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Orthogonale Dreibeine in richtungsvollstandigen,
stetigen Geradenscharen des R3

Von Hans Debbtjnner, Bern

1. Ergebnisse. Es sei E die Menge der (nichtorientierten) Geraden des drei-
dimensionalen euklidischen Raumes Rz. Wie ûblich, schreiben wir fur eine
Gerade g0 und eine Geradenfolge gx, g2, g3,... genau dann lim Ci g0, wenn
irgend zwei verschiedene parallèle Ebenen F und F" des R3, zu denen g0

nicht parallel liegt, von allen auBer endlich vielen Geraden der Folge durch-
stoBen werden, und wenn fur die DurchstoBpunkte P'h gk<^ Fr und P\

gkr> F" im euklidischen Sinne lim P\ P'o und lim P\ PjJ gilt. Unter
der Richtung einer Geraden g verstehen wir die zu g parallèle Gerade n (g) durch
den Ursprung 0 € R3 ; in diesem Sinne ist die Menge der Geradenrichtungen
identisch mit dem Bxischel B aller Geraden durch 0.

Ordnen wir in stetiger Weise jeder Richtung b e B eine zu b parallèle Gerade

a(b) des J?3 zu, so nennen wir die Bildmenge 2 a(B) in E eine richtungs-
vollstàndige, stetige Oeradenschar im Rz. Ûber solche Scharen hat H.Hadwigeb
in [1] und [2] die folgende Vermutung ausgesprochen :

Satz 1. In jeder richtungsvollstândigen, stetigen Geradenschar im Rz lassen sich
drei paarweise orthogonalstehende Geraden finden, die sich in einem Punkt
schneiden.

Als Beispiel mag das erwâhnte Bùschel B dienen; B bildet eine richtungs-
vollstândige, stetige Geradenschar, bei der sich sogar jedes Tripel von paar-
weise orthogonalstehenden Geraden in einem Punkt, nâmlicb in 0, schneidet.
Ein weniger triviales Beispiel, bei dem noch eine eindimensionale Schar von
Tripeln mit den verlangten Eigenschaften existiert, findet sich in [1] angegeben.
DaB auch im Hinblick auf Satz 1 bestmôgliche Beispiele existieren, zeigt

Satz 2. Es gibt im R3 richtungsvollstandige, stetige Geradenscharen, welche ein
einziges Tripel von Geraden, die sich in einem Punkt paarweise orthogonal schneiden,

enthalten.
Die vorliegende Note erbringt einen Beweis von Satz 1, und zwar wesentlich

gesttitzt auf den Nachweis von Satz 2. Es scheint mir, daB das Analogon von
Satz 2 fur richtungsvollstandige, stetige Geradenscharen im Rn (n > 3) nicht
gilt.

Die Geradenmenge E mit der angegebenen Topologie und mit der erwàhnten
Abbildung n (durch Parallelverschiebung) auf die Richtungsmenge B kann
auch als Faserbundel ûber B, mit iî2 als Faser, aufgefaBt werden; als Faser-
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bundel ist sie zum Tangentialbundel der projektiven Ebene âquivalent. Auf
dièse Weise kann eine richtungsvollstandige, stetige Geradenschar Z als Schnitt
uber dem Basisraum B definiert werden. Dieser Auffassung als Faserbûndel
liegt allerdings die Struktur des Sichschneidens von Geraden im R3 ferner, so
daB wir sie nicht weiter ausnutzen konnen. Dagegen wird im Beweis von Satz 1

wesentlich benutzt, da6 E eine vierdimensionale topologisehe Mannigfaltigkeit
ist, in der jede richtungsvollstandige, stetige Geradenschar E eine zweidimen-
sionale Teilmannigfaltigkeit bildet.

