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-degenerate singular integral equations and holomorphic
affine bundles over compact Riemann surfaces. 1.°)

by HeLmuT ROHRL

It is well known [2] that the classical theory of systems of FrREDHOLM
equations can be developed by carrying out the following two steps:
(i) proving FreEpHOLM’s theorems for degenerate equations, i.e. equations

n
whose kernel is of the form X B, (x,)C,(z,), B, and C, being square
matrices, wl
(ii) approximating arbitrary kernels by degenerate kernels.
Since a degenerate FREDHOLM equation is equivalent to a system of linear
equations, this approach leads quickly to the desired results.

In this paper we shall deal with (systems of) singular integral equations in one
variable, which are then defined on a system S of (not necessarily disjoint)
curves on a compact RIEMANN surface X . The integrals involved are therefore
of the form | K (x,, z,) 2(x,, z,) where K(x,, 2,) is the kernel of the singular

8

integral equation and Q(z,, z,) is a CaAucHY-kernel on X . Again, a singular
integral equation whose kernel can be written in the form (i) shall be called
degenerate. However, since for RiemMaANN surfaces X of higher genus the
Cavucay-kernel 2 is not unique but depends on the choice of certain divisors,
one will have to speak of 2-degenerate (instead of simply degenerate) singular
integral equations. Clearly, the dominant equation of a singular integral
equation and the adjoint of the dominant equation have (2-degenerate kernels.
Since the discussion of the dominant equation and its adjoint represents the
main difficulty (see [7]) in the theory of singular integral equations, a theory
of-2-degenerate integral equations is far from being trivial, contrary to the
classical case of FREDHOLM equations.

Yet it is possible (§ 3) to associate with a given 2-degenerate singular integral
equation an equivalent transmission problem with values in a trivial vector
bundle over X (terminology as in [11]), provided the singular integral equation
is regularizable and satisfies certain conditions (which are trivially fullfilled if
S is the disjoint union of simple closed curves). Since one can associate with a
transmission problem of the described type a holomorphic affine bundle over
X (see [11]) such that the holomorphic solutions of the transmission problem
correspond bijectively to the holomorphic sections in this affine bundle, one
gets finally (§4) a bijective correspondence between the set of integrable

%) This research was supported by the United States Air Force through the Air Force Office
of Scientific Research.
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solutions of the original singular integral equation and the set of holomorphic
sections in the affine bundle over X . This is somewhat surprising since in the
case of the RIEMANNian sphere there are only denumerably many isomorphy
classes of holomorphic vector bundles (see [4]) while the set of Q-degenerate
singular integral equations has obviously cardinality ¥.

One of the advantages of this approach consists in the following result.
Introducing suitable families B - M of compact RIEMANN surfaces (see [5]),
families of CAvcny-kernels (Q,:te M), families of systems (S,:te M) of
curves, and families of matrices (B,,:te M) and (C,,:te M), one can in-
vestigate the corresponding family of Q,-degenerate singular integral equation
and ask for solutions which depend in the same way on the parameter ¢ e M
as the above families do. There it turns out that a family I8 — B - M of
holomorphic affine bundles can be constructed so that the set of those solutions
of the integral equation which depend on ¢ as desired corresponds bijectively
to the set of those families of holomorphic sections in W, - B, (terminology
as in [5]) which depend on ¢ in the same way. Therefore known results ([5],
[10]) on the existence of families of holomorphic sections in certain fiber
bundles lead immediately to similar results about solutions of families of
£,-degenerate singular integral equations.

In § 5 we determine the vector bundle associated with the adjoint of an
Q-degenerate singular integral equation in terms of the vector bundle asso-
ciated with the integral equation itself. I turns out to be the dual of the pre-
vious vector bundle. Therefore the RiEMANN-RocH theorem for vector bundles
gives immediately two of F. NOETHER’s theorems on singular integral equations.
The remaining one, stating necessary and sufficient conditions for the solubil-
ity of inhomogeneous 2-degenerate equations, is a consequence of CAUCHY’s
integral formula resp. CAucHY’s integral representation.

In § 6 we discuss briefly how the proof of F.NoETHER’s theorems for general
singular integral equations can be reduced to the case of 2-degenerate singular
integral equations. This furnishes then a new foundation of the theory of
singular integral equations based on PLEMELJ’s theorems and the theory of
affine bundles over compact RIEMANN surfaces.

Finally the previously developed method is applied to certain non-linear
singular integral equations for which then an existence and uniqueness theorem
is derived.

§ 1. Auxiliary results

I. Given a compact RieManN surface X of genus g, the positive divisor

k k
. D= X n,z, of degree X m, = g shall be called a normalization divisor ([6])

Kusl Kw=]
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if dimg(— D)= 1, i.e. if every meromorphic function on X which is
holomorphicin X — {i,..., 2}} andhaspoleorder <n, at 2%, x=1,...k,
is constant. In case the support supp D = {a},..., 2%} of D consists of a
single point, D is a normalization divisor if and only if this point is not a
WEIERSTRASS point.

In generalization of the CaucHY-Kkernel on the RiEMANNian sphere

it can be shown ([8], [12]) that, given the normalization divisor D on X and a

point x e X — supp D, there exists a meromorphic differential form

Q(z,, ry) of degree one on X X X along the first factor (i.e. in complex

coordinates ¢, for the first factor and i, for the second factor of X x X the differ-

ential form £(«,, z,) can be written in the form f(¢,, 4,)dt, where f(¢, &)

is a suitable meromoiphic function of ¢, and ¢,) having the following properties:
(i) 2(=,, x;) has divisor

>X X{*x}—{+xs}xX+DxX-XxD-4

where A is the diagonal of X X X,
(ii) for every =, ¢ {*} v supp D the restriction of Q(x,, #5) to X X {x,} is
a differential form which has divisor

> {wa} X {mo} — {*} X {@} + D X {x,}

and residue -+ 1 at {x,} X {x,} (and henceresidue — 1 at {*} X {z,}).

Q(x,, x,) is called the Cavcry-kernel of X associated with D and x.

Clearly, Q(x,, x,) is unique. The existence of £(«,, ,) can be established
(see [8], [12]) by constructing for each z, ¢ {*} v supp D the unique mero-
morphic differential form on X X {x,} which satisfies (ii) and then showing
that this gives rise to a meromorphic differential form on X X (X — {*} v suppD)
along the first factor which can be extended to a meromorphic differential form
on X X X. The divisor can then be calculated explicitly.

(i) and (ii) lead to the following

Proposition 1.1: Let € be a precewise smooth, compact arc in X which does
not meet {x} v supp D. Then for every continuous complex valued function f on

© the integral 1
(2f) (zy) = ‘2‘;':‘,‘0‘0!:]‘(”1) Q(x,, )

18 @ meromorphic function on X — & whose divisor is > x — D.

Denoting the canonical bundle ([3]) over X by Kx — X, a continuous
differential form on the piecewise smooth, compact arc € in X is meant to be
a continuous section in Kx— X over €. With this notion we get as a dual of
Proposition 1.1.
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Proposition 1.2: Let € be a precewise smooth, compact arc in X which does
not meet {x} v supp D. Then for every continuous differential form n on € the
integral 1
(2n) (%) = _2‘71:—@&‘ Q(2,, 21) 1(2,)

18 a meromorphic differential form on X — € whose divisor is > D — x.

Now let B> M be a differentiable (holomorphic) family of compact Ris-
MANN surfaces of genus g in the sense of KoDAIRE-SPENCER ([5]). The restric-

tion of the product family 8 x B M x M to the diagonal Ay of M X M
is then in a canonical way a differentiable (holomorphic) family over M which

shall be denoted by B xa B 5 M. Obviously, (w Xar#)(t) = w() X
X 7~1(t) holds. Now suppose that (D,:te M) is a differentiable (holomorphic)

n
family of normalization divisors in 88— M, ie. D,= X n, x, , is a nor-
K=1

malization divisor in n~(f) for every ¢ e M and (7 ,:te M) is a differenti-
able (holomorphic) submanifold of B for each » =1, ..., k. Assume further-
more that (x,:¢e¢ M) is a differentiable (holomorphic) family of points in
B — M which is disjoint from supp(D,: ¢ e M). Then the previously indicated
construction of Q(x,, z,) together with Theorem 2.1 (Theorem 18.1 of
[5]) shows that for every #, e M there is a neighborhood U of ¢, such that the
Cavcry-kernel Q, of n(¢) associated with D, and x, depends differentiably
(holomorphically) upon te U. This and the uniqueness of the Cavucmy-
kernel imply that £, varies differentiably (holomorphically) with ¢ e M. Summ-
ing up we get

Proposition 1.3: Let B—> M be a differentiable (holomorphic) family of
compact Riemany surfaces of genus g, (D,:te M) a differentiable (holo-
morphic) family of normalization divisors on B—> M, and (x,:t M) a differ-
entiable (holomorphic) family of points on B— M which is disjoint from
(D,:teM). Then (2,:te M) i3 a differentiable (holomorphic) family of mero-
morphic differential forms on B Xmu B—> M.

Given the differentiable (holomorphic) family B— M, a differentiable
(holomorphic) family of piecewise smooth, compact arcs (€,:te M) is a con-
tinuous mapping €: M X I— B!) such that

(i) w o € = pr; (= canonical projection of M X I onto M)
(ii) I is the union of finitely many closed subintervals I,, o =1,...,r, such

that €| M X I, is differentiable and both, €| M X I, and ———IM X I,
depend differentiably (holomorphically) on e M.

1) I denotes the closed unit interval {7: 0 <7 <1}.
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Given the differentiable (holomorphic) family of piecewise smooth, compact

arcs (C,:teM), the function f: U C€,—C is said to depend continuously
teM
(differentiably, holomorphically) on te M if for every o= 1,...,r the com-

position foQ|M X I, has this property. A corresponding definition can be

given for a differential form yon U ¢,, i.e. a section over U €, in the family
teM teM

] —> B—> M of canonical bundles associated with B — M.
With these notions, Proposition 1.1 and Proposition 1.2 generalize in the
obvious way to-families. The precise formulation is left to the reader.

