl gesagt ist, welche Transformationen mit welchen
Vielfachheiten in ihm enthalten sind. DemgemifB heilen zwei -Komplexe
M, N gleick, in Zeichen M = N, wenn sie dieselben Transformationen mit

denselben Vielfachheiten enthalten. Ist N =[r,,...,7,] und oe[l, so
bezeichne oN den '-Komplex [o7,,...,07,]. Ausgehend von zwei [-Kom-
plexen M =Jo,...,0,], N=1[7,...,7,] erkliren wir noch folgende Bil-
dungen:

a) M AN ist der groite gemeinsame '-Komplex von M und N; er umfaBt
die gemeinsamen Transformationen von M und N in der kleineren der beiden
Vielfachheiten.

b) M+ N=1J[6,,...,0pm,T,...,7,]; M+ 0 =M.

¢c) M-N=1[1500,..., 710, -, TpOys--, Tp0p); MO = 0O,

Man verifiziert leicht, daB die soeben definierten Operationen + und - asso-
ziativ und kommutativ und in ihrer Verbindung distributiv sind ; insbesondere ist

M:-N=N-M (1)

eine Folge der Kommutativitét von I'. Aulerdem gilt fiir die Machtigkeiten:
IM + N| = [M[] + [N, (2)

IM-N| = [M]-|N]. (3)

§ 6. Der Begrift der Belegung

Def. 6.1: Eine Belegung f uber einer Grundmenge IR ist eine eindeutige Ab-
bildung von M in die Menge der nichtnegativen ganzen Zahlen, die aber fir hich-
stens endlich viele A € M mnicht verschwindet. Spezielle Belegungen sind: Null-
belegung 0o mit o(A) = O[alle A ¢ M] und Charakteristik 14 von A eI mat
14(D) = 1[D = A], 14(D) = 0[D # A]. Zwet Belegungen f,g tber I heiflen
gleich, in Zeichen f =g, wenn f(4) = g(4) [alle A ¢ M].

Auf ganz natiirliche Weise 1a8t sich in der Menge B der Belegungen iiber It
eine Addition einfiihren:

(f +9)(4) =f(4) +g(4) [alle A <M]. (4)
Offensichtlich ist B beziiglich dieser Addition eine kommutative Halbgruppe

) Vgl. etwa E.Kamke [31], p.45.
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mit dem neutralen Element o. Mit Riicksicht auf die Giiltigkeit der Beziehung
f= 2 f(4)ia (5)
Aelr
kann diese Halbgruppe durch die Menge {0,%4| 4 ¢ M} erzeugt werden.
Nach der Definition 6.1 ist die in (5) auftretende Summe endlich; fortan wird
die Summationsklausel 4 ¢ I meistens weggelassen.

Nach diesen einleitenden Bemerkungen und im Anschlufl an § 5 ziehen wir
nun eine kommutative Gruppe eineindeutiger Abbildungen der Grundmenge
IR auf sich in Betracht und beschreiben deren Wirkung auf die Belegungen
itber 9N wie folgt: Fiir jede Belegung f ¢ B und jede Transformation v e I gelte:

fr: 4 — f(rrA4) [alle A < M]. (6)

Durch einfachste Uberlegungen iiberzeugt man sich von der Richtigkeit der
folgenden Aussagen:

feB,tel[ = f7eB, (7)
Tel =) 0" =0, (8)
AeM, el = Y, =1i,,, (9)
[r9eBivel = (f+9)" =/ +9". (10)

Simultane Wirkung der Addition und der Gruppe I in B fiihrt zu einem
weiteren niitzlichen Hilfsbegriff:

Def. 6.2: Ist N ein [-Komplex und f eine Belegung iber IN, so heifit die

ledu’ng N.f_— frl +°'- _l_f"n, falls N=[Tl9-..,Tn]’ (11)
=Vo , falls N=0

die Vervielfachung von f mit dem I'-Komplex N.
Fiir 1,-f schreiben wir in naheliegender Weise auch nf. Offenbar gelten
die folgenden Beziehungen:

feB =>N:-feB (12)

fr9¢B => N-(f +9) =N-f +N-g (13)

feB = M+N).-f=M-f +N-f (14)

Die Iteration des Vervielfachungsprozesses fithrt auf die in § 5 definierte
Komplexmultiplikation: Sind M = [0y,...,0,] und N =[1,...,7,] zwei

I-Komplexe, so gilt im Hinblick auf (1):
M-(N-fy=2 Zf"*¥=M-N)-f=(N:-M)-f=2 2f%»=N-(M-f) (15)

p=1v=1 y=1 pu=1

Kiinftighin koénnen also solche Klammern ohne EinbuBle an Klarheit weg-
gelassen werden.



