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Tabellen reduzierter,
positiver quaternârer quadratischer Formen

von Kurt Germann, Schaffhausen

Einleitung

Fur viele Untersuchungen iiber quadratische Formen ist es niitzlich, wenn
man liber Beispiele verfugt. Eine Tabelle der binâren Formen kann leicht auf-
gestellt werden, fur positive ternàre Formen existieren die Tabellen von
Brandt-Intratt [2], fur positive quaternâre Formen wurde von Townes [5]
eine Tabelle der geraden Formen fur kleinere Diskriminanten pubKziert.

Die vorliegende Arbeit bringt nun eine Tabelle aller Klassen positiver quater-
nàrer quadratischer Formen bis Diskriminante d 61. Sie ist aufgebaut auf
der Tafel der ternàren Formen von Brandt-Intratt (die iibrigens nach der hier
dargestellten Méthode leicht berechnet werden kann), und vor allem auf der
Reduktionstheorie der positiven quadratischen Formen, wie sie in der Arbeit [6]
meines verehrten Lehrers, Herrn Prof. B.L. van der Waerden, dargestellt ist.

Im ersten Kapitel werden daher kurz die Grundlagen und wichtigsten Ergeb-
nisse der Reduktionstheorie zusammengestellt.

Das zweite Kapitel bringt dann die Darstellung der Méthode, die der Berech-

nung der Tabelle zugrunde liegt, sowie eine erste Zusammenstellung der
gefundenen Formen.

Im dritten Kapitel folgen Untersuehungen ûber Âquivalenz und hinrei-
chende Kriterien fur die Inàquivalenz von zwei Formen, und schlieBlich die
Aufstellung des endgûltigen Reprasentantensystems.

Das vierte Kapitel bringt dann noch Untersuchungen ûber eigentliche und
uneigentliche Âquivalenz von Formen.

1. Eapitel

1. Bezeichnungen. Eine positive quadratische Form in n Variabeln, eine sog.
7i-âre quadratische Form, mit ganzrationalen Koeffizienten wird im folgenden
kurz als Form bezeichnet.

n

f /(a;1,..., xn) Z fikxixk mit fik ganzrational.
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Die Form kann auch symmetrisch geschrieben werden, wozu neue Koeffi-
zienten gik eingefûhrt werden :

n
/ Sg^x1* wobei gu fH

Die Diskriminante Dn der Form wird definiert als die Déterminante der
Koeffîzientenmatrix (gik).

9u 9m
Dn det. (gik) (1.1)

9ni 9nn

Es gilt nun eine erste Ungleichung fur Diskriminante :

A* </n/».••/»• (1.2)

2. Âquivalenz von Formen. Fûhrt man durch eine ganzrationale Transformation

neue Variable x{ ein
n

xl Z tik xk tik ganzrational

so transformiert sich auch die Form / auf eine Form f :

Wenn sich umgekehrt auch die ~xk ganzrational durch die xl ausdriicken lassen,
so erhâlt man aus / wiederum / durch eine ganzrationale Transformation. Not-
wendig und hinreichend dafur ist, daB die Transformationsmatrix (tik) uni-
modular ist, d. h.

]T]== ^ (Q ± 1

Die Form f heifit nun âquivalent zur Form f, wenn man / aus / durch eine
unimodulare Transformation der x{ erhâlt. Da die Âquivalenz eine reflexive,
symmetrische und transitive Relation darstellt, liefert sie uns die Môglichkeit,
aile Formen in Klassen àquivalenter Formen einzuteilen. Ferner zeigt es sich,
daB sich die Diskriminante einer Form bei einer Variabelntransformation mit
dem Quadrat der Déterminante der Transformationsmatrix (tik) multipliziert.
Also haben àquivalente Formen gleiche Diskriminante.

Âquivalente Formen stellen z. B. die gleichen Zahlen dar, so daB man sich

hâufîg nur fur die Formenklassen, nicht aber fur die einzelnen Formen einer
Klasse interessiert. Eine Klasse wird durch irgendeine ihrer Formen reprâsen-
tiert. Die Reduktionstheorie liefert uns nun ein Mittel, moglichst einfache

Reprâsentanten zu finden. Als Vorbereitung dazu miissen wir uns kurz mit der
Gittertheorie im Rn befassen.

3. Gittertheorie. Unter einem Gitter in einem n-dimensionalen linearen Raum
Rn versteht man die Gesamtheit aller ganzrationalen Linearkombinationen
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von n linear unabhângigen Vektoren elt en. Dièse Vektoren ef bilden eine
Basis des Gitters. Jeder Gittervektor x làBt sich also schreiben als

n

x S e,#* mit x1 ganzrational.
i-i

Hat man nun eine w-âre Form /, so kann man vorerst bei fester Gitterbasis
eine Metrik einfuhren :

N(x) /(x) f{x\ ...,&)=£ fikx*x* (1.3)

Die positive ganze Zahl N(x) heiBt die Norm von x, die positive Quadrat-
wurzel daraus die Lange des Vehtors x :

Gleichzeitig fûhrt man so naturlich auch das Skalarprodukt von zwei Gitter-
vektoren x und y ein :

(x, y) ZftixY + Y2 Z fik(x*yk + x*y<) (1.4)
i i<k

Betrachtet man nun eine neue Basis e^, ,e'n desselben Gitters, so drûcken
sich die alten Basisvektoren et- naturlich ganzrational durch die neuen aus :

n
27 ej. tik

Umgekehrt drûcken sich auch die neuen Basisvektoren ganzrational durch die
alten aus n

k i ki

Notwendig und hinreichend dafûr ist aber
i rp j Hf*f (i \ i 1

Eine Basistransformation bewirkt aber auch eine Transformation der Koor-
dinaten eines Gittervektors :

n n _ n

x E QiX* E e'kxk mit xk E tikxl

Verlangt man nun die Invarianz der Norm eines Gittervektors gegenûber
Basistransformationen, so bewirkt also eine Basistransformation des Gitters den

Vbergang von einer Form f zu einer àquivalenten Form J.
Wir sehen also : Verschiedenen Basen desselben Gitters entsprechen équivalente

Formen und umgekehrt. Einer ganzen Formenklasse entspricht somit nur ein
Gitter.

