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Invariante Funktionen iiber teilgeordneten
algebraischen Halbstrukturen

von JURG RATZ in Bern

Meinem verehrten Lehrer Herrn Prof.Dr. W. ScHERRER zum
70. Geburtstag gewidmet

Einleitung

Im AnschluBl an ein Seminar iiber Integrationstheorie, welches im Sommer-
semester 1951 an der Universitit Bern stattfand, wurden von H. HADWIGER,
W.NEF und A.KirscH Untersuchungen zur invarianten Inhalts- und Integra-
tionstheorie vorgenommen?). Dabei ist zwischen einigen inhaltstheoretischen
und gewissen integrationstheoretischen Studien eine auffallend grofie metho-
dische Ahnlichkeit zu bemerken. H. HADWIGER hat nun in einem Kolloquium
iiber geordnete Strukturen, welches im Wintersemester 1958/59 im Mathe-
matischen Seminar der Universitit Bern abgehalten wurde, die Untersuchung
einer Struktur angeregt, die er dort ein « Gefiige» nannte und die es gestattet,
Inhaltstheorie und Integrationstheorie in einem allgemeineren Lichte zu sehen
und vor denselben abstrakten Hintergrund zu stellen. Es ist das Ziel der vor-
liegenden Arbeit, einige Sitze der Theorie der Gefiige herzuleiten, deren
Korollarien in den beiden genannten Theorien wichtigste Stiitzen bilden. Damit
ist eine Theorie gewonnen, welche die Inhalts- und die Integrationstheorie
als Spezialfille enthilt. Geeignete Beispiele lehren aber, daBl das vorliegende
Modell noch ganz andersartiger Deutungen fihig ist, und darin diirfte vor
allem die Neuartigkeit bestehen.

Unser Vorgehen kann insofern als elementar bezeichnet werden, als es mit
elementaren Begriffen operiert und im wesentlichen nur die Kenntnis der ein-
facheren Analysis der reellen Zahlen voraussetzt. An einer einzigen Stelle komm?t
eine auf dem Auswahlaxiom fuBende Schlu3weise vor.

Bekanntlich haben sich in neuerer Zeit zwei Richtungen in der abstrakten
Inhaltstheorie abgezeichnet, nimlich die invarianzlos-verbandstheoretische
und die invariante Theorie?). Unsere Ausfiithrungen sind ganz der zweiten ver-

1) Vgl. [1] bis [12]. Zahlen in eckigen Klammern sollen stets auf das Literaturverzeichnis am
SchluB3 der Arbeit verweisen.

%) Vgl. etwa H.Hapwricer [13], p. 133/4. Fiir die erstgenannte Richtung verweisen wir auf
P.R.Haumos [20], K.MAYRHOFER [21], O.HAUPT — G.AUMANN ~ C.PAavuc [22], C.CARATHEO-
DORY [23], G.BirxHOFF [24] und fiir weitergehende Verallgemeinerungen V.GLIVENKO [25] und
Ky Fan [26].
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bunden und folgen im groBen den bekannten grundlegenden Ideen von
S.BaNAcH [14] und A.TAgsk1 [15, 16], die seit ihrem Bestehen schon in man-
nigfacher Weise beniitzt wurden3).

Zum Aufbau der Arbeit: Im ersten Kapitel stellen wir die benotigten Hilfs-
begriffe und Bezeichnungen und im zweiten den Begriff des Gefiiges bereit,
wihrend die hauptsidchliche Entwicklung im dritten Kapitel untergebracht ist.
Das vierte Kapitel enthélt einige Beispiele zur Theorie der Gefiige. Da die
Paragraphen 12 und 19 die Zusammenstellung der Hauptergebnisse umfassen,
kann hier auf eine solche verzichtet werden.

An dieser Stelle méchte ich den Herren Professoren Hapwicer und NEF
herzlich danken fiir alle Forderungen, die mir zur Abfassung dieser Arbeit von
ihnen zuteil wurden, sei es im kritischen Gespréich oder durch die Lektiire der
von ihnen publizierten Arbeiten auf diesem Gebiete der Mathematik. Besonders
danke ich aber Herrn Professor HADWIGER fiir die Anregung zu dieser Unter-
suchung iiberhaupt.

1. Kapitel: Hilfsbegriffe und Bezeichnungen

§ 1. Ordnungs- und A quivalenzrelationen

Ist Z eine Menge von Elementen x, y, z,... beliebiger Natur, so kénnen
einer zweistelligen Relation R in Z unter anderem folgende Eigenschaften zu-
kommen, wobei die nachfolgenden Formelzeilen stets fiir alle in Betracht fal-
lenden Elemente von Z Giiltigkeit besitzen sollen:

(R1) xR x ( Reflexivitdit)
(R2) xRy, yRz—= z Rz (Transitivitit)
(R3) 2Ry, yRe—x =1y (Antisymmetrie)
(R4) z,YyeZ=—>x Ry undfoder y R x ( Vergleichbarkeit)
(R5) xrRy—yRx (Symmetrie)

Im Anschlu an diese Eigenschaften legen wir fest:

Def. 1.1: Eine zweistellige Relation R in der Menge Z heif3t

a) Quasiordnung, wenn sie (R1), (R2) erfallt,
b) Teilordnung, wenn sie (R1), (R2), (R3) erfallt,
c) Totalordnung, wenn sie (R1), (R2), (R3), (R4) erfullt,
d) Aquivalenz, wenn sie (R1), (R2), (R5) erfullt.

3) Vgl. etwa H.HawN [17], S.Banacre [18], J,v.NEUMANN [19] sowie einige der Arbeiten
[1] bis [13].
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Die Menge Z heifst dann durch die Relation R a) quasigeordmet, b) teilgeord-
net, c) totalgeordnet. Relationen der Typen a), b), ¢) nennen wir fortan Ordnungs-
relationen.

Die Ordnungsrelationen heben sich i.a. von den Aquivalenzrelationen
durch das Fehlen der Symmetrieeigenschaft (R 5) ab. Dies bringen wir in der
Bezeichnung dadurch zum Ausdruck, daBl wir fiir Ordnungsrelationen das
Zeichen <, fiir Aquivalenzrelationen dagegen das Zeichen ~ (oder Abarten
derselben) verwenden. Bekanntlich induziert jede Aquivalenzrelation ~ in der
Menge Z eine Partition von Z in disjunkte Klassen, die sogenannten Aqui-
valenzklassen (~-Klassen).

Def. 1.2: Eine Aquivalenzrelation ~ und eine Quasiordnungsrelation < in der
Menge Z heiflen vertrdglich, wenn stets gilt:

/

rLy, ¥ ~z,yY ~y= a2 <y'.
Miihelos beweist man nun den nachfolgenden

Satz 1.3: Ist die Menge Z durch die Relation < quasigeordnet, so gilt:
a) Die durch x ~y<=x <y, y < x erklirte Relation ~ ist eine Aquivalenz-
relation in Z. b) ~ und << sind vertrdglich.

Sei nun W eine Teilmenge von Z und Rz eine zweistellige Relation in Z.
Sind z,y ¢ W und setzt man = Rw y<=> « Rz y, so ist Ry eine zweistellige
Relation in W, und es ist leicht festzustellen, daB sich die Giiltigkeit von (R 1)
bis (R5) von Rz auf Rw vererbt. So ergibt sich eine natiirliche Mdglichkeit,
der Teilmenge W eine Relation Rw aufzuprigen. Wo wir nichts Gegenteiliges
bemerken, sollen Teilmengen stets diese Relation aufweisen.

Den letzten Teil des Paragraphen widmen wir der Theorie der teilgeordneten
Mengen. Schon zu Beginn sei an das hier giiltige Dualitdtsprinzip erinnert?).

Def.1.4: Z sei eine durch < teilgeordnete Menge. Dann heif3t

a) x € Z maximales Element von Z, wenn qilt: yeZ, v <y=—>x =y,
b) x € Z kleinstes Element von Z, wenn qilt: x <y firalle yeZ;

c) xeZ obere Schranke von W(c Z), wenn qilt: y < x fir alle ye W;
d) die kleinste obere Schranke von W (c Z) das Supremum von W,

e) eine totalgeordnete Teilmenge W wvon Z eine Kette von Z.

Es ist klar, wie die dualen Begriffe (minimales und grotes Element, untere
Schranke, Infimum) erklirt werden miissen. Elemente der genannten Art brau-
chen nicht zu existieren. Existiert aber ein kleinstes (gro3tes) Element, so ist
dieses im Hinblick auf (R 3) eindeutig bestimmt, und es rechtfertigt sich die
Schreibweise sup W (¢nf W) fiir das Supremum (Infimum) von W.

4) Vgl. etwa H.HErRMES [27], p.T.
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SchlieBlich erwidhnen wir das mit dem Auswahlaxiom gleichwertige

Zornsche Lemma: Besitzt jede nichtleere Kette etner nichtleeren teilgeordneten
Menge Z ern Supremum tn Z, dann gibt es mindestens ein maximales Element
i Z.5)

In der Betrachtung der teilgeordneten Mengen ist der Begriff des Abschlie-
Pungsprozesses von groflem Nutzen fiir eine einfache Sprechweise:

Def. 1.6: Ist Z eine durch < teilgeordnete Menge, so heif3t eine Abbildung @
von Z in sich ein Abschlieffungsoperator in Z, wenn fiir alle Elemente von Z gilt:

(C1) r<Dx (B xctensivitit)
(C2) PDx L Dx (Idempotenz)
(C3) r <L y= P < Dy (Isotonie)

Ein Element x ¢ Z heif3t D-abgeschlossen, wenn Px = x.
Aus (C1), (C2) und (R3) ergibt sich ®Px = Pz, das heillt die P-Abge-
schlossenheit von @ x. Ebenso leicht folgt:

Satz 1.6: D« ist das kleinste D-abgeschlossene Element, das gréfer ist als «,
genauer: das kleinste Element der Menge {y | Py = y, x < y}.

§ 2. Pseudometrik und Metrik

Es sei Z wiederum eine Menge von Elementen z, y, 2, . . . beliebiger Natur.
Hier studieren wir reellwertige Funktionen d iiber Z X Z, denen unter ande-
rem die folgenden Eigenschaften zukommen koénnen (die nachfolgenden Formel-
zeilen gelten fiir alle Elemente von Z):

(M1) d(z,z) =0

(M2) dz,y)=0—=ax =y

(M3)  d(x,y) <d(x,2) +-d(z,9)

(M4)  d(z,y) <d(z,2) +d(y,?)

(M6) d(x,y) =0

Durch einfache Uberlegungen wird ersichtlich, daB die Postulatensysteme
{M1), (M4)} und {(M1), (M3), (M5)} gleichwertig sind und alle genannten
Eigenschaften auBler (M2) nach sich ziehen. Hingegen ist {(M1), (M3)} echt
schwicher als {(M1), (M4)}%). In diesem Sinne nennen wir (M4) die starke,

8) Vgl. H.HErMES [27], p.136ff,
¢) Um dies einzusehen, wiahleman Z = [0, 1]); d(z,y) = 2 —y[z > y]; d(z,y) = 1 [z <y].
Vgl. P.AvexaNDRO¥F - H.Horr [28], p. 29.
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(M 3) die schwache Dreiecksungleichung. Im Anschlufl an die obige Liste setzen
wir fest:

Def. 2.1:7) Jede reellwertige Funktion d iber Z X Z, die einem der Postu-
latensysteme {(M1), (M4)} oder {(M1), (M3), (M5)} geniigt, heift eine Pseudo-
metrik auf Z. Ist auPerdem (M2) erfillt, so heifit d eine Metrik auf Z. Die
Menge Z heifit durch die Funktion d pseudometrisiert beziehungsweise metrisiert
oder beziglich d ein pseudometrischer beziehungsweise metrischer Raum.

Durch die ndchste Aussage verbinden wir die bisherigen Ausfiihrungen unse-
res Paragraphen mit denjenigen des vorigen:

Satz 2.2: Ist d eine Pseudometrik auf der Menge Z, so wird durch die
Setzung x ~y<=>d(x,y) = 0 eine Aquivalenzrelation ~ in Z definiert.
Der Beweis darf seiner Einfachheit wegen iibergangen werden.

§ 3. Bezeichnungen

In Anbetracht der Tatsache, daf} in § 1 Entwicklungen angebahnt wurden,
auf die mehrfach und in génzlich verschiedener Weise zuriickgegriffen werden
wird, verwendeten wir bisher eine in bezug auf die nun festzulegende Bezeich-
nungsart vollig neutrale Symbolik. Fir das Nachstehende erweist sich dies
nicht mehr als nétig, und wir bezeichnen fortan wie folgt (die genannten
Begriffe werden zu gegebener Zeit weiter unten erklirt werden):

IR : Grundmenge mit den Elementen A, B, C, D, E, O und den Teilmengen
(insbesondere invariante Felder) €, &, &, H, N, S, I.

*: Halbverkniipfung auf 9.

I': Kommutative Gruppe eineindeutiger Abbildungen von I auf sich mit den
Transformationen ¢, 7, &, und den ' -Komplexen A, O,K, A, M,N,IT,P,
T, ®,1,. ¢ bezeichne das neutrale Element von I".

B: Menge der Belegungen f, g, %, %, o iiber Ii.

a,b,c,d, c: reelle Zahlen (¢ wird im iiblichen Sinne verwendet).
k,l,m,n,p,q,r,s,t: nichtnegative ganze Zahlen.

R: Menge der reellen Zahlen. U, V: Teilmengen von R.

%, A, u,v, 7w, o: Indices.

®, %, ¥, o: invariante Funktionen.

[O: Gefiige.

@: Menge von invarianten Systemen (¥, ¢).

?) Vielerorts finden sich in dieser Definition unnétige Postulate wie z.B. (M 6). Unseres Wissens
hat A.LinpENBAUM [29], p.211, erstmals ein minimales Postulatensystem fiir die Metrik auf-
gestellt. Vgl. auch G. Auvmanx [30], p.83.
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§ 4. Der Begriftf der algebraischen Halbstruktur

Def. 4.1: Eine Halbverknipfung * auf einer Grundmenge YN ist eine ein-
deutige Abbildung einer gewissen Teilmenge D von M X M in M. Zwes Ele-
mente A, B € M heiflen in dieser Rethenfolge verkniipfbar, in Zeichen A * B def,
wenn das Paar (4, B) zu D gehort; A * B heif3t das dabet resultierende Element.

Ist insbesondere ® = IR X M, soist * eine Verkniipfung auf M. Die durch
die Definition 4.1 realisierte Verallgemeinerung besteht also im Verzicht auf
die allgemeine Ausfiihrbarkeit der Verkniipfung.

Def. 4.2: Eine algebraische Halbstruktur <{IN; *,,..., *,> besteht aus der
Grundmenge I und den Halbverkniipfungen *,...,*, auf M.

§ 5. Die Transformationsgruppe

Dadurch, da8 wir eine Gruppe von Transformationen einer Grundmenge in
Betracht ziehen und die Invarianz gewisser Funktionen gegeniiber jenen
Transformationen fordern, verpflichten wir uns der invarianten Richtung im
Sinne der Einleitung.