2. Beweis von Satz 2. a) Wir geben eine richtungsvollstandige, stetige
Geradenschar Zo im R3 an, die genau ein Orthogonaldreibein enthalt; dabei soll
fortan mit Orthogonaldreibein die Konfiguration von drei sich in einem Punkt
schneidenden, paarweise orthogonalen Geraden gemeint sein. Wir verwenden
rechtwinklige, kartesische Koordinaten (#, y, z) fur Punkte und fur Vektoren
im R3. Fur Punkte auf der Einheitssphare S2 c R3 benutzen wir auBerdem die
geographische Lange cp (mit — oo < cp < oo) und die geographische Breite 0

(mit — \n ^ 0 ^ \n Jede Gerade g des R3 soll durch die vektorielle Para-
meterdarstellung

g: £ p + £-r (—oo<^<oo) (1)

charakterisiert werden, wobei p den Ortsvektor eines Aufpunktes und r einen

Richtungsvektor bezeichnet. Ist dabei

t x{q>, 6) =- (cos cp cos 0y sin <p cos 6, sin 6) (2)

so durchstoBt die zu g parallèle Gerade n(g) durch 0 die S2 in den Punkten
(<p, 6) und (q> + jz, — 6). Die in Aussicht gestellte Schar Zo charakterisieren
wir formelmaBig, indem wir p in Abhangigkeit von cp und 6 angeben.

Wir wahlen eine genugend groBe réelle Zahl N (es genugt N > |/2) und eine

stetige Funktion einer reellen Veranderlichen mit reellen Werten c(6) derart,
daB gilt :

c(101) - c(-1 01) > 0 fur arctg N~1<\d\< arctg 2N (3)

c( 0) 0 sonst

Dem Richtungsvektor (2) ordnen wir den folgenden Aufpunkt
V Po(^» 0) zu:

Voi<P 3 0) (0, 0, 2N2tg2 6 + [l-N2tg2 0] sin 2 cp) (4f)
faUs 0^ | 0|^ arctg N"1

Vo(<P) 0) (C(0) Sin <P> ~ C(0) C0S Vf 2) (4m)

faUs arctg N-1 ^ 101 ^ arctg 2N
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Vo(9> 0) (°> °> 2) faDs arctg 2N^ | 0 | ^ £rc (4,)

Nach den Voraussetzungen ûber c(0) ist po(ç>, 0) po(9? + ^, — 0), und fur
| 0 | arctg iV"1 bzw. arctg 2N ergeben die beiden BerechnungsmôgUchkeiten
in (4) dieselben Werte. Deshalb bilden die Geraden g: x po(ç>, 0) + tx(<p, 0)
eine richtungsvollstândige, stetige Geradenschar Zo (fur | 0 | \ n ist die
Schar regulâr!). Zo ist, entsprechend den drei Varianten in (4), die Vereinigung
von drei Teilscharen Sf (flaeh liegende Geraden), Em (mâBig steile Geraden)
und Es (steile Geraden). Die einem festen Wert von 0 entspreehenden Geraden

bilden den Mantel eines Rotationsdoppelkegels mit Spitze (0, 0, 2), so-
fern sie zu Z8 gehoren, und sie bilden eine der Geradenscharen auf einem Rota-
tionshyperboloid mit Striktionskreisradius \c(6)\ und Striktionskreiszentrum
(0, 0, 2), sofern sie zu Zm gehoren. Gleich wie fur | 0 | arctg 2N entartet
fur | 0 | arctg N~x dièses Hyperboloid zu einem Doppelkegelmantel. Die fur
0 0 entstehenden horizontalen Geraden treffen die a;-Achse in je nach dem

Wert von <p variierenden Punkten. Zwischen diesen beiden letztgenannten
eindimensionalen Scharen bildet Sf eine stetige Verbindung, wobei jede Gerade
die 2;-Achse schneidet, und zwar fur | 0| ^ arctg N'1 nicht im Punkt (0,0,2).

Die drei Koordinatenachsen ax, ay, az gehoren zur Schar Zo; wir wollen
nun zeigen, daB sie das einzige Orthogonaldreibein von EQ bilden.

b) Wir behaupten, daB sich keine zwei Geraden der Teilschar

unter rechtem Winkel schneiden. Dièse Teilschar ist Untermenge von Zm, und
wir kônnen der Bestimmtheit halber und ohne Einschrânkung der AUgemein-
heit annehmen, es sei 0 < 0 < \n und c(0) > 0. Wir betrachten die zwei den
Parameterwerten (<pif 6^ i 1,2 entspreehenden Geraden. Schneiden sie sich
in einem Punkt (x, y, z), so gilt wegen (1) fur i 1,2

0(0^) sin (pi + tt cos 0{ cos (pt x
ti cos dt sin q>i — c(6i) cos (p4 y
2 + tt sin 6i =z.