II. Let S be a closed subset of the RiEMANN surface X and x ¢ S. Then S
is said to be a star of smooth arcs at x if there exists a neighborhood U of »
and finitely many simple smooth ares ®,: 71— U such that

(i) €,(0) = x for every »
HUC,UI) =8~T
(iii) (5:,,1 (I) ~ ({,,,2 (I) = {x} whenever », +* ,.
The number of the arcs €, is called the order of the star at x.

S is said to be locally a star of smooth arcs if for every xS the set S is a
star of smooth arcs at x. Clearly, a piecewise smooth, simple arc can be inter-
preted as a set with the above properties, regardless whether the arc contains
cusps or not

By replacing X by a differentiable (holomorphic) family B — M we can
talk about a differentiable (holomorphic) family of smooth arcs at v, e S where
S is a closed subset of B: in this case the arcs €, are required to be different-
iable (holomorphic) families of smooth, compact arcs such that

(i) €, (x(vy), 0) = v, for every »
(U, (=U)xI)=8~U
(iii) (E,l({t} X I) (Svg({t} X I) = {(E,,1 (t, 0)} whenever », # v,.

Let €:1— X be an arc. Then €(0) and (1) are usually called the end-
points of the arc. To assign to € an orientation means to distinguish one of
the endpoints of € as the initial point of the oriented arc. Now let the closed
subset S of X be a star of smooth arcs at x ¢S, the star being described as
above. Then an orientation of the star at x consists in assigning an orientation
to each of the arcs €,. An equivalent description — which shall be used from
now on — of an orientation can be gotten by assigning to each index » the integer
o,(») = + 1 if z is the initial point of €, and the integer o,(») = — 1 is =
is not the initial point of €,. With this notation, 2 ¢,(») is called the fofal
ortentation of the star at x and is denoted by |o,|. These definitions carry over

immediately to families, in which case we require that for every » the orien-
tation of €,|{t} X I is independent of ¢ e M.
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Given the star S of smooth arcs at x which is described as above, we can
find to every point z' e S ~ U aneighborhood U’ such
U that § ~ U’ is again a star of smooth arcs at ' which
then is of order 2 at ’. An orientation of the star at
x induces in an obvious way an orientation of the star
“ at 2’ which then has total orientation 0. Suppose now
' that the closed subset § of X is locally a star of
smooth arcs and that for every point x ¢S an
orientation o, is given. Then the set X' = {o,: x ¢ S}
of orientation is said to be coherent if for any two
points z’ and z” of S and the neighborhoods U’ of
z' and U” of " which where used in defining ¢,, and
gz, both o, and o, induce the same orientation on Sin U’ ~ U”".
As an immediate consequence of the various definitions of II. we get

Fig. 1

Proposition 1.4: Let X be a compact Riemany surface, S a closed subset of X
which 18 locally a star of smooth arcs, and X a coherent set of orientations on S.

Then there are finitely many simple, smooth, oriented arcs €% ..., €Y on X
such that

1
(i) S = U EWN ()
A=1
(ii) €A (I) ~ CQ2) (1) is either empty or else a common endpoint of €M) as well
as €%  provided A, # A,
(iii) the orientation of €N agrees with the one induced by X in each point of
CN
If U is chosen minimal, then the arcs €N are unique (up to order).
Clearly, Proposition 1.4 remains valid for families.
III. Finally we need a result concerning the determinant of a certain matrix.

Lemma 1.5: Let B,,..., B,, C,,..., C, be q X q matrices over the field
of complex numbers. Denoting the q X q wunit matriz by 1 we have
l"‘C]_Bl, '_01.32,..-, —Can
det, —'OzBl,l"-Osz,..., —'Can :det(]._ZBva)

. e y=1
-C,B,, —C,B,,...,1-C,B,
Proof: In order to prove this identity, we may assume that det C, # 0 for
v=1,..., n. Then we get
l—olBl,..., ”CIBN
det ... =
-C,B,,...,1-0C, B,
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01 O 01 1,_‘B2,.-. ‘—Bn
= det det | ...
0o O, ~B,... , OC'—B,

= det

cr ,— 07,0 e , 0 C, 0
— det <0 ,Cov = C7L,. ... , 0 dot
—B,,— B, , , C.1—B, 0 C,
1 ,—1 , 0, , 0
—det | © , 1 , —1, , 0
<:.1§101, — ByCs, ,1—-B.C,
(1 , 0 yeos O
0 1 by, O

— B,C,, — B,C, = B,C,,...,1—XB,C,

y=1

—det (1 — XB,C,).

y=1

§ 2. PLEMELJ’s theorems

Let X be a Riemany surface and S a closed subset of X which is locally a
star of smooth arcs. Let f be a complex valued function on S. Then f is called
Horper continuous on S if for every point = € S there is a complex coordinate
t at  whose coordinate neigborhood is contained in the neighborhood U used
in § 1, II., (i) — (iii), such that for each » the restriction of foi to ¢(C, (1))
is HOLDER continuous in the usual sense in some neighborhood of #(z).
Obviously, this definition is independent of the choice of the complex coor-
dinate ¢. Accordingly a complex valued function £k on 8 X § is said to be
Horoer continuous on S X S if for every » the restriction of ko(t~ X &)
to t(C,(I)) x ¢(€,(I)) is HOLDER continuous in the usual sense in some
neighborhood of (¢(x), t(x)) .

Now let X be a compact RIEMANN surface with normalization divisor D
and (2 the Caucuy-kernel of X associated with D and x. Let furthermore §
be a closed subset of X which is locally a star of smooth arcs and 2 a coherent
set of orientations on §. In order to define the singular integral

2%@("‘ f(z) (2, @) 23 € 8 (1)

where f is a complex valued function on S, we need the following well known
([7], Appendix 1) result. Given x, ¢S and the complex coordinate ¢ at x,
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whose coordinate neighborhood is contained in the neighborhood U used in
§ 1, II., (i) — (iii), there exists a positive real number ¢, such that for every »
and for every positive real number ¢ < ¢, theset {x e U: |t(x)| = ¢} ~ €, ()
consists of exactly one point. Since ¢, is simple, this implies that for every arc
C™W in the splitting of S described in Proposition 1.4 and for all ¢ which are
sufficiently small the difference €W — M ~ {z e U: |¢(x)| <&} is a con-
nected subarc of €X . This subarc equipped with the induced orientation is
denoted by €. With these notations we define the singular integral (1) to be

A | ,
?_»n% 751—2;{ G{“f (1) 2(zy, 2,) (1)
provided that this limit exists.

According to definition, the existence of (1) is a purely local problem,
whence one has to deal only with the geometric situation as described in § 1, II.,
(i) — (iii). Using [7], § 12, (12.3) one sees from the argument in [7], § 12,
following formula (12.3) that the sufficient conditions for the existence of (1)
are given by

Proposition 2.1: Let X be a compact Rigmany surface, 2 the Cavcny-
kernel of X associated with D and *, S a closed subset of X which is locally
a star of smooth arcs and which satisfies S ~ ({*}vsupp D) =2, and 2 =
= {0,: ® € 8} a coherent set of orientations on S. Let f be @ HOLDER continuous
function on S such that

ol f(x) =0 forevery xzeS. (2)

Then the singular tnitegral (1) exists for every point x, e S.
Corresponding definitions and results hold for singular integrals

I APICARE
where 7 is a HOLDER continuous differential form on §.
Let us consider the geometric situation
as described in §1, II., (i) — (iii). For a
given point z} ¢ S of order n we choose
& as before. Then {x e U: |{(x)| < &} —

— U C,(I) ~ U consists of exactly =
y=1

connected components U,, ..., U,. These
connected components shall be indexed
in such a way that the boundary of U con-
sists of a part of theset {x e U: |t(x)]| = &}
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together with €,(I) ~ U and €, ,,(I)~ U where we set €, , = ¢, (note that
this may require a reindexing of the €,). Furthermore we assume that, when
going through {xz e U:|¢(x)| = &} in the positive sense starting out at €, (I),
we meet U,, U,,..., U, in this order.
Using the orlentatlon o at the point 2¥ of order » we define now integer
valued functions o,, v = 1 ., n, as follows (U,,, is identified with U,)
(i) if n # 2, then for Y= 1 ., n and zeU,~T,,, ~S the function
o,(x) is deﬁned to be o *(v)
(ii) if n = 2, then we set

o (2) = (1) for ze@(I) — {x}}
2) for zeQ,(I)

(
gy (x) = (1) for ze®, (1)
—0*(‘)) for xe@y(I) — {a))

Now let f be a HOLDER continuous function on S. Then the function
(2f) (x,) = _f f ()2 (2, ) 25X — 8

is defined, provided S ~ ({*} v supp D) = @. Moreover, it is holomorphic
in a sufficiently small neighborhood of 8. We shall have to investigate the
behavior of this function as we approach S.

Assume for the time being that x, is a point of order 2 of S with total orien-
tation 0 and that the angle between the oriented tangents at ¢ and G, in
x5 is different from . Then, given the complex coordinate ¢ at 3 , we get for z,
and z, in a sufficiently small neighborhood of z}

dt(z,)
@) —t(my T @), Ha) di(z)

where h(t,1,) is a suitable holomorphic function of ¢, and ¢,. Therefore well
known theorems ([7], § 16) imply immediately that there is a neighborhood V
of zJ in X such that 2f can be extended continuously into U,nV,u=1,2.
This extension restricted to S ~ ¥V is HOLDER continuous ([7], § 19). More-

over, denoting the extension of Qf to U,~V by 2,f, [7], §17, implies
the validity of PLEMELJ’s formulas

(2unf) (2) — (L2,1) (%) = 0, (2,) f(2a)
1
'Qll-+lf) (%) + (£2,]) (z) = _V—I_’l:—(,gj:g)f(xl) Q(x,, z,)

In order to get the formulas (3) in the general case too, we adjoin to the star
of smooth arcs consisting of ¢,,..., €, aline segment §, with one end point
in z; such that

Q(x,, x,) =

x2€SnV (3)
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(i) the orientation of G, at 3 is given by — 1, i.e. ox (0) =1
(ii) the angle between the oriented tangents at €, and €, v=1,..., n,
in «} is different from x
(iii) € does not enter U ,.
Assuming that f satisfies the additional hypothesis (2) of Proposition 2.1 we
get for z,¢ U,

l

Q(zy, 2,) = .f f(x1) Q(zy, 25) + 2

‘o

r/ 1
Tt 1] Qe+ F (50 (160 Olewea) +
0
Denoting by ¢ ;k(v) €, the arc €, equipped with the orientation 0¥ 0) o *(v)
and letting @, be the oriented arc gotten from the oriented arcs c, and
o *(v) &,, we have

g f(zy) 2(zy, 23) =

1._..1 2m 2m

l a z;‘ (1')

UL

O'zg (1’)

Q!f(%) Q(y, z,) +

27m

(@] Qe m) = g L) e, 2

where f, coincides with f on €, and equals to the constant function f(z}) on
G,. To the latter integral, however, the previously discussed special case
applies, whence we get the formulas (3) in a rather obvious way for n > 2.
For the sake of maintaining the above notation we reduce the case n =1 to
the case m = 2 by adding to the arc ¢, the previously described arc ¢, and
extending the definition of f to ¢, as above.