Invariante Funktionen iiber teilgeordneten algebraischen Halbstrukturen 129
2. Kapitel: Der Begrift des Gefiiges

In diesem Kapitel befassen wir uns mit einer Konzeption, die geeignet
erscheint, eine Theorie iiber invariante Funktionen zu algebraisieren. Der
algebraische Standpunkt ist hier insofern hervorgehoben, als daf3 keine Vor-
aussetzungen metrischer oder topologischer Art von vorneherein gemacht
werden. Spitere Ausfithrungen lassen aber erkennen, dafl unter Ausniitzung
der algebraischen Situation eine Pseudometrik gewonnen werden kann (§ 10).

§ 7. Die Postulate des Gefiiges

IR, *> sei eine algebraische Halbstruktur, I' eine kommutative Gruppe ein-
eindeutiger Abbildungen von It auf sich (beziiglich der Komposition) und < eine
zweistellige Relation in der Menge der Belegungen iiber 9t. Durch Zusammen-
fassung dieser Grundgegebenheiten entsteht ein Gefige <, *, [, <>, wenn
folgende Postulate erfiillt sind??):

(I) A * Bdef => B * A def

(IT) A*B, A*C, B*Cdef> (4 * B)*Cdef

(I1I) JOeM mit A*XOdef, A*O = Alalle A ¢ IM]

Iv) f<hifsg, 9sh=f<h

(V)  ta<iB, 1B Sta=>14 =18
) <o fSgd=f+1<g9+9
) Hf<S9g+9.95f=1<g
(VIII) A*Bdef =14+ p<ta+iBStaxn
) ffg,rel":)f’fg’
) A* Bdef, te T =>1A * 1B def

Ein kurzes Wort zu einigen Postulaten: (I1I) besagt die Existenz eines neu-
tralen Elementes O in der Halbstruktur (9, *>. Nach (IV) ist die Menge B
der Belegungen durch < quasigeordnet und die Menge der Charakteristiken ¢4
im Hinblick auf (V) teilgeordnet. Die drei letzten Postulate sind Vertriglich-
keitsforderungen zwischen *, I' und <. Im iibrigen ist es das Ziel des néchsten
Paragraphen, den Gehalt der Postulate anhand einfacher Folgerungen zu
préizisieren.

19) Fiir die Bezeichnungen sei an § 3 erinnert. Es sind dies bis auf geringfiigige Anderungen die
Postulate, die H. HADWIGER in dem in der Einleitung genannten Kolloquium vorgeschlagen hat.

9 CMH vol. 38
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§ 8. Einfache Folgerungen aus den Gefiigepostulaten

Satz 8.1: Erklirt man fir f,geB

f~9=f<9, 957, (16)

80 ist ~ eine mit < vertrigliche Aquivalenzrelation in B. Sie hat tberdies die
Ergenschaften:

f~g, f~g =+ ~g+9, (17)

f+f ~9+g, f~9=f~g, (18)

f~g, tel = fr~g. (19)

Beweis: Die erste Behauptung folgt aus (IV) und Satz 1.3; (17), (18), (19)
ergeben sich aus (VI), (VII), (IX) und (16).
Nun lassen wir einige Aussagen iiber die Halbverkniipfung folgen:

(4 * B) * C def <=> A * (B * O) def , (20)
A*Bdef=>A*B=B*A, (21)
(A* B)*Cdef=>(A*B)*C =A% (B*C(), (22)
A* Bdef, A*Cdef, A* B=A*C=—>B=C. (23)

Beweise: (20): (II) und (I) gestatten folgende Schliisse: (4 * B) * C def <=
<<>A*B, A*C, B*Cdef<—=>B*C, B*A, C*Adef< (B*(C)*4
def <> A * (B * C) def.— (21): Aus (I) folgt B * 4 def. Mit (VIII) und der
Transitivitidt von ~ ergibt sich ¢, * ; ~ 5 * , und hieraus mit (V) die Be-
hauptung. — (22): Mit (20) resultiert 4 * (B * C) def, mit (VIII), (17) und der
Transitivitit von ~ weiter 4.4 * By * ¢ ~ %4 ¥ (B * ¢ und daraus mit (V) die
Behauptung. — (23): Nach (VIII) und der Transitivitit von ~ ist ¢4 +ip ~
~ 14 +i¢ und nach der Reflexivitit von ~ und (18) sodann ip ~ i¢, also
nach (V) B = C, wzbw.