Nun sucht man môglichst einfache Gitterbasen, denen dann auch môglichst
einfache Repràsentanten einer Formenklasse entsprechen.
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4. Reduktionstheorie. Als Vorbereitung brauchen wir den Begriff des primi-
tiven Systems :

k linear unabhàngige Gittervektoren bilden ein primitives System, wenn es

in dem von ihnen aufgespannten linearen Raum keine Gittervektoren auBer
ihren ganzrationalen Linearkombinationen gibt (k 1,2, n).

Es gilt nun der Satz : Ein primitives System kann zu einer Basis des Oitters

ergânzt werden.

Eine Gitterbasis heiBt reduziert, wenn folgende Bedingungen erfiillt sind :

1) fy ist der kûrzeste unter allen primitiven Gittervektoren.
2) efc ist der kiirzeste unter allen Gittervektoren, die mit ex, e^ ein

primitives System bilden (k 2, n).
Man kann nun zeigen, daB in jedem Oitter eine reduzierte Basis existiert. Eine
Form, die einer reduzierten Basis entspricM, heifit auch reduziert. Also ist jede

Form àquivalent zu einer reduzierten Form, d.h. jede Formenklasse kann durch
eine reduzierte Form, repràsentiert werden.

Die Reduktionsbedingungen kônnen noch so umgeformt werden, daB man
Bedingungen fur die Koeffizienten der Form bekommt :

n
ffak) < /(s) fur aile Gittervektoren s Z e^'

mit ggT{sk, sn) 1 i"1

oder
fkk ^ /(**> • • • > 5") ^r aile ganzrationalen s* mit

ggT(sk, s») 1

Durch spezielle Wahl der 8i erhalt man folgende Bedingungen:

Al < /» < <fnn (1-5)
fur i<k

Ferner kann man zeigen : Jede reduzierte quadratische Form mit fn > 0 ist
positiv.

5. Sukzessive Minima einer Form oder eines Gitters :

Nt Norm eines kùrzesten Gittervektors s ^ 0

Nfc Norm eines kùrzesten Gittervektors s, der von Sj, s^.i linear un-
abhângig ist.

Die Zahlen Nl9 N2, Nn heiBen die sukzessiven Minima der Form f und
sind durch das Gitter eindeutig bestimmt. Die Vektoren sl5 sn heiBen die

Minimalvektoren. Sie bilden fur n < 4 eine Basis des Gitters mit Ausnahme
der Formenklasse der Diskriminante Z>4 1/4 und ihrer Vielfachen.

Falls die Form / reduziert ist, gilt fur n < 4 :

Nk fkk (1.6)
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Femer gilt die fundamentcde Ungleichwng der ReduJctionsthsorie :

fnfn Ln<KDn (1-7)
mit ^, 4/3

Fur die Beweise der hier erwàhnten Sâtze aus der Reduktionstheorie sei auf
die Arbeit [6] von B. L. van deb Waerden iiber die Beduktionstheorie der po-
sitiven quadratischen Formen verwiesen.

2. Eapitel

1. Vorbemerkungen. Von jetzt an betrachten wir nur noch reduzierte quater-
nâre und ternâre Formen. Jede quaternâre Form kann aufgebaut werden aus
einer ternàren Form /0. Umgekehrt erhâlt man aus der quaternâren Form auch
wieder die ternâre, indem man setzt : #* 0.

f(x\ x2, a* txf) fo(x\ x2, a?) + ax1 & + bx2 tf + ex* tf + fu & a*

Das Tripel (a, b, c) wird auch mit (yl9 y2, y3) bezeichnet, wenn das eine Ver-
einfachung bringt.

Die Diskriminante Dé der quaternâren Form wird nun einfach mit D, die-
jenige der ternàren Form mit A bezeichnet. Dann gilt :

D d/16 wobei d ganzrational
A (5/4 wobei à ganzrational und ô > 1

Ist die quaternâre Form reduziert, dann naturlich auch die ternâre, und die
Reduktionsbedingungen kônnen nun in der folgenden Form geschrieben werden :

a) /0 soll reduziert sein

c) /(— s1, — s2, — s?, 1) > fu fur ganzrationale s*

Nach Minkowski [4] Seite 78 genugt es, die si 0 oder ± 1 anzunehmen.
Fur gegebenes /0 folgt aus c)

fo(s\ s2, s3) > as1 + bs2 + es3 (2.1)

2. Méthode zur Bestimmung eines vollstândigen Beprâsentantensystems
a) Man beschrânkt die Diskriminante d < 64 ;

b) Nach der fundamentalen Ungleichung der Reduktionstheorie (1.7) gilt:

/ll/22/33/44/
Ferner ist nach (1.5)

/11 S: /22 S /33 S /44
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also gibt es folgende Môglichkeiten fur fn, /22, f^ :

1 i 1 i 1 1 O Q \jn _ i J22 — l /33 — A j ^ O I

1 i 1 O* O I (*•*)
/11 — l /22 — ù /33 — ^ J

c) Aus der Ungleichung (1.2) folgt:

also folgt aus (2.2): ô < 16

d) Zu jedem ô sucht man aus der Tabelle von Brandt-Intrau [2] aile Klas-
sen ternârer Formen und nimmt je eine reduzierte Form als Reprâsentanten.
Dabei lâBt man die Formen mit nicht zulàssigen Werten von /33 weg.

Bezeichnungen:

fo(x\ x2,a?) Ifik xl xk oder kurz f0 {u {22 {*
i^k /12 /13 /23

So ergibt sich folgende Tabelle ternârer Formen, geordnet nach der Diskrimi-
nante ô :

à= 2: ] ] \

o
ô

o

112 1126: on ioo
7: M'0 10

e) Zu jedem /0 berechnet man nun aile zulàssigen Tripel (a, 6, c). Nach
Ungleichung (1.5) gilt \tfi\< fa

also ergeben sich nur wenige Môglichkeiten fur yi9 d. h. fur a, 6, c.