The local situation we dealt with so far can be globalized as follows (see also
[11]). For every point x ¢ X we denote by U(x) the filter of neighborhoods
of z. The trace of U(x) on X — 8 (see [1]) shall be denoted by Ws(x). Now

we form the set X of all pairs (z, §) where z is a point of X and § is a filter
that refines Ug(z) and has a basis such that each element of this basis is a

connected component of some element of Ug(x). The mapping of X onto X
which sends (z, T’y) into z is denoted by pr. Given (=, 8 ¢ X we denote for
every F e¥ by F the set of all elements (2, §') in X such that F e .
Defining B (x, &) to be the filter generated by {I;’—: 1V e} we associate with
every element of X a filter of subsets of X. As one can check easily there is a
topology on 2:5 such that the filter of neighborhoods of any element (z, §)

coincides with B(z, ). Obviously, pr:X— X is a continuous mapping.
Now let (X,:jeJ) be the family of connected components of X — §. Then
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the restriction of pr to pr~ (X;) isa homeomorphlsm onto X,. The closure

X, of pr1(X,) in X is both closed and open in X . Furthermore, fpr(X,)
equals the closure X of X, in X . Denoting the filter of subsets of X generated
by the set {F:F ¢ &} by &, we call two distinct elements (z,F) and (', §')
neighborsif z = 2’ ¢ S and sup (¥, §') is strictly coarser than the filter of all
sets containing x. This means — using the previous notation — that for a suitable
choice of the index » the set U, belongs to one of the two filters & and &',
while U,., belongs to the other one. If U, e, then we say that (z,§)
preceeds (z, '). Clearly, every element (z,), where xS, has at most
one predecessor and at most one successor; it has exactly one if = is a point of

order > 1. Denoting by X g the set of all elements % in X which either have
a successor or else lie above a point of order lon S, we get a canonical mapping

p: Xﬁ—> X which sends every point Z e Xﬁ for which pr(xz) has order >1
into its successor and leaves every point z e X, g for which pr(z) has order 1

fixed. Clearly, § is a continuous mapping which maps X g onto itself. _
The previously defined functions o,(z) are now transplanted onto X by

setting o(x) = av(prx) provided z = (prz z i}) eXB and the set U is con-
tained in . Flnally we define the function Q f on U pr1(X,) by (.Q f) @) =

= (2f) (pr @) <
With these notations the previously treated local situation gives immediately
rise to the following generalization of PLEMELJ’s theorem and formulas ([7]).

Theorem 2.2: Assuming that the hypotheses of Proposition 2.1 are fulfilled,

the function Q, f can be extended continuously to X. Furthermore, for every
point ;— € XTB — _ - — —
(2f) (Bz) — (2f) () = o (=) f(pr =)

(20) (67) + (2N @) = o7 § f(a) @, pr3)
holds. ’

Remark 2.3: The generalization of the corresponding results of PLEMELJ’s

is not complete without phrasing HOLDER continuity of the extension Q) f on

X,; — pr*(X,). This, however, can be done in a rather obvious way using the
fact that apart from points above points of order 1 on § the projection pr
is a locally topological mapping from X ; — pr~1(X,) onto its image, which is
contained in §.
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Remark 2.4: Since the proof of Proposition 2.1 and Theorem 2.2 is purely
local, they can be carried over word by word to HOLDER continuous differential
forms % on § which satisfy condition (2). Then we have as in Proposition 2.1
that the singular integral 1

St (S‘f Q(zy, 2,) ()

exists for every point #, e §. Furthermore, denoting

1
272:’1« (S

Ig(xzax1)77(x1) e X — 8

by (27) (x;) we get the extension property stated in Theorem 2.2 also for

!317. However, as far as the formulas contained in Theorem 2.2 are concerned,

we shall have to replace o‘(?) by — a(i) due to the fact the roles of ; and
x, in Q(z,, x,) are now interchanged.

In case we deal with a family 8-> M of compact RIEMANN surfaces and
a closed subset S of B which is locally a family of stars of smooth arcs, we

define in exactly the same way as before the spaces ‘B and ‘)B and the mapplng

pr %»% Then SB—>M Wheren-ncpr Jsafamllyofspaces(V teM)

and we define for every ¢« M the sets Vtﬁ, the mapping f,, and the func-
tions o,. _Then the statements of Theorem 2.2 still hold for every ¢ e M as we

replace Q f by the family (Q f t e M) of functions. In addition we have
Corollary 2.5: The family (.Q f te M of continuous functions on (Vt tteM)

constitutes a continuous function Qf on ‘B.
A proof of this corollary which of course is local in character can be found
in [11].

§ 3. ©2-degenerate singular integral equations

Let X be a compact RIEMANN surface, 2 the CaAucHY-kernel of X associated
with the normalization divisor D and *, S a closed subset of X which is locally
a star of smooth arcs, and X a coherent set of orientations on 8. Given a
¢ X ¢ matrix 4 on §, a ¢ X 1 matrix g on 8, and a ¢ X ¢ matrix K on
8 X 8§ such that every entry of 4, g, and K is HOLDER continuous?), we ask
for HOLDER continuous ¢ X 1 matrices f on S fulfilling

A@) @) + 57 § K@ m) @) Q@ s —g@) 9 @

2) In this case we simply speak of HOLDER continuous matrices on S.
3) It can be shown (see [7], § 61) that every integrable solution of (4) is HGLDER continuous.
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The integer ¢ shall be called the rank of (4).
The kernel K (z,, ;) of the singular integral equation is called degen-

erate — and (4) itself 2-degenerate - if there are HOLDER continuous matrices
B, C,,..., B,,C, on S such that

K (x, ) = & B,(x,) O, (x3) for z;,,%,¢8 (5)

y=1
In the general case we subject (4) to the following requirements:

I1) neither det (4(x,) + K(x,, x,)) mor det(A(x,) — K(z,, %)) vanishes

on S 1.e. the singular integral equation is regqularizable
l% | K(2y, ) = 0 holdson 8 X S.

As soon as we talk about Q- -degenerate singular integral equations whose
kernel is given by (5), we replace I 2') by

I2) lo%] C,(xy) = 0 for every v and every x, e S
We call n the height of the kernel K in the representation (5).

Before investigating £2-degenerate singular integral equations we make few
general remarks about such integral equations.

Calling a complex valued function k(z,,x,) on S X § degenerate if it
admits a representation (5) with B, and C, being complex valued functions,
we see immediately that the kernel K (z,, x,) of (4) is degenerate if and only
if every entry of this kernel is degenerate. Therefore we have

Proposition 3.1: If K(z,, x,) s degenerate, then K (x,, z,) as well as
Kt (x,, x,)%) are degenerate.

Denoting the classical CAucHY-kernel 4z,

by 2,1 we have
%, — Y *p

Proposition 3.2: The Qp1-degenerate integral operators form a subalgebra of the
algebra of all singular integral operators.

This follows immediately from [7], (45.9) and (45.11).

In order to associate with the singular integral equation (4) with degenerate
kernel a holomorphic affine bundle, we first transform the integral equation
into a transmission problem®). For that purpose assume that f is a solution
of the integral equation. Then we form for every v =1,...,n

.f 0 Az f(zy) Q(y, 75), 25X — 8.

QF, is meromorphic in X — S and has divisor (i.e. each entry of QF, has
divisor) > * — D. Furthermore, Hypothesis I 2) implies that Theorem 2.21s

(F,) (@) = 557 J

applicable, whence we get for every » = 1,...,n and every zeX 8

4) Kt denotes the transpose of the matrix K.
§) What follows is well known (see [7]) for the dominant equation and its adjoint equation.
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QF,) (8) — (2F,) (z) = o(z) C,(pr %) f(pr %)
brommme s — — 6
(2F,) (%) + (@F,) (@) =— | (@) f(z) 2, prE) %

TV (S, Z

On the other hand, the integral equation can be rewritten as
(A=) + 2 B,(pra) O, (pr o)} {(pr 2) +

+ £ B,(pr%) (— C,@r®) [(or%) + 57§ Ovl@a)f(z:) (e pr)} = (pr7)

or equivalently, putting K _(x) = A(x) + 2 B, (x) C,(x)

y=1

K, (pr7) f(ora) + Z B,(pr7) {(1 — o(z)) (2F,) (B7) +

=1
+ (1 + o(2)) (2F,) ()} = g(prz).
Since det K (x) does not vanish on §, we can substitute (7) into first set of
cquations (6) which then can be rewritten as

EF,) (6%) + (0@ — 1) 0, (pr®) K31(pr ) X B, (pr ) (2F,) ) =
- _®)

n

— (QF,) ®) — (o(3) + 1) C,(prz) K7 (pr 7) £ B, (prz) (2F,) () +

a=1
+ 0(z) C, (pr ) K3 (pr z) g (pr )
Forming the ngq X 1 matrix QF given by (QF)t = ((éFl)‘, ey (éF,,)‘)
and abbreviating ¢(z) by o, B,(prz) by B,,C, (prz) by C,, K (prx) by
K., and g(prz) by g we can put (8’) in the form

14(c—1)C,K'B),(6 —1)C,K'B,,...,(0c —1)C, K1 B, B (8")
: (QF) (Bz) =
(6—1)C,K*B;,(c —1)C,K*B,,...,14(6—1)C, KB,

l1—-(c+1)CK*B, —(¢6+1)CK'B,,..., —(0+1)C,K'B,

—(6+1)C,K7 By, — (6+1)C,K:'B,,..., 1 — (o + 1) C,K71B,
B C, Kg

@@ +a|
C.Kg

In order to see that the factors of EF (ﬁi) and QF (::E—) are matrices with

7 CMH vol. 88
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determinant nowhere zero, we remark that both are either the unit matrix
or else equal to

1—-2C,K'B,, —2C, K;'B,,..., — 2C,K7'B,

— 2C,K'B,, ..., 1 —2C,K'B,
According to Lemma 1.5 the determinant of this matrix equals

det(l1 — 22 K 'B,C,) = det K7 det K_

p=1

where K_(x) = A(x) — ; B,(x) C, () .