Wir beschrinken uns in der vorliegenden Arbeit auf kommutative Transfor-
mationsgruppen. Es zeigt sich, dafl allein dadurch noch keine Garantie fiir eine
positive Beantwortung der Existenzfrage gegeben ist, wie dies an anderen
Orten der Fall ist®). Die Kommutativitdt wird an entscheidenden Stellen der
Theorie wichtige Schliisse gestatten.

Sei nun ' eine kommutative Gruppe eineindeutiger Abbildungen einer
Grundmenge M auf sich und ¢ das neutrale Element von I'. Es bezeichne ¢ A
das ¢-Bild des Elementes A ¢ Pt. A und oA nennen wir [-gleich, in Zeichen
A =~ 0A. Selbstverstindlich ist die [-Gleichheit ~ eine Aquivalenzrelation
in M.

Der folgende Hilfsbegriff dient hauptsichlich beweistechnischen Zwecken:
Ist jedem Index » einer endlichen nichtleeren Indexmenge {1,..., n} ein-
deutig eine Transformation 7, e I' zugeordnet, so ist dadurch ein I'-Komplex
N =T[r,...,7,] gegeben. Die Michtigkeit der Indexmenge soll Mdchtigkest
IN| des I'-Komplexes N heifen, so dal in unserem Falle also |N| == gilt.
Erginzend definieren wir den leeren '-Komplex © als die leere Teilmenge von
I'; |©] = 0. Fiir eine natiirliche Zahl n seispeziell |, = [z, =t¢|v=1,...,n];
die Michtigkeit ist somit direkt als Index angeschrieben. Da bei der Bildung
eines -Komplexes verschiedenen Indices dieselbe Transformation zugeordnet

8) Vgl. {11, p.351; [4], Satz 5, p.316; [6], Satz 6.10, p.221; unser § 24 enthalt ein entspre-
chendes Gegenbeispiel.
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sein kann, braucht [z,,..., 7,] keine Menge im iiblichen Sinne zu sein, weshalb
wir eckige statt geschweifter Klammern verwenden und in Anlehnung an
analoge Situationen «Komplex» sagen®). Fiir © ist die Unterscheidung zwi-
schen Menge und Komplex unerheblich. Ein I'"Komplex ist somit eindeutig
dadurch charakterisiert, dafl gesagt ist, welche Transformationen mit welchen
Vielfachheiten in ihm enthalten sind. DemgemifB heilen zwei -Komplexe
M, N gleick, in Zeichen M = N, wenn sie dieselben Transformationen mit

denselben Vielfachheiten enthalten. Ist N =[r,,...,7,] und oe[l, so
bezeichne oN den '-Komplex [o7,,...,07,]. Ausgehend von zwei [-Kom-
plexen M =Jo,...,0,], N=1[7,...,7,] erkliren wir noch folgende Bil-
dungen:

a) M AN ist der groite gemeinsame '-Komplex von M und N; er umfaBt
die gemeinsamen Transformationen von M und N in der kleineren der beiden
Vielfachheiten.

b) M+ N=1J[6,,...,0pm,T,...,7,]; M+ 0 =M.

¢c) M-N=1[1500,..., 710, -, TpOys--, Tp0p); MO = 0O,

Man verifiziert leicht, daB die soeben definierten Operationen + und - asso-
ziativ und kommutativ und in ihrer Verbindung distributiv sind ; insbesondere ist

M:-N=N-M (1)

eine Folge der Kommutativitét von I'. Aulerdem gilt fiir die Machtigkeiten:
IM + N| = [M[] + [N, (2)

IM-N| = [M]-|N]. (3)

§ 6. Der Begrift der Belegung

Def. 6.1: Eine Belegung f uber einer Grundmenge IR ist eine eindeutige Ab-
bildung von M in die Menge der nichtnegativen ganzen Zahlen, die aber fir hich-
stens endlich viele A € M mnicht verschwindet. Spezielle Belegungen sind: Null-
belegung 0o mit o(A) = O[alle A ¢ M] und Charakteristik 14 von A eI mat
14(D) = 1[D = A], 14(D) = 0[D # A]. Zwet Belegungen f,g tber I heiflen
gleich, in Zeichen f =g, wenn f(4) = g(4) [alle A ¢ M].

Auf ganz natiirliche Weise 1a8t sich in der Menge B der Belegungen iiber It
eine Addition einfiihren:

(f +9)(4) =f(4) +g(4) [alle A <M]. (4)
Offensichtlich ist B beziiglich dieser Addition eine kommutative Halbgruppe

) Vgl. etwa E.Kamke [31], p.45.
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mit dem neutralen Element o. Mit Riicksicht auf die Giiltigkeit der Beziehung
f= 2 f(4)ia (5)
Aelr
kann diese Halbgruppe durch die Menge {0,%4| 4 ¢ M} erzeugt werden.
Nach der Definition 6.1 ist die in (5) auftretende Summe endlich; fortan wird
die Summationsklausel 4 ¢ I meistens weggelassen.

Nach diesen einleitenden Bemerkungen und im Anschlufl an § 5 ziehen wir
nun eine kommutative Gruppe eineindeutiger Abbildungen der Grundmenge
IR auf sich in Betracht und beschreiben deren Wirkung auf die Belegungen
itber 9N wie folgt: Fiir jede Belegung f ¢ B und jede Transformation v e I gelte:

fr: 4 — f(rrA4) [alle A < M]. (6)

Durch einfachste Uberlegungen iiberzeugt man sich von der Richtigkeit der
folgenden Aussagen:

feB,tel[ = f7eB, (7)
Tel =) 0" =0, (8)
AeM, el = Y, =1i,,, (9)
[r9eBivel = (f+9)" =/ +9". (10)

Simultane Wirkung der Addition und der Gruppe I in B fiihrt zu einem
weiteren niitzlichen Hilfsbegriff:

Def. 6.2: Ist N ein [-Komplex und f eine Belegung iber IN, so heifit die

ledu’ng N.f_— frl +°'- _l_f"n, falls N=[Tl9-..,Tn]’ (11)
=Vo , falls N=0

die Vervielfachung von f mit dem I'-Komplex N.
Fiir 1,-f schreiben wir in naheliegender Weise auch nf. Offenbar gelten
die folgenden Beziehungen:

feB =>N:-feB (12)

fr9¢B => N-(f +9) =N-f +N-g (13)

feB = M+N).-f=M-f +N-f (14)

Die Iteration des Vervielfachungsprozesses fithrt auf die in § 5 definierte
Komplexmultiplikation: Sind M = [0y,...,0,] und N =[1,...,7,] zwei

I-Komplexe, so gilt im Hinblick auf (1):
M-(N-fy=2 Zf"*¥=M-N)-f=(N:-M)-f=2 2f%»=N-(M-f) (15)

p=1v=1 y=1 pu=1

Kiinftighin koénnen also solche Klammern ohne EinbuBle an Klarheit weg-
gelassen werden.
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2. Kapitel: Der Begrift des Gefiiges

In diesem Kapitel befassen wir uns mit einer Konzeption, die geeignet
erscheint, eine Theorie iiber invariante Funktionen zu algebraisieren. Der
algebraische Standpunkt ist hier insofern hervorgehoben, als daf3 keine Vor-
aussetzungen metrischer oder topologischer Art von vorneherein gemacht
werden. Spitere Ausfithrungen lassen aber erkennen, dafl unter Ausniitzung
der algebraischen Situation eine Pseudometrik gewonnen werden kann (§ 10).

§ 7. Die Postulate des Gefiiges

IR, *> sei eine algebraische Halbstruktur, I' eine kommutative Gruppe ein-
eindeutiger Abbildungen von It auf sich (beziiglich der Komposition) und < eine
zweistellige Relation in der Menge der Belegungen iiber 9t. Durch Zusammen-
fassung dieser Grundgegebenheiten entsteht ein Gefige <, *, [, <>, wenn
folgende Postulate erfiillt sind??):

(I) A * Bdef => B * A def

(IT) A*B, A*C, B*Cdef> (4 * B)*Cdef

(I1I) JOeM mit A*XOdef, A*O = Alalle A ¢ IM]

Iv) f<hifsg, 9sh=f<h

(V)  ta<iB, 1B Sta=>14 =18
) <o fSgd=f+1<g9+9
) Hf<S9g+9.95f=1<g
(VIII) A*Bdef =14+ p<ta+iBStaxn
) ffg,rel":)f’fg’
) A* Bdef, te T =>1A * 1B def

Ein kurzes Wort zu einigen Postulaten: (I1I) besagt die Existenz eines neu-
tralen Elementes O in der Halbstruktur (9, *>. Nach (IV) ist die Menge B
der Belegungen durch < quasigeordnet und die Menge der Charakteristiken ¢4
im Hinblick auf (V) teilgeordnet. Die drei letzten Postulate sind Vertriglich-
keitsforderungen zwischen *, I' und <. Im iibrigen ist es das Ziel des néchsten
Paragraphen, den Gehalt der Postulate anhand einfacher Folgerungen zu
préizisieren.

19) Fiir die Bezeichnungen sei an § 3 erinnert. Es sind dies bis auf geringfiigige Anderungen die
Postulate, die H. HADWIGER in dem in der Einleitung genannten Kolloquium vorgeschlagen hat.

9 CMH vol. 38
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§ 8. Einfache Folgerungen aus den Gefiigepostulaten

Satz 8.1: Erklirt man fir f,geB

f~9=f<9, 957, (16)

80 ist ~ eine mit < vertrigliche Aquivalenzrelation in B. Sie hat tberdies die
Ergenschaften:

f~g, f~g =+ ~g+9, (17)

f+f ~9+g, f~9=f~g, (18)

f~g, tel = fr~g. (19)

Beweis: Die erste Behauptung folgt aus (IV) und Satz 1.3; (17), (18), (19)
ergeben sich aus (VI), (VII), (IX) und (16).
Nun lassen wir einige Aussagen iiber die Halbverkniipfung folgen:

(4 * B) * C def <=> A * (B * O) def , (20)
A*Bdef=>A*B=B*A, (21)
(A* B)*Cdef=>(A*B)*C =A% (B*C(), (22)
A* Bdef, A*Cdef, A* B=A*C=—>B=C. (23)

Beweise: (20): (II) und (I) gestatten folgende Schliisse: (4 * B) * C def <=
<<>A*B, A*C, B*Cdef<—=>B*C, B*A, C*Adef< (B*(C)*4
def <> A * (B * C) def.— (21): Aus (I) folgt B * 4 def. Mit (VIII) und der
Transitivitidt von ~ ergibt sich ¢, * ; ~ 5 * , und hieraus mit (V) die Be-
hauptung. — (22): Mit (20) resultiert 4 * (B * C) def, mit (VIII), (17) und der
Transitivitit von ~ weiter 4.4 * By * ¢ ~ %4 ¥ (B * ¢ und daraus mit (V) die
Behauptung. — (23): Nach (VIII) und der Transitivitit von ~ ist ¢4 +ip ~
~ 14 +i¢ und nach der Reflexivitit von ~ und (18) sodann ip ~ i¢, also
nach (V) B = C, wzbw.

Wir verabreden die folgende Sprechweise: 4, *...* A4, def bedeute fortan,
daB A4,,...,A, fir jede Art der Klammersetzung verkniipfbar seien und
das resultierende Element von der Klammersetzung unabhingig sei. Es gilt

dann:
A * ... * A, def<==> A, * A, def (p #v; p,v=1,...,m). (24)

Ein einfacher Induktionsbeweis stellt diese Aussage sicher. Ebenso leicht
zeigt man: Bezeichnet (»;,...,»,) eine Indexpermutation, so gilt:

A KA def==A, ¥ KA, def, Ay ¥ KA, =A, * ... *4 (25)

vn *

Somit ist unsere Halbverkniipfung iiber ihrer Definitionsmenge assoziativ
und kommutativ. Durch die nichste Aussage erfahrt Postulat (III) eine Ver-
schirfung:
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Satz 8.2: Es gibt genau ein neutrales Element O ¢ M. Dieses erfillt die
Beziehung io o0 (26)
und 18t Fixelement jeder Transformation von T, das heift, es gilt:

el = 170=0. (27)

Beweis: Sind O und O’ neutrale Elemente im Sinne von (III), so gilt

O *Odef, O' *0O=0" und O * 0’ def, O*0 =0

und wegen (21) O’ = O, womit die Einzigkeit feststeht. Nach (III) und (VIII)
folgt 14 +0 =14 =1%4%0~1%4 + %0, also 14 +0~1i4 + 10, und (18) lie-
fert o ~1i9. Die Anwendung von (26), (8), (19) und (9) ergibt ip ~o =
= 0" ~1ip = 1,0, also to ~ 1,0 oder mit (V) O =10, wzbw.

An dieser Stelle sei auf den Begriff der Kategorie von EILENBERG und
MAcLANE hingewiesen'') und bemerkt, da eine algebraische Halbstruktur,
die unseren Postulaten (I), (II), (III) nebst den Bedingungen (20), (21), (22)
geniigt, nicht notwendig eine Kategorie ist und umgekehrt eine Kategorie
nicht notwendig diese Postulate und Bedingungen erfiillen muf. Trotzdem
besitzen die Betrachtungen dieser beiden Begriffe einige Beriihrungspunkte.
So erbringen zum Beispiel (20) und (22) den direkten Nachweis des einen
Kategorienpostulates, und (23) besagt im Hinblick auf (I) und (21), daB jedes
Element der Grundmenge reguldr im Sinne von M.HASSE [34] ist.

Unter Heranziehung des in § 5 bereitgestellten Begriffes des M-Komplexes
erkliaren wir hier in volliger Analogie zur Def. 6.2:

Def. 8.3: Ist N ein I'-Komplex und A ¢ M, so heifft die Bildung

nd*...*t, A, falls N=[r,...,7,],

0 falls N =0 (28)

N-A — {
die Vervielfachung von A mit dem T-Komplex N unter der ausdriicklichen Vor-
aussetzung T, A * ... *1,A def, was von nun an durch die Anschrift stets
mpliziert werde.

Ebenfalls im Anschluf8 an die '-Komplexe resultieren zwei niitzliche Aus-

een f<g=>N-f<N.g, (20)
I ~N-t4. (30)
Beweise: Fiir N = © wird (29) trivial, und (30) geht in die schon als richtig

erkannte Beziehung (26) iiber. Fir N #© folgt (29) aus (IX) und (VI), (30)
aus (VIII) und (9).

1) Vgl. S.EILENBERG — S. MACLANE [32], C.EBERESMANN [33], M. HassE [34].
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Die Quasiordnungsrelation < in der Menge B der Belegungen ist verantwort-
lich fiir eine Teilordnung in der Grundmenge I :
Satz 8.4: Erklirt man fir A, B eIN
A<L B¢ 145 1p, (31)
dann 1st < eine Teilordnungsrelation in der Grundmenge M.
Beweis: Diese Aussage folgt unmittelbar aus der Tatsache, dall die Menge
der Charakteristiken durch < teilgeordnet ist.

