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Orthogonale Dreibeine in richtungsvollstindigen,
stetigen Geradenscharen des R3

Von Hans DEBRUNNER, Bern

1. Ergebnisse. Es sei £ die Menge der (nichtorientierten) Geraden des drei-
dimensionalen euklidischen Raumes R3. Wie iiblich, schreiben wir fiir eine
Gerade g, und eine Geradenfolge g,, g5, ¢;,. .. genau dann lim ¢, = ¢g,, wenn
irgend zwei verschiedene parallele Ebenen I” und I'” des R3, zu denen g,
nicht parallel liegt, von allen aufler endlich vielen Geraden der Folge durch-
stoBen werden, und wenn fiir die DurchstoBpunkte P, = g, ~ I" und P, =
= ¢ ~ I'"" im euklidischen Sinne lim P; = P, und lim P; = P} gilt. Unter
der Richtung einer Geraden g verstehen wir die zu g parallele Gerade 7 (g) durch
den Ursprung O e R?; in diesem Sinne ist die Menge der Geradenrichtungen
identisch mit dem Biischel B aller Geraden durch 0.

Ordnen wir in stetiger Weise jeder Richtung b ¢ B eine zu b parallele Gerade
o(b) des R?® zu, so nennen wir die Bildmenge X' = ¢(B) in ¥ eine richtungs-
vollstandige, stetige Geradenschar im R?. Uber solche Scharen hat H. HADWIGER
in [1] und [2] die folgende Vermutung ausgesprochen:

Satz 1. In jeder richtungsvollstindigen, stetigen Geradenschar im R? lassen sich
drei paarweise orthogonalstehende Geraden finden, die sich in einem Punkt
schneiden.

Als Beispiel mag das erwihnte Biischel B dienen; B bildet eine richtungs-
vollsténdige, stetige Geradenschar, bei der sich sogar jedes Tripel von paar-
weise orthogonalstehenden Geraden in einem Punkt, ndmlich in 0, schneidet.
Ein weniger triviales Beispiel, bei dem noch eine eindimensionale Schar von
Tripeln mit den verlangten Eigenschaften existiert, findet sich in [1] angegeben.
DaB auch im Hinblick auf Satz 1 bestmogliche Beispiele existieren, zeigt

Satz 2. Es gibt ym R? richtungsvollstindige, stetige Geradenscharen, welche ein
etnziges T'ripel von Geraden, die sich 1n etnem Punkt paarweise orthogonal schnei-
den, enthalten.

Die vorliegende Note erbringt einen Beweis von Satz 1, und zwar wesentlich
gestiitzt auf den Nachweis von Satz 2. Es scheint mir, daBl das Analogon von
Satz 2 fiir richtungsvollstéindige, stetige Geradenscharen im R™ (n > 3) nicht
gilt.

Die Geradenmenge £ mit der angegebenen Topologie und mit der erwéhnten
Abbildung = (durch Parallelverschiebung) auf die Richtungsmenge B kann
auch als Faserbiindel iiber B, mit R? als Faser, aufgefat werden; als Faser-
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biindel ist sie zum Tangentialbiindel der projektiven Ebene dquivalent. Auf
diese Weise kann eine richtungsvollstindige, stetige Geradenschar X' als Schnitt
itber dem Basisraum B definiert werden. Dieser Auffassung als Faserbiindel
liegt allerdings die Struktur des Sichschneidens von Geraden im R? ferner, so
daf wir sie nicht weiter ausniitzen konnen. Dagegen wird im Beweis von Satz 1
wesentlich benutzt, dall E eine vierdimensionale topologische Mannigfaltigkeit
ist, in der jede richtungsvollstéindige, stetige Geradenschar 2 eine zweidimen-
sionale Teilmannigfaltigkeit bildet.