14

Now we put (8') in its final form and denote for that purpose the affine
transformation of €™ which sends Ft= (Fi,..., F.), F,,..., F, ¢(?, into

1—-20, (p'r—E—) K;l(per——) Bl(prra?), ceey, — 2 O’l(pri) K?(pri) B, (pr::—t:)
: _ F

— 20n(prra?) K;l(pr:—a;) Bl(pri), e, 1 — 20,,(107’?) K (pr L:1;) Bn(p'r;a;)

C, (pr z) K7 (pr 7) g (pr ) (9)
+ G o

3 Co(pr z) K3 (pr ) g (pr @)
by T (prz)F. Then (8") becomes simply

(QF) (7) = T (pr 5)°@(2F) (=) (8)

where M~! means the inverse of M in the affine group of C™.

We note immediately that the condition 4) of [11], § 4, for the problem (32)
of [11] is satisfied in our case whence the methods of [11] are applicable to our
situation (note that the holomorphic fiber bundle which is among the data for
the problem (32) of [11] reduces in our situation to the trivial vector bundle
of rank ngq over X).

Before we continue dealing with the relation between the singular integral
equation (4) and the transmission problem (8) we should like to derive from
(7) a necessary condition for the existence of solutions of (4). For that purpose
let eS8 be a point of order > 2 for which |o,|] = 0 holds (in this case z
has necessarily an even order). Then (7) implies that

2 B,(pr7) {(1 — o(@) 2F,(87) + (1 + o(z)) oF, (@) (7

p=1

does not depend on the choice of Z e pri(z). If for every Z e pr-i(x) the
relation o(z) + o(fz) = 0 holds, then the first set of formulas (6) shows
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easily that (7) does not depend on the choice of Ze pr~t(z). However, if there

is an « e pr~!(x) such that 0'(?) = o(ﬂi), then a straightforward computa-
tion again involving the first set of formulas (6) shows that

e = —_— —_—
2 B,(pr=z) C,(pra) f(prz) = 0.
v=1
Since we do not wish to impose conditions on the solutions of (4) we arrive at
the following necessary conditions for the existence of solutions of (4)
I 3) for every point x € S of order > 2 for which o, = 0 holds and for which there

exists a point = o — —
x e pri(x) satisfying o(x) = a(fx),

n
K(x,z) =2 B,(x)C,(x) =0
holds. v=1 A
We proved that every solution of (4) gives rise to a solution of the trans-
mission problem (8) which has divisor > x — D. Now assume that a mero-
morphic solution of the transmission problem (8) is given which has divisor
>x —D on X — 8, i.e. a meromorphic n¢g X 1 matrix G on X — 8 for

which the matrix E on pr(X — 8) defined by E(i) = G(pri) can be

extended continuously to X and whose extension satisfies the equation

G(f7) = T(prz)*™G(z) =Xy

Keeping (7) in mind, we consider for z ¢ S and Te pr~1(x) the expression
K3(@)g(@) — K3 (x) Z B,(@) (1 — 0 @) G, (67) + 1 +0 @) G,@} ()

and claim that this matrix depends only on pr z = x. This is obvious for

every point xeS of odd order since in this case I 2) implies 5 (ﬂi) = GQ(x)

for all = e pr-1(z). The same argument holds for every point x ¢S of even
order satisfying |o,| %4 0. If x ¢S is of order 2 and |o,| = 0, then a direct

computation shows that (7”) is independent of the choice of # e pri(z). As
remarked previously, (7') and hence (7") has the required property if z is of

even order > 2, |o,| = 0, and if for every Ze pr~i(x) the relation 0'(3:1) +

-+ o‘(ﬂi) = 0 holds. In the remaining case, where a(i) = a(ﬁi) holds we get
from (8) by a straightforward calculation

Z B, (%) 6,(6%) = (K_(a) K3*(2)"® Z"IBy(x) G, (@) +

+ o(@) (K_(x) K71 (2)) ¥ £ B, (2) €, () K51(2) g (@)

ye=]
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whence I 3) implies that also in this last case (7”) does not depend on the

choice of z . _

As shown in [11] there is a local representation of @ in the form H (z) h(z)
where & is a nq X 1 matrix which is holomorphic in a suitable neighborhood
of the point in discussion, while H is a holomorphic mapping (notation as in
§1, I, and § 2) of U U, into GA(ng, C) which restricted to each U, can

be extended to a HOLDER continuous mapping of ff; into G4 (nq, C). There-
fore (7") is a HOLDER continuous matrix on S which now shall be denoted by f.

Since (8) and (8') are equivalent, 5 satisfies the equation gotten from (8') by

replacing [31”,, by 6,. Consequently, using the above definition of f by (77),
wegetfor v=1,..., n

@,(87) — @,(3)=0(z) C,(pra) f(pr).
Since f is HOLDER continuous, we can define 2 F, as before and get then, using (6)
@,(%) - G,() = OF,(5%) — QF, ()
a,(8%) — OF,(fz) = G,(z) — 2F,(2).

This means that (G, — QF,) () can be written as H,(prx) where H, is a
continuous ¢ X 1 matrix in X — supp D which is meromorphic in X — §
and has poles only in supp D. Hence H, is meromorphic in all of X. Accord-
ing to our assumptions on G and due to Proposition 1.1, H, has divisor
> * — D. Since D is a normalization divisor, we can conclude that H vanishes

identically. Thus @ = QF. In particular, G satisfies also the second set of
equations (6). However, by substituting (6) into (8’) we come back to (4).
Therefore a meromorphic solution of the transmission problem (8) which has
divisor > x — D gives rise to a solution of (4). One checks easily that this
sets up a bijective correspondence between the set of solutions of (4) and the
set of meromorphic solutions of (8) having divisor > x — D.

In order to get the above statement in the case of families we shall have to
define the notion of a HOLDER continuous function which depends differentiably
(holomorphically) on a parameter. Let B — M be a differentiable (holomor-
phic) family of compact RIEMANN surfaces and S a closed subset of B which is
locally a differentiable (holomorphic) family of stars of smooth arcs. Then the
complex valued function f on § is said to be HOLDER continuous and to depend
differentiably (holomorphically) on te M if (notation as in § 1, II.) for every
point z ¢ S there exists a coordinate neighborhood U such that

(i) fo €, restricted to z(U) X I is a continuous function which depends
differentiably (holomorphically) on ¢ ez (U)

or
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(ii) f o €, and its first partial derivatives with respect to ¢ restricted to every
set {t} X I, ten(U), is HOLDER continuous with HOLDER coefficient
uniformly bounded in ¢ and HOLDER exponent uniformly bounded away
from zero.

In connection with this definition we should remark that in the case of
holomorphic dependence on ¢ e M it is sufficient to assume that statement (ii)
holds only for foQ®, and not for the partial derivatives of this function
(see [11], § 2).

A differentiable (holomorphic) family of singular integral equations consists
a differentiable (holomorphic) family B M of compact RIEMANN surfaces,
and corresponding families of normalizaticn divisors (D,:te M), points
(*,:teM ), and stars of smooth arcs (8,:¢e¢ M) together with a family

= (2,:teM ) of coherent orientations, and the equations

A (z) fo(zy) + —= ." K (21, o) [o(@) 2, (25, 21) = g4(21), t e M, (4,)

7!&

where the matrices At(xl), K, (z,, %), and g,(x;) are HOLDER continuous
and depend holomorphically (differentiably) on ¢ e M. It will be assumed that
for each ¢te¢ M the conditions I 1) and I 2’) are satisfied. As before we speak
of a ,-degenerate singular integral equation if

K(%,, x5) = 2' B, (2;) C,4(,) (5,)

r=1

holds with HOLDER continuous matrices B, and C,, which themselves depend
differentiably (holomorphically) on ¢ e M (note that the height = is assumed
to be independent of ¢e M). In this latter case we assume that for every
t e M the conditions I 1), I 2), and I 3) are satisfied. When we want to put
emphasis on the family B+ M we speak of a family of singular integral
equations over B—> M.

The transmission problem previously associated with (4,) shall be denoted by

(2,F,) (B.7) = T(pr,z)"® (2,F) (z) teM. (8,)

In the terminology of [11], this constitutes a differentiable (holomorphic)
family of transmission problems as can be seen immediately from (9). Clearly,
every solution f, of (4,) which depends differentiably (holomorphically) on

te M gives rise to a solution Q,F, if the family of transmission problems (8,)
which depends differentiably (holomorphically) on ¢ e M. The latter simply

means that Q,F, o pr, restricted to B — § is a meromorphic function which de-
pends differentiably (holomorphically) on ¢ e M . In addition, [11], Lemma 2.1¢)

¢) This Lemma is also true for differentiable families of smooth arcs as can be checked easily.
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and the procedure and estimates of [7], § 16 show that (notations as in

§ 1, I1., and § 2) for every % e pr~1(S) the restriction of Q,F,o0pr, to
U,. continuously extended to U ¢ yields a function on &, (I) v €, (1)
which is HOLDER continuous and depends differentiably (holomorphic-
ally)on ¢.

