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On a characterization of quasiconformal mappings!

by Epcar REicH

1. Introduetion

Let M (Q) denote the module of the quadrilateral @ (a JoRDAN domain
with four distinguished boundary points and two non-adjacent distinguished
sides), A sense-preserving homeomorphism f of a region 2 onto the image
region f(£2) is said to be a quasiconformal mapping with maximal dilatation
K(92)= K,(Q)if

M (@)
sUp —cnt = K(Q) <oo. 1.1
o, Tu@ (a1
(f(@) denotes the quadrilateral with preimage @.)

Instead of considering the effect of f on quadrilaterals it is natural to study
the effect of f on ring domains (doubly connected regions). The modulus u(R)
of a ring R is defined as (2=)~'log (ry/ry), where {r,<|w| <7} is an
annulus conformally equivalent to E. It is well known [1] that if (1.1) holds
then

u(f(R) _ -

L2 < K(2), Rc Q. 1.2

v < K@) (1.2)

In fact, the following has been proved by GEERING and VAIsALA ([2], Theorem 3):
p(f(R))

sup ———— = K(Q). 1.3

R“Cp.o p(R) = e

Thus quasiconformal mappings f with maximal dilatation K (£2) may be
characterized by (1.3) instead of (1.1).

In the proof of (1.3) in [2] essential use is made of the deep and rather
difficult “analytic” characterization of quasiconformal maps (See, for instance,
[4], Chapter 4). In view of the significance of (1.3) it appears desirable to obtain
a more direct and more elementary proof of (1.3), starting with the definition
(1.1). It is the object of the present note to provide such a proof.

2. A class of ring domains

Let @ be a quadrilateral with distinguished sides «,,x,. A ring R will be
said to link @ if every closed curve y,in R, separating the boundary com-

1) This work was carried out with partial support from the Office of Naval Research under
Contract Nonr 710 (16) with the University of Minnesota.
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ponents of R, contains an arc lying in @ which joins «, and «,. (See Fig.1
where the heavy lines are the boundary conponents of R, and the dashed
line represents @.)

Fig. 1

We will first show that
(R <M@), if R links Q. (2.1)

Let 0*(2),z€¢@Q, be the extremal metric for @; that is,

Aox .
M@ = Z5ek Ao @ = [fo™ | 2 [*, Lee (@) = inf o* | &2

where {y} is the set of locally rectifiable curves in @ joining «,, a;. On the

other hand, (See, for instance, [3], Chapter 2),

AR
“) =T )

(2.2)

where, this time, {p} is the set of closed curvesin R separating the boundary
components. For z e R, let

0(2) ={9*"‘3’,§j§ Eg :

Clearly, Ao(R) < 4,(Q).
Since R links @, Lg(R) > Lo (Q). Hence, by (2.2),

Aex (@)
Ry < =2 — M(Q),
as was to be shown.

In general, to obtain a bound on the modulus of a ring domain R from
below, one attempts to make use of the fact ([3], Chapter 2) that

1 . o Ao(R)

- _ —infZ¢- 7

w(@® e LR

where, now, {y} is the set of locally rectifiable curves in R joining the boun-

(2.3)
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dary components. Fortunately, we shall require a bound on x(R) from below,
for rings linking @, only in the very special case considered next.
Suppose the set of positive numbers, a, p, &, 8, is given, and

2p< min (a,1), h<a —2p, p<s<a—p—h, h<l.
We consider the ring R’ (Fig.2) obtained as follows.

ia 5 tia 1+1ia
. I '
1(a-p)—-—: ——————————————————— —i-—--
X v
- |
] T |
] 1
A |
’lr"p*—- l ———————————————— ._!__
Fig. 2 0 p 1-p 1

The outer boundary component of R’ consists of the union of (a) the
boundary of the rectangle with vertices 0, 1,1 + ia,ia (b) the vertical
segment joining the points } 4 ia, 4 + ¢(@ — s) (c) the horizontal segment
L={:|32=a—s, p<Rz<1—p}.

The inner boundary component of R’ is the horizontal segment

L={z|J3z2=a—8—h, p<R2<1—p}.

Let 7T be the rectangle with horizontal sides I, I,, with the vertical sides
(of length &) distinguished. The ring R’ links 7', and, therefore, by (2.1),
u(R") < h/(1 — 2p). We shall now show that

pR) Zz——, h<p. (2.4)
1+ ah
Let ) I, 0<Rz<l,a—8—-—h<J2z<a—s
Z) =
¢ h% , elsewherein R'.

Let {y} be the family of curves in R’ joining I, to the outer boundary
component of R'. Clearly,

Lo(R') = min (h,h%p), Ag=h + h%(a —h)<h+ ah% .
Hence, by (2.3),

1 _ 4(R) _ b+ ahd _ 1 + ab?
WB) SLNE) ST B h

This is equivalent to (2.4).

,ifh%th.
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3. Proof of (1.3)

Let ¢, 0<e< i, be given. In the notation of Section 1, there exists a
quadrilateral @, Q@ c £, with

M (@)
——" > (1 — &) K(R2).
gy =1 -9 K@)
Let the transformation @ map f(@) conformally onto a rectangle V with
vertices 0,1, 1 4 ia,a, with the vertical sides distinguished. Thus

a=M(V)=M(@) .

Let V, be the rectangle, interior to ¥V and oriented as V, such that the
distance between corresponding sidesof ¥V, and V is p, 0 < p < } min(a, 1)
Let @, = f1® -1(V,). There exists [1] a number &(¢) > 0 such that

M(Vp) . a — 2p
M@,  (1-2p) M@Q,)

that is, ¢, has nearly the same module as  if p is small.

We now divide ¥V, into » equal horizontal strips, o,, £ =1,2,...,n.
o, is an h, X 1 — 2p rectangle, h, =(a — 2p)»n~', whose vertical sides
are distinguished. The quadrilaterals

> (1 — 2) K(R2), if p<éd(e);

G =[1DP o), k=1,2,...

which lie in 2, subdivide @,. According to the subadditivity property for
modules [1],

n a — 2p/1 — 2p
EM@) < MQ) < Ty Tar

Hence for some k, say k= k,,

a—2p/1—2p  h—2p
(1 —2e)nK(R2) (1 — 26 K(Q)°

M(qkn) <

If we define N (p) as N(p) = (@ — 2p) p4, then n > N(p) implies h,<p*.
Let R',, be the ring linking ¢, formed as in Fig.2, with the present b,
serving as the A of Fig.2. Then, by (2.4),

b

lu(‘R,pn)Z % H
1+ ah,

ifn > N(p).

Consider the ring R,, = f*® Y(R',,), in Q. Since R, links ¢, , we
have, by (2.1),
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(1 —2¢)K(Q)°

Now u(f(R,,)) = u(R',,). Therefore,

p((Ry) o (1 — 2¢) (1 — 2p) K(Q)
1 (Byn) 1 + ah?

w(Ry,) < M(qx,) < if p <d(e).

, ifp<éd(e),n =N(p). (3.1)

Once p is chosen, k, can be made arbitrarily small by taking n sufficiently
large. Thus (3.1) shows that there exist rings R, B c 2, such that

p(f (R)) _
uB) > (1 —-3¢e)K(Q).

Together with (1.2) the above establishes (1.3).

University of Minnesota

December 1961
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