Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 37 (1962-1963)

Artikel: Sur les théorèmes de KOLMOGOROV et SMIRNOV dans le cas d'une

distribution discontinue.

Autor: Carnal, Henri

DOI: https://doi.org/10.5169/seals-28603

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur les théorèmes de Kolmogorov et Smirnov dans le cas d'une distribution discontinue

Par HENRI CARNAL, Zurich

Introduction

Les théorèmes de Kolmogorov et Smirnov qui ont trait à l'écart, l'un entre une loi de distribution empirique et une loi de distribution théorique continue, l'autre entre deux distributions empiriques furent démontrés pour la première fois en 1933, respectivement 1939. Kolmogorov [1] base sa démonstration sur un lemme qui généralise le théorème de la limite centrale. D'autres démonstrations des mêmes théorèmes furent publiées par Feller [2] et par Doob [3] et Donsker [4]. Feller utilise les fonctions génératrices et Doob emploie la théorie des processus stochastiques.

Ces théorèmes furent généralisés dans le cas discontinu par M.P.SCHMID [5], en utilisant la méthode de démonstration de Kolmogorov. Dans ce travail, nous nous proposons d'étendre également au cas discontinu la méthode de Feller.

Dans le paragraphe 1, nous définissons les fonctions $\Phi(z, f_1, \ldots, f_n)$ et $\Phi^*(z, f_1, \ldots, f_n)$ qui caractérisent l'écart entre les lois de distribution théorique et empirique. Les paragraphes 2 et 4 sont consacrés aux calculs, le paragraphe 3 à un théorème sur les transformations de Laplace utilisé par Feller [2]. Le paragraphe 5 contient les expressions pour Φ et Φ^* . Dans le paragraphe 6, nous démontrons que l'écart entre deux distributions empiriques peut aussi être caracténsé par la fonction Φ .

Note: Cette étude représente la deuxième partie d'un travail de diplôme présenté en juin 1961 à l'EPF de Zurich. Le sujet de ce travail de diplôme m'a été proposé par M. le professeur W. SAXER.

1. Enoncé du problème

Soit F(x) une loi de distribution présentant des discontinuités en x_1, \ldots, x_n . Nous posons:

s posons:

$$f_0 = 0 \; ; \qquad f_{2n+1} = 1$$

 $f_{2\nu-1} = F(x_{\nu} - 0) \; ; \qquad f_{2\nu} = F(x_{\nu} + 0) \qquad \nu = 1, \dots, n$ (1.1)

Soient X_1, \ldots, X_N des variables aléatoires indépendantes réparties suivant la loi de distribution F(x) définie ci-dessus. Nous posons:

$$S_N(x) = \frac{1}{N}$$
 (Nombre de X_i ; $X_i \leq x$).

Si F(x+a)=F(x) pour a>0, la probabilité: $Pr\left\{x< X_i \leq x+a\right\}$ est nulle. Donc, si $F(x)\geq F(X_i)$, on a avec la probabilité 1, $x\geq X_i$.

Donc, avec probabilité 1:

$$S_N(x) = \frac{1}{N} \text{ (Nombre de } X_i \leq x) = \frac{1}{N} \text{ (Nombre de } F(X_i) \leq F(x)) = S_N^0(y)$$
.

A la variable y = F(x) correspond la loi de distribution suivante:

$$F^{0}(y) = \begin{cases} 0 & \text{pour } y \leq 0 \\ y & \text{pour } f_{2\nu} \leq y \leq f_{2\nu+1} \\ f_{2\nu-1} & \text{pour } f_{2\nu-1} \leq y < f_{2\nu} \\ 1 & \text{pour } y \geq 1 \end{cases} \quad \nu = 0, 1, \dots, n$$

$$(1.2)$$

Alors, avec la probabilité 1:

$$S_N(x) - F(x) = S_N^0(y) - F^0(y) = S_N^0(y) - y$$
 $y = F(x)$

Désignons par I la réunion des intervalles fermés $[f_{2\nu}, f_{2\nu+1}]$, où $\nu = 0, 1, ..., n$. Pour tout $x, y(x) = F(x) \in I$.

On a par conséquent:

$$Pr \{ \sup_{-\infty < x < \infty} |S_N(x) - F(x)| < A \} = Pr \{ \sup_{y \in I} |S_N^0(y) - y| < A \}$$

Cette expression ne dépend pas de la forme particulière de F(x), mais uniquement de A, f_1, \ldots, f_{2n} . Le problème particulier que nous traitons consiste à chercher:

$$\lim_{N\to\infty} Pr\left\{\sup_{-\infty < x < \infty} |S_N(x) - F(x)| < zN^{-1/2}\right\} = \Phi(z, f_1, \ldots, f_{2n})$$

respectivement

$$\lim_{N\to\infty} Pr \{ \sup_{-\infty < x < \infty} (S_N(x) - F(x)) < zN^{-1/2} \} = \Phi^*(z, f_1, \dots, f_{2n})$$

Puisque ces expressions ne dépendent pas de la forme particulière de F(x) entre les points de discontinuité, nous supposerons que F(x) y est monotone croissante, comme par exemple la loi de distribution définie en (1.2). Donc, pour $f_{2\nu} \leq y \leq f_{2\nu+1}$, $F^{-1}(y)$ est défine univoquement.

2. Réduction du problème

Nous poserons:

$$f_{j} - f_{j-1} = h_{j}$$
 $j = 1, 2, ..., 2n + 1$ $s_{2\nu} = S_{N}(x_{\nu} + 0)$ $s_{2\nu-1} = S_{N}(x_{\nu} - 0)$ $\nu = 1, ..., n$ $s_{0} = 0$ $s_{2n+1} = 1$

Soit $h_{2\mu_1+1} = \ldots = h_{2\mu_i+1} = \ldots = h_{2\mu_n+1} = 0$.

Nous désignerons par j_1, \ldots, j_{2n-p+1} , où $j_1 < j_2 < \ldots < j_{2n-p+1}$, tous les indices: $1, \ldots, 2n+1$ à l'exception de $2\mu_1+1, \ldots, 2\mu_p+1$, par ν_0, \ldots, ν_{n-p} avec $\nu_0 < \nu_1 < \ldots < \nu_{n-p}$ tous les indices $0, \ldots, n$ à l'exception de μ_1, \ldots, μ_p . Soit finalement $a_j = s_j - s_{j-1}$ $j = j_1, \ldots, j_{2n-p+1}$. Les a_j ont une loi de distribution polynomiale:

$$Pr\left\{a_{j_1}=k_1/N,\ldots,a_{j_{2n-p+1}}=\frac{1}{N}\,k_{2n-p+1}\right\}=\frac{N\,!}{(k_1)\,!\,\ldots\,(k_{2n-p+1})\,!}\,k_{j_1}^{k_1}\ldots k_{j_{2n-p+1}}^{k_{2n-p+1}}$$

avec $k_1 + \ldots + k_{2n-p+1} = N$.