10:

11:

12:

13:

14:

15:

16:

1

0

1

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

2

1

2

0

2

0

2

0

2

0

3

1

3

0

2

0

2

1

2

0

2

1

2

0

1

1

1

0

2

0

1

0

2

2

3 12 2

0 0 0 2
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Am besten stellt man sich nun eine Wertetabelle fur /0(«1, s2, s3) auf, fur
aile Werte s1 0 oder 4: 1- Weil aber /0(— s) fo(s), kann man sich auf
die Tripel (s1, s2, s?) beschrânken, fur die s1 > 0, oder s1 0 und s2 > 0,
oder (0, 0, 1).

Dann untersucht man fur jedes Tripel (a, b, c), ob es den Reduktionsbedin-
gungen (2.1) geniigt. Dabei stellt man sich gleichzeitig noch eine Tabelle der
Tripel (s1, s2, s3) zusammen, fur die in (2.1) das Gleichheitszeichen gilt. Dièse
Tabelle wird spâter fur die ersten Âquivalenzuntersuchungen gebraucht.

3. Erste Âquivalenzuntersuchungen. Zur Vereinfachung der Bezeichnungen
setze ich hier (a,b, c) (yliy2, yz).

Sei Es der von e1? e2, 63 aufgespannte lineare Raum. Man zerlegt nun
e4 p + q wobei p in Ez, q J_ Ez. Dann gilt:

2e,p ^ (4=1,2,3) (2.3)

Nun fuhrt man die dualen Basisvektoren ek ein, die definiert sind durch

e,efc=<5f (i,fc=l,2,3) (2.4)

Dann heiBt die Lôsung von (2.3)

1 (2.5)

Die Beziehungen zwischen et- und efc sind

e, Z gih& (2.6)

Die Reduktionsbedingungen besagen nun

tf(e4- Z e^*) >N(eé) (2.7)

oder, wenn man setzt e4 p + q und s Z eisi

(2.8)

d. h. der Punkt p liegt von 0 nicht weiter entfernt als von irgendeinem anderen

Gitterpunkt s.
Gilt in einer Reduktionsbedingung (2.8) das Gleichheitszeichen, so kann man

p durch den gleich langen Vektor p — s ersetzen, und man erhâlt eine neue
Gitterbasis ely e2, e3, e4 e4 — s desselben Gitters, also auch eine âqui-
valente Form. Gilt in mehreren Bedingungen (2.8) das Gleichheitszeichen, so

hat man natûrlich mehrere Moglichkeiten fur s, man erhâlt also auch mehrere

âquivalente Formen. Dièse s bestimmt man mit der Wertetabelle von /0 gleichzeitig

mit der Bestimmung der reduzierten Tripel (a, b, c).
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Aus (2.5) und (2.6) folgt nun

p' p _ s i/2 zeky'k y2 E&(yk ~ 2 Zgiks*)
le k i

also werden beim Ùbergang zur âquivalenten Form die yk ersetzt durch yfk

yk yk- 2Zgiksi (2.9)
i

Mit e1? e2, e3, e4 ist aber auch e1? e2, e3, e^ — e4 eine reduzierte Basis des

Gitters, also erhàlt man auch eine àquivalente reduzierte Form, wenn man die

yk durch - yk ersetzt.
yk - yk (2.10)

4. Die Rechnung geht nun folgendermaBen vor sich :

a) Zuerst bestimmt man zu jedem /0 die reduzierten Tripel (a,b, c) und
gleichzeitig die s, fur die in (2.1) bzw. in (2.8) das Gleichheitszeichen gilt, mit
Hilfe der Wertetabelle von /0 (s).

b) Nun berechnet man nach (2.9) und (2.10) aile Tripel (a', V\ cf), die auf
àquivalente reduzierte Formen fuhren, und erhàlt so eine Klasse von Tripeln.

c) Aus jeder Klasse wâhlt man einen Repràsentanten (a,b,c) aus.
d) Nun berechnet man die Diskriminante d, und scheidet aile Klassen mit

d > 64 aus. Die verbleibenden reduzierten Formen ordnet man in eine erste

Tabelle ein.
e) Falls /ga 3 zeigt die Rechnung, daB es keine quaternàren Formen mit

d < 64 gibt. In diesen Fàllen berechnet man daher zuerst d und kann dann
direkt feststellen, daB fur d < 64 keine reduzierten Tripel (a, b, c) existieren.

f Fur grôBere Werte von ô erhàlt man sehr viele Formen mit d > 64. Des-
halb berechnet man auch hier zuerst d und teilt dann nur die Tripel in Âqui-
valenzklassen ein, fur die d < 64. Auf dièse Weise erhàlt man dann nur noch
die gewimsehten Formen.

Die Méthode wird nun am Beispiel der Diskriminanten <5 6 und ô 14

gezeigt. Fur die restlichen Diskriminanten gebe ich einfach die Résultate der
Rechnung an.

5. Beispiele
a) Fur 6 6 hat man die ternâre Form /0

also ergibt sich : a,b 1, 0, — 1.

c 2, 1, 0, - 1, - 2

Wertetabelle:
fo(s) 6 fur

4 fur
2 fur

s (l,
s (l,
s (l,

(0,

1,
o,
1,
1,

1)

1),
0),
—

(1

(1

1).

J

,1,
(0,

1,
—

o,

1).
1),
1)

(1,-
(1,0,

1, -
-1),

1),
(1

(0,
J

1,
1,

1)

0),

1 fur s (1,0,0), (0,1,0)
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Nun werden die Reduktionsbedingungen (2.1) fur aile môglichen Tripel
(a, b, c) untersucht:

1) {a, by c) (1, 1,2): * + * + 2s* < /0(s)
Die Reduktionsbedingungen sind fur aile s erfûllt.
Gleichheit fur 8 (1,1,0), (0,0,1), (1,0,0), (0,1,0), (0,0,0).
Âquivalente Tripel: (1, 1, 2), (1, - 1,1), (- 1, 1,1), (0,0, -2),

(- 1,- 1,0), (- 1,- 1, -2), (- 1,1,- 1),
(1, - 1,- 1), (0,0,2), (1,1,0).