Conversely, given a meromorphic solution @, of (8,) with divisor > *, — D,
which depends differentiably (holomorphically) on ¢te M, we get by our
previous construction a family f, of solutions of (4,). We claim that f, is HOLDER
continuous and depends differentiably (holomorphically) on e M. For this

purpose we consider the before mentioned local representation H,(x) k,(x)

of G,. Here, h,(x) is a holomorphic matrix which depends differentiably
(holomorphically) on ¢. On the other hand, in [11] the matrix H,(x) was
constructed from 7',(x) inductively by

(i) forming the limiting’ values of Q,7%®, T being exp—(T})

(ii) defining T¢+Y by

exp T(tk+1) = (exp £, T(tk))—l -exp(£2,, T(tk) + ‘Q't,v+1 T(tk)) - (exp ‘Qt,v+1 T(tk))—l

As mentioned above, (i) preserves the property of being HOLDER continuous
and depending differentiably (holomorphically) on ¢. (ii) obviously behaves in
the same way. Since (see [11], § 2) H, is the uniform limit of the products

exp(2,T) - ... - exp(2,T¥) as k— oo

the limiting values of H, also satisfy a HOLDER condition and depend differen-
tiably (holomorphically) on #e M. Consequently @, has the same property.

Hence (7”) shows that the solution f, of (4,) associated with @—, depends also
differentiably (holomorphically) on e M.
Summing up we get

Theorem 3.3: Gliven a differentiable (holomorphic) family of £2,-degenerate
singular integral equations over the differentiable (holomorphic) family B — M
of compact RieMann surfaces, there exists a differentiable (holomorphic) famaly
of transmission problems with values in the trivial vectorbundle (of suitable rank)
over B— M such that the set of those solutions of the singular integral equation
which depend differentiably (holomorphically) on te M 1is in a bijective cor-
respondence with the set of those solutions of the transmission problem which
depend differentiably (holomorphically) on t e M and have divisor > x, — D,
for every t e M. The rank of that trivial vector bundle equals nq where n denotes
the height of the kernel and q the rank of the degenerate integral equation.
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§ 4. The vector bundle associated
with an (2-degenerate singular integral equation

It has been proved in [11] that, given a holomorphic family of transmission
problems over B> M with values in a holomorphic vector bundle I — B,
there exists under certain, quite general hypotheses (see [11], § 4, 3) and 4), a)

and b)) a holomorphic family of fiber bundles B — B — M such that the set
of holomorphic (meromorphic) solutions of the transmission problem is mapped

bijectively onto the set of holomorphic (meromorphic) sections in I — B7).
Clearly, the just mentioned requirements 3) and 4) are fulfilled since in our
case YW — B is the trivial vector bundle (or rank ngq); the complex L1k group
which acts on B — M over Sis in our case the general affine group GA (ngq, C).
Since IB— B is the trivial vector bundle the hypotheses a) and b) are tri-
vially fulfilled. As pointed out in [11], the same result still holds when we
replace the holomorphic family of transmission problems by a differentiable
family of transmission problems. In this case, howevef, we end up with a

differentiable family of holomorphic affine bundles IW—~ B—- M and the
statement that the set of those holomorphic (meromorphic) solutions of the
transmission problem which depend differentiably on ¢ ¢ M is mapped bijecti-

vely onto the set of those holomorphic (meromorphic) sections in W,— V,
which depend differentiably on ¢ e M.

But we are looking for meromorphic solutions of the transmission problem
which have divisor = x, — D,, te M. They correspond to those mero-
morphic sections in Wt+ V, which have divisor > %, — D,, i.e. which
when represented in complex fiber coordinates of Vf’t——> V. have the property
that all their components have divisor > %, — D,. As in [3] we denote by
{*;, — D,} the holomorphic line bundle associated with the divisor *, — D,,
i.e. the holomorphic sections in {x, — D,} correspond to functions which have
divisor > *, — D,. From our hypotheses about B> M and the families
(Dy:te M) and (*,:te M) we conclude easily that ({*, — D,}:te M) is a
differentiable (holomorphic) family of line bundles & -~ B — M. From the
construction of MW-> B as given in [11] we take that except for an arbitrarily

chosen neighborhood U of S the transition functions for the bundle I — B
coincide on B — U with the transition functions of MW — B. Therefore, by
choosing U and the open covering (U;:telI) of B appropriately, we may
assume that

7) Note that the hypothesis of [11], Theorem 4.1, namely that B be a normal complex space,
is trivially fulfilled in our situation since B — M is a family in the sense of KODAIRA-SPENCER
([5]) whence 8B is a complex manifold.
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(i) the transition functions (4,;(v), a,;(v)) — where 4,; has valuesin G L(ng, C)
and a;; has values in €"? —in U, ~ U; which describe the bundle W > B
satisfy 4,;(v) =1 and a;(») =0 whenever ve 8B — U
(ii) the local meromorphic functions d; in U, describing the divisor (x, —

D,:teM) and hence the line bundle £ satisfy d,(v) =1 whenever veU.
Thus the functions (d,;(v)4,(v)d;'(v), d;(v)a;(v)) are holomorphicin U;~ U,
and depend differentiably (holomorphically) on ¢t e M. Since they fulfill the com-
patibility relations they define a differentiable (holomorphic) family W—> B> M
of holomorphic affine bundles. Clearly, the set of those meromorphic sections
in MW B which depend differentiably (holomorphically) on ¢ e M and have
divisor > %, — D, is mapped bijectively onto the set of those holomorphic
sections in W— B which depend differentiably (holomorphically) on te M.
Summing up we get therefore

Theorem 4.1: Giwven a differentiable (holomorphic) family of Q,degenerate
singular integral equations over the differentiable (holomorphic) family B —~ M
of compact RIEMANN surfaces, there exists a differentiable (holomorphic) family
W—>B—>M of holomorphic affine bundles such that the set of the solutions
of the singular integral equation which depend differentiably (holomorphically)
on te M 18 1in a bijective correspondence with the set of those holomorphic sections
in W—>B which depend differentiably (holomorphically) on t e M. The rank

of the affine bundle I — B equals nq where n and q have the same meaning
as in Theorem 3.3.

Corrollary 4.2: The space of solutions of (4) has finite dimension.

Proof: [3], Satz 15.4.2.

If we pass from (4) resp. (4;) to the associated homogeneous integral equa-
tion, that is if we replace g resp. g, by the function 0, then we have to replace
the affine bundle 8-> B by the one gotten from W — B by means of the
canonical homomorphism G4 (ng, C) > GL(rng, C). For various purposes it
is important to know the degree of the vector bundle W7t—> V., te M, which
corresponds to the homogeneous integral equation (4,). Using the notations of
§§ 2 and 3, the previous computation of det 7',(x), and [11], Satz 6.6, we get
in a straight forward way

Proposition 4.3: Let X be a compact connected Riemany surface of genus g

and W — X the vector bundle assoctated with the degenerate integral equation (4).

Then N 1
deg W = (g — 1)ng + P 12100) argq (det K_ - det K)
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In the formula contained in Proposition 4.3, €™, A =1, ..., 1, is the
splitting of § with minimal [ as described in Proposition 1.4. Furthermore, for
the continuous function ¢:QEW(I)— GL(1, C), arg,n)¢ is defined to be
(arg @) (1) — (arg @) (0)8) where arg ¢: €W (I)— R is a continuous such that
@ = |p| €'*2? holds. Finally, ¢¥ equals o(x) where z is any point lying
above @M (I — {0, 1}) for which the filter defining x has a basis consisting of
sets which lie on the right side (with respect to the orientation of %) of €.

[56], Theorem 2.1, in conjunction with Theorem 4.1 leads immediately to

Theorem 4.4: Given a differentiable family of Q,degenerate singular integral
equations (4;) over B — M. Assume that for every t e M the dimension dimgL,
of the complex affine space L, of solutions of (4,) 1s bigger or equal to 0. Then

1) dimyL, s an upper-semicontinuous function of t e M

2) if d = dimgL, does not depend on t, then for every t,e M there exists
a neighborhood U of t, and d + 1 solutions 0, ..., £? of (4,) which
depend differentiably on t e U and form a basis®) of L, for every teU.

From Theorem 4.4, 2) it is clear that there is a differentiable affine bundle
over M whose differentiable sections over the open subset W of M correspond
bijectively to those solutions of (4,) which are defined for all ¢ e W and depend
there differentiably on ¢.

In the same way [5], Theorem 18.1, and [11], Theorem 2.3, imply

Theorem 4.5: Given a holomorphic family of ,-degenerate singular integral
equations (4,) over B — M. Assume that for every t e M the relation dimgL, > 0
holds. Then

1) for every integer j the set {t:dim¢L, > j} s an analytic subset of M

2) if d = dimgL, does not depend on t, then for every t,e M there exists
a neighborhood U of t, and d 4 1 solutions [, ..., fP of (4,) which
depend holomorphically on t e U and form a basis of L, for every teU.

Finally it should be remarked that in the case of homogeneous £2,-degenerate
singular integral equations for which § is contained in the RreMmaNNian sphere
one can define the so called component indices (see [7], § 127). As carried out
in [11] for the transmission problem, it can be shown that they are nothing
but the exponents turning up in the GROTHENDIECK splitting ([4]) of the vec-
tor bundle associated with the singular integral equation. Therefore the state-
ment of [11], Satz 6.9, holds also in the present situation.

8) The orientation of ™. I » X is assumed to be chosen in such a way that 0 is the
initial point of G,

%) A subset Qg+ 4 of a complex affine space L is called a basis if every element of A4
d d
can be written in exactly one way as X oy ay where ay €C, v = 0,...,d, and 2 ay = 1 holds.

yu( y=0
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§ 5. Adjoint equation and dual bundle

Starting out from the singular integral equation (4), the adjoint equation
is defined to be
At (%) m(2y) + ‘;ﬁ‘( [} )K Ty, %) (21, T) (25) = 0 (4%)
where 7%(z,) is a differential form on §. Since every integrable solution of
(4*) is HOLDER continuous (see footnote?)) we have only to look for HOLDER
continuous solutions # of (4*). One sees very easily that (4*) satisfies the
condition I 1), provided (4) does. Moreover, Proposition 3.1 shows that (4*)
is £-degenerate if (4) is £2-degenerate; yet it might be that (4*) does not
fulfill the analog of I 2). If the original 2-degenerate singular integral equation
has kernel (5), then we write the kernel of (4*) in the form

Et(2y, 2,) = £ C!(z,) Bl (z,) (5%)

y=1
whence we shall have to make the additional assumption that
I1*2) l%zl B, (x,) =0 forevery v and z,¢8 .