En faisant tendre N vers l'infini, et en posant:

$$y_j = (a_j - h_j) \sqrt{\overline{N}}$$
 $j = j_1, \ldots, j_{2n-p}$

on obtient la densité de probabilité suivante:

$$\lim \ f(y_{j_1},\ldots,y_{j_{2n-p}}) = c \cdot \exp \left(-rac{1}{2} \sum_{j,k=j_1}^{j_{2n-p}} L_{jk} y_j y_k
ight) \ L_{jk} = rac{1}{h_{j_2n-p+1}} \quad j
eq k \ L_{jj} = rac{1}{h_i} + rac{1}{h_{ion-p+1}} \quad j = j_1,\ldots,j_{2n-p} \ .$$

En posant encore:

où

$$z_{j_k} = \sum_{i=1}^k y_{j_i} = (s_{j_k} - f_{j_k}) \sqrt{N} \qquad k = 1, \dots, 2n - p$$

en ajoutant $z_{j_0} = z_{j_2n-p+1} = 0$ et en remarquant que $y_{j_k} = z_{j_k} - z_{j_{k-1}}$ et que le déterminant de la transformation est 1, on obtient finalement:

$$\lim_{N \to \infty} f(z_{j_1}, \dots, z_{j_{2n-p}}) = f_L(z_{j_1}, \dots, z_{j_{2n-p}}) =$$

$$= c \cdot \exp\left(-\frac{1}{2} \sum_{i=1}^{2n-p+1} \frac{1}{h_{ji}} (z_{ji} - z_{ji-1})^2\right)$$

$$c = (2\pi)^{-\binom{n-\frac{p}{2}}{1}} \prod_{i=1}^{2n-p+1} h_{ji}^{-\frac{1}{2}}$$

$$(2.1)$$

A la limite, les y_{j_K} répondent à une loi de distribution normale à (2n-p) dimensions. Puisque $E(y_{j_K}) = 0$, la fonction caractéristique correspondante sera l'exponentielle d'une forme quadratique des t_1, \ldots, t_{2n-p} . On peut en dire autant de la fonction caractéristique correspondant aux variables

$$z_{j_1},\ldots,z_{j_{2n-p}}$$
.

Celles-ci sont en effet des formes linéaires des $y_{i\kappa}$. Cette remarque nous sera utile ultérieurement (paragraphe 6).

Etant donnés, pour $h_{2\nu+1} > 0$, $z_{2\nu} = Z_{2\nu}$ et $z_{2\nu+1} = Z_{2\nu+1}$, nous montrerons au paragraphe suivant que

$$\lim_{N \to \infty} \Pr\left\{ \sup_{x_{\nu} < x < x_{\nu+1}} |S_N(x) - F(x)| < z N^{-\frac{1}{2}} |z_{2\nu} = Z_{2\nu}, z_{2\nu+1} = Z_{2\nu+1} \right\} =$$

$$= \Delta(z, Z_{2\nu}, Z_{2\nu+1}, h_{2\nu+1}). \tag{2.3}$$

Cette grandeur ne dépend donc pas des valeurs de z_k pour

$$k \neq 2\nu, k \neq 2\nu + 1.$$

On peut donc écrire, en ajoutant $x_0 = -\infty$, $x_{2n+1} = +\infty$, $z_0 = z_{2n+1} = 0$,

$$\lim_{N\to\infty} \Pr\left\{\sup_{-\infty < x < \infty} |S_N(x) - F(x)| < zN^{-\frac{1}{2}} |z_j = Z_j; \ j = j_1, \ldots, j_{2n-p}\right\} =$$

$$= \prod_{\nu=\nu_{\bullet}}^{\nu_{n-p}} \Delta \left(z \,,\, Z_{2\nu} \,,\, Z_{2\nu+1} \,,\, h_{2\nu+1} \right) \,.$$

Comme cette fonction Δ est naturellement nulle pour $Z_{2\nu} \geq z$ et pour $Z_{2\nu+1} \geq z$, on obtient:

$$\Phi(z, f_1, \ldots, f_{2n}) =$$

$$= \int_{\substack{|z_{j_1}| < z}} \int_{z} f_L(z_{j_1}, \ldots, z_{j_{2n-p}}) \prod_{\nu=\nu}^{\nu_{n-p}} \Delta(z, z_{2\nu}, z_{2\nu+1}, h_{2\nu+1}) dz_{j_1} \ldots dz_{j_{2n-p}}$$
(2.4)

respectivement

$$\Phi^*(z,f_1,\ldots,f_{2n}) =$$

$$= \int_{\substack{z \neq i < z}} \int_{z} f_{L}(z_{j_{1}}, \ldots, z_{j_{2n-p}}) \prod_{\nu=\nu_{0}}^{\nu_{n-p}} \Delta^{*}(z, z_{2\nu}, z_{2\nu+1}, h_{2\nu+1}) dz_{j_{1}} \ldots dz_{j_{2n-p}}$$
(2.4')

Le problème consiste à chercher maintenant les fonctions Δ , respectivement Δ^* . A cet effet, nous emploierons un raisonnement analogue à celui de Feller, et en particulier le même théorème relatif à la transformée de Laplace d'une fonction f(t).

3. Théorème auxiliaire

Etant donnée, pour t > 0, une fonction f(t), soit $\Phi(s) = \int_0^\infty e^{-st} f(t) dt$ sa transformée de Laplace. On écrit également: $\Phi(s) = L f(t)$.

Pour une suite u_1, \ldots, u_k, \ldots nous définissons: $u(\lambda) = \sum_{k=1}^{\infty} u_k \lambda^k$. Soit $f^{\delta}(t) = u_k$ pour $(k-1)\delta \leq t < k\delta$.

$$\begin{split} \varPhi_{\delta}(s) &= \int_{0}^{\infty} e^{-st} f_{\delta}(t) dt = \sum_{k=1}^{\infty} \int_{(k-1)\delta}^{k\delta} e^{-st} \cdot u_{k} dt = \sum_{k=1}^{\infty} \frac{u_{k}(e^{-(k-1)\delta s} e^{-k\delta s})}{s} = \\ &= \sum_{k=1}^{\infty} \frac{1}{s} (e^{\delta s} - 1) u_{k} e^{k - \delta s} = \frac{1}{s} (e^{\delta s} - 1) u(e^{-\delta s}). \end{split}$$

Hypothèse:
$$\delta u(e^{-\delta s}) \xrightarrow[s \to 0]{} \Phi(s)$$
 (3.1)

Conclusion: Pour tout
$$t > 0$$
, $u_k \xrightarrow{k\delta \to t} f(t)$ (3.2)

Réciproquement, (3.2) entraîne (3.1).

4. Calcul de \triangle (z, a, b, h)

Définitions:
$$\left(\frac{n}{k}\right)=C(n,k)$$

$$C(n,k)\ p^k\ (1-p)^{n-k}=B(n,k,p).$$
 \overline{A} est la négation de l'événement A .