2) (o,6,c) (l,l,l) * + * + *<fo(a)
Die Reduktionsbedingungen sind fur aile s erfûllt.
Gleichheit fur s (1, 1,0), (1,0,0), (0,1,0), (0,0,0).
Âquivalente Tripel: (1, 1, 1), (1, - 1, 0), (- 1, 1, 0). (-1,-1,-1).

3) (a,6,c) (l,l,- 1) ,i +«•-*</(g)
Die Reduktionsbedingungen sind nicht erfûllt fur s (1, 1, — 1),

analogfallenweg:(l,l, - 1), (1,1, -2), (1,0, -2), (0,1, -2),
(- 1,0,2), (0, - 1,2), (- 1, - 1,1), (- 1, - 1,2).

4) (a,6,c) (l,0,2) ^ + 2^</0(s)
Die Reduktionsbedingungen sind fur aile s erfûllt.
Gleichheit fur s (0, 0, 1), (1,0, 0), (0, - 1, 1), (0, 0, 0).
Âquivalente Tripel: (1,0, 2), (- 1,0, 1), (0, - 1, - 2), (- 1, 0, - 2),

(1,0,- 1), (0,1,2), (0,1, - 1), (0,- 1,1).
5) (a,6,c) (l,0,l) *1 + s3</o(s)

Die Reduktionsbedingungen sind fur aile s erfûllt.
Gleichheit fur s (1, 0, 0), (0, 0, 0).
Âquivalente Tripel: (1,0, 1), (- 1,0,0), (- 1,0, - 1), (1,0,0).

6) (a,6,c) (l,- 1,2) *-* + 2«»</0(s).
Die Reduktionsbedingungen sind nicht erfûllt fur s (0, — 1, 1).
AnalogfaUenweg: (1, - 1,2), (0, - 1,2), (- 1, - 1,2), (- 1,1,-2)
(0,1,-2), (1,1, -2).

7) (a,6,c) (l,- 1,-2) 5i-52_253</o(s)>
Die Reduktionsbedingungen sind nicht erfûllt fur s (1, 0, — 1).
Analogfallenweg: (1, - 1, - 2), (- 1, 1,2).

8) (a,6,c) (0,1,1) * + *<fo(*).
Die Reduktionsbedingungen sind fur aile s erfûllt.
Gleichheit ftir s (0, 1,0), (0, 0, 0).
Âquivalente Tripel: (0, 1, 1), (0, - 1, 0), (0, - 1, - 1), (0, 1,0).

9) (a,6,c) (0,0,l) *<U(*).
Die Reduktionsbedingungen sind fur aile s erfûllt.
Âquivalente Tripel: (0, 0, 1), (0, 0, - 1).
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10) (a,6,c) (0,0,0).
Die Reduktionsbedingungen sind fiir aile s erfullt.

112Aus /0 erhâlt man also 7 Klassen quaternârer Formen.
12 2

b) Fur ô 14 hat man die ternâre Form /0

also ergibt sich : a 1, 0, — 1

6,c 2,l,0, -1,-2
Wertetabelle:

/o(s) 6 fur s (1,1,1), (1,1,- 1)

4 fur s (1,1,0), (1, - 1,1), (1, - 1,- 1), (0,1,1),
(0,1,- 1)

3 fur s (1,0,1), (1,0, - 1)

2 fur s (l, - 1,0), (0,1,0), (0,0, 1)
1 fur s (1, 0,0)

Nun berechnet man zuerst die Discriminante d, als Résultat ergibt sich:

d 56/44 - (16a2 + 862 - Sab + 7c2) < 64

Daraus ergibt sich folgende Bedingung :

16a2 + 862 - Sab + 7c2 > 48

Jetzt werden wieder aile moglichen Tripel (a, 6, c) untersucht.

1) (a,b) (1,2): 32 + 7c2 > 48

also c — 2, — 2

a) (1,2,2) 51 + 2s2 + 2s3</0(s).
Die Reduktionsbedingungen sind fiir aile s erfullt.
Gleichheit fur s (0, 1, 1), (1,0, 1), (0, 1,0), (0,0, 1), (1,0,0),
(0,0,0).
Âquivalente Tripel: (1,2, 2), (0, - 2, - 2), (- 1, 1, - 2),
(0, -2,2), (1,2, -2), (- 1,1,2), (1, - 1,-2), (- 1, -2,2),
(0, 2, - 2), (1, - 1, 2), (0, 2, 2), (- 1, - 2, - 2).
b) (1,2,- 2) ist âquivalent zu (1, 2, 2)

2) (a, 6) (1, 1) 16 + 7c2 > 48 unmôglieh

3) (a, 6) (1, 0) 16 + 7c2 > 48 unmoglich

4) (a, 6) (1, - 1) 32 + 7c2 > 48

also c 2, — 2

a) (1, - 1, 2) ist âquivalent zu (1, 2, 2)

b) (1, - 1, - 2) ist âquivalent zu (1, 2, 2)

5) (a, 6) (1, — 2) geniigt den Reduktionsbedingungen nicht
fars =(1, - 1,0)

5 CMH vol. 38
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32 + 7c2 > 486) (a, 6) =(0,2)
also c =2,-2
a) (0,2,2) ist àquivalent zu (1, 2, 2)
b) (0, 2, - 2) ist àquivalent zu (1, 2, 2)

7) (a, b) (0, 1) 8 + 7c2 > 48 unmôglich
8) (a,b) (0, 0) 7c2 > 48 unmôglich
A 4

1 2 2
Aus /0 10 0

erhâlt man also eine Klasse quaternàrer Formen.