Diese Teilordnungsrelation besitzt die folgenden einfach zu beweisenden
Vertriaglichkeitseigenschaften:

A<LB, AA<B,A*A def, B*B' def — A*A' < B*H, (32)
A*A' def, B*B' def, A*4A' < B*B', B<A— A'< B, (33)
A<LB,oell => 04 <oB. (34)

Damit ist (M, *, I, <) eine teilgeordnete algebraische Halbstruktur. Fiir
die Vertréglichkeit zwischen * und I' gilt noch:

A*Bdef,7el = 7(4d*B)=74 *1B. (35)

Beweis: Nach (X) ist 74 * 7B def. Durch Anwendung von (9), (VIII),
(19) und (10) ergibt sich ¢, 44 By =14 x B~ (14 +198)" =10} + 15 =10,4 +
+ 4,8~ 1,.4%,.p oder also mit der Transitivitit von ~ und (V) die Be-
hauptung.

§ 9. Normierte Gefiige

Durch eine Zusatzforderung greifen wir eine ganz spezielle Klasse von
Gefiigen heraus, die eine weitgehend selbstéindige Theorie besitzen und sich
durch das Vorhandensein einer Eigenschaft auszeichnen, welche dem archi-
medischen Axiom verwandt ist. Dadurch wird ein relativer Beschrénktheits-
begriff erzeugt (vgl. Def. 9.1).

Es seien im folgenden [ = <M, * , [, <> ein Gefiige und K <P ein
nichtneutrales und definites Element, so daf} also gilt:

E+#0,0<E. (36)
Def.9.1: Ein Element A ¢ WM heifst E-beschrimkt, wenn es passende Verviel-
fachungen von ig so gibt, daf gilt:
t0St4a +MM-igSPeig. (37)
Ist jedes Element A won M E-beschrinkt, so heift E ein Normelement des
Gefiiges 1.
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Nachdem ein bestimmtes Normelement E in einem Gefiige [] fest gewihlt
und dadurch ausgezeichnet ist, dafl man es zur Normierung heranzieht, heiB3t
das Gefiige [] normiert oder kurz ein n-Gefiige, und E spielt die Rolle einer
fiinften unabénderlich gedachten Grundgegebenheit, was wir durch die Schreib-
weise [ = <M, *, I, <, > zum Ausdruck bringen.

Satz 9.2: Ist [ ein n-Gefuge, so gilt: a) Jeder '-Komplex N erfillt die Be-

ziehung 0<N.ig. (38)
b) Zu je endlich vielen Hlementen A,,..., A, eI gibt es zwei -Komplexe
WP mit <, +Teig<Peuigw=1,...,n), (39)
iA:SP-iE v=1,...,m). (40)

(40) besagt also die Existenz einer Belegung, die endlich viele vorgegebene
Charakteristiken simultan majorisiert.

Beweis: (38): Aus (36), (31) und (26) ergibt sich mit (16) und Satz 8.1
0 < 1g. Daraus folgt mit (8) und (29) die Behauptung (38). — (39): Nach (37)
gibt es TT,,P, mit 50 Si, +T,-ig SP,-ie(v =1,...,n). Mit Riicksicht
auf (38) gilt mit M =T, +... +M,, P=T +P, + ... +P, wegen (VI)
und (14) auch (39). — (40): Im Hinblick auf (39) geniigt es, zu bemerken, daf}
g, S iy, +T-0e gilt.

3. Kapitel: Invariante Funktionen iiber normierten Gefiigen

In den folgenden Paragraphen wird ein kurzer Abrif} der Theorie der n-Gefiige
und der invarianten Funktionen iiber ihnen gegeben, mit bewuf3ter Beschrin-
kung auf deren Hauptsiitze. Die Theorie ist noch mancher Erweiterung fihig,
was jedoch im Rahmen der vorliegenden Arbeit nicht gezeigt werden kann.

§ 10. Belegungsiiquivalenz

Im ganzen Paragraphen bedeute [ = <M, *, ', <, E) ein festgedachtes
n-Gefiige. Wir entwickeln aus den Grundgegebenheiten heraus eine Pseudo-
metrik und daraus sodann eine Aquivalenzrelation in der Grundmenge ).
Diese erlangt ihre volle Bedeutung erst bei weiterem Ausbau der Theorie.
Die hier gegebene Einfiihrung ist bereits fiir den Weiterausbau angelegt; der
Mehraufwand gegeniiber einer direkten Behandlung ist gering und wird durch
allgemeinere Einsichten gerechtfertigt.
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Satz 10.1: Fiir jedes geordnete Paar (A, B) von Elementen von IR existiert
die reelle Zahl

a(4d,B)=1infp/n[N;-i4SNy-ip+TT-2x5; [N;| =|Ny| =2>0, |TT|=p>0]. (41)

Beweis: Mit (26), (39), (40) schlieft man auf das Bestehen von Beziehungen
0SS ip +TT-4g, ¢4 SP-ig. Ohne Einschrinkung der Allgemeinheit darf
|P +TI| > 0 angenommen werden, da dies durch Addition von iz zur rechten
Seite einer der Beziehungen erzwingbar ist. Durch Addition ergibt sich nach
(VI) 24 St + (P 4 1) -7z, womit die Realisierbarkeit der Klausel in (41)
erwiesen ist. Da 0 eine untere Schranke fiir die in Frage stehenden Zahlen p/n
igt, so folgt die Existenz des Infimums, also die Behauptung.

Satz 10.2: Die soeben definierte Funktion a hat folgende Eigenschaften:

AeM, el = a(d,74) =0, (42)
A, BeIl; A< B— a(d4,B)=0, (43)
A,B,C eI => a(4,C) <a(d4,B) +a(B,0), (44)

A,B,C,De; A*Cdef, B*Ddef —>a(A*C,B*D)<a(4,B)+a(C,D), (45)
A,B,C,DeM;A*Cdef, B* Ddef—>a(A, B) <a(4*C,B*D)+a(D,C). (46)

Beweis: (42): Zu jedem ¢ > 0 gibt es eine natiirliche Zahl n mit 1/n <.
Nach (38), (9) und (VI) gilt dann =»¢% < ni,4 + iz, womit (42) erledigt ist.
Vollig analog ist das Vorgehen bei (43), wenn man ¢4 <95 bedenkt. — (44):
Zu beliebigem ¢ > 0 gibt es die Beziehungen

Ni-24aSNyeip +TT-0g, [Ny | =[Ny | =0>0,|TT|=p>0,pn<a(d,B) +¢/2,
M- tg S My ig+Peig, |M|=|My| =m>0,|P|=r>0,r/m<a(B,C) +¢/2.
Es folgt daraus M;-N; 14 <M;-N,y-ip +M;-TT-1g, Ny-M;-ip SN,-M,y-i¢ +
+ Ny P 2g und mit (1), (VI), (VIT) M;-N; - 44 SNy- My - t¢ +(M; - TT 4N, -P) - 2.
Nach (41) ergibt sich daraus a (4, C) < (p/n) + (r/m) <a(4, B) +a(B,C) +e.
Da ¢ beliebig war, so resultiert die Behauptung (44). — (45)'?): Zu jedem &> 0
gibt es Beziehungen Nj-i4 <NJ.ip +T1"-ig, [N;| = [N;| =2’ >0, |TT'| =
=p' >0, p'ln' <a(d, B) +¢, M ic <M;- i, +P' -ig, M| =|M}| =
=m' >0, |P|=r>0, r/m' <a(C,D) +¢. Durch Vervielfachung mit
l,, bzw. l,, und die Setzungen n = m'n’, p = m'p’, r = n'r" folgt
die Existenz von Beziehungen N,-¢4 S Ny-¢p 41T -4, Ny-i¢ SNy -7 +
+Poig mit [Ny| =[Ny = [Ng| =[Ny =n>0, |TT|=p>0, [P|=r>0,
pin=p'ln, rln=rm'. Mit Ny=[&,...,&] No=[n,..., 7], Ny=
= [0y,...,0,], Ny =[11,...,7,] bildenwir fiir ¢ = 2, 3,... die -Komplexe

12) Dieser Beweis ist einem unpublizierten Beweis von H.HapwiceR fiir Lemma (d) in [5],
p. 118, nachgebildet.
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Wy, =[1...8" .. ..¢froa...orzh.. .21 <a,b,¢c,,d, <q natiir-
liche Zahlen (» =1,...,n)].

Es ist |0, = ¢**. Aus den beiden letzten Belegungsrelationen erhilt man
durch Vervielfachung mit (), und (VI): (a) 0, - N; - 24 4+, - Ng-t¢ S0, - Ny- 15+
4+ W, Ny oy +W, - (T +P)-ig. Eine Transformation von ), gehort sicher
dann zu £,W, A 7,),, wenn simultan die folgenden Bedingungen erfiillt sind:
2<e,<¢, 2<¢, <q; 1 <oy, <q(A#9); 1 <h,dh<g(A=1,...,n).
Somit gilt |&,W, A 0,0, = ¢ 2(q@ — 12 (» = 1,..., n). Demzufolge
enthédlt der [-Komplex W), N; A 0, - N; gewill einen Teilkomplex K; mit
K] = ng*"2(g — 12 =Fk>0. Esgiltalso 0,-N, =K, +A;, W,-N; =
Ki + Ay und analog @, - N, = K, + A,, 0,- Ny = K, + Ay, mit [K,| =
IKs] =k, [N = |Ns] =|Ns] = Ns] =1=mng*» —k > 0. Nach dieser Zer-
spaltung der [-Komplexe in (a) lautet (a) unter Anwendung von (VIII):
(b) Ky taxe + AN ta+Ns-ic SKy-tprp+ Ny i+ Ny-ip+W, - (TT+P) - 2.
Aus (38), (39), (40) 148t sich leicht auf die Existenz eines I'-Komplexes T mit
(0] S iA —]—-T'iE, o Sic—}—T‘?:E, ’iB S T- iE, ’I;D S T- ’iE schliefen. Aus (b),
(38), (VI), (VII) folgt dann (C) K1° LA%*C f K2 LB%D —I—A g mit A=T-
(AN AN A A O, - (TTHP). Ist | T| =1¢, sofolgert man aus (2) und (3)
s = |A| = 41t 4+ ¢**(p +r). Beachtet man, daB ¢ ausschlieBlichvon 4, B,C, D
abhingig ist, so resultiert die Konvergenzaussage s/k— (p -+ r)/n (g— o).
Wegen (p +7r)/n <a(4d, B) +a(C, D) + 2¢ gibt es ein passendes g mit
(s/k) <a(4, B) +a(C, D) + 2¢. Da ¢ beliebig gewihlt war, so folgt nach (c)
und (41) die Behauptung (45). — (46): Dieser Beweis verlduft in groen Ziigen
analog zum vorigen und kann jenem leicht nachgebildet werden.

Satz 10.3: Die Funktion
d(4, B) = Maz {a(4, B), a(B, 4)} (47)
ist eine Pseudometrik auf der Grundmenge I mit den zusdtzlichen Eigenschaften

AeM, reT=>d(4,74) =0, (48)
A,B,C,D eI ; A*Cdef, B¥Ddef =>d(A*C, B*D) <d(A4,B)+d(C,D), (49)
A,B,C,DeM; A*Cdef, B*Ddef —>d(A,B) <d(4*C,B*D)+d(C,D). (50)

Beweis: (48) folgt aus (42) und (M1) hieraus durch die Setzung v = .
(M3): Mit Riicksicht auf (44) gilt d(4,C) < Maz {a(4, B) +a(B, (),
a(C, B) +a(B,A)} <d(4, B) +d(B,C). — (M5) ergibt sich direkt aus
(47). Somit ist d in der Tat eine Pseudometrik auf . Die Nachweise von (49)
und (50) verlaufen im Hinblick auf (45) und (46) gleich wie derjenige von (M 3).

Mit Satz 10.3 ist die Moglichkeit gegeben, mit Hilfe der Pseudometrik auf
bekannte Weise der Grundmenge It eine Topologie aufzuprigen: Die Mengen
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Sd;c)={DeM|d(4,D)<c} mit A eI, ¢> 0 bilden nimlich eine Basis einer
Topologie, in welcher die S (4 ;¢) offen, die T(4;¢) = {D e M|d(4,D) <c}
dagegen abgeschlossen ausfallen'?); wir nennen sie im folgenden die d-Topologie.
Diesem Gesichtspunkt kommt aber in der vorliegenden Arbeit nicht primére
Bedeutung zu; wir werden nur gelegentlich diesbeziigliche Hinweise geben. An
dieser Stelle sei lediglich bemerkt, dafl durch (49) die Stetigkeit der Abbildung
(4, B)—> A * B garantiert wird. Die algebraische Halbstruktur <(Jt, *> ist
somit «topologisch» im Sinne der topologischen Algebra. Das Vorhandensein
einer Pseudometrik wird hier in einer anderen Hinsicht verwendet:

Def. 10.4: Die gemdif3 Satz 2.2 durch den Ansatz
A~ BdA4,B) =0 (51)
definierte Aquivalenzrelation in der Grundmenge IN heife Belegungsiquivalenz.

Die Erklirungen (41) und (47) ergeben die folgende Kennzeichnung der
Belegungsidquivalenz:

Satz 10.6: Zwei Elemente A, B der Grundmenge eines n-Gefiiges [ sind
genau, dann belegungsdquivalent, wenn sich zu jedem ¢ > 0 Vervielfachungen so
angeben lassen, daf gilt:

Ny 2aSNy-og+TT-2g; [Ny | =[Nyl =0>0, |TT|=p>0; pln<e (52)
My 28 SMy-t4+P-ig; M| =Myl =m>0, |P|=7r>0; rim<e.

Nach den Vorbereitungen ist es nun leicht, wichtige Eigenschaften der Bele-
gungsiquivalenz zu erkennen:
AeM,7ell = A ~714, (53)
A,B,C,DeM; A*Cdef, B*Ddef, A ~B,C ~D=—A*C ~B*D, (54)
A,B,C,DeM; A*Cdef, B¥XDdef, A*C ~B*D,C~D=—A~B, (55)
A~B, | M|=|N—=M-4~N-B, (56)
M-A~N-B, | M|=|N|>0=4 ~B. (57)

In naheliegender Weise kann man (54), (55), (56), (57) mit Additions-, Sub-

traktions-, Multiplikations- und Divisionssatz ansprechen.

Beweise: (53), (54), (55) ergeben sich miihelos aus (48), (49), (50), wenn man
(M 6) bedenkt. (56) folgt induktiv aus (53) und (54). — (57): Zu beliebigem
¢ > 0 gibt es nach Satz 10.5 eine Beziehung A;-¢y., S Ny-ing + 1T 1z
mit |[A| = |N| =1>0, |TT|=p>0, p/l <e. Nach (29) und (30) resul-

13) Fiir die hier auftretenden topologischen Begriffe verweisen wir auf irgendein einfiihrendes
Werk der mengentheoretischen Topologie, insbesondere etwa N.BoUuRBAKI [35], chapitre I.
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tiert Ay M-i4 SA,-N-ip4TT-ig. Wegen p/nl < pjl <e folgt a(4d, B) =0,
wobei n = |M| = |N|. Analog ergibt sich a(B, A) = 0 und damit die Be-
hauptung (57), wzbw.