Lôst man dièse Gleichungen nach t{, sin (p{, cos (pi auf und substituiert die

Lôsungswerte in

— 9?2) cos q)x cos ç>2 H" sin Ç^i SU1 9*2 >

so ergibt sich

(x2 + V2) c (Oi) o (0«) + (i - 2)2 ctg flx ctg 02

[c {9Ù% + tl cos2 6i] [c 4
(6)
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Sind andererseits die Richtungsvektoren t{q>iy 0Z) der betrachteten Geraden
zueinander orthogonal, so ergibt das Nullsetzen des Skalarprodukts

cos q>i cos (p2 + sin cpx sin q>2 + tg dx tg 02 0

cos (fpt - cp2) - tg <Vtg <?2 < 0 (7)

Der Vergleich von (6) und (7) erhârtet die Behauptung.
c) Wir behaupten weiter, daB es in der Teilschar Ef kein Orthogonaldreibein,

in der Schar E8 nicht einmal ein Orthogonalzweibein gibt. In der Tat : In den
fur 0 0 bzw. |0| \n entstehenden Teilscharen gibt es ofïensiehtlich
keine Orthogonaldreibeine bzw. Orthogonalzweibeine; und wâhlt man N genû-
gend groB, lâBt also nur «sehr» flach liegende bzw. «sehr» steile Geraden zu
Ef bzw. E8 zu, so bleibt die behauptete Eigenschaft aus Stetigkeitsgrunden
erhalten. Eine genauere Rechnung zeigt, daB fur die Gultigkeit der Behauptung
N > y2 hinreicht, doch wird der Wert dieser Schranke nicht weiter benôtigt.

d) Es sei {gx, g2, gs} ein Orthogonaldreibein in Eo und P der gemeinsame
Schnittpunkt von gl9 g2, g3 Wegen b) gehoren mindestens zwei dieser Geraden

zu Ef ^ E8, etwa g2 und <73. Wir kônnen sogar annehmen, daB die z-Achse az
nicht parallel zu der von g2 und gs aufgespannten Ebene Ft ist. Ist sie es

nàmlich doch, so steht g1 orthogonal zu az und somit gilt auch gx€ Ef^> E8J

und nach einer passenden Indexpermutation trifït dann die Annahme doch zu.
Die z-Achse durchstoBt also /\ in einem eindeutig festgelegten Punkt Pt ; da
aber nach (4/? s) die z-Achm eine jede Gerade von Ef ^ E8 trifït, insbesondere
auch g2 und g3, muB P1 P sein. Dann trifït az aber auch gt in P, und daraus

folgt wegen (4TO), daB gxe Ef ^ E8 sein muB. Bis auf eine Permutation der
Indizes ist dann wegen c) nur der Fall môglich, daB gt e E8 und g2,g3€ Ef gilt.
Ist | 611 Jtz, so ist 02 63 0, also nach (4,) sin 2q>2 z2 zz sin2993 ;

da zugleich (p2 — ç?3 \n mod n gelten muB, folgt q>2 0 mod \n, so daB

es sich uni das Tripel {ax, ay, az} handelt. Ist aber 10X | ^ \ni so kann der
auf der z-Achse liegende Punkt P der Geraden gx nach (4g) nur der Punkt
(0,0,2) sein. Aus g2, g3 e Et folgt dann wegen (4f) 02 63 arctg N'1. Die
Richtungsvektoren der drei Geraden sind dann gleichgerichtet mit den Vek-
toren (cos <pl9 sin q>l9 tg 0J, (cos ç?2, sin <p2y N-1) und (cos^g, sinç^g,iV""1), und
der rechte Winkel zwischen gx und g2 drûckt sich aus durch cos (cpx — <p2)

-N-1 tg 0t. Wegen| tg 61\'^ 2N gemàB (4g) und wegen | 003(9?! — q?2) |^ 1

sieht man ein, daB der eben erwogene Fall nicht auftreten kann. Damit ist
Satz 2 bestàtigt.