6. Resultate der Rechnung. In der nachstehenden Tabelle werden nun die
Resultate der Rechnungen zusammengestellt.

/«

111
1 1 0

1 1 1

10 0

1 1 1

0 0 0

1 1 2

110

(a,b,c)

(1,0,0)
(0,1,0)
(0,0,0)

(1,0,1)
(1,0,0)
(0,0,1)
(0,0,0)

(1,1,1)
(1,1,0)
(1,0,1)
(1,0,0)
(0,1,1)
(0,1,0)
(0,0,1)
(0,0,0)

(1,1,2)
(1,0,0)
(0,1,0)
(0,1,1)
(0,0,1)
(0,0,0)

d

8/44- 4

8/44- 3

8/44

12/44-
12/44- 4

12/44- 3

12/m

16/44 - 12

I6/44- 8

16/44- 8

I6/44- 4

I6/44- 8

I6/44- 4

I6/44- 4

I6/44

2O/44 - 15

2O/44- 8

2O/44- 7

20/44 - 12

20/44- 3

20/44



Tabellen reduzierter, positiver quaternârer quadratischer Formen 67

/o

1 1 2

0 11

1 1 2

10 0

1 1 2

0 10

112
0 0 0

(a,b,c)

(1,1,0)
(1,1,1)
(1,0,2)
(1,0,0)
(0,1,0)
(0,0,1)
(0,0,0)

(1,0,2)
(1,1,1)
(1,0,0)
(1,0,1)
(0,0,2)
(0,0,1)
(0,0,0)

(0,1,2)
(1,1,0)
(0,0,2)
(1,0,0)
(0,1,1)
(0,1,0)
(0,0,1)
(0,0,0)

(1,1,2)
(1,1,1)
(1,1,0)
(1,0,2)
(1,0,1)
(1,0,0)
(0,1,2)
(0,1,1)
(0,1,0)
(0,0,2)
(0,0,1)
(0,0,0)

d

24^ - 16

24^ - 12

24/44 - 15

24^- 7

24/44-
24/44- 4

24/44

24/44 - 20

24/44 - H
24/44- 8

24/44 - H
24^ - 12

24/44- 3

24/44

28/44 - 23

28/44 - 15

28/44 - 16

28/44 - 8

28/44 - H
28/M- 7

28/44- 4

28/44

32/44 - 32

32/44 - 20

32^ - 16

32/44 - 24

32^ - 12

32/44- 8

32/44 - 24

32/M - 12

32/44- 8

32/44 - 16

32/M- 4

32/m
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/o

1 2 2

10 2

12 2

110
1 2 2

0 0 2

12 2

1 0 1

12 2

1 0 0

12 2

0 0 1

12 2

0 0 0

(a,b,c)

(0,2,0)
(0,2,1)
(0,0,2)
(1,1,1)
(1,0,0)
(1,0,1)
(0,1,2)
(0,1,1)
(0,1,0)
(0,0,1)
(0,0,0)

(1,2,2)
(0,1,2)

(1, 2, 0)

(1,2,1)
(1,1,2)

(1, 1, - 1)

(1,0,2)
(0,2,2)

(0,2,2)

(1,2,2)

(1,2,2)

d

40/44 - 32

40/44 - 23

40/44 - 28

40/44 - 15

4O/44 - 12

40/44 - 23

40/44 - 20

40^- 7

40/44- 8

4O/44-
40/44

48^ - 48

48/44 - 39

48/44 - 44
48/44 - 36

48/44 - 36

48/44 - 36

52/44 - 47

52/44 - 44

56/44 - 60

6O/44 - 63

64/44 - 80

6, Erste Tabelle quaternârer Formen. Aus der vorangehenden Zusammen-

stellung kann man sich nun eine erste Tabelle quaternârer Formen zusammen-
stellen, die sicher aile Klassen repràsentiert. Dièse Tabelle enthâlt aber noch

âquivalente Formen, die spàter eliminiert werden. In dieser Tabelle zeigt sich



Tabellen reduzierter, positiver quatemarer quadratischer Formen 69

auch, daB folgende Einschrânkungen fier die Diskriminante d bestehen :

d 0 oder 1 (mod 4) und d > 1

Umgekehrt gibt es auch zu jeder Zahl ny die diesen Bedingungen genugt, eine
positive quaternare Form mit der Diskriminante d n. Dièse Tatsache wurde
bewiesen von Oskar Webeb [8].

Die Formen werden nun durch das Schéma ihrer 10 Koeffizienten angegeben :

711 722 /83 744

/(x) — £ fiicX%xk oder kurz / /12 /13 /^
i^k i i i

714 724 734

1111 1111
d= 4:

d 5:

d= 9:

d= 12:

d 13:

d= 16:

d 17:

20:
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d 21:

25:

d 28:

d= 29:

d 32:

d= 33:

d 37:
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d 44:

d 45:

d 48:

d 49:

52:

d 53:
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1117 1115 1114 1114 1114
d 56: 110 100 000 000 000

000 100 110 101 011
1123 1122 1122 1122
011 010 000 000
110 000 100 010
1115 1123 1123 1222 1222

d 57: 100 110 011 102 102
001 001 102 101 021
1222 1222 1222
110 10 1 0 0 1

012 102 122
1118 1115 1114 1114 1114

d 60: 110 100 000 000 000
100 000 100 010 001
1123 1123 1123 1122 1222
110 011 100 000 102
000 111 002 001 012
1222 1222 1222 1222
002 002 002 101
12 1 112 11-1 0 2 2

1118 1123 1123 1123
d 61: 110 100 100 010

010 111 101 012

3. Eapitel

In diesem Kapitel folgen nun weitere Àquivalenzuntersuchungen sowie hin-
reiehende Kriterien fur die Inâquivalenz von zwei Formen. Als Endresultat
erhàlt man dann ein vollstandiges Repràsentantensystem von inàquivalenten
reduzierten Formen.

1. Weitere Àquivalenzuntersuchungen. Es werden nun vier Sâtze aufgestellt
liber Âquivalenz und Inâquivalenz von Formen.

Satz 1. Eine Form f geht in eine àquivalente ilber, wenn man die x* in irgend-
einer Weise permutiert.
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Satz 2. Eine Form f geht in eine àquivalente ûber, wenn man das Tripel
(a,b,c) durch ein àquivalentes ersetzt und dann die x* permutiert.

Satz 3. Zwei àquivalente reduzierte quaternâre Formen stimmen in den Diago-
nalkoeffizienten fu ûberein.