§ 11. Invariante Felder, Funktionen und Systeme
Im ganzen Paragraphen bedeute [] = (I, *, ', <, E) ein fest gedachtes
n-Gefiige.

Def. 11.1: Ewn zu [ gehoriges invariantes Feld («i-Feld») ist eine Teilmenge
& von M mit den folgenden Eigenschaften:

(F1) A,Be¢%; A*Bdef—>A*Beg ( Additivitat) 1),
(F2) A rel=—14c§ (T-Freiheit),
(F3) E,0¢§ (Normalitit) .

Vorerst schliefen wir einige niitzliche Begriffsbildungen um das 2-Feld an:

Def. 11.2: Unter dem durch eine nichtleere Teilmenge N von M erzeugten v-Feld
verstehen wir die Menge der Aggregate K-E *M,-4,* ... *M, -4, mit
Ay,...,A,eN;, n=1,2,..

Man verifiziert leicht, daB der Ubergang von einer Menge zum erzeugten
t-Feld ein AbschlieBungsprozef ist. Die ¢-Felder sind dabei die abgeschlossenen
Elemente, und nach Satz 1.6 ist das von 3 erzeugte i-Feld das kleinste aller
1-Felder, welches 9t umfaft.

Det. 11.3: Erfillt eine Teilmenge &' eines i-Feldes § schon die Feldpostulate
(F1), (F2), (F3), so heifst F' ein Unterfeld von § und §& ein Oberfeld von §'.

Zwei in einem gewissen Sinne extremale i-Felder sind von vorneherein aus-
gezeichnet :

1. Das durch die Menge {E} erzeugte i-Feld € = {N- E| [N| =0,1,2,...},
welches wir das Normfeld nennen?®),

2. das umiverselle i-Feld M, in der Tat erfilllt I die Feldpostulate (K1),
(F2), (F3).

Die Extremalitit von € und 9t besteht nun darin, daBl jedes zu [] gehdrige
i-Feld & der Relation € ¢ § < M geniigt, so daB € als das kleinste, I hin-
gegen als das gréBte i-Feld in Erscheinung tritt.

14) Dje Wahl der Bezeichnung «additiv» erfolgt ohne Préjudiz fiir eine noch vorzunehmende
konkrete Deutung der Halbverkniipfung *.

15) Es sei ausdriicklich darauf hingewiesen, daB |N|unter Umsténden nur endlich vieler Werte
fahig ist, da fiir zu groBe |N| die Vervielfachungen nicht unbedingt gebildet werden koénnen.
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Der Ubergang von der Grundmenge It zu einem beliebigen i-Feld ¥ legt
eine neue Begriffsbildung fiir die Belegungen nahe:

Def. 11.4: Eine Belegung fe B heifit dem i-Feld § assoziiert, in Zeichen
f+ &, wenn gilt: f(A) = Oalle A ¢ M — F].
Man iiberzeugt sich dann leicht von der Giiltigkeit der folgenden Aussagen:

Lg+=F=+9 +F, (58)

f-F=>N-f+=F. (59)

An dieser Stelle kann nun die Erklirung des Hauptbegriffes unserer Aus-
fiihrungen erfolgen:

Def. 11.5: Eine invariante Funktion («i-Funktion») ¢ ist eine dber einem
i-Feld § erkldrte reellwertige Funktion mit den folgenden Higenschaften:

f,9+& fSg=2f(4) p(4) < Zg(A) p(4) (Belegungsmonotonie)s), (I1)
AeF; el = @p(r4) = ¢(4) (T-Invarianz) , (I2)
p(B) =1 ( Normiertheit) . (I3)

Def. 11.6: Ein dem n-Gefiige [ assozirertes invariantes System («i-System »)
(¥, 9> entsteht durch Zusammenfassung eines zu [] gehorigen i-Feldes & und
einer t-Funktion ¢ dber &. Die Elemente von §& heiflen im ¢-System (&, ¢)
bewertbar.

AnschlieBend an die soeben genannten obligatorischen Postulate fiir :-Felder
und ¢-Funktionen kennzeichnen wir eine Eigenschaft, die einem ¢-Feld iiberdies
zukommen kann:

(F4) Das i-Feld § besitzt die Hindeutigkeitseigenschaft, wenn fir beliebige
1-Systeme {®, y> und {H,w) gilt: p(A) =w(A)[alle A e¢F ~ G ~ H].

Im folgenden befassen wir uns mit Eigenschaften der ¢-Funktionen, also mit
den Folgerungen aus den Funktionspostulaten (I1), (I2), (I3).

Satz 11.7: Ist ¢ eine i-Funktion iber dem i-Feld &, so gilt:

fr9 -8 f~g=2f(4)p(d) = 2g(4) p(4), (60)
f+&=2(N-f)(4)p(d) = [N]| Zf(4) p(4) , (61)
A,Bel; A* Bdef=>¢(4* B) = ¢(4) + ¢(B), (62)
¢(0) =0, (63)
4,Bey; A <B=>p(d) < p(B), (64)
A, 0 < A= ¢p(4) =0, (65)

18) Fiir das Summensymbol vgl. die Bemerkung nach (5). Statt 2f(A4)@(4) schreiben wir
gelegentlich knapper Xf@.
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A,BcF—>|p(d) —g(B)| <d(4, B), (66)
4,BeF; A ~B— p(d) =p(B). (67)

An anderen Orten wird (62) als Additivitit, (64) als Monotonie, (65) als
Definitheit und (67) als Aquivalenzinvarianz bezeichnet'?). (66) bringt zum
Ausdruck, daB3 jede i-Funktion beziiglich der d-Topologie iiber dem betref-
fenden 2-Feld gleichm#fBig stetig ist.

Beweise: (60) ist eine triviale Folgerung von (16) und (I1), und (61) folgt
ebenfalls mit einfachen Schliissen aus (I1) und (I2) unter Beriicksichtigung
von (6) und (59). — (62): Nach (VIII) ist ¢4 x p ~ ¢4 + ¢ und nach (60)
sodann ¢ (4 * B) = ¢(A4) + ¢(B). Setzt man hierin A = B = 0, so resul-
tiert (63). — (64): Nach (31)ist 14 < ¢, und mit (I1) folgt ¢(4) < @(B). —
(65): folgt aus (63) und (64). — (66): Zu beliebigem &> 0 gibt es eine Bezie-
hung N; ¢4 SNy-tp +TT-4g mit [N = [Ny =2 >0, |[TT| =p >0,
p/n < a(A, B) +¢. Aus (I1), (I3) und (61) ergibt sich nep(4) < ne(B) +p
und hieraus ¢ (4) <¢@(B) +a(4, B) + . Da ¢ beliebig war, so gilt

¢(4) < ¢(B) +a(4, B) und analogdazu ¢(B) < ¢(4) +a(B, 4).
Mit Riicksicht auf (47) folgt |p(4) — ¢ (B)| < d(4, B). — (67) ist im Hin-
blick auf (51) eine triviale Folgerung von (66).
Fiir beweistechnische Zwecke wird sich noch die folgende Sachlage als niitz-
lich erweisen:

Satz 11.8: Ist & ein i-Feld und f = §, so gibt es eine durch f eindeutig be-

stimmie natiirliche Zahl n und eindeutig bestimmte Elemente A,, ..., A, €& mit
f»l—z'o:iAl—{—... + 14, - (68)

Ist auPerdem ¢ eine reellwertige Funktion iber F mit ¢ (0) = 0, so gilt:
ZHA) p(A) = p(dy) + ... +o(4,). (69)

Beweis: Im Hinblick auf (5) ist f eine Summe von eindeutig durch f bestimm-
ten Charakteristiken von Elementen von §. Durch die Addition von ¢¢ wird
erzwungen, daB deren Anzahl positiv ist. Wegen ¢(0) = 0 folgt auch (69),
wzbw.

Von (62) und (64) gibt es eine Art Umkehraussage:

Satz 11.9: Ist * eine Verkniipfung und § ein i-Feld, so ist jede monotone und
additive reellwertige Funktion iber & belegungsmonoton.

Beweis: Seien f,g — &; f < g; ¢ iber § monoton und additiv. Nach (68)
gilt f 41, =iA1 4+ oo Fy,, 9+ :iBl + ... +1p,, also nach Vor-

17) Fiir diese Benennung in der Inhaltstheorie vgl. [36], Abschnitt II.
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aussetzung auch 1 4, T -0 F0 Ay = + ... +4p,. Da * eine Verkniip-
fung ist, so fihrt (VIII) auf 0 Ak ok ;n Sip %---% B, > die Monotonie auf

p(d,*...*4,) < p(B,*. *B, ') und die AdehlVltat auf ¢(4,) + ... +
—}—tp(An) <(p( B)+.. +<p( B,,). Beriicksichtigt man nun, daB (69) aus (63), das
heiflt letzten Endes aus (62) folgt,so resultiert mit (69) X'f(A)p(4) <Zg(4)p(4),
also die Belegungsmonotonie von ¢, wzbw.

SchlieBlich formalisieren wir einen im folgenden oft vorkommenden Sach-
verhalt:

Def. 11.10: Ein i-System <{®, p)> heifit Fortsetzung des i-Systems (§, ¢,
in Zeichen <(F,p>< (®,y), wenn gilt: F < G; p(A) = ¢(A4) [alle A « F].
Diese beiden 1-Systeme heiflen gleich, wenn § = ®&, w(4) = @(4) [alle 4 € F].

Ohne Miihe beweist man:

Satz 11.11: Die Menge @ der dem n-Gefiige [] assoziterten i-Systeme wird
durch die Relation < teilgeordnet.

Zum Schluf} treffen wir die Abmachung, ein ¢-System, dessen ¢-Feld das uni-
verselle Feld It ist, ein universelles i-System zu nennen.

§ 12. Allgemeine Fragestellungen

Nach der Einfiihrung des Begriffes des -Systems ist es jetzt ganz natiirlich,
die folgenden Hauptfragen der Theorie zu stellen:

A. Gibt es zu jedem n-Gefiige ein assozitertes i-System?

Fiir die Formulierung weiterer Fragen erachten wir die nachfolgende Be-
griffsskala als zweckmifBig!®): Ein Element 4 der Grundmenge It eines n-
Gefiiges [ heil3t a) absolut bewertbar, wenn fiir je zwei zu [] gehorige 1-Systeme
F,p> und <G, p> mit AeF, Ae® gilt: ¢(4) = y(A4); b) unbedingt be-
wertbar bzw. unbedingt unbewertbar, wenn fiir jedes zu [] gehoérige i-System
F,p>gilt: 4eF bzw. 4¢F. Falls die Existenz von ¢-Systemen gesichert
ist, lauten die weiteren Fragen:

B. G1bt es absolut bewertbare Elemente in N ?

C. Gibt es unbedingt bewertbare und unbedingt unbewertbare Elemente tn I ¢

Es ist das Ziel der anschlieBenden Entwicklung, diese Fragen zu beant-
worten und bei positiver Beantwortung eine Charakterisierung der betreffenden
Elemente zu geben.

18) Sje ist einem Vorgehen in der Inhaltstheorie nachgebildet. Vgl. H. HaApwIGER [13], p.124.
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§ 13. Ober- und Unterfunktion einer invarianten Funktion

In diesem Paragraphen konstruieren wir zwei einer ¢-Funktion zugeordnete
reellwertige Funktionen, die iiber der ganzen Grundmenge erklirt sind und
uns weitere Konstruktionen ermdaglichen.

Wir setzen voraus, dal (§, ¢> ein dem n-Gefiige [ =<, *, I, <, B>
assoziiertes 1-System sei, betrachten Belegungsrelationen der folgenden zweil
Typen:

fi +M-ip<f, mit fi,fe =& DeM; M| =m>0, (70)
9159 +N-ip mit ¢, =& De;[N[=n >0 (71)
und ordnen jeder solchen Beziehung die reelle Zahl
ap = [2f,(4) p(4) — Zf,(4) p(4)]m, (72)
bp = [29:(4) p(A) — Zg:(4) p(4)]/n (73)

zu'®). Die Mengen der auf diese Weise zum Element D ¢ It gehdrigen reellen
Zahlen bezeichnen wir mit Up und Vp.

Satz 13.1: Die Mengen Up und Vp sind fir jedes D e M nichtleer, und aus
apeUp, bpeVp folgt bp < ap.

Bewers: Nach (37) gilt mit passenden [-Komplexen ¢o < ¢tp + T2 S P -ig.
Setzt man f, =T-ig, fpf=P-ig, M=1, gy =10, g =T1-¢g, N=1;, so
sind (70) und (71) realisiert und somit Up und Vp nichtleer. — Sind ap e Up,
bp e Vp, so entspringen ap und bp den Beziehungen f, +M-ip <f, und
g1 S go +N-ip. Daraus folgt N-fy + N-M-ip<N-f,, Mgy SM-g, 4+
+M-N-ip und wegen (VI), (1), IV), (VI) N-f, +M-g, <N - f,-M - g,. Nach
(68), (59), der Belegungsmonotonie von ¢ und (61) ergibt sich n 2'f, (4)p(4)+
+ mZg(A)p(4) <nXfy(A)p(d) + m2Zg,(A4)p(4) oder nach (72) und (73)
bp < ap, wzbw.

Satz 13.1 lehrt auBerdem, da die nichtleeren Zahlenmengen Up und Vp
einseitig beschrinkt sind. Diese Sachlage ist hinreichend fiir die Existenz der
Zahlen inf Up und sup Vp, was AnlaB gibt zu folgender

Def.13.2:1%) Die fir alle D € M gemif (D) = inf Up bzw. ¢ (D) = sup Vp
erklirte Funktion heiflt die zum 1-System <&, ¢> gehorige Ober- bzw. Unter-
funktion.