3. Beweis von Satz 1. a) Im R* sei g0 eine Gerade; es lassen sich Ebenen
J" und F" wâhlen, die zueinander parallel liegen und verschieden sind. und
die von g0 und von jeder Koordinatenachse des festgewâhlten {x,y,z)~
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Systems in genau einem Punkt durchstoBen werden. Jeder Geraden g, die

r und F" in je einem Punkt P' (xf, y\ z') bzw. P" (x\y\ z") durch-
stôBt, ordnen wir das Quadrupel

XrT»{g) (*'>&>*> y')

zu. Unter den gemachten Voraussetzungen bestimmen sich g und Xr,r,,{g)
gegenseitig eindeutig und stetig, so daB Xr,r,, in der Mannigfaltigkeit E
der Geraden des -R3 ein lokales Koordinatensystem in der Umgebung von g0

bildet. Durch kartesische Produktbildung erhalten wir die Mannigfaltigkeit
E X E X E der geordneten Geradentripel (<7i, </a » flfe) • Zu jedem Geraden-

tripel kônnen wir Ebenen F' und F" finden, die die genannten Voraussetzungen

in bezug auf jede Gerade des Tripels (anstelle von gQ) erfïïllen; die zwôlf
reellen Zahlen von Xr,rn (g^, i 1,2,3, kônnen dann in der Umgebung
des Tripels als lokale Koordinaten in E x E X E dienen.

Fur den Ûbergang zu ungeordneten Tripeln ist es angezeigt, aile Tripel
(&> ffz, 9z)> fur die mindestens eine der Gleichungen gx g2,gx gz, g2 g3

gilt, wegzulassen; mit Hinsicht auf einen zu verwendenden Hilfssatz reduzieren
wir E X E x E noch stârker. Dazu bezeichnen wir mit D(g) den eukli-
disehen Abstand der Geraden g vom Ursprung 0 e R3 und mit V(g1, g2, gz)

das Volumen eines Parallelepipeds, dessen von einer Ecke auslaufenden Kan-
ten parallel zu glyg2 und g3, beziiglich, sind und je die Lange 1 haben.
Jedem Tripel t (gl9 g2i gz) ordnen wir die Zahlen

+ D(gs) (8)
und

(9)

zu. Nun sondern wir die Teilmenge

F={TeExExE\ ô(r)^M und eo(r)è if"1} (10)

aus, wo M eine spâter noch festzulegende Zahl >1 ist. F ist eine berandete

Mannigfaltigkeit; dièse enthâlt mit jedem Tripel %= (glt g2)g3) auch aile
daraus durch Permutationen entstehenden Tripel; dasselbe gilt vom Rand
von F. In F stiftet die Aequivalenz eines Tripels mit allen aus ihm durch
Permutation entstehenden Tripeln eine Aequivalenzrelation, bei der der Ûbergang

zu den Klassen r den Ubergang von geordneten Tripeln {g1, g2, gz) zu

ungeordneten Tripeln {<7X, <72> {73} bedeutet. G sei die Menge dieser Aequi-
valenzklassen in F, versehen mit der Identifîkationstopologie. OfEenbar ist G

eine berandete, zwôlfdimensionale, kompakte Mannigfaltigkeit. Die Funk-
tionen <5 und co sind wie oben auch fur ungeordnete Tripel r definiert. Setzt

man A {reG\ ô(r) M} und Q {t*G\ œ(r) If"1}, so gilt fur
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denRand dG von G dieBeziehung dG A ^Q Da F eme (sechsblattnge)
unverzweigte Uberlagerung von G ist, konnen die Zahlen

Xr>r*tei)> t= 1, 2, 3,

genauer die geordneten Zwolftupel

(x'i, y[, *!, y'i 4> y*, *i yl, 4> y*> x'i yl) (n)
als îokale Koordmaten des Tnpels {gl9 g2, g3} benutzt werden

Es sei H die Teilmenge aller Orthogonaldreibeme m G DaB die Geraden

gk, gx orthogonale Richtung haben, wird durch das Verschwinden des Skalar-
produkts der Vektoren PkPk und P\P'i ausgedruckt, in den lokalen
Koordmaten (11) also durch die Gleichung