Beweis: Naeh Gleichung (1.6) gilt:
Nk fkk fur fc=l,2,3,4.

wo Nk die sukzessiven Minima der Form bedeuten, die durch das Gitter ein-
deutig bestimmt sind. Zu âquivalenten Formen gehôren aber gleiche Gitter,
also gleiche Nk, also gleiche fkk.

Définition. Unter der zu einer quaternâren Form zugehôrigen ternâren bzw.

binâren Form verstehe ich die Form, die entsteht, wenn man x4 0 bzw.
x* tf 0 setzt.

Satz 4. Zwei reduzierte quaternâre Formen mit ûbereinstimmenden Diagonal-
koeffizienten fkk sind inâquivalent, wenn

a) /22 < /33 und die zugehôrigen binâren Formen inâquivalent sind.
b) fss < fu und die zugehôrigen ternâren Formen inâquivalent sind.

Beweis: indirekt. Seien / und f zwei âquivalente, reduzierte quaternâre Formen,
und e{ bzw. e£ die entsprechenden reduzierten Gitterbasen.

a; sel ierner /22 — /22 — | e21 — | e21 <• /88 — /33 — I e31 — I e31

Dann spannen e± und e2 dieselbe Ebene auf wie e{ und e2, denn wâre z.B.
e[ von ex und e2 h'near unabhângig, so wiirde gelten :

^3<|eî|2<|e3|2 /33^^3 also N3<NZ
Dem von ex und e2 bzw. e[ und e2 aufgespannten Gitter entsprechen aber die

zu / bzw. /' zugehôrigen binâren Formen. Weil die Gitter gleich sind, mussen
aber dièse Formen âquivalent sein.

Sind also die binâren Formen inâquivalent, so sind es auch die quaternâren.
b) Der Beweis fur den Fall f^ < fu verlâuft genau gleich.

2. Beispiele. Mittels der Sâtze 1 und 2 kann nun die Âquivalenz von ein-
zelnen Formen der Tabelle am SchluB des 2. Kapitels gezeigt werden. Wir
wollen das an zwei Beispielen erlâutern :

d 5 : Die erste Form geht in die zweite ûber bei der Permutation
x1 x*, x* x1, x* z?, x* x2.

d 32 : Die beiden letzten Formen sind âquivalent. Man ersetzt nâmlich

zuerst das Tripel (1,1,0) durch das âquivalente (0, 0, 2). Dann
permutiert man: x1 x2, x2 x1, x* ï4, & S3

Von den so als âquivalent erkannten Formen nimmt man wieder je einen

Reprâsentanten und erhâlt folgende neue Tabelle:
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3. Tabellen reduzierter, positiver quaternârer quadratischer Formen. Die For-
men werden wieder durch das Schéma ihrer 10 Koeffizienten angegeben.

/Il /22 /33 /44

f Zfn*'* fJ,f1>fu
J14 / 24 J34

5:

d 8:

d= 9:

d= 12:

13:

d= 16:

17:

20:
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1113 1112 1112
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d 24:

d 25:

d 28:

29:
0 10 10 1

112 2

32: 110 100 000 110 011
1 1 0

1113 1122 1122
33: 100 110 010

0 0 1 0 10 0 12
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d 48:

d ==z 53 :

d 56:

d 57:

60:
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Kubt Gebmann
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d 49:

1117 1114 1123 1123 1122
d 52: 110 000 110 100 010

100 111 100 102 001
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d 61 :

4. Beweis der Inâquivalenz. Die Sàtze 3 und 4 zeigen uns nun, da6
aile in die vorstehende Tabelle aufgenommenen Formen inaquivalent sind.
Nur bei der Diskriminante d 48 versagen unsere Kriterien fur zwei
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Formenpaare, fur die die Inaquivalenz nun auf anderem Wege bewiesen
werden soll.

a) Die achte Form ist eine sogenannte gerade Form, d.h. aile Koeffizienten
fik sind gerade fur i ^k. Somit ist sie sicher inâquivalent zur fiïnften und
zur siebenten Form, denn nach Bachmann [1] Seite 425 sind gerade und un-
gerade Formen sogar in verschiedenen Ordnungen.

b) Somit bleibt nur noch die Inâquivalenz der fûnften und siebenten Form zu
zeigen. Die zu den beiden Formen zugehôrigen binàren Formen sind identiseh,
ferner ist /22 < /^. Wàren die beiden Formen âquivalent, so wxirden wieder
die von ex und e2 bzw. die von e( und e2 aufgespannten Ebenen ûbereinstimmen
(Beweis wie bei Satz 4), wobei fy bzw. erk die zu den Formen zugehôrigen redu-
zierten Gitterbasen sind.

Bei der Âquivalenztransformation, die die eine Form in die andere uber-
fiihrt, geht die binàre Form in sich iïber. Nach Dibichlet-Dedekind [3]
Seite 152 sind die einzigen Automorphismen dieser Form die folgenden:

/±1 0\ (±1 0\ /0±l\ / 0±l\
\ 0 1/ \ 0-1/ \1 0/ 1-1 0/

Es ist daher : e2 ± e[ oder ± e2

e2 ± e2 oder ± e[
4

4

e4 Sbk e'k

Wenn die beiden Formen âquivalent sind, muB eine ganzrationale Lôsung a{
und bk existieren.

|e4|» 2 b\ + b* + 2bl + 2b\ + bxbB + b2b3 (1)

|e|; 2 al + a22 + 2a\ + 2a\ + axaz + a2az (2)

(ei,e3)= Y2= ±K+ Y2aB) (3)

(e23e3)= 0= ±(a2+ %o.) (4)

(el5e4)= i/2=±(b1+ y2bz) (5)

(e2Je4)= 0= ±(62 + i/263) (6)

Dies gilt, falls et ± ©i und e2 it ^ • Im anderen Falle vertauschen sich
die linken Seiten von (3) bis (6). Aus (1) und (2) erhâlt man nun:

2 {h + V2bzT + (6, + V2bzf + 3/2 b\ + 2b\

2 (% + y2<h? + («2 + y^zf + 3/2 a2s + 2a\
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Durch einsetzen von (3) bis (6) erhàlt man dann:

6a* + 8a* 7

661 + 86* 7

Diesen Gleichungen sieht man aber unmittelbar an, daB es keine ganzrationale
Lôsung a{ und bk gibt. Also sind die beiden Formen inàquivalent.