Im folgenden leiten wir einige Eigenschaften der Ober- und Unterfunktion
her, die unter anderem erkennen lassen, daB diese zwei neu konstruierten Funk-
tionen keine 7-Funktionen im Sinne unserer Theorie sind, da ihnen die Additi-

19) Vgl. A.Tarskr [16], Def. 1.25, p. 52. In der inhaltstheoretischen Studie [36], Abschnitt VI,
wurde gleich vorgegangen.
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vitdt (62), also erst recht die Belegungsmonotonie (I1) im allgemeinen nicht
zukommt. Es gelten die folgenden Beziehungen:

DeM= (D) < ¢(D), (74)
AeF=9¢(d)=9¢(4) = ¢(4), (75)
A,BeM; A*Bdef==>¢(4)+¢(B) <@ (4*B); p(4*B) < ¢ (4)+¢(B), (76)
A,BeM; A ~B=>¢(4) = ¢(B), 9(4) = ¢(B), (77)
AeM, 7e M= p@rA)=9¢(4), pxd)=9¢(4). (78)

Beweise: (74) folgt unmittelbar aus Satz 13.1 und Def. 13.2. — (75): Wegen
A e F ist die Klausel (71) durch die Setzung ¢, = %4, ¢, = %0, N=1,, D= A4
erfiillt. Die gemidl (73) resultierende reelle Zahl ergibt sich zu b4 = ¢(4).
Nach Def. 13.2 gilt ¢(4) < ¢(4) und analog ¢(4) < p(4). Mit (74) folgt
hieraus die Behauptung. — (76): Nach Satz 13.1 ist die Existenz von Bezie-
hungen %3 Shy +M- iy, g1 g +N-ip mit Ay, by, 9,0+ & M| =
=m>0, |N| =n> 0 sichergestellt. Es folgt mit (13) und (29)N - %, <N - &, +
+N-M:-3,, Mg, <M-¢9, + M:-N:-¢5p und wegen (VI), (1) und (VIII)
N-b +M-g, SN-by +M-g, + M- N-igxp. Dies ist eine Bezichung vom
Typus (71) und liefert gemafBl (73) die Zahl byxg = [Zh, ¢ — Zh, ¢]/m +
+[29: 9 — 2 g plfn = bs +bp. Wegen baxp < @(A*B) gilt fiir alle zu
Beginn gesetzten Beziehungen b4 4 bp << ¢(A4*B), woraus sich leicht die
erste Behauptung ergibt. Fiir die zweite verlduft der Beweis analog. — (77):
Seien A ~ B und &> 0 beliebig. Dann besteht nach (52) eine Beziehung
(d) My 25 SMy-i4 +P-ig mit |M| = |My| =m >0, [P|] =7>0,rm<e.
Wegen der Realisierbarkeit der Klausel (70) existiert eine weitere Beziehung
e i+ N-i4<f, mit f,,f, = &; IN|=n>0. Durch Iteration der Ver-
vielfachungen in (d) und (e) folgt unter Anwendung von (VI), (1), (IV) und
(VII): () My-fi +N-M;-igSM,-f, + N-P:-ig. (f) ist eine Klausel vom
Typus (70), und da aus ihr die Zahl ap =[2fy ¢ — 2 f, ¢]/n + (r/m) resul-
tiert, so gilt (g) ¢(B) <[Zfep —Zf,¢l/n + €. (e) ist vom Typus (70) und
von ¢ unabhingig, also folgt aus (g): ¢(B) < ¢(4) + ¢. Da ¢ beliebig gewéhlt
wurde, so folgt ¢(B) << ¢(4). Auf entsprechende Art und Weise ergibt sich
¢ (4) < @(B), also insgesamt die erste Behauptung. Fiir die zweite verlduft
der Beweis analog. — (78) folgt wegen (53) aus (77).

Die Bedeutung der Ober- und Unterfunktion tritt ein erstes Mal in der fol-
genden Aussage hervor:

Satz 13.3: Voraussetzung: Es seien {{, ¢) und {®, v)> 2wei dem n-Gefiige (]
assoziterte i-Systeme mit (¥, > < <&, v)>. Behauptungen:
a) Fir alle Elemente D ¢ M gilt:

D) <yD)<ypD) <eD); (79)
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b) Fiir alle Elemente A € ® gili:
?(4) < p(4) <p4). (80)

Die Behauptung b), die sich im Hinblick auf (75) als einfaches Korollar der
Behauptung a) erweist, besagt die Existenz zweier Schranken fiir die ¢-Funk-
tionswerte, die einem Element 4 in beliebigen Fortsetzungen von {{, ¢)> zu-
geordnet werden konnen. Die Behauptung a) bringt zahlenmiBig zum Aus-
druck, dafl ein umfassenderes ¢-System in einem gewissen Sinne feiner bewertet
als ein weniger umfassendes.

Beweis: Wegen § c & ist jede auf das i-Feld § bezogene Klausel vom
Typus (70) oder (71) auch auf das i-Feld & bezogen, und die Zahlenmengen
Up und Vp sind fiir ® umfassender als fiir §. Daraus ergibt sich mit der
Def. 13.2 ¢(D) < v(D), w(D) < ¢(D) und mit (74) die Behauptung.

§ 14. Existenzkriterium und Normsystem

Essei =N, *, I, <, E> ein n-Gefiige. Wir nehmen in diesem Para-
graphen zu der in § 12 gestellten Frage A, der Existenzfrage fiir i-Systeme,
Stellung. Ein Existenzkriterium, das anschlieBend aufgestellt wird, soll die
Einsicht dariiber vermitteln, welche Sachverhalte in unserer Struktur fiir
Existenz oder Nichtexistenz mafgebend sind. Man wird dadurch auf ganz
natiirliche Weise zu einem :-System gefiihrt, dem in der Theorie eine aus-
gezeichnete Stellung zukommt, nimlich dem Normsystem.

Existenzkriterium 14.1:20) Zum n-Gefiige [ gibt es genau dann ein t-System,
wenn gilt: M- iz <N-izg=>|M| <|N]. (81)

Beweis: Sei (¥, @) ein i-System und M-ig S N-1z. Wegen M- ig, N-ig
= & und (I1) folgt mit (61) und (I3): |M| << |N|. Also ist (81) erfiillt. — Sei
umgekehrt (81) erfiillt. Dann gilt: M- E = N £ —) |M| = |[N|. In der Tat:
iM.g = tN.g, daraus nach (30) und Satz 8.1 M-4g ~ N:ig und hieraus
nach (16) und (81) |M| = |N|. Auf Grund dieser Sachlage ist durch

x(N- E) = |Nj (82)

auf eindeutige Weise iiber dem Normfeld € eine reellwertige Funktion y erklirt,
welche trivialerweise -invariant und normiert ist. Wir zeigen, da3 y auch bele-
gungsmonoton ist. Seien f,g —C€; fSg. Mit f/ =f+10= z'Ml,E + ...+ iMl-EN

20) Vgl. A.Tarskr [16], Satz 1.58, p. 56; H. HapwicEr — W.NEF [4], p. 308; W.NEr [6],
P. 2191f.
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M+ ... +M) g, ¢ =g+z’o=iN1,E + oo N ~N o0 Ny i
folgt (My+ ... +M)) -1 S (Ny+ ... +N,) 7 und daraus nach (81) und (2)
My + .o 4 M < N + ... +[N,| oder Zf (4) £(4) < Z¢'(4) z(4).
Mit der direkt aus (82) folgenden Beziehung y(0) = 0 ergibt sich schlieBlich
2f(A) x(4) <ZXg(4) x(A). Somit ist (&, y> ein i-System und das Kriterium
bewiesen.

Ist die Existenzbedingung (81) erfiillt, so nennt man das im Beweis des Kri-
teriums konstruierte :-System (€, y> das Normsystem. Offensichtlich wird
€, x> von jedem beliebigen i-System fortgesetzt.

Aus (81) ergibt sich weiter die Unmoglichkeit der Beziehung £ ~ O. Wire
sie ndamlich erfiillt, so wiirde mit (67) der Widerspruch 1 = y (&) = »(0) =0
folgen.

§ 15. Permanenzsatz und abgeschlossene Hiille

Hier stellen wir den Permanenzsatz der Belegungsmonotonie bereit, der ein
t-System auf Grund von Eigenschaften der Ober- und Unterfunktionen zu
einem neuen ¢-System fortzusetzen gestattet. Der Kerngehalt dieses Satzes
besteht in der Tatsache, dafl sich die Belegungsmonotonie (I1) auf das neue
System iibertragt. Allerdings 148t sich i.a. das Fernziel, die Konstruktion uni-
verseller i-Systeme, allein mit diesem Satz nicht erreichen; dazu wird sich ein
im folgenden noch zu entwickelnder typischer Fortsetzungsprozel3 eignen.

Permanenzsatz 15.1:2) Voraussetzungen: 1) <, ¢> set esn zum n-Gefiige [
gehoriges i-System; 2)F* = {4 ¢ M | p(4) = @(4)}; 3) p*(4) =¢(4) = ¢(4)
[alle A e F*]. Behauptung: {F*, p*> st ein zu [ gehoriges i-System mat
<&, o> < <F* 9%

Bewezs: §* ist additiv nach (76) und (74), ['-frei nach (78), und es gilt § — F*
nach (75); also sind O, E ¢ §*, und es ist * ein ¢-Feld. ¢* ist I-invariant
nach (78) und eine Fortsetzung von ¢ nach (75), also normiert. Es bleibt die
Belegungsmonotonie von ¢* nachzuweisen. Seien f,g = &*; f <g. Nach Satz
11.8 gilt f =fH4i0o=1 + ... +14,,9 =9 —|—io=z'Bl + ... +ip,
mit 4,,...,4,, B, ..., Blm eI*. Sei ¢> 0 beliebig. Wegen ¢*(4,) =
= (B(Av) glbt' es fvla fv2 =+ 3 mit (h) fvl vaz +nv”iA,; Invl :pv>0
und (i) [Zf.p — Zfe@llp, > ¢*(4,) —e(» = 1,...,n). Analog dazu gibt
€s gyl, gy.Z - % mlt (]) gyl + P[.L : in, S 9p2§ ‘Pp.i = rp. >0 und (k)
[29u2® —29u@llr, < o*(B,) +e(p=1,...,m). Wirbilden die -Komplexe
K= ... -4 - My-... - Me=1,...,9),0=T-... - T, A, =

1) Vgl. A.Tarsk1 [16], insbesondere pp. 54/55, wo die analoge Bildung natiirliche Erweite-
rung genannt wird. Fiir eine andersartige Herleitung vgl. [36], Satz 9.
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=P...-Py4Ppa-oo o Puu=1,...,m),P=P;-....P, mitdenMichtig-
keiten |TT| = p, |K,|=p/p,(v=1,...,n0), |P|=r, [N, =rr,(u=1,...,m).
Aus (h) folgt dann K, - f,; <K, f,, +TT-49, (? =1, ..., n) und hieraus mit

(VI) und (13) Ky fu + ... +K, fuSKitfo+... +K,-foe +T-f und
entsprechend A, g, + ... + N g1 +P -9 SA g+ -0 AL G-
Durch Weitervervielfachung dieser Beziehungen und Beriicksichtigung von
(VI), f <¢g/, (1), (29) und (VII) schlieBt man auf P- (K, -f; + ... +K, f..) +
+T-(Nogn + oo N g) SP-Kyefra o0 Ky o) +TT (A g1 +
+ ... +A,,gn). Alle hier vorkommenden Belegungen sind dem :-Feld
agsoziiert, und mit (I1) und (61) folgt

n

n m
p/pv val(p + p 2 7‘/7"“) Egp,l(p rzl p/pv)zfﬂ ¥ + p Zl(r/ry.) 29;1,2(’)
y= U=

y=1

oder X [Efvup 2fv2 ellp, < <z [29ue® — 29,1 ¢]fr,. Hieraus und aus (i),
= u=1

y=

(k) entspringt die Ungleichung 2'¢*(4,) —ne < X¢*(B,) +me. Dabei
v=1 u=1

sind m, n von ¢ unabhéngig, und es gilt 2o*(d,) < Z’ (p* (B,) und mit Riick-

v=1

sicht auf ¢*(0) =0 und (69) 2 f(D)p*(D) <2y (D)q) (D), womit die Bele-
gungsmonotonie von ¢* feststeht. Es sei noch vermerkt, daB3 sich im Falle
n = 1 bzw. m = 1 vieles vereinfacht; insbesondere ist K, = 1; bzw. A; =1,
zu setzen.

Das mit Satz 15.1 konstruierte ¢-System <(F*, ¢*> heillt die abgeschlossene
Hiille des ¢-Systems <{{, ¢)>.

Der Permanenzsatz garantiert, da der Ubergang von einem i-System zu
seiner abgeschlossenen Hiille insofern die Ausgangssituation reproduziert, als
daB dabei wieder ein ¢-System entsteht. Dadurch wird die Moglichkeit eréffnet,
diesen Ubergang zu iterieren, und es stellt sich folgendes heraus:

Satz 15.2: Ist <, @) ein t-System und {F*, p*> dessen abgeschlossene Hille,
so gilt fur alle Elemente der Grundmenge I :

¢*(4) = p(4); p*(4) = p(4). (83)

Beweis: Die Beziehung (1) ¢(4) < ¢* (4)[alle A « M] ergibt sich aus Satz
15.1 und (79). — Sei &¢>0 beheblg Dann gibt es f;, f, — &* mit (m)
h<fo+Tia; |T|=t>0; [Zfip* —Zf 0¥/t > ¢*(4) —e, wobei A ein
beheblges fest gedachtes Element von I bedeutet. Ist f; = f; +to =1¢ 4, +
+ o iy, fo =TI + io = zB + . +ig, , so gilt mit Riicksicht auf die

Definition von ¢*: [Z(p(A) Z'(p(B#)]/t><p*(A)—e (n). Nun gibt es

y=1

10 CMH vol. 38
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weiter fvl’ ]‘vz: gp.l’ gp.z CI} mit (0) fvl S fy2 +n iA’,; |nv| = pv> 0 und
(P) [va1¢ 2fv2¢]/pv>¢*(Av _—6/ m +n) sowie (q) gyl +Pp, 'iBFSg;m;
[Pyl =7,>0 und (r) [29,p —29u¢]lr, <¢*(B,) +¢&/(m +n), wobei
v=1,...,m;u=1,...,m.Durchdasselbe Vorgehen wie im Beweis vonSatz15. 1
erreicht man mit denselben '-Komplexen wie dort: P- (K, f;; + ... +K, - f.1)
+ M- Nogu + oo Ay God) +H-P-f2 SP-(Kifo + .0 K- fr) +
+ TN g+ ... +N, Gme) +P-TT-f,. Mit (m) erglbt s1ch f1<fr+
+ T-44. Aus den zwei letzten Beziehungen folgt mit (1), (29), (VI) und (VII):
P- (Kl'fn + oo F Ky ) FTT(Apogy + .- +Am'gm1)fp‘(l<1' fra +
+ oo K fe) FTT- (A g+ ... AN, g,2) +HTT-P-T-44. Dies ist eine
Klausel vom Typus (71), und es folgt:

1 n m
?Z(A) = —{.:{ > [val(p _va2(p]/pv _ 2 [ngz ' —ng.l (p]/rpb} und hieraus mit

(p); (r) und (n): ¢(A)>[Z‘- *(A,,)—ng*(B )/t —eft>g*(A) —2¢. Dae

beliebig gewahlt wurde, so gllt @ (A) > qa* (A4), also in Verbindung mit (1) die
Behauptung. Fiir ¢ geht alles analog. Da schlieBlich 4 ein beliebiges Element
der Grundmenge war, so ist der Satz vollumfinglich bewiesen.

Satz 15.3: Der Ubergang von einem i-System zu seiner abgeschlossenen Hiille
ist ein Abschliefungsprozefs im Sinne von Def. 1.5.

Beweis: Nach Satz 11.11 ist die Relation < zwischen i-Systemen eine Teil-
ordnung. (C1) folgt aus Satz 15.1, (C2) aus (83) und (C3) aus (79).

Nun haben wir Anschlufl an die Betrachtung iiber AbschlieBungsprozesse in
§ 1 und nennen von nun an ein ¢-System genau dann abgeschlossen, wenn es mit
seiner abgeschlossenen Hiille iibereinstimmt. Nach der allgemeinen Erorterung
ist die abgeschlossene Hiille eines 7-Systems (&, ¢ das kleinste abgeschlossene
Obersystem von <&,@>. Durch diese Sachlage erscheint die Benennung
«abgeschlossene Hiille» durchaus natiirlich.