2. Beweis von Satz 2. a) Wir geben eine richtungsvollstindige, stetige Ge-
radenschar 2, im R? an, die genau ein Orthogonaldreibein enthilt; dabei soll
fortan mit Orthogonaldreibein die Konfiguration von drei sich in einem Punkt
schneidenden, paarweise orthogonalen Geraden gemeint sein. Wir verwenden
rechtwinklige, kartesische Koordinaten («,y,2) fiir Punkte und fiir Vektoren
im R3. Fiir Punkte auf der Einheitssphire 8% c R?® benutzen wir aullerdem die
geographische Linge ¢ (mit — co < ¢ <oo) und die geographische Breite 0
(mit — iw < 0=< }xn ). Jede Gerade g des R? soll durch die vektorielle Para-
meterdarstellung

g: ¥=p-+t-r (— 00 <t <o) (1)

charakterisiert werden, wobei p den Ortsvektor eines Aufpunktes und r einen
Richtungsvektor bezeichnet. Ist dabei

t = t(p, 0) = (cos ¢ cos 0, sin ¢ cos 6, sin 0) (2)

so durchstoBt die zu g parallele Gerade w(g) durch 0 die S? in den Punkten
(p, 0) und (¢ + =, — 0). Diein Aussicht gestellte Schar 2, charakterisieren
wir formelméBig, indem wir p in Abhingigkeit von ¢ und 6 angeben.

Wir wihlen eine geniigend grof3e reelle Zahl N (es geniigt N > y/2) und eine
stetige Funktion einer reellen Verdinderlichen mit reellen Werten c¢(6) derart,
daB gilt:

c(]0]) = —c(—|0])>0 fir arctg N-* < |0| < arctg 2N (3)
c(0)=0 sonst.

Dem Richtungsvektor (2) ordnen wir den folgenden Aufpunkt
p = po(q’: 0) zu.

Polp, 0) = (0,0, 2N2tg2 0 + [1-N%tg? 6] sin 2 ¢) (44)
falls 0= | 0| < arctg N—*
Po() 6) = (c(0) sin g, — ¢(6) cos @, 2) (4m)

falls arctg N-1< | 0| < arctg 2N
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Pol(p, 0) = (0,0, 2) falls arctg 2N < |9 | < }m . (4,)

Nach den Voraussetzungen iiber c(0) ist py(@, 0) = po(¢ + 7, — ), und fiir
| 6| = arctg N bzw. arctg 2N ergeben die beiden Berechnungsmoglichkeiten
in (4) dieselben Werte. Deshalb bilden die Geraden ¢:x = p,(gp, 0) + (@, 6)
eine richtungsvollstindige, stetige Geradenschar 2, (fir |0| = i = ist die
Schar regulér!). 2, ist, entsprechend den drei Varianten in (4), die Vereinigung
von drei Teilscharen X, (flach liegende Geraden), X, (miBig steile Geraden)
und 2, (steile Geraden). Die einem festen Wert von 6 entsprechenden Gera-
den bilden den Mantel eines Rotationsdoppelkegels mit Spitze (0, 0, 2), so-
fern sie zu X, gehoren, und sie bilden eine der Geradenscharen auf einem Rota-
tionshyperboloid mit Striktionskreisradius |c(0)| und Striktionskreiszentrum
(0,0, 2), sofern sie zu 2,, gehoren. Gleich wie fiir | 0| = arctg 2N entartet
fiir | 6| = arctg N dieses Hyperboloid zu einem Doppelkegelmantel. Die fiir
60 = 0 entstehenden horizontalen Geraden treffen die z-Achse in je nach dem
Wert von ¢ variierenden Punkten. Zwischen diesen beiden letztgenannten
eindimensionalen Scharen bildet X, eine stetige Verbindung, wobei jede Gerade
die z-Achse schneidet, und zwar fiir | 6] = arctg N-1 nicht im Punkt (0,0, 2).

Die drei Koordinatenachsen a,, a,, a, gehoren zur Schar X,; wir wollen
nun zeigen, daf} sie das einzige Orthogonaldreibein von 2, bilden.

b) Wir behaupten, dafl sich keine zwei Geraden der Teilschar

Z - — 3,

unter rechtem Winkel schneiden. Diese Teilschar ist Untermenge von X,,, und
wir kénnen der Bestimmtheit halber und ohne Einschriankung der Allgemein-
heit annehmen, essei 0 < 0 < iz und c¢(0) > 0. Wir betrachten die zwei den
Parameterwerten (¢,, 0,) ¢ = 1,2 entsprechenden Geraden. Schneiden sie sich
in einem Punkt (z, y, 2), so gilt wegen (1) fiir ¢ = 1,2