Since (4*) satisfies I 3) whenever (4) does, we can apply the results of § 4 to
(4*). In passing from (4) to (4*) we have to interchange ¢ and — ¢, B, and
Ci, 0, and B!, K, and K%, and F and H. Therefore the transmission
problem associated with the adjomt equation turns out to be

(2H) (7) = T*(prz)°™(QH) (z) ) (8%)

where T'* denotes (7'*)~t. Furthermore, Proposition 1.2 shows that QH has
divisor > D — x on X — 8. Conversely, in the same way as in § 3 it can
be shown that every solution of the transmission problem (8*) which has divisor
>D — % on X — 8 gives rise to a solution of (4%*).

The transmission problem (8*) calls for meromorphic differential forms on
X — 8. This means in the terminology of [11] that we are dealing with a
transmission problem with values in ngKx = Kx® ... ® Kx (ng-times).
Therefore the construction which associates with the transmission problem
(8*) a holomorphic vector bundle (see [11], § 4) leads in this case to the bundle

W*Q® Kx—>X where W — X isthe vector bundle associated with the homo-
geneous equation (4). Thus the set of all solutions of (4) corresponds bijectively

to the set of all those meromorphic sections in WisK x which have divisor

10) Since we deal with homogeneous equations (4), 7' assumes values in G L(ng, C).
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> D — x. This and the remarks in § 4 leading up to the construction of the
bundle W - X show that the vector space of solutions of (4*) is mapped
bijectively onto the vector space of all holomorphic sections in the vector

bundle W*® Kx— X. Summing up we get

Theorem 5.1: Let W—X be the vector bundle associated with the homo-
geneous S2-degenerate singular integral equation (4) according to Theorem 4.1.
T'hen the vector bundle associated with the adjoint equation equals W*® Kx—> X.

Denoting the vector space of all solutions of the homogeneous equation (4)
by L (of (4*) by L*) we get as an immediate corollary of Theorem 5.1,
using Proposition 4.3 and the Rieman~-RocH theorem for vector bundles
over compact RIEMANN surfaces (see [3]).

Corollary 5.2 (Index Theorem):
:
dimeL — dimgL* = X oW arggoy (det K71-det K_) .
A=1
Obviously Corollary 5.2 corresponds to two of F.NOETHER’s theorems on
singular integral equations ([7], § 131, Theorem II and Theorem III). The
remaining theorem of F.NOETHER is thus

Proposition 5.3: The inhomogeneous $2-degenerate singular integral equation
(4) has a solution if and only if for every solution n of the adjoint equation

f n'()g(x) =0
holds. &, %)
Proof: The necessity of this finite set of conditions can be proved as follows.

If (4) has a solution f, then (7) gives for pri = z, denoting a(f) by o

9(2) = K, (2) {(z) + 2 B, () (1 — o) 2F,(f) + (1 + o) 2F, (@)}

y=1
For the same reason we get for every solution % of (4*)

(@) = — Z{(1 + o) QH! (7) + (1 — o) QH!(2)} C,(z) K71()

y=1

and according to (6) B B
— o7t(z) B,(2) = QH!(fz) — QH!(%).
Hence
7(@)9@) = = Z{(1+0) QH!(Bz) + (1 — o) QH!(2)} 0, () f(%) +

14

+nt(2) Z B, (#) {1 — o) @F,(6%) + (1 + o) 2F, (z)}

y==l
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A simple calculation leads then to

7(®) g(2) = — 2 0(®) T {QH!(F%) OF,(f7) — QH (3) 2F,())

y=1

Therefore _ _
Jf n'@)g@)=2 [ QH'QF

(8,5 jeJ bdy Xj _
where (X,:j eJ) is the family of connected components of X — 8. Since QH

has divisor > D — x and QF has divisor > x — D, CaucHY’s integral
theorem shows that the right side of the last equation vanishes.

In order to see that the converse is also true, we show that there is a family
of HOLDER continuous differential forms (¢, : 41 eA) on § which depend only
on the left side of (4) such that (4) has a solution if and only if

[ C(x)g(x)=10 forall Aed.

(8,2
After having established this auxiliary result, the proof of Proposition 5.3 can
be concluded very quickly as carried out in [7], § 53.

Thus it remains to be shown that the above auxiliary result, which is usually
proved by employing reducing operators and FrEpHOLM theory (see [7]), is
valid in our case. Here we want to give a proof using only theory of functions
and thus establishing F. NOETHER’s theorems for 2-degenerate singular integral
equations exclusively within the framework of theory of functions. For this

purpose let Ntbe an nmg X nqg matrix such that
(i) each column of N constitutes a meromorphic solution of the transmission
problem associated with the adjoint equation, i.e.
Nt(Bz) = T*(prz)"™ N* (z)
(ii) det N does not vanish identically

(iii) N (';) = 0 for all points z which lie above points of order = 2.
Such matrices exist due to Theorem 4.1 and well known statements about
holomorphic vector bundles over compact RIEMANN surfaces. Then we get for

each meromorphic soluiton @ of (8), putting pr z =z,

o(®) (N (67) G(B7) — N (z) G(z)} =
G, (2) K51(2) g ()

= — }H(1 + 0(®) N (=) + (1 — o (@) N (@)} | :
Cal(z) K3(2) (@)

as can be checked easily. Due to (iii) and I 2), the right side of this equation
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depends only on x. Hence we have for a suitable HOLDER continuous matrix
ZonS

== _ g(z)
o(z) (N (%) G(6%) — N (z) G (2)} = Z(x) ;
Conversely, setting , gz, 9(z)
H(z;) = m(sjz)z(xl) Q(zy, x,),
, g ()
we get by Theorem 2:.2 _ _ (%)
o(z) {H(fz) — H(x)} = Z(x) |
g(x)

whence N ~1(z) H () is a meromorphic solution of (8). Therefore the general
meromorphic solution of (8) is of the form

6(®) = N (H [ + L(pr ) )

where L is meromorphic on X. In order to find all those solutions G' whose
divisor is > * — D, we may restrict ourselves to meromorphic matrices L
on X whose divisor is > D, where D, is a certain divisor that can be computed
easily from N and D. Assuming that L,(x),..., L, (x) constitutes a basis
for the vector space of all those meromorphic matrices on X which have
divisor > D,, we have to find complex numbers ¢,,...,c, such that

N-Y(z)(H (%) + e, Ly(pr ) + ... + CpLy(pr x))

has divisor > *x — D. Necessary and sufficient for this is that certain coef-
ficients in the LAURENT series of this function vanish, i.e. that a certain in-
homogeneous system of linear equation in the ¢,’s has a solution. Since the

inhomogeneous terms of those linear equations are of the form [ {*(x)g(x)
(8,%)
where ((x) are suitable HOLDER continuous differential forms on S, the

necessary and sufficient conditions for the solubility of that inhomogeneous
system of linear equations are precisely of the form that we stated previously.
This finishes the proof of the remaining theorem of F. NoOETHER.

Summing up we can say that we arrived at proofs for F. NoETHER’s theorems
for Q-degenerate singular integral equations which use only results and
techniques of theory of functions.

§ 6. General singular integral equations

After having found proofs of F.NoETHER’s theorems for £2-degenerate sin-
gular integral equations, one might ask whether it is possible to reduce the
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proofs of these theorems in the general case to that for £2-degenerate keruels,
much in the same way as in the theory of FrREDHOLM equations. We shall
briefly outline that this is indeed possible and proceed for this purpose essen-
tially as in [2], III, § 3. Of course we shall restrict ourselves to singular integral
equations (4) which are subject to the conditions I 1), I 2'), and

I*2) ]%2] K (xy, ;) =0 holdson S X §S.

In addition we shall assume that for each z ¢S the relation |og,| = 0
holds; this relation, of course, implies both, I 2’) and 1*2’). We want to show,
however, that the assumption |o,| = 0 for all z ¢S is no loss of generality.

Since 2'|o,| = 0 we can imbed the oriented, 1-dimensional complex (8, %)
z€S
in a finite, oriented, 1-dimensional abstract complex (S’,2') which satisfies

|o, | =0 for each z' € S8'; for this purpose one has only to attach finitely
many l-simplices to (S, 2) in a suitable way. (8’,2’) in turn can be imbedded
in a compact RIEMANN surface X’ such that the imbedding of (S,2) in
(8', 2") can be extended to a diffeomorphism of some neighborhood of S
in X to some neighborhood of its image in X’'. Now the matrices 4 and K
which are defined on § resp. § X 8 shall be extended to 8’ resp. 8 x §'
as follows. Let 7 be a 1-simplex of S’ which is not contained in §; then its end
points #, and ¢, are in § and latol # 0 and |o‘t1| # 0 whence, due to I1) and
12), det A(t,) = 0 and det A(t,) £ 0 holds. Extend the matrix 4 to 7
as a differentiable mapping of = into GL(g, C) which maps ¢, into 4 (¢,) and
t, into 4 (#,). This way we get a HOLDER continuous matrix 4’ on §'. The
matrix K’ on 8’ X §' extending K is determined by the property that its
restriction to (8’ —8) x 8 v 8 x (8" — 8) is the zero matrix; K’ is HOLDER
continuous due to I 2’) and I* 2'). Clearly there is a natural bijective correspond-
ence between the space of solutions of the original system and the system
formed by means of 4’, K’, and (8, 2"), provided we use the same CAUCHY
kernel in both cases. Since the indices for both systems are the same we may
deal with the latter system instead of with the original one.