Wir verabreden die folgende Sprechweise: 4, *...* A4, def bedeute fortan,
daB A4,,...,A, fir jede Art der Klammersetzung verkniipfbar seien und
das resultierende Element von der Klammersetzung unabhingig sei. Es gilt

dann:
A * ... * A, def<==> A, * A, def (p #v; p,v=1,...,m). (24)

Ein einfacher Induktionsbeweis stellt diese Aussage sicher. Ebenso leicht
zeigt man: Bezeichnet (»;,...,»,) eine Indexpermutation, so gilt:

A KA def==A, ¥ KA, def, Ay ¥ KA, =A, * ... *4 (25)

vn *

Somit ist unsere Halbverkniipfung iiber ihrer Definitionsmenge assoziativ
und kommutativ. Durch die nichste Aussage erfahrt Postulat (III) eine Ver-
schirfung:
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Satz 8.2: Es gibt genau ein neutrales Element O ¢ M. Dieses erfillt die
Beziehung io o0 (26)
und 18t Fixelement jeder Transformation von T, das heift, es gilt:

el = 170=0. (27)

Beweis: Sind O und O’ neutrale Elemente im Sinne von (III), so gilt

O *Odef, O' *0O=0" und O * 0’ def, O*0 =0

und wegen (21) O’ = O, womit die Einzigkeit feststeht. Nach (III) und (VIII)
folgt 14 +0 =14 =1%4%0~1%4 + %0, also 14 +0~1i4 + 10, und (18) lie-
fert o ~1i9. Die Anwendung von (26), (8), (19) und (9) ergibt ip ~o =
= 0" ~1ip = 1,0, also to ~ 1,0 oder mit (V) O =10, wzbw.

An dieser Stelle sei auf den Begriff der Kategorie von EILENBERG und
MAcLANE hingewiesen'') und bemerkt, da eine algebraische Halbstruktur,
die unseren Postulaten (I), (II), (III) nebst den Bedingungen (20), (21), (22)
geniigt, nicht notwendig eine Kategorie ist und umgekehrt eine Kategorie
nicht notwendig diese Postulate und Bedingungen erfiillen muf. Trotzdem
besitzen die Betrachtungen dieser beiden Begriffe einige Beriihrungspunkte.
So erbringen zum Beispiel (20) und (22) den direkten Nachweis des einen
Kategorienpostulates, und (23) besagt im Hinblick auf (I) und (21), daB jedes
Element der Grundmenge reguldr im Sinne von M.HASSE [34] ist.

Unter Heranziehung des in § 5 bereitgestellten Begriffes des M-Komplexes
erkliaren wir hier in volliger Analogie zur Def. 6.2:

Def. 8.3: Ist N ein I'-Komplex und A ¢ M, so heifft die Bildung

nd*...*t, A, falls N=[r,...,7,],

0 falls N =0 (28)

N-A — {
die Vervielfachung von A mit dem T-Komplex N unter der ausdriicklichen Vor-
aussetzung T, A * ... *1,A def, was von nun an durch die Anschrift stets
mpliziert werde.

Ebenfalls im Anschluf8 an die '-Komplexe resultieren zwei niitzliche Aus-

een f<g=>N-f<N.g, (20)
I ~N-t4. (30)
Beweise: Fiir N = © wird (29) trivial, und (30) geht in die schon als richtig

erkannte Beziehung (26) iiber. Fir N #© folgt (29) aus (IX) und (VI), (30)
aus (VIII) und (9).

1) Vgl. S.EILENBERG — S. MACLANE [32], C.EBERESMANN [33], M. HassE [34].
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Die Quasiordnungsrelation < in der Menge B der Belegungen ist verantwort-
lich fiir eine Teilordnung in der Grundmenge I :
Satz 8.4: Erklirt man fir A, B eIN
A<L B¢ 145 1p, (31)
dann 1st < eine Teilordnungsrelation in der Grundmenge M.
Beweis: Diese Aussage folgt unmittelbar aus der Tatsache, dall die Menge
der Charakteristiken durch < teilgeordnet ist.