Soient x' et x'' deux points de discontinuité voisins et

$$F(x'+0) = F_1;$$
 $F(x''-0) = F_2$ $h = F_1 - F_2 > 0$ $i = \lceil NF_1 \rceil + 1;$ $j = \lceil NF_2 \rceil$

Lorsque N est suffisamment grand, j > i.

F(x) étant continue et monotone croissante pour $x' \leq x \leq x''$, il est possible de trouver des points $x_0, \ldots, x_k, \ldots, x_s, s = j - i$, tels que

$$F(x_k) = \frac{i+k}{N}$$
; $k = 0,1,\ldots,s$.

Posons, pour simplifier, $S_N(x) - F(x) = C_N(x)$. Sur l'intervalle

$$x' < x \le x''$$
, $NC_N(x)$

ne prend des valeurs entières qu'aux points $x=x_0,\ldots,\,x=x_k,\ldots,\,x=x_s$. Posons $N\cdot C_N(x_0)=p\,,\,N\cdot C_N(x_s)=q\,,$ et cherchons pour un entier $c\,,$ tel que $c>0\,,\,c>\mid p\mid,\,c>\mid q\mid$:

$$Pr\left\{ \left. \max_{x_{0} < x < x_{s}} \mid C_{N} \mid < \frac{c}{N} \right| C_{N}\left(x_{0}\right) = \frac{p}{N}, C_{N}\left(x_{s}\right) = \frac{q}{N} \right\}$$

Si $N \cdot C_N(x) \ge c$, pour $x_0 < x < x_s$, cette relation sera valable pour un intervalle maximum contenant x et contenu dans $[x_0, x_s]$. A l'extrémité droite de cet intervalle, on aura $N \cdot C_N(x) = c$. Comme c est entier, cette

extrémité sera l'un des x_k . Le même raisonnement est valable lorsqu'on remplace c par -c et que l'on considère l'extrémité gauche de l'intervalle. Nous désignons par $A_k(c)$ l'événement $N \cdot C_N(x) = c$. En posant:

$$U_r = \overline{A}_1(c)\overline{A}_1(-c)\dots\overline{A}_{r-1}(-c)A_r(c)$$

$$V_r = \overline{A}_1(c)\overline{A}_1(-c)\dots\overline{A}_{r-1}(-c)\overline{A}_r(c)A_r(-c)$$
(4.1)

nous aurons donc, suivant notre raisonnement, et puisque les événements U_1, \ldots, U_r, \ldots et V_1, \ldots, V_r, \ldots s'excluent mutuellement:

$$Pr\left\{\max_{x_{\bullet} \leq x \leq x_{\bullet}} |C_N(x)| \geq \frac{c}{N}\right\} = \sum_{r=1}^{s} Pr\left\{U_r\right\} + \sum_{r=1}^{s} Pr\left\{V_r\right\} \tag{4.2}$$

$$Pr\left\{A_{k}(c)\right\} = \sum_{r=1}^{k} Pr\left\{U_{r}\right\} \cdot Pr\left\{A_{k}(c) \mid A_{r}(c)\right\} + \sum_{r=1}^{k} Pr\left\{V_{r}\right\} \cdot Pr\left\{A_{k}(c) \mid A_{r}(-c)\right\}$$

$$Pr\{A_{k}(-c)\} = \sum_{r=1}^{k} Pr\{U_{r}\} \cdot Pr\{A_{k}(-c) | A_{r}(c)\} + \sum_{r=1}^{k} Pr\{V_{r}\} \cdot Pr\{A_{k}(-c) | A_{r}(-c)\}$$

$$(4.3)$$

Nous pouvons calculer les facteurs de ce système de 2s équations pour les 2s inconnues $Pr\{U_r\}$ et $Pr\{V_r\}$. Posons encore m=j+q-(i+p). Alors:

$$Pr \{A_k(c)\} = B\Big(m, k+c-p, rac{k}{s}\Big)$$

$$Pr \{A_k(c) \mid A_r(c)\} = B\Big(m-r-c+p, k-r, rac{k-r}{s-r}\Big)$$

$$Pr \{A_k(c) \mid A_r(-c)\} = B\Big(m-r+c+p, k-r+2c, rac{k-r}{s-r}\Big). \quad (4.4)$$

Ces relations valent aussi pour c < 0. Posons, pour k et c entiers,

$$p_k(c) = e^{-k} \frac{k^{k+c}}{(k+c)!} . {(4.5)}$$

Les relations (4.4) deviennent alors:

$$Pr \{A_{k}(c)\} = \frac{p_{k}(c-p) \ p_{s-k}(m-c+p-s)}{p_{s}(m-s)}$$

$$Pr \{A_{k}(c) | A_{r}(c)\} = \frac{p_{k-r}(0) \ p_{s-k}(m-c+p-s)}{p_{s-r}(m-c+p-s)}$$

$$Pr \{A_{k}(c) | A_{r}(-c)\} = \frac{p_{k-r}(2c) \ p_{s-k}(m-c+p-s)}{p_{s-r}(m+c+p-s)}$$

$$(4.6)$$

En posant encore:

$$u_{r} = Pr \{U_{r}\} \frac{p_{s}(m-s)}{p_{s-r}(m-c+p-s)} = Pr \{U_{r}\} \frac{p_{s}(q-p)}{p_{s-r}(q-c)}$$

$$v_{r} = Pr \{V_{r}\} \frac{p_{s}(m-s)}{p_{s-r}(m+c+p-s)} = Pr \{V_{r}\} \frac{p_{s}(q-p)}{p_{s-r}(q+c)}$$

$$(4.7)$$

on obtient, à partir de (4.3)

$$p_{k}(c - p) = \sum_{r=1}^{k} u_{r} p_{k-r}(0) + \sum_{r=1}^{k} v_{r} p_{k-r}(2c)$$

$$p_{k}(-c - p) = \sum_{r=1}^{k} u_{r} p_{k-r}(-2c) + \sum_{r=1}^{k} v_{r} p_{k-r}(0). \tag{4.8}$$

La dernière équation est obtenue à partir de la précédente en remplaçant c par -c.