§ 16. Fortsetzungssatz

Aufbauend auf einer Idee von S. BANAcH2) konstruieren wir in diesem Para-
graphen Fortsetzungen eines 1-Systems, welche in der Lage sind, ganz bestimmte
vorgegebene Elemente der Grundmenge zu bewerten. Es gilt namlich der
folgende

22) [14], Théoréme 14, p. 16.
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Fortsetzungssatz 16.1: Voraussetzungen: 1) <&, ¢> sei ein abgeschlossenes dem
n-Gefilge [0 =<M,*, [, <,E) assoztiertesi-System; 2) CeM, Ce¢F; 3) F set
das durch § - {C} erzeugte i-Feld. Behauptungen: a) Ist ¢ (C) <a < ¢(C),
so st durch den Ansatz

¢'(A*N-C)=p(d) +[N|a[4 F] (84)

wn eindeutiger Weise einei-Funktiong' iber &' erkldrt. b) <§',¢"> ist die einzige Fort-
setzung von {§,p> auf F mit ¢' (C) =a. c) Auf diese Weise erhdlt man alle Fort-
setzungen von <, @y auf F'. d) Zu jeder reellen Zahl a mit ¢ (C) <a < ¢(C)
qibt es mindestens ein abgeschlossenes i-System {®&, v), welches dem n-Gefiige
[ assoziiert ist und den Bedingungen <(F,9)> < (®,y>; Ce®; p(C)=a
genuge.

Als unmittelbare Folgerung dieses Satzes ergibt sich die Einsicht, daf3 im
Falle ¢(C) < ¢(C) kontinuierlich viele verschiedene i-Systeme existieren, die
das i-System (&, @) auf das s-Feld §' fortsetzen.

Beweis: aa) Eindeutigkeit von ¢': Sei A *N-C=B*M-C[A4,Be{]. Es
gilt zu zeigen: ¢(4) +|N|a = @(B) +|M|a. — 1. Fall: |M| > |N|. Dann
ist M=N'+T mit [N'|=|N| und |T|=1¢>0. Nach (56)ist N'-C ~N-C,
also nach (55) A ~ B*T-C. Zu beliebigem &> 0 gibt es also nach (52)
eine Beziehung TI,-¢4 < Ty ipgyr.c +P-te; | = [Tl = p >0, |P| =
=r>0; r/p <e. (VIII) und (30) liefern hieraus I, - 44 STl +P-ig +
+ T+ T ic. Wegen A4, B, E « & ist dies eine Klausel vom Typus (71),
und es folgt ¢(C) = [pp(4) — pp(B) — re(#)]/pt und daraus ¢(C) >
[p(A) — @(B)]/t — ¢/t. Da & beliebig gewéhlt war, so schliet man auf ¢ (C) >
[p(A) — @ (B)]/t. Eine vollig analoge Argumentation fiihrt auf die Beziehung
?(C) <[p(4) —@(B)]/t. Mit Riicksicht auf (74) ergibt sich ¢(C) = ¢(C),
also mit der Abgeschlossenheit von (¥, @) auch C ¢, im Widerspruch zur
Voraussetzung 2) des Satzes. Damit ist die Unméglichkeit des Falles M| >|N|
und gleichzeitig des Falles |M| < |N| dargetan, und es bleibt: 2. Fall:
M| = [N|. Aus 4 *N-C = B *M:( folgt mit (56) und (55) A ~ B und
hieraus mit (67) ¢@(4) = ¢(B), also auch ¢(4) + [N|a = ¢(B) + |M|a,
womit die Eindeutigkeit von ¢’ feststeht.

ab) ¢’ ist eine i-Funktion aber F': Die Normiertheit (I3) ist trivial verifizier-
bar. — (I2): Nach (X) und (35) gilt: ¢'(z(4*N-C)) =¢'(z4 *t(N-0)) =
=g@(td) +|tN|a =¢(4) +|Nja=¢ (4 *N - O) — Es bleibt die Bele-
gungsmonotom’e (I1) nachzuweisen Seien f',g' =&, f = g Setzt man
f +'I‘O‘_27’A*K ¢ 9 +7’0‘—27’B WDy C f—~2u J g—Z@B K=K +

=1

+Kn’ AN=N +.. +Am, soglltoifenbar s)f—l—K icSg+Nic
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mit f,g = §. Ohne Einschrinkung der Allgemeinheit kann hier |K| = %> 0,
[A| = 1> 0 vorausgesetzt werden, da dies durch beidseitige Addition von ¢
erzwingbar ist. — 1. Fall: I >k : Zu beliebigem &> 0 gibt es eine Beziehung
(t) 159 +T9c; 91,9+ &; | T| =¢>0mit (u) [Zg,9 — 299/t > @(C) —s.
Wird (s) mit T und (t) mit K vervielfacht, so ergibt sich mit (VI) und (VII):
v) T-f+K-¢s5T-9g+K-g, +T-A-i¢. (v) ist vom Typus (71), und es
gilt ¢(C) = [Zfp —Zgel/l +[2Zg9 — Zgap]k[lt oder unter Heranziehung
von (u) ¢(C)>[Zfp — Zgp]/l + (k/l) (¢ (C) — &) und daraus lp(C) > Zfp —
— 2gp + kp(C) — ke. Da diese Ungleichung fiir alle ¢ > 0 gilt, so folgt (w)
2ge +1lp(C) = 2fp +kp(C). Wegen a —¢(C) >0,1>%k>0 hat man
(x) la —Ilp(C) = ka — ke (C), und durch Addition von (w) und (x) ergibt
sich Xgp +1la > 2fp + ka. Nach den Vorbereitungen schlieBt man hieraus
miihelos auf Xg' ¢’ > 2f ¢'. Im 2. Fall (I < k) verliuft der Beweis analog,
womit (I1) nachgewiesen ist.

b) Aus (84) folgt ¢’ (C) = a. Sei {§F',w) ein :-System mit (F, ¢> < <F', 0>
und w(C) = a. Es gilt dann nach (62) w(4 *N-C) =w(4) +|N| 0 (C) =
=g@(4) +[N|ja =¢' (4 * N-C); also stimmen w und ¢’ iiberein.

c) Sei <F, ) < <G, w)y. Aus (80) folgt ¢(C) < w(C) < ¢(C). Wegen
w(A*N:-C)=¢(4) +|N| o(C) hat w dieselbe Gestalt wie ¢’ nach (84) und
der aus (80) folgenden Ungleichung.

d) Man setze <(®,y) = (F'* ¢'*>, und das gesuchte abgeschlossene
1-System ist gefunden.

§ 17. Das absolute i-System

Durch die Bemerkung nach dem Satz 16.1 wird man belehrt, dafl der in
Satz 16.1 d) durchgefiihrte FortsetzungprozeB keineswegs eindeutig zu sein
braucht, was dazu fithren kann, daB8 hinreichend grofle :-Felder unter Um-
stinden die Eindeutigkeitseigenschaft (F4) nicht mehr besitzen. Es ist daher
sinnvoll, nach dem groBten ¢-Feld mit der Eindeutigkeitseigenschaft zu fragen
und das zugehdrige ¢-System innerhalb der axiomatischen Theorie zu kenn-
zeichnen. Ausgehend vom Normfeld ¢ und der Bezeichnung (E*, y*> fiir die
abgeschlossene Hiille des Normsystems <&, x> gilt der folgende

Satz 17.1:2) Ist die Existenzbedingung (81) erfiillt, so ist €* das grofte i-Feld
mat der Eindeutigkeitseigenschaft, m.a. W. kein echtes Oberfeld von E€* besitzt die
Eindeutigkeitseigenschaft.

Beweis: Das Erfiilltsein von (81) gewihrleistet die Existenz des Normsystems.

23) Vgl. A.Tarsk1 [15], insbesondere pp. 229/230.



Invariante Funktionen iiber teilgeordneten algebraischen Halbstrukturen 149

Fiir ein beliebiges i-System <, ¢> gilt <€, x> < <&, 9>, und aus (80) folgt
die fundamentale Beziehung

2(4) <od) < z(4) [alle 4 < F]. (85)

Daraus ergibt sich unmittelbar die Eindeutigkeitseigenschaft von €*. Sei nun
® ein echtes Oberfeld von €*. Dann existiert ein Element C ¢ & — E*, und
mit Riicksicht auf (83) gilt x*(C) = x(C) < x(C) = x*(C). Nach dem Fort-
setzungssatz 16.1 gibt es sodann kontinuierlich viele voneinander verschiedene
t-Systeme, die <(E*, x*> auf das durch €* v {C} erzeugte i-Feld § fort-
setzen. Wegen $ < G besitzt B somit die Eindeutigkeitseigenschaft nicht,
wzbw.

Bedenkt man, daf die Funktionen y und yx im Falle ihrer Existenz iiber der
ganzen Grundmenge It definiert sind, so 148t sich der Gehalt der Ungleichung
(85) etwa in folgende Worte kleiden: Die Zahlen y(4) und yx (4) stellen fiir jedes
A in M Schranken fiir die Werte ¢ (4) dar, die dem Element 4 durch beliebige
t-Funktionen ¢ zugeordnet werden konnen. Dall diese Schranken die best-
moglichen sind, lehrt der Fortsetzungssatz 16.1. Da sie nur von den fiinf
Grundgegebenheiten IR, *, ', <, F der Theorie abhiingig sind, kénnen sie
in diesem Sinne als absolute Schranken angesprochen werden. Nach Satz 17.1
besteht €* genau aus denjenigen Elementen der Grundmenge, denen in jedem
t-System, zu dessen Feld sie gehoren, ein und derselbe Funktionswert zugeord-
net wird, der iiberdies mit den absoluten Schranken iibereinstimmt. Wir legen
deshalb fest: (€*, y*> heille das absolute i-System.

§ 18. Universelle i-Systeme

Die in § 16 angebahnte Entwicklung soll hier zur Konstruktion universeller
t-Systeme weitergefithrt werden. Es sei aber schon vorgingig betont, daf3 dazu
das Auswahlaxiom beansprucht werden muf.

Satz 18.1:%) Jedes i-System kann zu einem universellen i-System fortgesetzt
werden.

Beweis: Seien <({, @) ein zum n-Gefiige O = (M, *, ', <, E) gehoriges
1-System, @ die Menge aller zu [] gehorigen ¢-Systeme und
Nach Satz 11.11 ist © durch < teilgeordnet und wegen <&, ) ¢@ nicht-

) Vgl. S. BaxacH [14], Théorémes 15, 16.
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leer. Seien ferner A eine nichtleere Kette von © und &, = v 6 [(®, > € A].
Man iiberzeugt sich leicht davon, dafl §§, ein ¢-Feld ist. Durch die Festlegung
9,(A) =p(4) [Ae®; (B, p>e A] ist in eindeutiger Weise iiber §, eine
t-Funktion ¢, definiert. Somit gehort <§,,¢,> zu ©. GewilB ist <F,,¢,>
eine obere Schranke von A ; genauer ist <({,,p,> = sup A. Wir haben jetzt
nachgewiesen, dafl © induktiv geordnet ist, und nach dem ZorNschen Lemma
besitzt © mindestens ein maximales Element <(§, w>. <(§, ») ist ein uni-
verselles i-System. In der Tat: Wir treffen die Gegenannahme und unter-
scheiden zwei Fille:

1) <9, o) nicht abgeschlossen;

2) <9, o) abgeschlossen.

Im Falle 1) liefert der Permanenzsatz 15.1 und im Falle 2) der Fortsetzungs-
satz 16.1 den Widerspruch zur Maximalitit von <, w)>. {9, 0> = (M, o)
ist also ein universelles ¢-System, welches das urspriingliche :-System {{, ¢>
fortsetzt, und die Existenz eines solchen war die Behauptung.

Als einfaches Korollar dieses Fortsetzungssatzes und des Existenzkriteriums
14..1 ergibt sich der

Existenzsatz 18.2:2%) Notwendig und hinreichend fir die Existenz eines dem
n-Gefuge [ assoziterten universellen i-Systems ist die Bedingung

M-ig <N-ig=>|M| <|N]|. (81)

§ 19. Beantwortung der Kardinalfragen

Wir beziehen uns auf die Vorbereitungen in § 12 und stellen die gewonnenen
Resultate wie folgt zusammen:

A. Zum n-Gefiige [ gibt es dann und nur dann ein assozitertes i-System, wenn
die das Wechselspiel zwischen I, < und E beschreibende Bedingung (81) erfillt
st (vgl. § 14).

B. Genau die vm absoluten i-System (E*, y*> bewertbaren Elemente der
Grundmenge M sind absolut bewertbar (vgl. § 17).

C. Genau die Elemente des Normfeldes € sind unbedingt bewertbar; dagegen
gibt es keine unbedingt unbewertbaren Elemente in der Grundmenge M (vgl.
§§ 14, 18).

Die zuletzt erwéhnte Sachlage kann man als Losbarkeit des allgemeinen
Bewertungsproblems in unserem Sinne bezeichnen.

28) Vgl. A.Tarskr [16], Satz 1.58, p. 56.
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4. Kapitel: Beispiele

Die nachfolgenden Ausfiihrungen haben zum Zweck, die im vorigen Kapitel
entwickelte allgemeine Theorie an Beispielen zu illustrieren. Gleichzeitig werden
noch Fragen beantwortet, die sich im Laufe der Theorie gestellt haben mégen.
Insbesondere wird die Existenz invarianter Funktionen iiber normierten Ge-
fiigen belegt.

§ 20. Deckungsmonotone Inhaltsoperatoren

Es sei R ein abstrakter Raum mit den Elementen «,y,z,..., [ eine kom-
mutative Gruppe eineindeutiger Abbildungen von R aufsich und £(® # E < R)
eine ein fiir allemal ausgezeichnete Einheitsmenge. Eine Teilmenge 4 von R
heiBe E-beschrinkt?®), wenn endlich viele Transformationen o,,...,0,el

r

so existieren, daf} fiir die [-Bilder o,/ = {c,z|x e E} von Egilt: A c v o, k.