Diese Teilordnungsrelation besitzt die folgenden einfach zu beweisenden
Vertriaglichkeitseigenschaften:

A<LB, AA<B,A*A def, B*B' def — A*A' < B*H, (32)
A*A' def, B*B' def, A*4A' < B*B', B<A— A'< B, (33)
A<LB,oell => 04 <oB. (34)

Damit ist (M, *, I, <) eine teilgeordnete algebraische Halbstruktur. Fiir
die Vertréglichkeit zwischen * und I' gilt noch:

A*Bdef,7el = 7(4d*B)=74 *1B. (35)

Beweis: Nach (X) ist 74 * 7B def. Durch Anwendung von (9), (VIII),
(19) und (10) ergibt sich ¢, 44 By =14 x B~ (14 +198)" =10} + 15 =10,4 +
+ 4,8~ 1,.4%,.p oder also mit der Transitivitit von ~ und (V) die Be-
hauptung.

§ 9. Normierte Gefiige

Durch eine Zusatzforderung greifen wir eine ganz spezielle Klasse von
Gefiigen heraus, die eine weitgehend selbstéindige Theorie besitzen und sich
durch das Vorhandensein einer Eigenschaft auszeichnen, welche dem archi-
medischen Axiom verwandt ist. Dadurch wird ein relativer Beschrénktheits-
begriff erzeugt (vgl. Def. 9.1).

Es seien im folgenden [ = <M, * , [, <> ein Gefiige und K <P ein
nichtneutrales und definites Element, so daf} also gilt:

E+#0,0<E. (36)
Def.9.1: Ein Element A ¢ WM heifst E-beschrimkt, wenn es passende Verviel-
fachungen von ig so gibt, daf gilt:
t0St4a +MM-igSPeig. (37)
Ist jedes Element A won M E-beschrinkt, so heift E ein Normelement des
Gefiiges 1.
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Nachdem ein bestimmtes Normelement E in einem Gefiige [] fest gewihlt
und dadurch ausgezeichnet ist, dafl man es zur Normierung heranzieht, heiB3t
das Gefiige [] normiert oder kurz ein n-Gefiige, und E spielt die Rolle einer
fiinften unabénderlich gedachten Grundgegebenheit, was wir durch die Schreib-
weise [ = <M, *, I, <, > zum Ausdruck bringen.

Satz 9.2: Ist [ ein n-Gefuge, so gilt: a) Jeder '-Komplex N erfillt die Be-

ziehung 0<N.ig. (38)
b) Zu je endlich vielen Hlementen A,,..., A, eI gibt es zwei -Komplexe
WP mit <, +Teig<Peuigw=1,...,n), (39)
iA:SP-iE v=1,...,m). (40)

(40) besagt also die Existenz einer Belegung, die endlich viele vorgegebene
Charakteristiken simultan majorisiert.

Beweis: (38): Aus (36), (31) und (26) ergibt sich mit (16) und Satz 8.1
0 < 1g. Daraus folgt mit (8) und (29) die Behauptung (38). — (39): Nach (37)
gibt es TT,,P, mit 50 Si, +T,-ig SP,-ie(v =1,...,n). Mit Riicksicht
auf (38) gilt mit M =T, +... +M,, P=T +P, + ... +P, wegen (VI)
und (14) auch (39). — (40): Im Hinblick auf (39) geniigt es, zu bemerken, daf}
g, S iy, +T-0e gilt.

3. Kapitel: Invariante Funktionen iiber normierten Gefiigen

In den folgenden Paragraphen wird ein kurzer Abrif} der Theorie der n-Gefiige
und der invarianten Funktionen iiber ihnen gegeben, mit bewuf3ter Beschrin-
kung auf deren Hauptsiitze. Die Theorie ist noch mancher Erweiterung fihig,
was jedoch im Rahmen der vorliegenden Arbeit nicht gezeigt werden kann.