Defining the norm |4| of the matrix 4 = (a,;) by |4]* = 2 |a;|?, we

i,§

observe firstly that every matrix K(z,, z,) of HOLDER continuous functions
which satisfies in a compact subset S’ of C? the inequality
| K (2, 21) — K (2, 2)| < H(|ag — @ [* + |2 — 24 ) (10)
can be approximated uniformly by sums
n
2 B, (%) 0, (%)

y=1

such that the matrices B, (x,), C,(x,), v=1,..., n, and X B, (=,) C, (x,)

p=1
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satisfy an inequality analogous to (10) with the same HOLDER exponent, but
the HOLDER coefficient H replaced by a H where a depends only on the geo-
metric situation and not on the degree of approximation. For this purpose we
simply regularize each component of K (z,, z,) and approximate the resulting
C®-functions including their first partial derivatives as well as we want.
Secondly, a simple argument (see [7], §§ 49— 51) shows that every solution

of (4) satisfies a HOLDER condition with HOLDER exponent A’ = %, pro-
vided all given functions in (4) satisfy a HOLDER condition with exponent &.
Furthermore, denoting by H (k') the complex vector space of those HOLDER
continuous ¢ X 1 matrices on § which have HOLDER exponent 2', it is easy

to prove that (see [7], § 49) H (h') being equipped with the norm

|f(zy) — f(=,)] |
c Xy, yeU,,v=1,... N
[t () — 8, (=) [P 70 2 1
where (U,:v=1,..., N) isa covering of S by the coordinate neighborhoods
U, of the complex coordinate ¢,, is a complex BANAcH space. Moreover, the
operator which asigns to fe H(h') the function (note that under the above
hypothesis the relation (2) is trivially fulfilled)

(R) (@) = A (@) f(m) +— [ K, 2) f(2) (2, 7)), 238

Tl (S,x)

[[f] = sup {|f(@)|: x ¢S} 4~ sup

maps H (k') into itself and is a bounded linear operator whose norm depends
only on the geometric situation and the HOLDER constants of 4 and K (see [7],
§ 49, and [11], § 1). In particular, if we approximate { by operators given by

(RM]) (2,) = A () f(2) + =S ] z B (@) OO () f(23) 2(p, 2)  (11)

TV (§,Z) v=1

in such a way that the approximating matrices B™ and C™ satisfy the
previously stated conditions, then we arrive at a uniform bound for the norm
of the operators & and K™, m =1,....

Obviously, the approximating operators R can be chosen such that each
of them satisfies the conditions I 1), I 2) (which in the present situation is
trivially satisfied), and I 3), whence the results of the previous sections apply
to them.

Now the fundamental theorems of F. NOETHER can be proved in more or less
the same way as it is done in [2], III, § 3, in the case of FREDHOLM equations.
In particular, the argument of [2], pp. 118 —119, can be repeated literally,
however replacing (o,, 0,) of [2], IIL, by ||e,||- From that follows as in [2],
IIT, § 3, the validity of Proposition 5.3 in the general case, provided the
homogeneous integral equation {f = 0 has only the trivial solution.
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In order to geht the remaining statements, one could work out a proof for
the general CaucHy-kernel 2. This, however, seems to lead to lengthy com-
putations and arguments. Therefore it is advisable to show that we can restrict
ourselves to a quite special form of £ from which we then derive the desired
auxiliary results by an easy calculation.

In the discussion of the singular integral equation (4) we are only interested
in properties of £ on § X 8. This means that we may use a different CavcaY-
kernel £ on X or even change the complex structure on X. Rewriting the
original integral equation (4) in terms of the new CavcHy-kernel 2, we have
to replace the kernel K (z,, z,) by k(z,, z,) K(x,, x,), where k(z,, x,) is
chosen such that on S X § the relation Q(z,, z,) = k(z,, z,) 2'(2,, 2,)
holds. This leads then to an integral equation of the previously considered
type, provided Q'(z,, 2,) has no zero on § X 8§ and k(z,, x;) is HOLDER
continuous on S x 8.

It is well known that, given a compact RiEMANN surface X of genus g and

mutually distinct points af, ..., #;,., of X, there is a diffeomorphism of X
onto the RIEMANN surface X' defined by

W — (2—ay) ... (2 —Gy,,,) =0 (12)
which sends the point «} into the point of X' lying above a,, A =1,...,2g9+1,
and z,,, into the point of X’ lying above co. The points a,,..., a,,,, are
subject only to the condition of being mutually distinct. If we now choose
zf,..., %, in X — 8, then the image of § in X’ will not contain any
of the ramification points of z: X’ — P!. Denoting the function

z—a, 2 — Qg1
Vz " g (2 — @gp1q)

on X' by s(x) where z = z(x) is the image of x under the projection
z: X' > P!, one can check immediately that the CaucHy-kernel on X' to

* = oo and the normalization divisor D = (a,) + ... -+ (ay,) equals
1 3(‘”2)) dz(z,)
—(1 13
e Eraer e i

Moreover one verifies easily that this CAucHY-kernel has no zeros on § X §
since S does not meet the ramification points. Consequently we may assume
from now on that X is the RteMANN surface defined by (12) and that Q(z,, z,)
is given by (13).

In order to proceed with the proof of F. NOETHER's theorems, we remark
first that the space of solutions of the homogeneous singular integral equation
Kf = 0 has finite dimension over C. The proof of this statement is simply
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a repetition of [7], § 53, p. 140. Now let v,,..., v, be a C-basis of the vector
space of solutions of &f = 0. We want to show that for a suitable choice of
the Cavcry-kernel (13) the ¢ X 1 matrices

pi(®), .05 (), 8(2) (), ..., 8(®) 9 (%), zel (14)
are linearly independent over C. For that purpose choose the sets
{a’(le)a“‘: a’(zgg)-}-l}: Q = l:-"’ Ta
of mutually distinct points in such a way that for every 4 =1,..., 2g 4+ 1
the points a{?, p=1,..., r, are in a sufficiently small neighborhood of a,
and that the sets {al?,..., a? ;} are mutually disjoint. By replacing each

ay in s(z) by a® we get a function s,(x) as used in the construction of the
Cavucruy-kernel (13). We claim that for at least one index g the functions corres-
ponding to (14) are linearly independent over C. Assume that for some complex
numbers bog, b'oy, 0,0=1,..., 7,

Py () (byo + ble 85(2)) + ... + 9, (@) (brg + byy 8, (%)) = 0 (15)
for all zeS. Let us consider

det (beg + bly 86 (2))ggmn,...r > TeX. (16)

If (16) would not vanish identically, then (15) would imply that for each point
2 on S which does not belong to the divisor of (16) (%) = ... =y, (z) =0
holds. By continuity the ,’s would therefore vanish identically on S contra-
dicting the assumed linear independence. Therefore the rank m of (16) is
smaller than r. We choose now the b, and b;, such that m is maximal. If
this maximal m equals 0, then for any choice of p the functions corresponding
to (14) will be linearly independent over ¢'. If m > 0 holds, then we may

S that
assume tha det (byy + beg 8, (2))p.0m1,... m

does not vanish identically. Then (15) implies the existence of rational functions

femuaa (1o ooy Wa) 5oy frep(wr, oo, wy), 2=1,...,m
such that . ‘
V(@) = 2 fu(8:(2), ..., u(®) pu(2), x=1,..., m (17)
p=m+1
holds. Because the rank of (16) equals m, we have for y =m +1,...,r

0= bp,m-}-l + b;z,'m-{—l 8m+1 (x) + {:lixp. (81 (x) 38 & :Sm (x)) (bx,m+1 + b;,c,m+18m+1 (x)) =
= {bp.,m+1 + {'lfx,;(ﬁ (), ..., 8m (%)) bx,m+1} .

+ {blll,m-{-l + glfxy,(sl (x) yeee38y, (x)) bl,c,m+1} 8m+1 (x)

8 CMH vol. 38
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This shows that both terms {...} of the preceding line have to be identically
zero, because 8,,,(r) has ramification points where neither of the terms
{...} has. Therefore using (17) we arrive at

0= Z {by.,m+1 + Zlfx,u('gl (x)’ 64wy sm(x)) bx,m+1} "/’,,; (x) =

p=m+1

= X bp.,m-{-l "/)p.(x) + 2{ Z fxp.(sl(x)’ et Sm(x)) wp(x)} bx,m-i-l =

p=m+1 k=1 p=m+1

= Zbe,m+1 Pe (x)

e=1
whence b, 3 = ... = b, ;3 = 0 due to the linear independence of y,, ..., y,.
A corresponding argument shows that also ] ,, ., = ... = b; mi1 holds. Thus

a suitable choice of the CAucHY-kernel (13) makes the functions (14) linearly
independent over C, as claimed before.

The next step is to replace the approximating sequence operators K
by a sequence of 2-degenerate operators R which has the properties pre-
viously stated for the sequence K™ and fulfills the additional requirement
KMy, =0 for p=1,...,r.

Since the ¢ X 1 matrices (14) are linearly independent over C the ScHMIDT
orthonormalization process gives the existence of a non-singular 2r x 2r
matrix ¢’ with entries complex numbers such that

;[’-1‘ (2,)

ot
'CTt Y- (xz)_
(s":x) 8 (23) ¥

.

m Et (x,)

holds, where 1 designates the 2r X 2r wunit matrix. Therefore we get a
2r X 27 matrix C with entries complex numbers such that

(2,) (vi(xa), ..., 9 (), 8(20) ¥y (22), - . ., 8(2s) W, (3)) O |d2(p) | =

;1‘(:1:2)
.‘ C __ — (vi(xg), .. ., 8(29) pp(ay) |dz(ay)] = 1. (18)
.2 \s(xy) , €Y
PoSting ) (a) = — (RMyp) (2) @ =1,...,7, m=1,... (19)

we note that |y,™ (x,)] converges uniformly on S to 0 as m tends to infinity,
due to the previously stated properties of the approximating sequence K™,
Furthermore we know that the matrices y,'™ are HOLDER continuous on S with
HOLDER constants which are uniformly bounded. Defining now the ¢ X ¢
matrix L™ (z,,2,) on S X 8 by
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) Et(xz)
76 (D (@), s 2 (@), 8(@) AP (@), -, 8(@) ZM(@) O | 1
() ( ( ) ( )) Id ( )l 8 () "Prt (xz)
8 (%) (2(%y) — 22 2 (%,
" 8(zy) a2 (ay) (20)

the relation (18) implies that

— I L(m’(xn Tg) (91(3), . - -, Yr(1)) (2, 3)) =

T s,z
1 "/—’—1_t (2,)
=% .f (x(lm)(xl)a cees 8(2y) Z(,m)(xl)) C : ('I’l(xz), cee "I’r(xz)) .
2 (8,%) —— —,
8 (x5) wi ()
8(,) —
(ay + 11t
1 0
0 ..
1 1 0 1
= _2— (xgm)(ml)’ e 8(331) X(,m) (xl)) ‘ 8((171) 'l' * '(; + freeee (xgm)(xl) y oo axs-m)(xl)) .
. 0
0 1
Thus, using (19), we find that the operator R‘m) KM 4+ Q) where
LWf (@) = — [ L™ (2, z,) f(w,) 2(,, 2,)

Tl (8§, 1)
satisfies the equations

KM y,=0 for p=1,...,r, m=1,...