Il

c(0;) sin @, + ¢, cos 0, cos @,
t; cos 0, 8in ¢, — ¢(0,) cos @;
2 4 t,sin 0,

Il
i | 8|

|

Lost man diese Gleichungen nach ¢, sin ¢;, cos ¢, auf und substituiert die
Losungswerte in

cos(@; — @;) = €08 ¢, €O8 @, + sin @, 8in @, (5)
so ergibt sich

(% + y?) ¢ (6,) ¢ (05) + (z — 2)% ctg 0, otg O,
[e (0,)% + ¢} cos? 0,] [c (62)% + t; cos? 0,]

cos (p; — @) = >0. (6)
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Sind andererseits die Richtungsvektoren 1(g;, 8;,) der betrachteten Geraden
zueinander orthogonal, so ergibt das Nullsetzen des Skalarprodukts

COS @, COS @, | sin ¢, sin @, + tg 0,tg 6, = 0,

also cos (@ — @g) = — tg O;-tg 6, < 0. (7)
Der Vergleich von (6) und (7) erhartet die Behauptung.

c¢) Wir behaupten weiter, daf} es in der Teilschar 2, kein Orthogonaldreibein,
in der Schar 2, nicht einmal ein Orthogonalzweibein gibt. In der Tat: In den
fir 0 =0 bzw. |0]| = 1z entstehenden Teilscharen gibt es offensichtlich
keine Orthogonaldreibeine bzw. Orthogonalzweibeine; und wahlt man N genii-
gend grof}, 146t also nur «sehr» flach liegende bzw. «sehr» steile Geraden zu
2, bzw. X, zu, so bleibt die behauptete Eigenschaft aus Stetigkeitsgriinden
erhalten. Eine genauere Rechnung zeigt, da8 fiir die Giltigkeit der Behauptung
N > y2 hinreicht, doch wird der Wert dieser Schranke nicht weiter benotigt.

d) Es sei {g,, ¢», g5} ein Orthogonaldreibein in 2, und P der gemeinsame
Schnittpunkt von ¢, g, g, . Wegen b) gehoren mindestens zwei dieser Geraden
zu X, v X, etwa g, und g,. Wir kénnen sogar annehmen, daf} die z-Achse a,
nicht parallel zu der von g, und g, aufgespannten Ebene I ist. Ist sie es
namlich doch, so steht g, orthogonal zu @, und somit gilt auch g, ¢ 2, v X,
und nach einer passenden Indexpermutation trifft dann die Annahme doch zu.
Die z-Achse durchstoBt also I in einem eindeutig festgelegten Punkt P,; da
aber nach (4,,,) die 2-Achse eine jede Gerade von X, v X trifft, insbesondere
auch g, und g;, muBB P, = P sein. Dann trifft a, aber auch g, in P, und daraus
folgt wegen (4,), daf g, e2, v 2, sein mull. Bis auf eine Permutation der
Indizes ist dann wegen c) nur der Fall moglich, daBl g, € 2y und g,, g, € 2, gilt.
Ist |6,] = dm, s0ist 0, = 0, = 0, alsonach (4,)sin 2¢, = 2, = 2; = 8in2¢,;
da zugleich @, — @; = }w mod = gelten muB, folgt @, = 0 mod 47, so dall
es sich um das Tripel {a,, a,,a,} handelt. Ist aber |0,| # 37, so kann der
auf der z-Achse liegende Punkt P der Geraden g, nach (4,) nur der Punkt
(0,0, 2) sein. Aus g,, g; € X, folgt dann wegen (4,) 0, = 0; = arctg N-1. Die
Richtungsvektoren der drei Geraden sind dann gleichgerichtet mit den Vek-
toren (cos ¢,, sin @, , tg 0,), (cos @,, sin @,, N!) und (cos ¢, sin ¢35, N71), und
der rechte Winkel zwischen ¢, und g, driickt sich aus durch cos(p, — @,)
= -N-1tg 0,. Wegen| tg 0, |= 2N gemiB (4,) und wegen |cos(p; — @) |=1
sieht man ein, da der eben erwogene Fall nicht auftreten kann. Damit ist
Satz 2 bestitigt.