§ 10. Belegungsiiquivalenz

Im ganzen Paragraphen bedeute [ = <M, *, ', <, E) ein festgedachtes
n-Gefiige. Wir entwickeln aus den Grundgegebenheiten heraus eine Pseudo-
metrik und daraus sodann eine Aquivalenzrelation in der Grundmenge ).
Diese erlangt ihre volle Bedeutung erst bei weiterem Ausbau der Theorie.
Die hier gegebene Einfiihrung ist bereits fiir den Weiterausbau angelegt; der
Mehraufwand gegeniiber einer direkten Behandlung ist gering und wird durch
allgemeinere Einsichten gerechtfertigt.
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Satz 10.1: Fiir jedes geordnete Paar (A, B) von Elementen von IR existiert
die reelle Zahl

a(4d,B)=1infp/n[N;-i4SNy-ip+TT-2x5; [N;| =|Ny| =2>0, |TT|=p>0]. (41)

Beweis: Mit (26), (39), (40) schlieft man auf das Bestehen von Beziehungen
0SS ip +TT-4g, ¢4 SP-ig. Ohne Einschrinkung der Allgemeinheit darf
|P +TI| > 0 angenommen werden, da dies durch Addition von iz zur rechten
Seite einer der Beziehungen erzwingbar ist. Durch Addition ergibt sich nach
(VI) 24 St + (P 4 1) -7z, womit die Realisierbarkeit der Klausel in (41)
erwiesen ist. Da 0 eine untere Schranke fiir die in Frage stehenden Zahlen p/n
igt, so folgt die Existenz des Infimums, also die Behauptung.

Satz 10.2: Die soeben definierte Funktion a hat folgende Eigenschaften:

AeM, el = a(d,74) =0, (42)
A, BeIl; A< B— a(d4,B)=0, (43)
A,B,C eI => a(4,C) <a(d4,B) +a(B,0), (44)

A,B,C,De; A*Cdef, B*Ddef —>a(A*C,B*D)<a(4,B)+a(C,D), (45)
A,B,C,DeM;A*Cdef, B* Ddef—>a(A, B) <a(4*C,B*D)+a(D,C). (46)

Beweis: (42): Zu jedem ¢ > 0 gibt es eine natiirliche Zahl n mit 1/n <.
Nach (38), (9) und (VI) gilt dann =»¢% < ni,4 + iz, womit (42) erledigt ist.
Vollig analog ist das Vorgehen bei (43), wenn man ¢4 <95 bedenkt. — (44):
Zu beliebigem ¢ > 0 gibt es die Beziehungen

Ni-24aSNyeip +TT-0g, [Ny | =[Ny | =0>0,|TT|=p>0,pn<a(d,B) +¢/2,
M- tg S My ig+Peig, |M|=|My| =m>0,|P|=r>0,r/m<a(B,C) +¢/2.
Es folgt daraus M;-N; 14 <M;-N,y-ip +M;-TT-1g, Ny-M;-ip SN,-M,y-i¢ +
+ Ny P 2g und mit (1), (VI), (VIT) M;-N; - 44 SNy- My - t¢ +(M; - TT 4N, -P) - 2.
Nach (41) ergibt sich daraus a (4, C) < (p/n) + (r/m) <a(4, B) +a(B,C) +e.
Da ¢ beliebig war, so resultiert die Behauptung (44). — (45)'?): Zu jedem &> 0
gibt es Beziehungen Nj-i4 <NJ.ip +T1"-ig, [N;| = [N;| =2’ >0, |TT'| =
=p' >0, p'ln' <a(d, B) +¢, M ic <M;- i, +P' -ig, M| =|M}| =
=m' >0, |P|=r>0, r/m' <a(C,D) +¢. Durch Vervielfachung mit
l,, bzw. l,, und die Setzungen n = m'n’, p = m'p’, r = n'r" folgt
die Existenz von Beziehungen N,-¢4 S Ny-¢p 41T -4, Ny-i¢ SNy -7 +
+Poig mit [Ny| =[Ny = [Ng| =[Ny =n>0, |TT|=p>0, [P|=r>0,
pin=p'ln, rln=rm'. Mit Ny=[&,...,&] No=[n,..., 7], Ny=
= [0y,...,0,], Ny =[11,...,7,] bildenwir fiir ¢ = 2, 3,... die -Komplexe

12) Dieser Beweis ist einem unpublizierten Beweis von H.HapwiceR fiir Lemma (d) in [5],
p. 118, nachgebildet.
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Wy, =[1...8" .. ..¢froa...orzh.. .21 <a,b,¢c,,d, <q natiir-
liche Zahlen (» =1,...,n)].