Nous passons maintenant aux fonctions génératrices. Il est important de remarquer que $p_k(c)$ est défini pour tout k et que le système (4.8) définit par conséquent les inconnues u_r et v_r pour tout r > 0.

$$egin{aligned} u\left(\lambda
ight) &= \sum\limits_{k=1}^{\infty} u_k \, \lambda^k & v\left(\lambda
ight) &= \sum\limits_{k=1}^{\infty} v_k \, \lambda^k \ p\left(\lambda,\,c
ight) &= N^{-rac{1}{2}} \sum\limits_{k=1}^{\infty} p_k(c) \, \lambda^k. \end{aligned}$$

Les équations (4.8) deviennent alors:

$$p(\lambda, c - p) = u(\lambda)p(\lambda, 0) + v(\lambda)p(\lambda, 2c)$$

$$p(\lambda, -c - p) = u(\lambda)p(\lambda, -2c) + v(\lambda)p(\lambda, 0). \tag{4.9}$$

Nous transformons encore l'équation (4.2) en posant

$$\xi_{k} = \frac{1}{p_{s}(q-p)} \sum_{r=1}^{k} u_{r} p_{k-r}(q-c)$$

$$\eta_{k} = \frac{1}{p_{s}(q-p)} \sum_{r=1}^{k} v_{r} p_{k-r}(q+c)$$

$$Pr\left\{\max_{x_{\bullet} \leq x \leq x_{\delta}} |C_{N}(x)| \geq \frac{c}{N}\right\} = \xi_{s} + \eta_{s}$$

$$\xi(\lambda) = \sum_{k=1}^{\infty} \xi_{k} \lambda^{k} = \frac{u(\lambda) p(\lambda, q-c) N^{\frac{1}{2}}}{p_{s}(q-p)}$$

$$\eta(\lambda) = \sum_{k=1}^{\infty} \eta_{k} \lambda^{k} = \frac{v(\lambda) p(\lambda, q+c) N^{\frac{1}{2}}}{p_{s}(q-p)}.$$

$$(4.10)$$

En passant à la limite, $N \to \infty$, nous posons:

$$c = zN^{\frac{1}{2}}; (z > 0)$$

$$p = aN^{\frac{1}{2}}; (|a| < z) \qquad q = bN^{\frac{1}{2}}; (|b| < z)$$

$$\frac{s}{N} \to h \qquad \qquad \frac{k}{N} \to t > 0.$$
(4.11)

La distribution $p_k(c)$ définie en (4.5) a la fonction caractéristique

$$\varphi_c(\tau) = \exp\left(k(e^{i\tau} - i\tau - 1)\right)$$

$$\varphi_z(\tau) = \exp\left(k(e^{i\tau N^{-\frac{1}{2}}} - i\tau N^{-\frac{1}{2}} - 1)\right) \sim \exp\left(-\frac{k\tau^2}{2N}\right) \sim \exp\left(-\frac{t\tau^2}{2}\right).$$

Donc

$$N^{\frac{1}{2}} p_k(c) \xrightarrow[N \to \infty]{} (2\pi t)^{-\frac{1}{2}} \exp\left(-\frac{z^2}{2t}\right). \tag{4.12}$$

Nous utilisons la réciproque du théorème du paragraphe 3 et posons $\,\delta=1/N,\,u_k=N^{\frac12}p_k(c)\,.$ (4.12) entraı̂ne

$$p(e^{-\frac{\sigma}{N}}, zN^{\frac{1}{2}}) \to \int_{0}^{\infty} (2\pi t)^{-\frac{1}{2}} \exp\left(-t\sigma - \frac{z^{2}}{2t}\right) dt = (2\sigma)^{-\frac{1}{2}} \exp\left(-(2\sigma z^{2})^{\frac{1}{2}}\right) (4.13)$$

Les équations (4.9) deviennent alors

$$\exp\left(-(z-a)(2\sigma)^{\frac{1}{2}}\right) = \lim_{N \to \infty} u(e^{-\frac{\sigma}{N}}) + \lim_{N \to \infty} v(e^{-\frac{\sigma}{N}}) \cdot \exp\left(-2z(2\sigma)^{\frac{1}{2}}\right)$$

$$\exp\left(-(z+a)(2\sigma)^{\frac{1}{2}}\right) = \lim_{N \to \infty} u(e^{-\frac{\sigma}{N}}) \cdot \exp\left(-2z(2\sigma)^{\frac{1}{2}}\right) + \lim_{N \to \infty} v(e^{-\frac{\sigma}{N}})(4.14)$$

Nous tirons également de (4.12), puisque $s/N \to h$:

$$p_s(q-p) \to (2\pi Nh)^{-\frac{1}{2}} \exp\left(-\frac{(a-b)^2}{2h}\right)$$

Nous aurons alors:

$$\lim_{N \to 1} \xi(e^{-\frac{\sigma}{N}}) = \left(\frac{2\pi}{2\sigma}\right)^{\frac{1}{2}} h^{\frac{1}{2}} \exp\left(\frac{(a-b)^2}{2h}\right) \cdot \\ \cdot \lim_{N \to 1} u(e^{-\frac{\sigma}{N}}) \cdot \exp\left(-(z-b)(2\sigma)^{\frac{1}{2}}\right) = \varphi(\sigma)$$

$$\lim_{N \to 1} \eta(e^{-\frac{\sigma}{N}}) = \left(\frac{2\pi}{2\sigma}\right)^{\frac{1}{2}} h^{\frac{1}{2}} \exp\left(\frac{(a-b)^2}{2h}\right) \cdot \\ \cdot \lim_{N \to 1} v(e^{-\frac{\sigma}{N}}) \exp\left(-(z+b)(2\sigma)^{\frac{1}{2}}\right) = \psi(\sigma). \tag{4.15}$$

Posons, pour simplifier les calculs,

$$\exp (-2z(2\sigma)^{\frac{1}{2}}) = X < 1$$
 $\exp (-a(2\sigma)^{\frac{1}{2}}) = A$
 $\exp (-b(2\sigma)^{\frac{1}{2}}) = B$

Nous résolvons alors les équations (4.14):

$$\lim u(e^{-\frac{\sigma}{N}}) = \frac{X^{\frac{1}{2}}A^{-1} - X^{\frac{1}{2}}A}{1 - X^{2}}; \qquad \lim v(e^{-\frac{\sigma}{N}}) = \frac{X^{\frac{1}{2}}A - X^{\frac{3}{2}}A^{-1}}{1 - X^{2}}$$

$$\lim u(e^{-\frac{\sigma}{N}}) \exp\left(-(z - b)(2\sigma)^{\frac{1}{2}}\right) = \frac{XB^{-1}A(A^{-2} - X)}{1 - X^{2}} =$$

$$= B^{-1}A^{-1}\frac{X}{1 - X^{2}} - B^{-1}A\frac{X^{2}}{1 - X^{2}} =$$

$$= B^{-1}A^{-1}(X + X^{3} + X^{5} + \dots) - B^{-1}A(X^{2} + X^{4} + \dots).$$

De même

$$\lim_{N \to \infty} v(e^{-\frac{\sigma}{N}}) \exp(-(z+b) (2\sigma)^{\frac{1}{2}}) = BA(X+X^3+\ldots) - BA^{-1}(X+X^2\ldots)$$
Lorsque $|\alpha| = |\beta| = 1$:

$$\left(\frac{2\pi}{2\sigma}\right)^{\frac{1}{2}}A^{\alpha}B^{\beta}X^{n}=L\left\{t^{-\frac{1}{2}}\exp\left(-\frac{(2nz+\alpha a+\beta b)^{2}}{2t}\right)\right\}. \quad \text{(cf. (4.13))}$$