Ht (xk - xl) {x\ - x\) + (y'k - yl) (y\ -~ y]) + {z'k - z"k) (z\ - z\) 0, (12)

wobei z1 und z" mittels der Ebenengleichungen von F' und F" durch
x', yf, x", y" auszudrucken smd DaB sich gk und gt schneiden oder wenig-
stens koplanar smd, wird durch das Verschwmden der Volumendetermmante
der Punkte P'k, P'k', P\, P\ ausgedruckt, m lokalen Koordmaten ergibt dies
die Gleichung

Ht+Z (xk - x\) {y'k - y]) - (yk - y\) (x'i - x\) 0 (13)

Die sechs Gleichungen, die aus (12) und (13) entstehen, wenn (i, k, l) durch
zykhsche Vertauschungen aus (1, 2, 3) entsteht, bilden die lokalen Bedm-

gungen dafur, daB {gx, g2,gz} € H gilt Die Menge H der Orthogonaldreibeme
m G bildet daher eme sechsdimensionale Teilmannigfaltigkeit von G, und
îhr Rand dH hegt ganz auf dG — Q, da ja fur r e H co(r) — 1 gilt Es sei
Zx îrgend eme nchtungsvollstandige, stetige Geradenschar m R3 Wahlt man
die Konstante M m (10) so, daB M > 3 max D(g), das Maximum erstreckt
uber g € Eq^> EXi gilt (wo 27O die m 2 konstruierte Schar ist), so bildet die
Menge J{E^) derjemgenTnpel {g1} g2, gB} € G, furwelche gt€ Z1{i 1,2,3)
gilt, eme sechsdimensionale Teilmannigfaltigkeit von G, deren Rand dJ(Ex)
ganz auf dG — A hegt, und dasselbe gilt fur ZQ und fur aile Scharen

die wie folgt aus Zo und Ut entstehen man lasse jede Gerade von 27O m der
Zeitemheit durch gleichformige Parallelverschiebung m emer Ebene m die zu
îhr parallèle Gerade von Zt laufen, Ex ist dann die zur Zeit A gebildete
nchtungsvollstandige, stetige Geradenschar Um Satz 1 zu beweisen, muB

gezeigt werden, daB G r> J{Z^) nicht leer ist Wir zeigen mehr, namhch daB
bei Homologie mit der zykhschen Gruppe der Ordnung 2 als Koeffizienten-
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bereich die Teilmannigfaltigkeiten H und J(S^) in G die Schnittzahl 1 haben.
Wir werden unter b) zeigen, daB dièse Behauptung jedenfalls fur Z$ (anstelle
von 27X) zutrifït. Dann gilt sie aber auch fur Zx nach dem folgenden

Hilfssatz: Lk+1 bzw. Ln~k seien zwei singulâre k+1- bzw. n—k-Kettenin
der triangulierbaren, berandeten, kompakten, n-dimensionalen Mannigfaltigkeit G.
Besteht der Rand (mod 2) dLk+1 von Lk+1 aus den Ketten Jo und Jx und aus
weitern k-dimensionalen Ketten, die zu Ln~k punktfremd sind, und sind die
Bedingungen (dJ0 ^ dJx) r, Ln~k Lk+1 ^ dLn~k IS+1 ^ Ln~k ^ dG 0 er-
fiillt, so haben Jo und Jx mit Ln~k dieselben SchnittzaJilen mod. 2.

Dies ergibt sich aus dem Satz auf S. 248 des Lehrbuchs von H. Seifert und
W. Thbelfall durch die in Anmerkung 41, S. 324 daselbst, erwàhnte Modi-
fikation; die vorliegende Sachlage ist bewiesen in [3], S. 46-52. In unserm Fall
ist Jo J{£Q), Ji J(£i), Ln~k H zu setzen; die singulâre Mannigfaltigkeit

Lk+l ergibt sich durch die Homotopie, die zwischen J(U0) und J(Z1)
durch die Scharen J(27X) (^^ A^ 1) vermittelt wird; bei dieser Homotopie
wird dJ(2?Q) auf Q, noch genauer: auf dG — A in BJ(2Jl) ubergefuhrt;
ferner liegt BH auf A, genauer: auf dG — Q Ob die durch (10) und die
weitere Konstruktion definierte Mannigfaltigkeit G triangulierbar ist, sieht
man nicht unmittelbar ein. Aber durch eine geringe Modification in einer
beliebig kleinen Umgebung der «Kantenpunktmenge» A r\ Q wird aus G eine
differenzierbare und damit triangulierbare Mannigfaltigkeit. Man hat dazu
bloB die zwei Bedingungen in (10) durch die eine Bedingung