Untersucht man dièse Gleichungen noch etwas genauer, so zeigt der Satz
von Lagbange, daB sie nicht einmal rational lôsbar sind. Also sind die beiden
betraehteten Formen nicht nur inàquivalent, sondern sogar in verschiedenen
Geschlechtern. Dièses Résultat hâtte man auch direkt durch Untersuchung der
sogenannten Geschlechtscharaktere erhalten kônnen.

5. Kontrollen
a) Die Tabellen von Bbandt-Intkau wurden fur die benôtigten ternâren

Formen nochmals durchgerechnet.
b) Von S.B.Townes erschien eine Tabelle der geraden positiven quaternàren

Formen bis D 25. Damit konnten die Formen meiner Tabelle bis d 25

verglichen werden. Mit Ausnahme der Diskriminante d 5 stimmen sie
bis auf Âquivalenz mit den Formen von Townes uberein. Fur d 5 sind
bei Townes nur 9 statt 10 Koeffizienten angegeben.

4. Kapitel

1. Bezeichnungen. Der ÂquivalenzbegrifE kann noch verfeinert werden, in-
dem man eigentliche und uneigentliche Âquivalenz unterscheidet. Man nennt
zwei Formen eigentlich âquivalent, wenn die Déterminante der Transformations-
matrix den Wert + 1 hat, und uneigentlich âquivalent, wenn sie den Wert — 1 hat.
So kann man die Formen nun in Klassen im engeren Sinn einteilen, indem man
in eine Âquivalenzklasse nur eigentlich âquivalente Formen aufnimmt. Dièses

Kapitel soll nun AufschluB geben iiber die Klasseneinteilung im engeren Sinn.
Dazu brauchen wir den Begriff der zweiseitigen Formenklasse: Eine Formen-

klasse heiflt zweiseitig, wenn ihre Formen gleichzeitig eigentlich und uneigentlich
âquivalent sind. Die Formenklasse ist dann gleichzeitig eine Klasse im engeren
Sinn und eine Klasse im weiteren Sinn.

Wir wollen nun nochmals aile Formenklassen der Tabelle des 3. Kapitels
durchgehen und die zweiseitigen Klassen heraussuchen. Aile ubrigen Klassen
zerfallen dann in je 2 Klassen im engeren Sinn.

2. Matrixschreibweise einer quadratischen Form. Imfolgenden ist es bequem,
wenn man sich der Matrixschreibweise einer Form bedient, wie sie z.B. von
Watson [7] verwendet wird.
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Bezeichnet man die Matrix der Koeffizienten gik einer Form mit einen
Zeilenvektor mit den Komponenten x1, xn mit x, den analogen Spalten-
vektor mit x', so kann die Form, unter Benutzung der bekannten Matrix-
înultiplikation, geschrieben werden als

Geht man nun zu einer eigentlich oder uneigentlich àquivalenten Form / liber,
und bezeichnet man die Transformationsmatrix mit î7, so gilt :

x x • T und x' T' • x'

wobei T' die zu T transponierte Matrix bedeutet, und

detr \T\ \T'\ ±1
Dann schreibt sich / als

f=x-G-xr mit G T-G-T'
3. Ambige Formen. Eine Form f heiftt ambig, wenn sie zu sich selbst un-

eigentlich àquivalent ist, d.h. wenn ein Automorphismus mit Déterminante — 1

existiert.
Man sieht leicht ein, da6 die Eigenschafb, ambig zu sein, nieht nur einer

Form / zukommt, sondern der ganzen Formenklasse im weiteren Sinn, die durch
/ repràsentiert wird.

Denn sei G die Koeffizientenmatrix von /, G diejenige einer aquivalenten
Fonn/.sogilt: -q t,q,t, mit {T\ \T'\ ±\.
Ist nun A ein Automorphismus von / mit | A \ — 1, so gilt :

G A.G-Af
Dann ist aber A T • A • T~x ein Automorphismus von /, denn

-J.q 3' (T. A • T-1) • (T • G • T') • (T • A • T-1)'
^-T-A-T-i.T-G.T' -(T')-1-^' - Tr

T.G-T' G

undesist
,3, ,T

Damit ist also auch / ambig, wenn / ambig ist.

4, Zweiseitige Formenklassen, Aile Untersuehungen uber zweiseitige For-
menklassen kônnen zuriickgefuhrt werden auf Untersuehungen ûber ambige
Formen, denn es gilt der

Satz: Eine Formenklasse ist genau dann zweiseitig, wenn sie durch eine ambige
Form repràsentiert wird.
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a) / und / seien zwei Formen aus einer zweiseitigen Formenklasse. Dann gibt
es also eine Âquivalenztransformation T mit | ^Z71 X und eine andere, 8,
mit |$| —1. Dann ist aber A T~x*8 ein Automorphismus von /,
deïm A-G-A' T-i-S.G.S'-iT')-1

T-^G*(Tr)~1 G

Undesi8t
lA\ \T-i\.\S\ -l

also ist / ambig.
b) Sei / eine ambige Form, und / eine zu / âquivalente Form. Dann sind /

und / sowohl eigentlich als auch uneigentlich âquivalent, d. h. die durch /
reprâsentierte Formenklasse ist zweiseitig. Denn ist

G T-G-T' mit \T\ +1
und G A-G-Al mit \A\ -1
so ist S T • A eine uneigentliche Âquivalenztransformation.

8'G'8' T.A.G*Af.T' T*G'T' G

und \S\ \T\*\A\ -1.
Genau gleich kann man aus einer uneigentlichen Âquivalenztransformation
T eine eigentliche konstruieren.