3. Beweis von Satz 1. a) Im R® sei g, eine Gerade; es lassen sich Ebenen
I" und I wihlen, die zueinander parallel liegen und verschieden sind, und
die von g, und von jeder Koordinatenachse des festgewihlten (z,y, 2)-
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Systems in genau einem Punkt durchstoBen werden. Jeder Geraden g, die
I'" und I'" in je einem Punkt P' = (2',y’, 2') bzw. P" = (z", 4", 2") durch-
stoBt, ordnen wir das Quadrupel

XI”I‘”(g) = (x,: y,3 x”: y”)

zu. Unter den gemachten Voraussetzungen bestimmen sich ¢ und X,.,.(g)
gegenseitig eindeutig und stetig, so dal X,.,,» in der Mannigfaltigkeit &
der Geraden des R? ein lokales Koordinatensystem in der Umgebung von g,
bildet. Durch kartesische Produktbildung erhalten wir die Mannigfaltigkeit
E X E X E der geordneten Geradentripel (g, 9:,¢,;). Zu jedem Geraden-
tripel konnen wir Ebenen I und I finden, die die genannten Vorausset-
zungen in bezug auf jede Gerade des Tripels (anstelle von g,) erfiillen; die zwolf
reellen Zahlen von X,.,.(g;),?=1,2,3, koénnen dann in der Umgebung
des Tripels als lokale Koordinaten in £ X E X E dienen.

Fiir den Ubergang zu ungeordneten Tripeln ist es angezeigt, alle Tripel
(915 g2, 93), fiir die mindestens eine der Gleichungen ¢, = ¢,, 9, = 95,9, = 5
gilt, wegzulassen; mit Hinsicht auf einen zu verwendenden Hilfssatz reduzieren
wir K X E X E noch stiarker. Dazu bezeichnen wir mit D(g) den eukli-
dischen Abstand der Geraden ¢ vom Ursprung 0 e R* und mit V(g;, 9., ¢5)
das Volumen eines Parallelepipeds, dessen von einer Ecke auslaufenden Kan-
ten parallel zu ¢,,9, und g;, beziglich, sind und je die Lange 1 haben.
Jedem Tripel v = (g,, 9;, 9;) ordnen wir die Zahlen

6(7) = D(g,) + D(g:) + D(gs) (8)
und

() = V(g1 g2 95) (9)

zu. Nun sondern wir die Teilmenge
F={1el X EXE| §§r)EM und w(r)= M} (10)

aus, wo M eine spiter noch festzulegende Zahl > 1 ist. F ist eine berandete
Mannigfaltigkeit; diese enthilt mit jedem Tripel 7 = (g,, ¢s,9;) auch alle
daraus durch Permutationen entstehenden Tripel; dasselbe gilt vom Rand
von F. In F stiftet die Aequivalenz eines Tripels mit allen aus ihm durch
Permutation entstehenden Tripeln eine Aequivalenzrelation, bei der der Uber-
gang zu den Klassen 7 den Ubergang von geordneten Tripeln (g;, ¢,, g5) zu
ungeordneten Tripeln {g,,¢., ¢;} bedeutet. @ sei die Menge dieser Aequi-
valenzklassen in F, versehen mit der Identifikationstopologie. Offenbar ist G
eine berandete, zwolfdimensionale, kompakte Mannigfaltigkeit. Die Funk-
tionen 6 und w sind wie oben auch fiir ungeordnete Tripel 7 definiert. Setzt
man 4= {teG|d(r) =M} und Q={reG|w(r)= M}, so gilt fir
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den Rand 0@ von G die Beziehung 0G = 4 v 2. Da F eine (sechsblittrige)
unverzweigte Uberlagerung von G ist, konnen die Zahlen

Xrtrrl(gi) 3 ?:= 1 , 2, 3 )
genauer: die geordneten Zwolftupel
(@1, Y1> @15 Y15 T, Yoo o, Ya3 Ty, Y3, Ty, Y) (11)
als lokale Koordinaten des Tripels {g,, g,, 95} benutzt werden.
Es sei H die Teilmenge aller Orthogonaldreibeine in G. Da@ die Geraden
9%, 9, orthogonale Richtung haben, wird durch das Verschwinden des Skalar-

produkts der Vektoren P,P; und P;P; ausgedriickt, in den lokalen Koor-
dinaten (11) also durch die Gleichung