In addition (20) shows that £™) and therefore | s -degenerate and that

K| satisfies the conditions I 1) and I 3) since L™ (z,,x,) = 0 on 8. Switch-
ing from the original approximating sequence to the one which has just
been constructed we may now assume that the solutions ,,...,wy, of
K f = 0 are also solutions of ™) f = 0.

We claim finally that the vector space of solutions of K™ f = 0 has for
sufficiently large m exactly dimension r over C. So far we know that this
dimension is at least r. If for infinitely many m this dimension were bigger
than r, then we could select a subsequence such that every integral equation
of this subsequence has a solution space of dimension > 7 + 1. Therefore
we could find for every m a solution 9{"}; of K™ f = 0 which does not depend
linearly upon v, ..., y,. Furthermore we may assume that for g =1,...,7

Sj'z)-';’_et(xl 'Pr+1(x1 ) |dz(z,)| = 0 and ! "I’(rrf:-)l (xl)wg'ﬁ)l(xl) |dz ()] = 1
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hold. As can be seen very easily (see [2], ITI, § 1, and [7], §§ 45 and 51) the latter
condition implies that the (", form a uniformly bounded and equicontinuous
family. Hence ARZELA’s theorem shows the existence of a uniformly convergent
subsequence, whose limit v,,, is not identically zero, is orthogonal to v,,. . .,
¥,, and constitutes a solution of R&f = 0 which is impossible. Since the index
of a singular integral equation as defined by the right side of Corollary 5.2
is an integer and since the sequence RK™) approximates K in the previously
stated manner, the index 17,, of ™ equals the index 7 of & for sufficiently
large m . Therefore, denoting the space of solutions of ™ f = 0 (the adjoint
equation KM* f = 0) by L™ (L)) and the corresponding spaces for & by
L (L*), we get from Corollary 5.2

i = iy = dimgL,, — dim L} = dim¢L — dimgL¥

for sufficiently large m. Because the sequence K™* approximates K* in
the same way as the sequence K™ approximates &, we get dim¢L < dimgL*e
If, however, dim¢L} < dimgL would hold for arbitraryly large m, then we
could interchange the roles of & and &* and thus find that the dimension of the
solution space of {f = 0 had to be bigger than dim¢Z which is a contradiction.
Therefore Corollary 5.2 (Index Theorem) has been proved in the general case.

It remains to be shown that Proposition 5.3 too is valid in the general case.
The necessity of the conditions in Proposition 5.3 is essentially trivial (see
[7], § 83). The sufficiency can be shown as follows. According to our previous
construction we may assume that the approximating sequence is chosen in
such a way that dimgL} = dimgL* = r* holds for all m. Furthermore we may

assume that for each n the matrix valued differential forms #™,..., 7™
constitute a C-basis of L such that
i f(nf;"’ () )t (nf,”"(xl)') e = { 0if p #£0

|dz(2,)] ) \ldz()] lifo=o0
(ii) each sequence 7,™, m = 1,..., converges uniformly to #,.

Then the matrix differential forms #,,..., s+ form a C-basis von L*.
If now
§ ne(x) g(@m) =0 e=1,...,7%
(8,2)

holds, then for each p the sequence

(.SI E)W(m)t %) 9(,)

converges to zero, whence the sequence

70 ()
g™ (25) = g(xs) — 2 j. n(m)t (2) 9(,) - <|dQZ(w2)|>

e=1 (S
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converges uniformly to g(x,). Moreover (i) implies that for o =1,...,7*
(@) g™(a) = 0
(8,%)
Thus Proposition 5.3 gives the existence of a solution f™) of the integral
equation K™ f = g™  An argument analogous to the one in [2]. III, § 3,
permits then to pass to the limit in K f™) — g(m) and thus to establish the
existence of a solution of the original integral equation Kf =g.
Therefore we have proved

Theorem 6.1: Assuming that the singular integral equation (4) satisfies 1 1),
I2'), and 1*2'), the statements of Corollary 4.2, Corollary 5.2, and Proposition
5.3 are valid for the singular integral equation (4).

§ 7. Final remarks

The procedures of § 3 together with the results of [11] lend themselves to a
treatment of certain types of nonlinear singular integral equations analogous
to the one developed in the preceding sections. Unfortunately, only little is
known about holomorphic sections in holomorphic fiber bundles other than
vector bundles over compact RIEMANN surfaces. This puts a severe limitation
on the applicability of this method to nonlinear singular integral equations.

The singular integral equation (4) which satisfies (5) is of the general form
(see the argument following (6))

fam) = 1 (21
= 0 (Ci(@) f(@), ... Culew) [(@), 5 S Ci(@) () Qas, ).

Assuming that f is a HOLDER continuous solution!!) of (21) we introduce as
previously

ﬁl(xl)~§7;;(f C,(@y) f(w) (2, 7,), B eX — 8
and find as in § 3
flpre) = ~ ~ - ~ -
=&(o(z){QF,(fz) — QF,(2)},...,0(x){QF,(fz) — F,(z)},2F,(fz) + 2 F,(2), ..
Therefore we have for v =1,..., n
QF(fz) — QF,(z) =
= o(z) C, (pr %) B(o(z) {2 F,(f%) — 2F(=)},..., 2F(B%) + F(2),...)

11) Contrary to linear singular integral equations, (21) may have integrable solutions which
are not HOLDER continuous.
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or
QF(7) — QF (@) = (
_ [Ci(pr=) = = o=
= o(z) P _ | Q@) {QF(Bz) — QF(x)},..., QF(Bz)+ QF (), ..
C,(pr x)

Under the assumption that

N) there exists a complex Lie group G acting on C"? as a group of complex
automorphisms, together with a HOLDER continuous mapping T :S—G such
that for any two elements yM, y@ in C"212) the equations

y(l) —_— y(Z) —
e 01 (pr:m) e = ;
=o(@) | i _ ) PO@ @ -y} 0@ &P — 5 o0+ 42, 0)
C,(pr )
and

Yy = T (prz)’@ . y@

are equivalent, _
any HOLDER continuous solution f of (21) leads via (22) to a solution QF of
the transmission problem

G(Bz) = T (przy"® . G(z) (23)

for which F is meromorphic in X — 8 and has divisor > % — D. If one
now imposes on @ a condition analogous to I 3) — which is of course empty,
provided 8§ is a disjoint union of simple closed curves —, then one can show
as in § 3, that every meromorphic solution of the above transmission problem
which has divisor > % — D gives rise to a HOLDER continuous solution of
the singular integral equation (21). Therefore one arrives at an obvious gener-
alization of Theorem 3.3. Hence, using [11], one can again associate with (21)
a holomorphic fiber bundle over X with fiber C*? and structure group G such
that the HOLDER continuous solutions of (21) correspond bijectively to those
meromorphic sections in the bundle which have divisor > * — D (see proof
of Theorem 4.1)13),

As mentioned previously there are virtually no general theorems concerning
the existence of holomorphic sections in the fiber bundles we finally arrive at.
However, the following statement is true (for a similar, yet more special case
see [9]; the proof given there can be generalized so as to cover the situation

12) We put for y€C™ 4 = (y{, ...,y;)ECq@ ot =cM,

13) The notation «meromorphic section in the fiber bundle which has divisor =% —D»
makes only sense for the specific transition functions g:-,- constructed in [11], § 4, since the
transmission problem has values in a trivial vector bundle. Therefore this notion is not an in-
variant of the fiber bundle, but only of the coordinate bundle.
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here). Given a covering (U;: ¢ eI) of P! by open subsets which are homeo-
morphic to a disk, let the holomorphic fiber bundle W — P! with connected
structure group G be described by transition function g;; in U, ~ U;; then
W — P, is holomorphically trivial, provided the transition functions g,,
assume only values in a (sufficiently small) neighborhood of the neutral element
in G which depends only on the given covering (U,:¢ eI). On the other hand,
one sees easily from [11], § 4, that the fiber bundle we are interested in satis-
fies these requirements, provided 7' assumes only values in a sufficiently small
neighborhood of the neutral element of G'. Therefore we get

Theorem 7.1: Suppose that @ maps HOLDER continuous functions into
Horper continuous functions, that N) is satisfied, and that S s a disjoint union
of stmple closed curves which are contained in P'. Then the integral equation (21),
considered for X = P, has exactly one HOLDER continuous solution, provided the
transmaission function T assumes on S values which are contained in a (suf-
ficiently small) neighborhood of the neutral element of G which depends only on
the choice of S.

It is clear that the whele argument of this section can again be carried over
to the discussion of families of nonlinear singular integral equations. The details
are left to the reader.

As an example of the type of integral equation dealt with in this section,
we assume again 8§ to be a disjoint union of simple closed curves. Then for
any complex Lie group @ acting on €2 as a group of complex automorphisms
and for every HOLDER continuous mapping 7':8— G, the nonlinear integral
equation

[(02) = 7 Jo /(@) @20+ T(@) (He2) + o7 [ () e, )

T (8,2)

where f has values in €2 is of the type we have considered in this section.
Thus the above results apply to it.

University of Minnesota (IT),

Harvard University.
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