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On a characterization of quasiconforinal mappings1

by Edgar Reich

1. Introduction

Let M(Q) dénote the module of the quadrilatéral Q (a Jordan domain
with four distinguished boundary points and two non-adjacent distinguished
sides), A sense-preserving homeomorphism / of a région Q onto the image
région f(Q) is said to be a quasiconformal mapping with maximal dilatation
K(Q) Kf(Q) if

(/ (Q) dénotes the quadrilatéral with preimage Q.)
Instead of considering the effect of / on quadrilaterals it is natural to study

the effeet of / on ring domains (doubly connected régions). The modulus ju(R)
of a ring R is defined as (2n)~'1 log (f^/r-,), where {r1<\w\ < r2} is an
annulus conformally équivalent to R. It is well known [1] that if (1.1) holds
then

M c U (1.2)

In fact, the foliowing has been proved by Gehrestg and Vaisala ([2], Theorem 3) :

SUP n(m K(U) (1.3)

Thus quasiconformal mappings / with maximal dilatation K(Q) may be

characterized by (1.3) instead of (1.1).
In the proof of (1.3) in [2] essential use is ruade of the deep and rather

difficult "analytic" characterization of quasiconformal maps (See,for instance,
[4], Chapter 4). In view of the significance of (1.3) it appears désirable to obtain
a more direct and more elementary proof of (1.3), starting with the définition
(1.1). It is the object of the présent note to provide such a proof.

2. Â class of ring domains

Let Q be a quadrilatéral with distinguished sides oct, o^. A ring R will be

said to link Q if every closed curve y, in R, separating the boundary com-

x) This work was earried out with partial support from the Office of Naval Kesearch under
Contraet Nonr 710 (16) with the University of Minnesota.



On a characterization of quasiconformal mappings 45

ponents of R, contains an arc lying in Q which joins ocx and oc2. (SeeFig. 1

where the heavy Unes are the boundary conponents of R, and the dashed
Une represents Q.)

Fig. 1

We will first show that

p{R)<M(Q), if R links Q. (2.1)

Let @*(z), z e Q, be the extremal metric for Q ; that is,

M{Q) 4^-fyf > ^*(Q) Me*21 <fe I2> V (Q) inf J^* I & h

where {y} is the set of locally rectifiable curves in Q joining ocl9 a2. On the
other hand, (See, for instance, [3], Chapter 2),

ju(R) inf t-2/p\ (2-2)

where, this time, {y} is the set of closed curves in R separating the boundary
components. For z e R, let

==(q*(z),z€R n Q
Q{Z) \ 0,z€R -Q *

Clearly, AQ{R) < AQ*(Q).

Since jR links Q, LQ(R) > LQ*(Q). Hence, by (2.2),

as was to be shown.
In gênerai, to obtain a bound on the modulus of a ring domain R from

below, one attempts to make use of the fact ([3], Chapter 2) that

where, now, {y} is the set of locally rectifiable curves in R joining the boun-



46 Edoab Keics

dary components. Fortunately, we shall require a bound on /i(R) from below,
for rings linking Q, only in the very spécial case considered next.

Suppose the set of positive numbers, a, p, h, s, is given, and

2p < min (a, 1), h < a — 2p, p<s<a — p — h, h < 1

We consider the ring R' (Fig. 2) obtained as follows.

ia ~2 + ia l+ia

i-p

Fig. 2

I

I

.-1.
I

Ï'P 1

The outer boundary component of R1 consists of the union of (a) the
boundary of the rectangle with vertices 0, 1, 1 + ia,ia (b) the vertical
segment joining the points \ -\- ia,\ + i{a — s) (c) the horizontal segment

h=- {zl^z^a-s, p<%z<l-p).
The inner boundary component of R' is the horizontal segment

h= {* I %z a - s -h, p<3iz<l - p}

Let T be the rectangle with horizontal sides Ilf I2, with the vertical sides

(oflength h) distinguished. The ring R1 links ï\ and, therefore, by (2.1),
< A/(l - 2p). We shall now show that

h (2.4)

Let
1, 0<9tz<l,a — s — h<3z<a — s

h elsewhere in R'.

Let {y} be the family of curves in R' joining 72 to the outer boundary
component of R!. Clearly,

3 1 |Lq(R') min (A, A*^), ÂQ h + h2 (a — h) < h + ah2

Hence, by (2.3),

h + ahI

This is équivalent to (2.4).
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3. Proof of (1.8)

Let e, 0 < e < \, be given. In the notation of Section 1, there exists a

quadrilatéral Q, Q c Q, with

M{f(Q))
M(Q) -K

Let the transformation 0 map f(Q) conformally onto a rectangle F with
vertices 0,1, 1 + ia9ia, with the vertical sides distinguished. Thus

a M(V) M(f(Q))-
Let Vp be the rectangle, interior to F and oriented as F, such that the
distance between corresponding sides of VP and F is p, 0<^<|min(a, 1)

Let Qp /-1 $ ^(F,,). There exists [1] a number 6(c) > 0 such that

that is, QP has nearly the same module as Q if p is small.
We now divide VP into n equal horizontal strips, ak, k 1, 2,..., n.

ak is an hn X 1 — 2p rectangle, Aw (a — 2p)n~1, whose vertical sides

are distinguished. The quadrilaterals

qk f-i0-i(ak), 4=1,2,...
which lie in «Q, subdivide Qp. According to the subadditivity property for
modules [1],

Hence for some Je, say k Jcn,

^ (1 _ 2e) nK{Q) (1 - 2e)

If wedefine N(p) as ^(î?) (a — 2p) p~é, then ^ > N(p) implies An<^.
Let i2'j,n be the ring linking akn formed as in Fig.2, with the présent hn

serving as the h of Fig.2. Then, by (2.4),

1 + ah*

Consider the ring Bpn f-10-1(R'pn), in Q. Since JK^ links g^, we
hâve, by (2.1),
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Now !t(f(B,n)) =fi{R'tn). Therefore,

>(l-2e)(1-2*)K{Q),*P<S(e),n>N{p). (3.1)
1 + ahl

Once p m chosen, hn can be made arbitrarily small by taking n sufficiently
large. Thus (3.1) shows that there exist rings R, R c Q, such that

Together with (1.2) the above establishes (1.3).

University of Minnesota

December 1961
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