H;= (2 — @) (7, — @) + (e — 90 01— ¥) + (e — 20) (5, — 2) =0, (12)

wobei 2z’ und 2" mittels der Ebenengleichungen von I” und I durch
',y , 2", y" auszudriicken sind. DaB sich g; und ¢, schneiden oder wenig-
stens koplanar sind, wird durch das Verschwinden der Volumendeterminante
der Punkte P,, P,, P;, P; ausgedriickt; in lokalen Koordinaten ergibt dies
die Gleichung

Hypg = (@, — @) (4 — ¥1) — W — ) (2 — 2) = 0. (13)
Die sechs Gleichungen, die aus (12) und (13) entstehen, wenn (7, k£, ) durch
zyklische Vertauschungen aus (1, 2, 3) entsteht, bilden die lokalen Bedin-
gungen dafiir, dal {g,, g5, ¢,} ¢« H gilt. Die Menge H der Orthogonaldreibeine
in G bildet daher eine sechsdimensionale Teilmannigfaltigkeit von G, und
ihr Rand 0H liegt ganz auf 0G — 2, da ja fir 7 e H w(r) = 1 gilt. Es sei
2, irgend eine richtungsvollstdndige, stetige Geradenschar in R®*. W&hlt man
die Konstante M in (10) so, dal M > 3 max D(g), das Maximum erstreckt
iiber ge 2, v 2|, gilt (wo X, die in 2 konstruierte Schar ist), so bildet die
Menge J(2)) derjenigen Tripel {g,, 9., g5} € G, fiir welche g, ¢ X, (: = 1, 2, 3)
gilt, eine sechsdimensionale Teilmannigfaltigkeit von G, deren Rand dJ (X))
ganz auf 0G — A4 liegt, und dasselbe gilt fiir 2, und fiir alle Scharen

die wie folgt aus 2, und X, entstehen: man lasse jede Gerade von X in der
Zeiteinheit durch gleichférmige Parallelverschiebung in einer Ebene in die zu
ihr parallele Gerade von 2] laufen; 2, ist dann die zur Zeit A gebildete
richtungsvollstindige, stetige Geradenschar. Um Satz 1 zu beweisen, muf}
gezeigt werden, daBl G ~ J(2)) nicht leer ist. Wir zeigen mehr, nédmlich da@
bei Homologie mit der zyklischen Gruppe der Ordnung 2 als Koeffizienten-
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bereich die Teilmannigfaltigkeiten H und J (X)) in G die Schnittzahl 1 haben.
Wir werden unter b) zeigen, dafl diese Behauptung jedenfalls fiir X, (anstelle
von X)) zutrifft. Dann gilt sie aber auch fiir X, nach dem folgenden

Hilfssatz: L¥+ bzw. L% seien zwei singuldre k- 1- bzw. n— k-Ketten in
der triangulierbaren, berandeten, kompakten, n-dimensionalen Mannigfaltigkeit G.
Besteht der Rand (mod 2) o0L*+ von L*+' aus den Keiten J, und J, und aus
weitern k-dimensionalen Kelten, die zu L™ * punktfremd sind, und sind die
Bedingungen (0J, v 0J,) n L% = L*H ~ gLk = [k~ Im %k~ 0G = & er-
fallt, so haben J, und J, mit L™ * dieselben Schnittzahlen mod. 2.

Dies ergibt sich aus dem Satz auf S.248 des Lehrbuchs von H. SEIFERT und
W. THRELFALL durch die in Anmerkung 41, S.324 daselbst, erwihnte Modi-
fikation; die vorliegende Sachlage ist bewiesen in [3], S.46-52. In unserm Fall
ist Jy=J(Zy), J, =J(2)), L% = H zu setzen; die singulire Mannigfaltig-
keit L¥+ ergibt sich durch die Homotopie, die zwischen J(Z;) und J (X))
durch die Scharen J(X,) (0= A=< 1) vermittelt wird; bei dieser Homotopie
wird 9J(2,) auf £, noch genauer: auf 0@ — 4 in 0J(2)) iibergefiihrt;
ferner liegt 0H auf A4, genauer: auf G — £2. Ob die durch (10) und die
weitere Konstruktion definierte Mannigfaltigkeit G triangulierbar ist, sieht
man nicht unmittelbar ein. Aber durch eine geringe Modifikation in einer
beliebig kleinen Umgebung der «Kantenpunktmenge» 4 ~ 2 wird aus @ eine
differenzierbare und damit triangulierbare Mannigfaltigkeit. Man hat dazu
bloB die zwei Bedingungen in (10) durch die eine Bedingung