Donc

$$\varphi(\sigma) = \mathcal{L}\left[h^{\frac{1}{2}}\exp\left(\frac{(a-b)^{2}}{2h}\right)t^{-\frac{1}{2}}\left\{\sum_{\nu=0}^{\infty}\exp\left(-\frac{(2(2\nu+1)z-a-b)^{2}}{2t}\right)\right.\right.$$

$$\left. -\sum_{\nu=1}^{\infty}\exp\left(-\frac{(4\nu z+a-b)^{2}}{2t}\right)\right\}\right] = \mathcal{L}f(t)$$

$$\psi(\sigma) = \mathcal{L}\left[h^{\frac{1}{2}}\exp\left(\frac{(a-b)^{2}}{2h}\right)t^{-\frac{1}{2}}\left\{\sum_{\nu=0}^{\infty}\exp\left(-\frac{2(2\nu+1)z+a+b)^{2}}{2t}\right)\right.$$

$$\left. -\sum_{\nu=1}^{\infty}\exp\left(-\frac{(4\nu z-a+b)^{2}}{2t}\right)\right\}\right] = \mathcal{L}g(t).$$

En employant le théorème du paragraphe 3, nous obtenons:

$$\xi_s \to f(s/N) \sim f(h) \; ; \quad \eta_s \to g(s/N) \sim g(h)$$

$$\lim_{N \to \infty} \Pr\left\{ \max_{x_0 \le x \le x_s} N^{\frac{1}{2}} | C_N(x)| < z | N^{\frac{1}{2}} C_N(x_0) \to a \; , \; N^{\frac{1}{2}} C_N(x_s) \to b \right\} =$$

$$= 1 - f(h) - g(h) = 1 - \exp\left(\frac{(a-b)^2}{2h}\right)$$

$$\sum_{\nu=0}^{\infty} \left[\exp\left(-\frac{(2(2\nu+1)z-a-b)^2}{2h}\right) + \exp\left(-\frac{(2(2\nu+1)z+a+b)^2}{2h}\right) \right]$$

$$-\sum_{\nu=1}^{\infty} \left[\exp\left(-\frac{(4\nu z+a-b)^2}{2h}\right) + \exp\left(-\frac{(4\nu z-a+b)^2}{2h}\right) \right]$$

$$= \exp\left(\frac{(a-b)^2}{2h}\right) \sum_{\nu=-\infty}^{+\infty} (-1)^{\nu} \exp\left(-\frac{(2\nu z+(-1)^{\nu}\cdot a-b)^2}{2h}\right) = \Delta_1(z,a,b,h)$$

$$(4.16)$$

Les calculs se simplifient lorsqu'il s'agit de déterminer $\Delta_1^+(z, a, b, h)$. Nous obtenons alors les expressions suivantes:

$$U_r = \overline{A_1}(c)\overline{A_2}(c)...\overline{A_{r-1}}(c)A_r(c)$$
 (4.1')

$$Pr\{A_k(c)\} = \sum_{r=1}^{k} Pr\{U_r\} Pr\{A_k(c) | A_r(d)\}$$
 (4.3')

$$p(\lambda, c - p) = u(\lambda) p(\lambda, 0) \tag{4.9'}$$

$$\lim_{N \to \infty} u(e^{-\frac{\sigma}{N}}) = \exp\left(-(z - a) (2\sigma)^{\frac{1}{2}}\right) \tag{4.14'}$$

$$\lim_{N \to \infty} N^{-1} \xi(e^{-\frac{\sigma}{N}}) = h^{\frac{1}{2}} \exp\left(\frac{(a-b)^2}{2h}\right) \left(\frac{2\pi}{2\sigma}\right)^{\frac{1}{2}} \exp\left(-(2z-a-b)(2\sigma)^{\frac{1}{2}}\right) = \varphi^+(\sigma) \tag{4.15'}$$

$$\varphi^{+}(\sigma) = L \left[h^{\frac{1}{2}} t^{-\frac{1}{2}} \exp\left(\frac{(a-b)^{2}}{2h}\right) \exp\left(-\frac{(2z-a-b)^{2}}{2t}\right) \right] = L f^{+}(t)$$

 $\lim_{N\to\infty} \Pr\{\max_{x_0\leq x\leq x_{\mathcal{S}}} N^{\frac{1}{2}} \cdot C_N(x) < z \mid N^{\frac{1}{2}}C_N(x_0) \to a \,, \,\, N^{\frac{1}{2}}C_N(x_{\mathcal{S}}) \to b\} = 1 \,-\, f^+(h) \,\,= \,\, n \to \infty$

$$=\exp\left(\frac{(a-b)^2}{2h}\right)\sum_{\nu=0}^1(-1)^{\nu}\exp\left(-\frac{(2\nu z+(-1)^{\nu}a-b)^2}{2h}\right)=\Delta_1^+(z,a,b,h).$$
(4.16')

Revenons maintenant aux points x' et x''. F_1 a la forme

$$\frac{i-1+\theta}{N} (0 < \theta \le 1) .$$

$$S_N(x'+0)$$
 a la forme $\dfrac{i+\pi}{N}$ $(\pi \leq p)$ et $S_N(x''-0)$ la forme $\dfrac{j+\gamma}{N}$ $(\gamma \geq q)$. $Pr\left\{\left.C_N(x_0) = \dfrac{p}{N}\,\middle|\,S_N(x'+0) = \dfrac{i+\pi}{N}\,,\;S_N(x''-0) = \dfrac{j+\gamma}{N}\right\} = S\left(s+\gamma-\pi,\,p-\pi,\,\dfrac{\theta}{N}\right) = \dfrac{(s+\gamma-\pi)!}{(p-\pi)!\,(s+\gamma-p)!}\left(\dfrac{\theta}{N}\right)^{p-\pi}\left(1-\dfrac{\theta}{N}\right)^{s+\gamma-p}$

Comme $s+\gamma-\pi \leq N$, $\frac{(s+\gamma-\pi)!}{(s+\gamma-p)!} \leq N^{p-\pi}$, et la probabilité cherchée est plus petite que $\frac{1}{(p-\pi)!}$. En posant $\pi=\alpha N^{\frac{1}{2}}$, $p=aN^{\frac{1}{2}}$, et $|a-\alpha|>\varepsilon>0$,

 $\lim_{N\to\infty} \Pr\left\{ | C_N(x_0) - C_N(x'+0)| N^{\frac{1}{2}} \geq \varepsilon \right\} \leq \lim_{N\to\infty} \sum_{n\geq sN^{\frac{1}{2}}} \frac{1}{n!} = 0, \text{ aussi petit que soit } \varepsilon. \text{ Même raisonnement pour } \left(C_N(x''-0) - C_N(x_s) \right) N^{\frac{1}{2}} \sim \beta - b.$

En notant par $g_L(a, b)$ dadb la probabilité limite pour que

$$a \leq N^{\frac{1}{2}}C_N(x_0) < a + da, \ b \leq N^{\frac{1}{2}}C_N(x_0) < b + db$$

et en considérant (2.3) et (4.16):

$$\Delta(z,\alpha,\beta,h) = \iint_{\substack{|b-\beta| < \varepsilon \\ |a-\alpha| < \varepsilon}} \Delta_1(z,a,b,h) g_L(a,b|\alpha,\beta) da db =$$

$$= \Delta_1(z,\alpha,\beta,h) + \iint_{\substack{|b-\beta| < \varepsilon \\ |a-\alpha| < \varepsilon}} [\Delta_1(z,a,b,h) - \Delta_1(z,\alpha,\beta,h)] g_L(a,b|\alpha,\beta) \cdot da \cdot db.$$