=1
Trivialerweise sind £ und ¢ E-beschrinkt; mit A, B sind A v B ugnd T4
(fiir jedes 7 € ') E-beschrinkt. Es bezeichne nun It die Menge der E-beschrank-
ten Teilmengen A4, B, C,... von R. Zwei solche seien genau dann verkniipf-
bar, wenn sie disjunkt sind, und in diesem Falle gelte 4 * B = A v B. Jede
Transformation aus [' erzeugt offenbar einen Automorphismus in der Menge
I, und ohne Einbulle an Klarheit kann gesagt werden, dafl I" eine kommutative
Gruppe eineindeutiger Abbildungen von I auf sich sei. Genau genommen
werden zunichst Automorphismen in der Menge aller Teilmengen von R
erzeugt, von denen man sodann die Restriktionen auf It bildet. Im Anschlufl
an die Bezeichnung [A4] fiir die charakteristische Funktion der Menge A4 ¢ I
definieren wir eine binire Relation < zwischen den Belegungen iiber 9t wie folgt:

f<ge 2 f(A)[4](z) < 2 g(4)[4](x) [alle z e R].
AeI AeM

Wir behaupten nun, dal die Begriffsfiinfheit <M, *, ', <, E) ein n-Gefiige
sei. Dazu sind zunichst die Postulate des Gefiiges nach § 7 zu verifizieren. Dies
bereitet keine Schwierigkeiten, und wir begniigen uns mit einigen Hinweisen:
Das nach (III) geforderte neutrale Element O ist die leere Teilmenge von E.
Bei den Nachweisen von (VIII), (IX), (X) bedenke man [4 * B] = [A] +[B];
[tA](x) = [A] (v lx); A~ B= O =—=>14~7B= . Dall die Einheits-

menge K ein Normelement im Sinne von §9 ist, ersieht man aus der aus
r r
. - 4 IU . . .
A < v o, E folgenden Beziehung io <14 < X 4¢. Esliegt also ein n-Gefiige
e=1 o=1

26) DaB hier die in § 9 eingefithrte Benennung gebraucht werden darf, wird sich weiter unten
rechtfertigen.
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vor. Die nach Satz 8.4 in der Grundmenge It induzierte Teilordnungsrelation
ist die mengentheoretische Inklusion, so daB also 4 << B<—> A c B gilt.
Nun durchschreiten wir kurz die im dritten Kapitel dargelegte Theorie und
halten die wichtigsten Positionen fiir das vorliegende Beispiel fest. Die Bele-
gungsiquivalenz von Mengen wird an anderen Orten Deckungsdiquivalenz ge-
nannt?’). Die Spezialisierung der Begriffe ¢-Feld, i-Funktion und ¢-System
fihrt auf die Begriffe Inhalisfeld, Inhaltsoperator und Inhaltssystem?®). Zur
Definition des Inhaltsoperators bemerken wir, da3 dieser in der Inhaltstheorie
meistens als reellwertige Funktion mit den Eigenschaften Additivitit (62),
I-Invarianz (I12), Normiertheit (I13) und Definitheit (65) gekennzeichnet wird.
Die aus der Belegungsmonotonie (I1) durch Spezialisierung hervorgehende
Figenschaft, die sogenannte Deckungsmonotonte, erscheint demnach in der
axiomatischen Inhaltstheorie als fakultative Eigenschaft eines Inhaltsoperators.
Es war aber ein Anliegen der beiden inhaltstheoretischen Studien [3] und [36]
zu zeigen, dafl die bekannten klassischen sowie gewisse in der axiomatischen
Theorie ausgezeichnete Inhaltsoperatoren diese Eigenschaft besitzen, weshalb
die durch (I1) geforderte Beschrinkung auf deckungsmonotone Inhaltsopera-
toren nicht als Storung empfunden werden muf3?®). — KEs existieren Inhalts-
felder ohne die Eindeutigkeitseigenschaft3?), wodurch der Beweis dafiir er-
bracht ist, dal (F4) von (F1), (F2), (F3) logisch unabhéngig ist. — Ober- und
Unterfunktion eines Inhaltsoperators heilen duferer und innerer Inhalt oder
Ober- und Unterinhalt®). — Aus den Ausfithrungen von § 14 ist die Bedeutung
der aus (81) hervorgehenden Bedingung (y) 2 [t E](z) < 2 [vE](z) [alle x ¢ R]

7€M 7eN
=> |M| << [N| klar ersichtlich; sie wurde beispielsweise fiir die translations-

invariante Theorie der euklidischen Rdume mit dem halbabgeschlossenen Ein-
heitswiirfel als Einheitsmenge als erfiillt nachgewiesen®). Die Benennung
Normsystem findet sich auch in der Inhaltstheorie®). — Eine Bemerkung zum
Permanenzsatz und dessen Ideenkreis wurde frither angefiihrt®'). — In der
translationsinvarianten Theorie der euklidischen R&ume ist das absolute

27) [3], Def.3, p.135; [36], Abschnitt I.

28) Vgl. [61, p.206; [36], Abschnitt IT; fiur euklidische Réaume speziell [3], p. 123; [13], p. 96.

#9) Bekanntlich kommt diese Beschrinkung derjenigen auf zerlegungsmonotone Inhalts-
operatoren gleich, sobald eine gewisse Auslegbarkeitseigenschaft gewdhrleistet ist (vgl. [36],
Satz 8). In jedem Fall ist sie weniger einschneidend als die Beschrankung auf Inhaltsfelder mit
der Korpereigenschaft (vgl. [36], Satz 3).

30) Vgl. H.HapwiGER [13], p.122 und p.135, Anm. 24. Das dort konstruierte Inhaltssystem
mit dem Lrpescueschen Feld ist nach allgemeinen Sétzen deckungsmonoton. Fiir eine analoge
Sachlage vgl. S.BaNacH [14], Théoréme 20, p. 27, wo erstmals eine Frage dieser Art behandelt
wurde,

31) Vgl. Fufinote 19.

31) H.Hapwiger [3], Hilfssatz 2, p.128.

33) [13], p. 130.
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Inhaltssystem bekannt als das Tarskische System3'). — Die universellen In-
haltssysteme pflegt man auch als BANAcHsche Systeme3®) zu bezeichnen.

Nach diesem kurzen Gang, der den Anschlul an die allgemeine Theorie
gewihrleisten sollte, versetzt uns diese in die Lage, die Hauptresultate der
Inhaltstheorie wie folgt zu formulieren:

A. Genau dann, wenn die Grundgegebenheiten der Bedingung (y) geniigen,
gibt es deckungsmonotone Inhaltsoperatoren.

Fiir den Fall, dal die Existenz deckungsmonotoner Inhaltsoperatoren gesi-
chert ist, ergibt sich weiter:

B. Genau die im absoluten System (C€*, y*> mefibaren E-beschrinkten Men-
gen sind absolut mefbar.

C. Genau die endlichen Vervielfachungen der Einheitsmenge E sind unbedingt
mepbar. Dagegen gibt es keine unbedingt unmefbaren E-beschrinkten Mengen,
positiv gewendet : Jede E-beschriankte Teilmenge des abstrakten Raumes R kann
deckungsmonoton ausgemessen werden. Da dies zudem mit einem einzigen (uni-
versellen) Inhaltssystem realisiert werden kann, so ist damit das allgemeine
Inhaltsproblem bei kommutativer Transformationsgruppe als l6sbar erkannt.

§ 21. Lineare Gefiige und lineare i-Systeme

Wir treffen in diesem Paragraphen die Vorbereitungen fiir eine wichtige
Gattung von Beispielen, die unter einem einheitlichen Gesichtspunkt behandelt
werden koénnen.

Wir betrachten einen durch die Relation < teilgeordneten Vektorraum It iiber
dem Korper R der reellen Zahlen, in welch ersterem eine kommutative Trans-
formationsgruppe I' wirkt. Dabei sollendiefolgenden Vertriaglichkeiten bestehen :

(V1) A, B,CeM; AL<B=—A4+0LB+C,

(V2) A, BeI; acR; A< B;a>0=—0ad <abB,

(V3) A, BeM; ALB— —B—4,

(V4) A, BeM;7elN; A<B=—714 <tB,

(V5) A, BeM; a,beR; re = 1(@ad +bB)=ar4d +b7B.
Insbesondere wird also durch (V 5) die Linearitét der Transformationen von I

ausgesagt. Als einfache Folgerungen von (V1), (V2), (V3) und der Definition
des Vektorraumes ergeben sich:

3¢) Fir die Benennung vgl. FuBnote 23, fiir den Begriff [3], p.142; [13], p.127.
38) Vgl. FuBnote 24 und [13], p.131.
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A, B,C,DeM; A<B,C<D=—>A+C<K<B-+D, (86)
A B,C,DeM; A +C<B+D, BK<A=—0C<LD, (87)
AeW; a,6eR; O <A; a <b=—ad <bA. (88)

Bezeichnet f eine Belegung iiber I, so ist klar, was man unter dem Element
2 f(4) A von I zu verstehen hat. Identifiziert man die Halbverkniipfung a
em

4
mit der Addition -+ in IR und setzt f S g 2f(4)4 < Xg(4)A, so ist
miihelos einzusehen, dall <IN, 4, [, <> ein Gefiige 1st Dle induzierte Teil-
ordnung in der Grundmenge It fillt mit der gegebenen Teilordnung << zusam-
men. Lif3t sich weiter mit einem festen Element £ von 9t mit O < E, O +*+ K
fir jedes A aus M die Beziehung (37) erfiillen, so heift <M, +, T, <, B
ein lineares n-Gefiige. Ferner nennen wir ein zu einem linearen n-Gefiige ge-
horiges ¢-System <, ¢> linear, wenn § ein linearer Unterraum von It und ¢
iiber §¥ linear ist; entsprechend heiBlen & lineares i-Feld und @ lineare i-Funktion.

Wir beweisen im folgenden zwei Sidtze, die den Anschluf3 der hier stattfin-
denden Betrachtung an die allgemeine Theorie herstellen.

Satz 21.1: Voraussetzung: Es seien [] ein lineares n-Gefiige und <&, @) ein
2u [ gehdriges nicht notwendig lineares 1-System. Behauptung: Es gibt ein klein-

stes durch {§, @) eindeutig bestimmtes zu [ gehoriges lineares i-System <§, P>

mit <F,p) < <F, 9>
Wir nennen <, > die lineare Hiille von (%, ). Offenbar ist der Uber-
gang zur linearen Hiille ein AbschlieBungsprozeB3.

Beweis:3%) Wir beweisen vorerst die Hilfsaussage A1 yeoes A, By, .., B,ed;

Qiyeoos @py byyoo b, e R; 2 a4, 2'6B-->Z'a p(4,) < Zb“(p( )
y=1
a) Seien vorerst die a,, b, natiirliche Zahlen Dann folgt die Behauptung un-

mittelbar aus der Belegungsmonotome vong. —b)a,,b ' ganze Zahlen: Der
Effekt von Null als Vorfaktor ist trivial. Dadurch, dal in der Voraussetzung
alle Glieder mit negativen Vorfaktoren auf die andere Seite geschafft werden,
1aB¢ sich dieser Fall auf a) zuriickfihren. — ¢) @,, b, rationale Zahlen: Durch
Multiplikation der Voraussetzung mit einem passenden Generalnenner wird die
Situation von b) hergestellt, und es folgt auch hier die behauptete Ungleichung. —

d) Esseien nun diea,, b, beliebigereelle Zahlen. Zu 4,,...,4,, B;, ..., B, gibt

v
es nach (39) ein Element C =1T-E e mit 0 <C; O <4,+C (v=1,...,n);
0 < B, —|— Cp=1,...,m). Zu einem beliebigen e > 0 gibt es rationale
Zahlena, a,,b,,b, m1ta~—-e<a <La,<La, <a,+ec(=1,...,n);

36) Der hier vorgetragene Gedankengang ist zum Teil dem Beweis des Satzes 2 in [36] nach-
gebildet.
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b, —¢ < b’ by b” < b, +¢(u =1, m). Die Voraussetzung wird

nach (V1) und (88) zu za (A4, +0) + ):b C <2b”(B +0) +2a”0
=1
Nach Fall ¢) und unter Berucksmhtlgung der aus (65) folgenden Bez1ehungen

p(4, +C)>0,<p(B —|—O)>O @ (C) = 0 resultiert Za Lo(4,) < Zb“qo( u) T

=1

-+ ce mit c—-Z'(p(A,,)-{—Z(p(B )+2(m+n)<p(0) Da ¢ > O vonaunab-

pu=1

héngig ist und ¢ beheblg gewdhlt wurde, so gilt auch hier die behauptete Unglei-
chung, und die Hilfsaussage ist bewiesen. — Wir konstruieren nun das gesuchte

lineare :-System: §~} sei der durch § erzeugte lineare Unterraum von It, also
in der Tat ein lineares ¢-Feld, das § umfafit. Nach der Hilfsaussage ist durch

die Anschrift ¢ (X a,4,) = X a,p(4,) iber § eindeutig eine lineare monotone
y=1 =1
I-invariante Funktion definiert, die iiber § mit ¢ iibereinstimmt. Im Hinblick

auf Satz 11.9 ist ¢ eine i-Funktion und insgesamt <§5~ ,®> ein lineares i-System
mit &, ¢> < <‘5§~ ,@>; offenbar ist es das kleinste dieser Art, wzbw.

Mit ganz shnlichen Uberlegungen iiberzeugt man sich von der Richtigkeit
der folgenden Beziehungen fiir die Ober- und Unterfunktion eines nicht not-
wendig linearen i-Systems:

AeM; aeR; a >0=>¢p(@d) =ap(d), p(ad) =ap(d), (89)
AeM=— g(— A4) = —g(4). (90)

Daraus ergibt sich unmittelbar der

Satz 21.2: Sind (] ein lineares n-Gefiige und <(F, ¢> ein zu [ gehdriges nicht
notwendig lineares 1-System, so ist die abgeschlossene Hiille (F*,¢@*) won
&, > ein lineares i-System.

AlsFolgerung der beidenletzten Satzeresultiert die Beziehung <‘[5' P> <<F*9*>
fiir die lineare und die abgeschlossene Hiille eines nicht notwendigerweise
linearen ¢-Systems. Ferner 148t sich mit Satz 15.3 miihelos die Giiltigkeit von
&, P*> = (F*, ¢*> bestitigen.

Zur Konstruktion linearer ¢-Systeme kann folgendes bemerkt werden:

1. In der allgemeinen Theorie ist an drei Stellen die Rede von der Konstruk-
tion eines ¢-Systems: Beim Existenzkriterium 14.1, beim Permanenzsatz 15.1
und beim Fortsetzungssatz 16.1. Ist nun das in Betracht gezogene n-Gefiige
linear, so vermittelt Satz 21.2 die Einsicht, daB die Sdtze 15.1 und 16.1 ins-
besondere aus einem vorgegebenen linearen :-System ein ebensolches hervor-
gehen lassen, wodurch die Theorie der linearen i-Systeme gegeniiber der all-
gemeinen Theorie eine gewisse Selbstéandigkeit erlangt.
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2. Mit Satz 21.1 kann aus dem Erfiilltsein der Existenzbedingung (81) unter
Heranziehung des Normsystems ein lineares :-System gewonnen werden. Da-
durch erscheint (81) als eine auch fiir lineare ¢-Systeme kompetente Existenz-
bedingung.