[(0(2)) 0 (7) + f(w(x) ) -0(z)= M

zu ersetzen; dabei ist f eine differenzierbare reelle Funktion einer reellen
Variablen, mit Werten zwischen 0 und 1, mit f(z) =0 fir < M —¢ und
f(x) =1 fir = M, und bei geniigend kleinem positiven ¢ fallen dabei
keine Punkte 7 von G weg, die zu H oder zu einer der Scharen J (X))
gehoren.

b) Es bleibt zu zeigen, da3 die Schnittzahl mod 2 von H und J(Z;) den
Wert 1 hat. Aus 2d) entnimmt man, dafl J(X;) und H einen einzigen Punkt
gemeinsam haben, ndmlich das Tripel « = {a,, a,,a,} der Koordinaten-
achsen. Erginzend haben wir nachzuweisen, dafl sich J(X;) und H in «
durchsetzen. Da diese beiden Teilmannigfaltigkeiten in einer Umgebung von «
differenzierbar sind, hat man rechnerisch zu zeigen, dafl die Tangentialrdume
von J(X,) und H in « einzig den Nullvektor gemeinsam haben. Wir kénnen
in einer Umgebung von « die lokalen Koordinaten (11) mit Hilfe der Ebenen-
gleichungen I":2' +y' 4+ 2' =0, I'": 2" + y" 4+ 2" = 1 bestimmen. Nach
einer Umbenennung der Koordinaten ;,...,y; in %,,...,%, (in dieser
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Reihenfolge) ergibt sich aus den Schnittpunkten der Koordinatenachsen mit
I'" und I, dal « =(0,0,1,0;0,0,0,1;0,0,0,0) gilt und dal an dieser
Stelle die Funktionalmatrix ||0H,/0u,|| (vgl. (12) und (13)) durch die Matrix

o 0 0 o0 1 1—-1-1 0-1 0 1
1 1—-1—-1 0 0 0 0-1 0 1 o0
0o—1 0 1—-1 0 1 0 0 0 0 0| (14
o 0 0 0 1 0 0 0—1 0 0 O
0o—1 0 0 0 0 0 0 0 1 0 0
-~1-1 o0 0 1 1 0 0 0 0 0 O

vom Rang 6 gegeben ist. Aus den Gleichungen (4,,,) lassen sich ebenfalls die
DurchstoBpunkte mit I und I und damit die lokalen Koordinaten

uz’((pb 01’ P25 629 @3, 03)’ 1= | R &

eines Tripels {g,(p;, 01), 92(®3, 05), 95 (@5, 6,)} in der Umgebung von « explizit
berechnen und damit sechs linear unabhingige Tangentialvektoren an J(ZX,)
in &« bestimmen, ndmlich

v, = (0u;/0¢y) | . = (—-2,0,-3,1; 0,0,0,0; 0,0,0,0)

vy = (0u,;/30,) | . = (0,0,0,—1; 0,0,0,0; 0,0,0,0)

vy = (Ou;/0@,) | » = (0,0,0,0; 0,2,—1,3; 0,0,0,0) (15)
v, = (0u,;/30,) | , = (0,0,0,0; 0,0,0, —1; 0,0,0,0)

vy = (3%1/303)%,_.0[“ = (0,0,0,0; 0,0,0,0; 2,0,1,0)

vg = (8u;/80,) 5. — 2| (0,0,0,0; 0,0,0,0; 0,2,0,1).

Ist irgend eine Linearkombination

6
‘1‘77{”1' = (—29,,0, =3y, — 725 0, 2p5, — ¥5, 3y3 — Y45 295, 206, V55 Ve)

zugleich Tangentialvektor (u,,..., ;) von H in «, so gilt
12
X (0H,/ou,) - u, = 0 G=1,...,6). (16)
1

Daraus ergibt sich leicht mit (14) und (15), daB y, =y, = ... = ¢ = 0 ist.

Damit ist gezeigt, dafl sich H und J(Z;) durchsetzen.
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