5. Erste Untersuchungen der Tabelle des 3. Kapitels. Man kann einigen der
tabellierten Formen direkt ansehen, daB sie ambig sind.

a) Ersetzt man z. B. œ4 durch — œ4, so ist das eine uneigentliche Àquivalenz-
transformation. Sind nun aber fu fu fM 0, so ist dièse Transformation
ein Automorphismus, die Form also ambig. Dièse Transformation kann benûtzt
werden fur d 8, 12, 16, 24, 32, 36, 40, 48, 56, 60. Analog kann man natttr-
lich auch die anderen xi durch — xi ersetzen.

b) Eine weitere einfache uneigentliche Âquivalenztransformation ist das Ver-
tauschen von zwei Variabeln. Ist die Form invariant gegenûber einer solchen

Transformation, so ist sie ambig.
Das soll am Beispiel von d 9 erlâutert werden : Durch Vertauschen von

x1 und x2 vertauschen sich /u und /22, /i3 und {<&, fu und fu. Bei der ange-
gebenen Form ist aber fn /22, /13 /23, /14 /24. Also ist dièse Form
invariant gegenûber der Vertauschung, also ambig.

c) Man kann nun auch noch in einer tabellierten Form zuerst das Tripel
(a, 6, c) durch ein équivalentes ersetzen (siehe 2. Kapitel), also zu einer àqui-
vàlenten Form Ubergehen, und dann die unter a) und b) angegebenen Methoden
benutzen.
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Dièses Verfahren geht z. B. bei der letzten Form von d 28. Man ersetzt das

Tripel (0,1,1) durch das âquivalente (1,0,2) und sieht dann, daB die Form
invariant gegeniïber Vertauschung von x* und #* geworden ist, also ambig ist.

Die Methoden a), b) und c) fiïhren schon bei recht vielen der tabellierten
Formen zum Ziel. Bei den restlichen kommt man durch Berechnung aller Auto-
morphismen zu einem Ergebnis.

6. Berechnung aller Automorphismen einer vorgegebenen reduzierten Form.
Im 1. Kapitel, Abschnitt 5 haben wir gesehen, daB die Minimalvektoren eines
Gitters (mit Ausnahme der Formenklasse mit Diskriminante d 4 und ihrer
Vielfachen) immer aueh eine Gitterbasis bilden, und umgekehrt die Vektoren
einer reduzierten Gitterbasis Minimalvektoren sind. Die Minimalvektoren
kônnen aber leicht berechnet werden, indem man aile Lôsungen der Gleichung

f(x) N{ i= 1,2,3,4.
sucht. Dazu bringt man am besten die Form / mittels quadratischer Ergânzung
auf die Gestalt *

In dieser Form findet man dann leicht aile Minimalvektoren.
Nimmt man nun fur e( einen Minimalvektor mit der Norm Nl9 fur e£ einen

mit der Norm N2, der von e( linear unabhângig ist usw., so erhàlt man fur jede
zulâssige Wahl von (e£, e'2, e^, e£) eine neue reduzierte Gitterbasis, also eine

âquivalente Form. Unter allen diesen Âquivalenztransformationen kann man
nun noch diejenigen heraussuchen, fur die die Skalarprodukte invariant sind,
das heiBt x _ rt _

(«<>«») (eoefc) »,*= 1,2,3,4.
So erhâlt man das vollstàndige System aller Automorphismen einer vorgegebenen
Form. Gibt es unter ihnen solche mit Déterminante — 1, so ist die Form ambig,
im anderen Falle nicht. Also kann man von jeder Form entscheiden, ob sie ambig
ist oder nicht.
Dièse Untersuchung wurde fur d 5 von 0. Weber [8] durchgefuhrt. Wir
wollen am Beispiel der Diskriminante d 45 (dritte Form) sehen, wie die

Rechnung im einzelnen aussieht. Zur Vereinfachung setze ich:

x1 x, x2 y, x3 z, x* u

j x2 + y2 + 2z2 + Su2 + xy + xz + xu + yu + 2zu

Durch quadratische Ergânzung erhâlt man :

60/ 15(2s + y + z + u)2 + 5(3y - z + uf + (lOz + lu)2

+ lllu2
6 CMH vol. 38
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Nun sucht man aile Losungen von / 1, / 2 und / 3.

Man erhâlt so die folgenden Minimalvektoren:

Norm 1:

Norm 2:

Norm 3:

Sx= ±(1,0,0,0)
S2= ±(0,1,0,0)
S3= ±(1, -1,0,0)
S4= ±(0,0,1,0)
S5= ±(1,0, -1,0)
S6= ±(1, -1, -1,0)
S7= ±(1,0,0, -1)
S8= ±(0,0,0,1)
S9= ±(0,1,0, -1)

Bei den Vektoren der Norm 3 muB man nur diejenigen beriicksichtigen, die

von allen anderen linear unabhàngig sind, also nur diejenigen, deren vierte
Komponente nicht Null ist. Nun rechnet man sich die nôtigen Skalarprodukte
aus, wobei z.B. 1.2 das Skalarprodukt (+ s1} + s2) bedeuten soll.

1.2= %

1.8=%
1.4=%
1.5=%
1.6 0

1.7 =%
1.8=%

2.3
2.4
2.5
2.6
2.7
2.8
2.9

8.4=%
3.5 0

3.6=%
8.7=%
3.8 0

3.9 0

1.9 0

4.7
4.8
4.9
5.7
5.8
5.9
6.7
6.8
6.9

1

1

%
i

- i

Dann sucht man eine neue Basis (e^, e£, e£, e£) so zu bestimmen, daB die neuen
Skalarprodukte der Basisvektoren mit denen der gegebenen Form ubereinstim-
men. So findet man z. B. die folgende neue Basis

Die Transformationsmatrix T heiBt

T

und man sieht, daB \T\ — 1. Also ist die betrachtete Form ambig.
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7. Besultate. Mit den in den Abschnitten 5 und 6 dargestellten Methoden
fîndet man :

Aile Formen der Tabelle im 3. Kapitel sind ambig, d.h. aile Formenklassen
bis d 61 sind zweiseitig.

Also àndert sich bei den betrachteten Formenklassen nichts, wenn man der

Klasseneinteilung die eigentliche Àquivalenz zugrunde legt.
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