La dernière intégrale peut être rendue aussi petite que l'on veut car la valeur entre crochets peut être rendue plus petite que $\delta(\delta > 0)$ par un choix judicieux de ε , indépendamment de a et de b, et $\iint g_L da \cdot db = 1$. Ceci rend l'intégrale plus petite que δ , arbitrairement petit. Donc

$$\Delta (z, \alpha, \beta, h) = \Delta_1(z, \alpha, \beta, h)$$

$$\Delta^+(z, \alpha, \beta, h) = \Delta_1^+(z, \alpha, \beta, h)$$
(Même raisonnement) (4.17')

5. Résultats finaux

Nous tirons de (2.1), (2.4), (4.16) et (4.17)

$$\begin{split} \Phi(z, f_{1}, \dots, f_{2n}) &= c \cdot \int_{|z_{ji}| < z} dz_{j_{1}} \dots dz_{j_{2n-p}} \exp\left[-\frac{1}{2} \sum_{i=1}^{2n-p+1} \frac{1}{h_{j_{i}}} (z_{j_{i}} - z_{j_{i-1}})^{2} + \frac{1}{2} \sum_{\nu=\nu_{0}}^{\nu_{n-p}} \frac{(z_{2\nu+1} - z_{2\nu})^{2}}{h_{2\nu+1}} - \frac{1}{2} \sum_{l\nu_{0}, \dots, l\nu_{n-p} = -\infty}^{+\infty} (-1)_{i=0}^{n-p} \cdot \frac{\sum_{\nu=\nu_{0}}^{n-p} \frac{(2l_{\nu}z + (-1)^{l_{\nu}} z_{2\nu} - z_{2\nu+1})^{2}}{h_{2\nu+1}}}{h_{2\nu+1}}\right]. \end{split}$$

En permutant encore les signes $\int ... \int$ et Σ , on obtient le résultat final:

$$\Phi(z, f_{1}, \dots, f_{2n}) = \sum_{\substack{l_{v_{0}, \dots, l_{r_{n-p}} = -\infty}}}^{+\infty} (-1)^{i=0} c \cdot \int \dots \int \exp$$

$$\left[-\frac{1}{2} \sum_{j_{i}=2,4,6,\dots}^{2n} \frac{(z_{j_{i}} - z_{j_{i-1}})^{2}}{h_{j_{i}}} - \frac{1}{2} \sum_{\substack{\nu=v_{0}}}^{r_{n-p}} \frac{(2l_{\nu}z + (-1)^{l_{\nu}} z_{2\nu} - z_{2\nu+1})^{2}}{h_{2\nu+1}} \right] \cdot dz_{j_{1}} \dots dz_{j_{2n-p}}$$
(5.1)

c est défini en (2.2) et $h_j = f_j - f_{j-1}$. La formule (5.1) coı̈ncide avec la formule (25) du travail de M.P.Schmid, à condition de poser $h_j > 0$ pour $j = 1, 2, \ldots, 2n + 1$ c'est-à-dire p = 0. Dans ce cas, $j_{i-1} = j_i - 1$.

On trouve de la même façon:

$$\Phi^{+}(z, f_{1}, \dots, f_{2n}) = \sum_{\substack{l_{v_{0}, \dots, l_{v_{n-p}}=0}}}^{1} (-1)^{i=0} c \cdot \int_{z_{ji} < z} \dots \int_{z_{ji} < z} \exp \left[-\frac{1}{2} \sum_{j_{i=2,4,6\dots}}^{2n} \frac{(z_{j_{i}} - z_{j_{i-1}})^{2}}{h_{j_{i}}} - \frac{1}{2} \sum_{\substack{\nu=\nu_{0}}}^{\nu_{n-p}} \frac{(2l_{\nu}z + (-1)^{l_{\nu}} z_{2\nu} - z_{2\nu+1})^{2}}{h_{2\nu+1}} \right] dz_{j_{1}} \dots dz_{j_{2n-p}}.$$

$$(5.1')$$

6. Deux ensembles de variables aléatoires indépendantes

Soient X_1, \ldots, X_{M_1} et Y_1, \ldots, Y_{M_2} deux ensembles de variables aléatoires indépendantes possédant la même loi de distribution discontinue F(x) définie en (1.1). Nous poserons

$$S_{M_1}(x) - S_{M_2}(x) = C_{M_1M_2}(x)$$
 $rac{M_1M_2}{M_1 + M_2} = N; \qquad rac{M_1}{M_1 + M_2} = q_1; \qquad rac{M_2}{M_1 + M_2} = q_2.$

Si $M_1 \to \infty$ et $M_2 \to \infty$ de telle sorte que $M_1/M_2 = q_1/q_2 \to a$ (a = const.), alors, pour un z donné, $z \ge 0$, on démontre le théorème:

$$\lim_{N \to \infty} \Pr\left\{ \sup_{-\infty < x < \infty} |C_{M_1 M_2}(x)| < z N^{-\frac{1}{2}} \right\} = \Phi(z)$$
 (6.1)

où $\Phi(z)$ est défini en (5.1).

Nous allons ramener ce problème à celui traité dans les paragraphes précédents de la manière suivante:

Soit
$$s_{i,2\nu} = S_{M_i}(x_{\nu} + 0)$$
; $s_{i,2\nu-1} = S_{M_i}(x_{\nu} - 0)$ $i = 1, 2$ $z_{ik} = (s_{ik} - f_k) M_i^{\frac{1}{2}}$ $i = 1, 2$ $z_k = \frac{z_{1k} M_2^{\frac{1}{2}} - z_{2k} M_1^{\frac{1}{2}}}{(M_1 + M_2)^{\frac{1}{2}}} = (s_{1k} - s_{2k}) N^{\frac{1}{2}}$.

A la limite, les variables $z_{ij_1}, \ldots, z_{ij_{2n-p}}$ sont réparties selon (2.1). La remarque du paragraphe 2 nous permet d'écrire, en désignant par T une forme quadratique des t_1, \ldots, t_{2n-p} ,

$$\lim_{N\to\infty} \varphi_i(t_1,\ldots,t_{2n-p}) = \exp(T).$$

La fonction caractéristique correspondant aux variables $\left(\frac{M_2}{M_1+M_2}\right)^{\frac{1}{2}}z_{1k}$ sera à la limite:

$$\lim_{N\to\infty} \varphi_1^*(t_1,\ldots,t_{2n-p}) = \exp\left(\frac{M_2}{M_1+M_2}T\right).$$

De même, aux variables $-z_{2k} \left(\frac{M_1}{M_1+M_2}\right)^{\frac{1}{2}}$ correspond à la limite:

$$\lim_{N\to\infty} \varphi_{\scriptscriptstyle 2}^*(t_1,\ldots,t_{2n-p}) = \exp\left(\frac{M_1}{M_1+M_2}T\right).$$

Les variables z_k ont donc à la limite la fonction caractéristique:

$$\varphi^*(t_1,\ldots,t_{2n-p}) = \lim \varphi_1^* \varphi_2^* = \exp(T)$$

Les variables z_k sont donc réparties à la limite comme les variables z_{ik} , c'est-à-dire selon (2.1).