/(ô(t)) • co(r)-1 + /(co(r)"1) >à(x)^M
zu ersetzen; dabei ist / eine differenzierbare réelle Funktion einer reellen
Variablen, mit Werten zwischen 0 und 1, mit f(x) 0 fur x<^M — s und
f(x) 1 fur x^M, und bei gentigend kleinem positiven e fallen dabei
keine Punkte r von G weg, die zu H oder zu einer der Scharen J(2X)
gehôren.

b) Es bleibt zu zeigen, daB die Schnittzahl mod 2 von H und J(20) den
Wert 1 hat. Aus 2d) entnimmt man, daB J(£o) und H einen einzigen Punkt
gemeinsam haben, nâmlich das Tripel oc {ax,ay,az} der Koordinaten-
achsen. Ergànzend haben wir nachzuweisen, daB sich J(20) und If in a
durchsetzen. Da dièse beiden Teilmannigfaltigkeiten in einer Umgebung von oc

differenzierbar sind, hat man rechnerisch zu zeigen, daB die Tangentialràume
von J(U0) und H in oc einzig den Nullvektor gemeinsam haben. Wir kônnen
in einer Umgebung von oc die lokalen Koordinaten (11) mit Hilfe der Ebenen-

gleichungen F': x1 + y' + z1 0, F": x" + y" + z" 1 bestimmen. Nach
einer Umbenennung der Koordinaten a^,...,^ in t^,...,^ (i& dieser
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Reihenfolge) ergibt sich aus den Schnittpunkten der Koordinatenachsen mit
P und F", daB a (0, 0, 1, 0; 0, 0, 0, 1 ; 0, 0, 0, 0) gilt und daB an dieser
Stelle die Funktionalmatrix \\dHJduk\\ (vgl. (12) und (13)) durch die Matrix

(14)

vom Rang 6 gegeben ist. Aus den Gleichungen (4f, 8) lassen sich ebenfalls die
DurchstoBpunkte mit F' und F" und damit die lokalen Koordinaten

Ut{<pl9 0i, <Pz, 02,<pZi 03), i 1,..., 12,

eines Tripels {g^^, d1),g2((p2> O2),g3{(p3, 03)} in der Umgebung von oc explizit
berechnen und damit sechs linear unabhângige Tangentialvektoren an J(27O)

in oc bestimmen, nâmlich

v1=(dujdf1)\x (-2,0,-3,1; 0,0,0,0; 0,0,0,0)
v2 (duJdOj) \x (0,0,0, -1; 0,0,0,0; 0,0,0,0)
v3 (dujd<p2) | (0,0,0,0; 0,2, -1,3; 0,0,0,0) (15)

i;4= (aw./afl,)!. (0,0,0,0; 0,0,0,-1; 0,0,0,0)
vt {dujd6a)9t.o\a (0,0,0,0; 0,0,0,0; 2,0,1,0)
v, (dujdea)9t,nia\a (0,0,0,0; 0,0,0,0; 0,2,0,1).
Ist irgend eine Linearkombination

6

^Ytvt (~2r^ °5 -3^, yx - 72 ; 0, 2y3, - y3, 3y3 - y4; 2y5i 2y6i y5, ye)
i

zugleich Tangentialvektor (%,..., û12) von H in oc, so gilt

£(dHJduk).ùk 0 (t=l,...,6). (16)
i

Daraus ergibt sich leicht mit (14) und (15), daB y1== y2= y6 0 ist.
Damit ist gezeigt, daB sich H und J(S0) durchsetzen.

LITERATUR

[1] H.Hadwigeb, Ungeloste Problème, Nr.39. Elemente der Math. 16, 30-31 (1961).

[2] H.Hadwiger, Kleine Studie zur elementaren Stetigkeitsgeometrie. Jahresber. Deutsche Math,
Ver. 64, 78-81 (1961).

[3] E.R. vanKampen, Die kombinatorische Topologie und die Dualitatssatze. Den Haag 1929,

(Eingegangen den 15. Dezember 1961)


	Orthogonale Dreibeine in richtungsvollständigen, stetigen Geradenscharen des R3.