Es ist |0, = ¢**. Aus den beiden letzten Belegungsrelationen erhilt man
durch Vervielfachung mit (), und (VI): (a) 0, - N; - 24 4+, - Ng-t¢ S0, - Ny- 15+
4+ W, Ny oy +W, - (T +P)-ig. Eine Transformation von ), gehort sicher
dann zu £,W, A 7,),, wenn simultan die folgenden Bedingungen erfiillt sind:
2<e,<¢, 2<¢, <q; 1 <oy, <q(A#9); 1 <h,dh<g(A=1,...,n).
Somit gilt |&,W, A 0,0, = ¢ 2(q@ — 12 (» = 1,..., n). Demzufolge
enthédlt der [-Komplex W), N; A 0, - N; gewill einen Teilkomplex K; mit
K] = ng*"2(g — 12 =Fk>0. Esgiltalso 0,-N, =K, +A;, W,-N; =
Ki + Ay und analog @, - N, = K, + A,, 0,- Ny = K, + Ay, mit [K,| =
IKs] =k, [N = |Ns] =|Ns] = Ns] =1=mng*» —k > 0. Nach dieser Zer-
spaltung der [-Komplexe in (a) lautet (a) unter Anwendung von (VIII):
(b) Ky taxe + AN ta+Ns-ic SKy-tprp+ Ny i+ Ny-ip+W, - (TT+P) - 2.
Aus (38), (39), (40) 148t sich leicht auf die Existenz eines I'-Komplexes T mit
(0] S iA —]—-T'iE, o Sic—}—T‘?:E, ’iB S T- iE, ’I;D S T- ’iE schliefen. Aus (b),
(38), (VI), (VII) folgt dann (C) K1° LA%*C f K2 LB%D —I—A g mit A=T-
(AN AN A A O, - (TTHP). Ist | T| =1¢, sofolgert man aus (2) und (3)
s = |A| = 41t 4+ ¢**(p +r). Beachtet man, daB ¢ ausschlieBlichvon 4, B,C, D
abhingig ist, so resultiert die Konvergenzaussage s/k— (p -+ r)/n (g— o).
Wegen (p +7r)/n <a(4d, B) +a(C, D) + 2¢ gibt es ein passendes g mit
(s/k) <a(4, B) +a(C, D) + 2¢. Da ¢ beliebig gewihlt war, so folgt nach (c)
und (41) die Behauptung (45). — (46): Dieser Beweis verlduft in groen Ziigen
analog zum vorigen und kann jenem leicht nachgebildet werden.

Satz 10.3: Die Funktion
d(4, B) = Maz {a(4, B), a(B, 4)} (47)
ist eine Pseudometrik auf der Grundmenge I mit den zusdtzlichen Eigenschaften

AeM, reT=>d(4,74) =0, (48)
A,B,C,D eI ; A*Cdef, B¥Ddef =>d(A*C, B*D) <d(A4,B)+d(C,D), (49)
A,B,C,DeM; A*Cdef, B*Ddef —>d(A,B) <d(4*C,B*D)+d(C,D). (50)

Beweis: (48) folgt aus (42) und (M1) hieraus durch die Setzung v = .
(M3): Mit Riicksicht auf (44) gilt d(4,C) < Maz {a(4, B) +a(B, (),
a(C, B) +a(B,A)} <d(4, B) +d(B,C). — (M5) ergibt sich direkt aus
(47). Somit ist d in der Tat eine Pseudometrik auf . Die Nachweise von (49)
und (50) verlaufen im Hinblick auf (45) und (46) gleich wie derjenige von (M 3).