D'après les considérations précédentes, et en vertu de (2.4), il suffit pour prouver (6.1) de prouver

$$\lim_{N \to \infty} \Pr\left\{ \sup_{x\nu < x < x\nu + 1} |C_{M_1M_2}(x)| < zN^{-\frac{1}{2}} |z_{2\nu} = Z_{2\nu}, z_{2\nu+1} = Z_{2\nu+1} \right\} =$$

$$= \Delta(z, Z_{2\nu}, Z_{2\nu+1}, h_{2\nu+1}). \tag{6.2}$$

Démonstration de (6.2)

Nous pouvons supposer sans restriction:

$$q_1 \le q_2 \tag{6.3}$$

Soient de nouveau x' et x'' deux points de discontinuité voisins de la fonction F(x). Nous poserons:

$$M_1 S_{M_1}(x'+0) = i_1;$$
 $M_1 S_{M_1}(x''-0) = j_1;$ $j_1 - i_1 = m_1$
 $M_2 S_{M_2}(x'+0) = i_2;$ $M_2 S_{M_2}(x''-0) = j_2;$ $j_2 - i_2 = m_2$

Les X_i et les Y_j sont ordonnés de telle manière que

$$X_i \leq X_{i+1} \quad (i = 1, 2, ..., M_1 - 1); \qquad Y_j \leq Y_{j+1} \quad (j = 1, 2, ..., M_2 - 1)$$

Nous définissons v_k de telle manière que

$$X_{i_1+\nu_k} < Y_{i_2+k} \le X_{i_1+\nu_k+1}; \quad k = 1, 2, \dots, m_2$$

$$a_k = \left[\frac{q_1}{q_2} (k+i_2)\right] - i_1 \tag{6.4}$$

 $A_k(c)$ est l'événement $\nu_k = a_{k+c}$.

Lemme: Si, pour un x_0 , $x' < x_0 < x''$, et pour c entier,

$$c>0, c>\left|i_2-i_1rac{q_2}{q_1}
ight| \ {
m et} \ c>\left|j_2-j_1rac{q_2}{q_1}
ight|, \ |C_{M_1M_2}(x_0)|>rac{c}{M_2} \ (6.5),$$

alors l'un au moins des événements $A_1(c)$, $A_1(-c)$, ..., $A_{m_2}(c)$, $A_{m_2}(-c)$ arrive. Inversément, si l'un de ces événements arrive, il existe un

$$x_0, x' < x_0 < x''$$

tel que

$$|C_{M_1M_2}(x_0)| > \frac{c}{M_2} - \frac{1}{M_1}.$$
 (6.6)

Démonstration du lemme: Il suffit de considérer $C_{M_1M_2}(x_0) > \frac{c}{M_2}$. Cette relation sera vérifiée pour tout un intervalle compris dans [x', x''], puisque $|C_{M_1M_2}(x'+0)|$, $|C_{M_1M_2}(x''-0)| < \frac{c}{M_2}$. Soit ξ l'extrémité droite de cet intervalle. On aura nécessairement un k, $0 < k < m_2$, tel que $Y_k = \xi$.

$$S_{M_2}(\xi - 0) + \frac{c}{M_2} < S_{M_1}(\xi) \le S_{M_2}(\xi + 0) + \frac{c}{M_2}$$

$$\frac{i_2 + k - 1 + c}{M_2} < \frac{\nu_k + i_1}{M_1} \le \frac{i_2 + k + c}{M_2}.$$

Comme $M_1 \leq M_2$, $\nu_k = \left[(i_2 + k + c) \frac{M_1}{M_2} \right] - i_1 = a_{k+c}$, ce qui prouve le théorème. Inversément, si $A_k(c)$ arrive, et si l'on pose $\xi = Y_k$, on aura par définition:

$$S_{M_1}(\xi) = \frac{i_1 + \nu_k}{M_1} = \frac{i_1 + a_{k+c}}{M_1}; \quad S_{M_2}(\xi) = \frac{i_2 + k}{M_2}$$

$$S_{M_1}(\xi) > \frac{i_2 + k + c}{M_2} - \frac{1}{M_1} = S_{M_2}(\xi) + \frac{c}{M_2} - \frac{1}{M_1}$$

Ceci prouve la réciproque. Les conditions (6.5) et (6.6) sont symptotiquement égales et notre lemme dit que la probabilité de (6.5) est asymptotiquement la même que celle que l'un au moins des événements $A_1(c), \ldots, A_{m_2}(c)$ arrive.

Nous définissons U_r et V_r comme en (4.1) et les relations (4.3) sont également conservées. Pour évaluer les coefficients dans (4.3), nous remarquons que la probabilité de $A_k(c)$ est la même que celle de tirer a_{k+c} boules blanches avant la k-ième boule noire hors d'une urne contenant m_1 boules blanches et m_2 boules noires, les boules n'étant pas remises dans l'urne. On trouve donc:

$$\begin{split} Pr\left\{A_{k}(c)\right\} &= \frac{C\left(a_{k+c}+k-1,k-1\right)C\left(m_{1}+m_{2}-a_{k+c}-k,m_{2}-k\right)}{C\left(m_{1}+m_{2},m_{2}\right)} \\ Pr\left\{A_{k}(c) \mid A_{r}(c)\right\} &= \\ &= \frac{C\left(a_{k+c}-a_{r+c}+k-r-1,k-r-1\right)C\left(m_{1}+m_{2}-a_{k+c}-k,m_{2}-k\right)}{C\left(m_{1}+m_{2}-a_{r+c}-r,m_{2}-r\right)} \\ Pr\left\{A_{k}(c) \mid A_{r}(-c)\right\} &= \\ &= \frac{C\left(a_{k+c}-a_{r-c}+k-r-1,k-r-1\right)C\left(m_{1}+m_{2}-a_{k+c}-k,m_{2}-k\right)}{C\left(m_{1}+m_{2}-a_{r-c}-r,m_{2}-r\right)} \,. \end{split}$$