§ 22. Invariante Integrale

Sei R ein abstrakter Raum und I' eine kommutative Gruppe eineindeutiger
Abbildungen von R aufsich. Wir betrachten reellwertige Funktionen 4, B,C, . ..
iber R. Durch die Setzung (tA4)(x) = A (rz) [alle x ¢ B] wird die Wirkung
einer Transformation 7 ¢ [ auf die Funktion 4 beschrieben. Es bezeichne £
eine ein fiir allemal festgelegte beschrinkte nichtnegative reellwertige Einheits-
funktion, welche nicht identisch verschwinden soll. It sei die folgende Funk-
tionenmenge: Eine reellwertige Funktion A iiber R gehore genau dann zu M,
wenn endlich viele Transformationen o, ..., g, ¢ I’ existieren, die der Bedin-

gung |4 (z)| < 2 (0, &) (x) [alle x ¢ B] geniigen. Die soeben zum Ausdruck
p=1

gebrachte Beschrinktheit von A beziiglich £ nennen wir fortan E- Beschrdnkt-
heit?6). Offensichtlich ist 9 ein Vektorraum iiber dem Korper der reellen Zahlen.
Ahnlich wie in § 20 legt man sich zurecht, daB ' als kommutative Gruppe ein-
eindeutiger Abbildungen von I auf sich aufgefallt werden kann. Wegen
der Beziehung [r(ad + bB)] () = (@4 +bB) (rx) =ad(zz) + bB(rx) =
= a(tA) () +b(rB) (x) [alle x ¢ R] erscheint jede Transformation 7 e[ als
eine lineare Transformation des Vektorraumes Jt. Weiter sei durch

A < B> A(x) < B(x) [alle x € R]

eine zweistellige Relation zwischen den Funktionen von IRt erkldrt, von der
man leicht nachweist, daf} sie I teilordnet und den Vertriglichkeitsforderungen
(V1) bis (V4) von § 21 geniigt. Nach den Ausfithrungen von § 21 liegt nun im
dort besprochenen Sinne ein Gefiige vor. Aus der Definition von I ergibt sich

m o m p
to S 14+ 2 S22 1, also die Tatsache, dafl die Einheitsfunktion Z ein
u=1 p=1

Normelement ist. Demzufolge stellt die Fiinfheit <R, +, ', <, £) ein linea-
res n-Gefiige dar.

Es werden nun ganz kurz die Hauptbegriffe der Theorie gemustert. Die
Belegungsiquivalenz von Funktionen hei3t an anderen Orten Deckungsiqui-
valenz??), und die Spezialisierung der Begriffe lineares ¢-Feld, lineare +-Funktion
und lineares i-System fiihrt auf Integralfeld, Integral und Integrationssystem38).

Die lineare Hiille (&, 72> des Normsystems wird auch etwa als das elementare

87) [5], p.117.
38) [1], p.350; [4], p.307; [5], p.120; [7], p.162.
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Integrationssystem bezeichnet®). Im iibrigen beachte man die Bemerkungen
am Schlufl des letzten Paragraphen. Es ergeben sich die folgenden Haupt-
aussagen der invarianten Integrationstheorie:

A. Notwendig und hinreichend fir die Existenz von Integrationssystemen ist

die Bedingung 2 (7H) (x) < 2 (vE) () [alle x e R] = |M| < |[N].
7€M 7eN
Unter Voraussetzung der Existenz von Integrationssystemen gilt weiter:

B. Genau die Funktionen von €* sind in unserem Sinne absolut integrierbar.

C. Genau die Funktionen von  sind unbedingt integrierbar. Jede E-beschrinkte
reellwertige Funktion iber dem abstrakten Raum R ist integrierbar.

§ 23. Limitierung beschrinkter Zahlenfolgen

Die dem § 22 zugrunde gelegte Situation wird wie folgt spezialisiert: R sei die
Menge der natiirlichen Zahlen, I" die triviale nur aus ¢ bestehende Transforma-
tionsgruppe und Z die charakteristische Funktion von R. Die Menge It enthilt
sodann genau die beschrinkten abzéhlbaren Folgen reeller Zahlen. Es liegt
somit nach dem Vorangehenden ein lineares n-Gefiige vor. Die in § 10 betrach-
tete Pseudometrik ist hier sogar eine Metrik, und die Belegungsiquivalenz
erweist sich mit der Gleichheit identisch: 4 ~ B<=> A = B. Nur nebenbei
sei bemerkt, dal die Metrik im hier betrachteten Fall die Gestalt d(A, B) =
= sup | a, — b, | besitzt*?). Das Normfeld besteht aus den konstanten Folgen

mit ganzzahligen nichtnegativen Gliedern, das ¢-Feld € aus allen konstanten
Folgen iiberhaupt. Die Existenzbedingung (81) ist trivialerweise erfiillt. Fiir
die absoluten Schranken gemiB § 17 ergibt sich 4 = (a,) = x(4) = sup a,,

v

%1(A) = infa,, womit sich genau die konstanten Folgen als zum linearen

t-Feld €* gehorig herausstellen, das hier mit & iibereinstimmt. Eine Folge
heille fastkonstant, wenn sie von einem gewissen Index an konstant verlauft.
Aus dem i-Feld §§ der fastkonstanten Folgen 146t sich ein lineares i-System
(¥, p> herstellen, wenn man jeder fastkonstanten Folge die betreffende Kon-
stante als p-Wert zuordnet. Fiir die Ober- und Unterfunktionen von ¢ erhilt man

A = (a,) = ¢(4) = limsupa,, ¢p(4) =liminfa,. (91)
Somit umfaBt das i-Feld * genau die konvergenten Folgen reeller Zahlen,
und ¢* ordnet diesen den gewShnlichen Grenzwert zu*!).

3%) 4], p. 309.

10) Vgl, L.A. LsusTERNIE-W.I.SoBoLEW [37], pp. 9, 10, 16, 33. Dort wird diese Gestalt ver-
wendet, und die Grundmenge erweist sich beziiglich der Metrik als ein nichtseparabler BANAcH-
scher Raum.

41) Vgl. Ky FaN [26], exemple 1, p. 138.




158 Jorag RiTz

Im folgenden wird nun ein Zugang zu gewissen Fragen der Limitierungs-
theorie erortert‘?). Bezeichnet & das Wirkungsfeld der Limitierungsvorschrift
y, so haben wir folgende Eigenschaften in Betracht zu ziehen: (L 1) Permanenz-
bedingung und (L 2) Erweiterungsbedingung. Von den fakultativen Eigenschaften
fassen wir ins Auge: (L.3) Additivitit von ® und v im Sinne von (F'1) und (62)
bzw. (L3') Lanearitdit von ® und  im Sinne von § 21 und schlieBlich (L4)
Monotonie von y im Sinne von (64). Man stellt unter Beriicksichtigung der
Tatsache [ = {1} miihelos fest, daB} sich durch Zusammenfassung von &
und y ein ¢-System (&, p> ergibt, falls (L1), (L2), (L3), (L4) erfiillt sind.
Mit (L3') statt (Li3) ist <®, v> ein lineares i-System; die Unterscheidung zwi-
schen diesen beiden Fillen ist wegen § 21 fiir die zu beantwortende Hauptfrage
unnoétig. (L1) und (L2) besagen, daBl jedes solche Limitierungssystem <®, p>
eine echte Fortsetzung des vorgingig betrachteten linearen ¢-Systems (§*, p*>
darstellt. Nach (91), (83) und (80) gilt

Ae®; A= (a,)=liminfa, <yp(4) <limsupa,, (92)

und ausden Sdtzen 18. 1 und 21. 2folgt das Hauptergebnis: Jede beschrinkte Folge
reeller Zahlen kann durch ein lineares und monotones Verfahren limitiert werden.
Der dabei erhaltene verallgemeinerte Grenzwert geniigt der Ungleichung (92)%).

Nicht zuletzt war es ein Anliegen dieser Betrachtung zur Limitierungs-
theorie, zu zeigen, daf} erstens die faktische Ausschaltung der Gruppe I' durch
die Setzung [ = {t} nicht notwendig eine voéllige Entartung der Theorie
bedeuten mufl und zweitens die lineare Hiille i.a. von der abgeschlossenen
Hiille verschieden ist, wie dies am i-System ({, ¢> der fastkonstanten Folgen
ersehen werden kann.

§ 24. Zwei Gegenbeispiele

Essollen hieranhand ganz einfacher Beispiele folgende Aussagen belegt werden :
1. Es gibt Gefiige ohne Normelement.

2. Nicht wn jedem n-Gefiige vst die Existenzbedingung (81) erfiillt.

Damit ist in beiden Fillen eine logische Unabhéangigkeit nachgewiesen.

42) Vgl. etwa K. KNopPP [38], insbesondere pp. 479/480.

43) Auf etwas andere Weise erzielte S. BanacH [39], p. 34, im wesentlichen dasselbe Resultat.
Der dort gegebene Beweis beruht auf einem allgemeinen Fortsetzungssatz fiir spezielle Linear-
formen ([39], p.27), ([18], p.226), der dem HaueN-Banaceschen Ideenkreis angehort. Es ist
bemerkenswert, daf3 man dort ohne Monotonieeigenschaft der Linearformen auskommt. Dies liegt
daran, da3 in der linearen Struktur ganz andersartige Moglichkeiten von vorneherein gegeben
sind; die dort vorkommenden subadditiven positiv-homogenen Funktionen gestatten die Schliisse
derjenigen Art zu ziehen, die bei uns aus Monotonieforderungen erwachsen. Fiir etwas speziellere
Satze von diesem Typ vgl. H.HABN [17], p.217; S.BanacH [18], p. 212; N.BourBak1 [40],
chapitre 11, p. 101,
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Zu 1: IR : Menge der abzahlbaren Folgen reeller Zahlen mit héchstens endlich
vielen von Null verschiedenen Gliedern. *, ', < seien gleich erklirt wie in
§ 23. GewiB ist (I, *, ', <> ein Gefiige. Jedoch 148t sich mit keinem Element
E ¢ M die Bedingung (37) fiir alle A ¢ M erfiillen.

Zu 2: M : Menge der reellen Zahlen; *: Addition; I': Gruppe der Dilatationen
Tgo A—>cAfc>0reell]; fS g 2f(A)4A < 2g(4)A; E = 1. Ohne Miihe
verifiziert man, da <M, *, I, <, B> ein n-Gefiige ist. Die in der Grund-
menge I induzierte Teilordnungsrelation ist die gewdhnliche Ordnung der
reellen Zahlen. Fiir die I'-Komplexe M = [1y),, 7y5,], N = [¢] ergibt sich
M-ig < N-tg; jedoch ist 2= |M|>|N| =1, womit (81) verletzt ist. —
Es liegt hier ein Beispiel vor, in welchem offenbar die Gruppe I' fiir das Nicht-
erfiilltsein der Existenzbedingung verantwortlich ist44).

§ 256. Eine Kennzeichnung der reellen Logarithmusfunktion

Es handelt sich hier darum, mit gewissen Sdtzen unserer Theorie das folgende
bekannte Resultat der reellen Analysis zu bestéitigen:

Ist M die Menge der positiven reellen Zahlen und E > 1, so gibt es genau eine
reellwertige Funktion ¢ dber M, die den Bedingungen
A, BeM=—p(4B) = p(4) +¢(B); A < B=¢(4) <¢(B); p(B) =1 (93)
geniigt. Es ist somit ¢(A) = Flog A [alle A < M].

Beweis: * sei die Multiplikation in MM und I = {¢}. Fiir die Ordnungs-

relation < zwischen den Belegungen iiber )i legen wir fest:
f<ge= JT D) < IT DD
DeM DeIn

Man iiberzeugt sich miihelos davon, dafl <M, *, "', <, E) ein n-Gefiige mit
erfilllter Existenzbedingung (81) darstellt und daB fiir jede Zahl A4 ¢t die
absoluten Schranken y(A) und y(A) ibereinstimmen. Mit (85) resultiert die
Behauptung, wenn man bedenkt,_daB im vorliegenden Fall die ¢-Funktionen
durch (93) charakterisiert werden.

§ 26. Drehungsinvariante Eibereichfunktionale®)

Es sei R die euklidische Ebene mit dem fest gedachten Ursprung z, und es
bezeichne 9N die Menge der nichtleeren beschréinkten abgeschlossenen und

4) Auf ein #hnliches von H. WIELANDT stammendes Gegenbeispiel wird in [4], p. 308, Ful-
note 4, hingewiesen.
15) Dieses Beispiel verdanken wir Herrn H. HADWIGER.
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konvexen Teilmengen («Eibereiche») von R. * bedeute die MINKOWSKIsche
Addition beziiglich z, also in vektorieller Schreibweise

A*B={x +y|xed, yeB}.

Bekanntlich ist (I, *> eine kommutative Halbgruppe mit dem neutralen
Element O = {z}.%6). Weiter erwihnen wir zwei Vertriglichkeitsaussagen zwi-
schen * und der mengentheoretischen Inklusion:

Ac B,CcD=>A*Cc B*D, (94)
A*Cc B*D, Bc A—Cc D. (95)

(94) ist klar und (95) eine einfache Folgerung bekannter Eigenschaften der
sogenannten Stiitzfunktion??). Setzt man nA fir die n-malige Verkniipfung
von A mit sich selbst und 0A4 = OJfalle A ¢ IR], so verstehe man unter
S(f) = 2 f(4)A die MinrkowsKische Summe aller 4 ¢ I mit f(4) 540 unter

AeM

Beriicksichtigung der Vielfachheit f(4). Fir die Relation < bestehe der An-
satz f < g<= S(f) c S(g), so daB sich die in IR induzierte Teilordnungs-
relation mit der Inklusion identifiziert. Ist schlieflich ' die (kommutative)
Gruppe der Drehungen der Ebene R um z und ¥ die Einheitskreisscheibe um z,
so ergibt sich leicht, dafl <IN, *, I', <, £> ein n-Gefiige darstellt. Bei der
Uberpriifung der Postulate stiitze man sich auf (94), (95), S(f+g) = S(f) * S(g),
S(ta) = A4, 1(A * B) =14 *7B. Die E-Beschrinktheit jedes Eibereiches A4
beruht auf 7E = E [allet ¢ ['] und der Tatsache, dall eine passende dullere
Parallelmenge*®) A, = A * pE mit ganzzahliger Spanne p den Ursprung z
einschlieBt und A, ihrerseits Teilmenge einer hinreichend groBen Kreisscheibe
r B um z ist. Die Existenzbedingung ist erfiillt, und es kann nach den absoluten
Schranken gefragt werden. Es gilt die Beziehung y(4) = x(4) [alle 4 « W],
und mit (85) folgt:

Uber der Menge I der ebenen Eibereiche gibt es genau eine reellwertige Min-
RowSEkI-additive monotone drehungsinvariante Funktion, die der Einheitskreis-
scheibe den Wert 1 zuordnet.

Nun sind bekanntlich Umfang ¢ und mittlere Breite b zwei reellwertige
MinkowskKI-additive monotone drehungsinvariante Eibereichfunktionale mit
¢(f) = 2x und b(X) = 2. Nach dem soeben bewiesenen Satz gilt y*(4) =
= c¢(A4)/2n = b(A4)/2 fiir jeden ebenen Eibereich 4, und als Korollar ergibt
sich die von CaAucHY entdeckte Beziehung c(4) = =b(4).%)

) Vel. [13], p. 142 und [41], p. 12.

47) Vgl. [13]: p. 145 (39) und p. 199 (1); [41]: p.11 (5) und p.13 (15); [42]: p. 24 unten.
48) Vgl. [13], p. 147 und [41], p. 17.

4%) Vgl. [13]: p. 208 (36), p. 210b), p. 212 (44); [42]: p. 48 (1), p. 65 (3).
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