Mit Satz 10.3 ist die Moglichkeit gegeben, mit Hilfe der Pseudometrik auf
bekannte Weise der Grundmenge It eine Topologie aufzuprigen: Die Mengen
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Sd;c)={DeM|d(4,D)<c} mit A eI, ¢> 0 bilden nimlich eine Basis einer
Topologie, in welcher die S (4 ;¢) offen, die T(4;¢) = {D e M|d(4,D) <c}
dagegen abgeschlossen ausfallen'?); wir nennen sie im folgenden die d-Topologie.
Diesem Gesichtspunkt kommt aber in der vorliegenden Arbeit nicht primére
Bedeutung zu; wir werden nur gelegentlich diesbeziigliche Hinweise geben. An
dieser Stelle sei lediglich bemerkt, dafl durch (49) die Stetigkeit der Abbildung
(4, B)—> A * B garantiert wird. Die algebraische Halbstruktur <(Jt, *> ist
somit «topologisch» im Sinne der topologischen Algebra. Das Vorhandensein
einer Pseudometrik wird hier in einer anderen Hinsicht verwendet:

Def. 10.4: Die gemdif3 Satz 2.2 durch den Ansatz
A~ BdA4,B) =0 (51)
definierte Aquivalenzrelation in der Grundmenge IN heife Belegungsiquivalenz.

Die Erklirungen (41) und (47) ergeben die folgende Kennzeichnung der
Belegungsidquivalenz:

Satz 10.6: Zwei Elemente A, B der Grundmenge eines n-Gefiiges [ sind
genau, dann belegungsdquivalent, wenn sich zu jedem ¢ > 0 Vervielfachungen so
angeben lassen, daf gilt:

Ny 2aSNy-og+TT-2g; [Ny | =[Nyl =0>0, |TT|=p>0; pln<e (52)
My 28 SMy-t4+P-ig; M| =Myl =m>0, |P|=7r>0; rim<e.

Nach den Vorbereitungen ist es nun leicht, wichtige Eigenschaften der Bele-
gungsiquivalenz zu erkennen:
AeM,7ell = A ~714, (53)
A,B,C,DeM; A*Cdef, B*Ddef, A ~B,C ~D=—A*C ~B*D, (54)
A,B,C,DeM; A*Cdef, B¥XDdef, A*C ~B*D,C~D=—A~B, (55)
A~B, | M|=|N—=M-4~N-B, (56)
M-A~N-B, | M|=|N|>0=4 ~B. (57)

In naheliegender Weise kann man (54), (55), (56), (57) mit Additions-, Sub-

traktions-, Multiplikations- und Divisionssatz ansprechen.

Beweise: (53), (54), (55) ergeben sich miihelos aus (48), (49), (50), wenn man
(M 6) bedenkt. (56) folgt induktiv aus (53) und (54). — (57): Zu beliebigem
¢ > 0 gibt es nach Satz 10.5 eine Beziehung A;-¢y., S Ny-ing + 1T 1z
mit |[A| = |N| =1>0, |TT|=p>0, p/l <e. Nach (29) und (30) resul-

13) Fiir die hier auftretenden topologischen Begriffe verweisen wir auf irgendein einfiihrendes
Werk der mengentheoretischen Topologie, insbesondere etwa N.BoUuRBAKI [35], chapitre I.
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tiert Ay M-i4 SA,-N-ip4TT-ig. Wegen p/nl < pjl <e folgt a(4d, B) =0,
wobei n = |M| = |N|. Analog ergibt sich a(B, A) = 0 und damit die Be-
hauptung (57), wzbw.

§ 11. Invariante Felder, Funktionen und Systeme
Im ganzen Paragraphen bedeute [] = (I, *, ', <, E) ein fest gedachtes
n-Gefiige.

Def. 11.1: Ewn zu [ gehoriges invariantes Feld («i-Feld») ist eine Teilmenge
& von M mit den folgenden Eigenschaften:

(F1) A,Be¢%; A*Bdef—>A*Beg ( Additivitat) 1),
(F2) A rel=—14c§ (T-Freiheit),
(F3) E,0¢§ (Normalitit) .

Vorerst schliefen wir einige niitzliche Begriffsbildungen um das 2-Feld an:

Def. 11.2: Unter dem durch eine nichtleere Teilmenge N von M erzeugten v-Feld
verstehen wir die Menge der Aggregate K-E *M,-4,* ... *M, -4, mit
Ay,...,A,eN;, n=1,2,..

Man verifiziert leicht, daB der Ubergang von einer Menge zum erzeugten
t-Feld ein AbschlieBungsprozef ist. Die ¢-Felder sind dabei die abgeschlossenen
Elemente, und nach Satz 1.6 ist das von 3 erzeugte i-Feld das kleinste aller
1-Felder, welches 9t umfaft.

Det. 11.3: Erfillt eine Teilmenge &' <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>