En amplifiant numérateur et dénominateur dans ces expressions, de manière à en faire des termes de la forme $B(n, k, q_2)$, et en posant au lieu de (4.7)

$$u_{r} = Pr \{U_{r}\} \frac{B(m_{1} + m_{2}, m_{2}, q_{2})}{B(m_{1} + m_{2} - a_{r+c} - r, m_{2} - r, q_{2})}$$

$$v_{r} = Pr \{V_{r}\} \frac{B(m_{1} + m_{2}, m_{2}, q)}{B(m_{1} + m_{2} - a_{r-c} - r, m_{2} - r, q_{2})}$$

$$(6.8)$$

nous obtenons à partir de (4.3), (6.7) et (6.8)

$$B(a_{k+c} + k - 1, k - 1, q_2) = \sum_{\substack{r=1\\ k}}^{k} u_r B(a_{k+c} - a_{r+c} + k - r - 1, k - r - 1, q_2) + \sum_{\substack{r=1\\ r=1}}^{k} v_r B(a_{k+c} - a_{r-c} + k - r - 1, q_2)$$

$$(6.9)$$

Nous prouverons plus bas que si, dans l'équation (6.9), nous remplaçons a_k par $(k+i_2) q_1/q_2 - i_1$, nous commettons une erreur asymptotiquement négligeable. En posant alors:

$$p_k(c) = B\left(\frac{k + cq_1}{q_2} - 1, k - 1, q_2\right)$$

$$s = m_2; m = m_1 \frac{q_2}{q_1}; \quad p = \frac{q_2}{q_1} i_1 - i_2; \quad q = \frac{q_2}{q_1} j_1 - j_2 \qquad (6.10)$$

l'équation (6.9) devient semblable à la première des équations (4.8). Il est clair que l'on obtiendrait de la même façon la 2ème de ces équations (4.8). Avec les notations de (6.10), les équations (6.8) prennent la forme des équations (4.7). Les deux systèmes d'équations seront donc asymptotiquement équivalents si les nouvelles grandeurs définies en (6.10) se comportent à la limite suivant (4.11) et (4.12).

Par une propriété bien connue des distributions binomiales, on sait que lorsque $n \to \infty$ et $\frac{h-np}{\sqrt{n\,p(1-p)}} \to y$,

$$\sqrt{np(1-p)} \ B(n,h,p,) \to \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}y^2)$$
 (6.11)

En ce qui concerne $p_k(c)$, on a:

$$k-1 = q_2 \left(\frac{k+cq_1}{q_2}-1\right) + (q_2-cq_1) = q_2 \left(\frac{k+cq_1}{q_2}-1\right) + y \sqrt{(k+cq_1-q_2)q_1}.$$

A la limite, nous poserons $c/M_2 = zN^{\frac{1}{2}}$ donc $c = z / \frac{M_2}{a}$ et $k/M_2 = t$.

D'où
$$y = \frac{q_2 - cq_1}{\sqrt{(k + cq_1 - q_2)q_1}} \sim -zM_{\frac{1}{2}}^{\frac{1}{2}}(tM_2 + z\sqrt{M_2q_1})^{-\frac{1}{2}}$$
. Pour un z fixe et pour $t > 0$, on a $y \sim -zt^{-\frac{1}{2}}$, donc

$$(2\pi)^{-rac{1}{2}}\exp\left(-rac{z_2}{2t}
ight) \sim \sqrt{(k+cq_1-q_2)}\,q_1\cdot p_k(c) \sim \sqrt{M_2t}\cdot p_k(c)$$
 .

Ceci correspond à (4.12). Nous justifions immédiatement la transformation de (6.9). Nous avons remplacé une expression $B(n, h, q_2)$ par $B(n + \delta, h, q_2)$ où $|\delta| < 1$, et $h/n \rightarrow q_2$.

Si $\frac{h-nq_2}{1/nq_2(1-q_2)} \rightarrow y$, il en sera de même lorsqu'on remplacera n par $n+\delta$ et la relation (6.11) est également valable lorsqu'on remplace n par $n + \delta$; en ajoutant encore $\sqrt{nq_2(1-q_2)} \sim \sqrt{(n+\delta)q_2(1-q_2)}$, on obtient:

$$B(n, h, q_2) \sim B(n + \delta, h, q_2)$$
.

A la limite, nous poserons également

$$C_{M_1M_2}(x'+0) = \frac{i_1}{M_1} - \frac{i_2}{M_2} = aN^{-\frac{1}{2}} \qquad \text{donc } p = a\left(\frac{M_2}{q_1}\right)^{\frac{1}{2}}$$
 $C_{M_1M_2}(x''-0) = \frac{j_1}{M_1} - \frac{j_2}{M_2} = bN^{-\frac{1}{2}} \qquad \text{donc } q = b\left(\frac{M_2}{q_1}\right)^{\frac{1}{2}}.$

Malheureusement, on ne peut pas poser $s/M_2 \sim h$, mais seulement, puisque

$$Pr\left\{s\right\} = B(M_2, s, h)$$

$$Pr\left\{\left|\frac{s}{M_2}-h\right|\geq \varepsilon\right\} \to 0$$
, aussi petit que soit ε .

Posons $\lim \frac{s}{M_0} = h^*$. Alors

$$\lim_{N\to\infty} \Pr\left\{ \sup_{x'< x< x''} |C_{M_1M_2}(x)| < zN^{-\frac{1}{2}} |N^{\frac{1}{2}}C_{M_1M_2}(x'+0) = \right.$$

$$=a,N^{\frac{1}{2}}.C_{M_1M_2}(x''-0)=b,\,\frac{s}{M_2}=h^*\Big\}=\Delta^*(z,a,b,h^*).$$

Si $h^* = h$ notre système d'équations est asymptotiquement égal au système (4.7), (4.8) et (4.5). Donc $\Delta^*(z, a, b, h) = \Delta(z, a, b, h)$, cette dernière grandeur étant définie par (4.16) et (4.17). Δ^* est une fonction continue en h^* dans le voisinage de h.

En désignant par $g_L(h_{2\nu_0+1}^*, \ldots, h_{2\nu_{n-p}+1}^*) dh_{2\nu_0+1}^* \ldots dh_{2\nu_{n-p}+1}^*$ la probabilité limite pour que $h_{2\nu_i+1}^* \le \frac{s_i}{M_2} < h_{2\nu_i+1}^* + dh_{2\nu_i+1}^*$:

$$\lim_{N o \infty} \Pr\left\{ \sup_{-\infty < x < \infty} |C_{M_1 M_2}(x)| < z N^{-\frac{1}{2}} \right\} =$$

$$= \int \dots \int f_L(z_{j_1}, \dots) g_L(h_{2\nu_0+1}^*, \dots) \prod_{\nu=\nu_0}^{\nu_{n-p}} \Delta^*(z, z_{2\nu}, z_{2\nu+1}, h_{2\nu+1}^*) dh_{2\nu_0+1}^* \dots dh_{2\nu_{n-p}+1}^* \cdot dz_{j_1} \dots =$$

$$=\int_{|z_{ji}|< z} \int_{|z_{0i}|< z} f_L(z_{j_1}, \ldots) g_L(h_{2\nu_0+1}^*, \ldots) \prod_{\nu=\nu_0}^{\nu_{n-p}} \Delta(z, z_{2\nu}, z_{2\nu+1}, h_{2\nu+1}) dh_{2\nu_0+1}^* \ldots dh_{2\nu_{n-p}+1}^* \cdot dz_{j_1} \ldots +$$

$$+ \int_{\substack{|z_{ji}| < z \\ |h_{2\nu_{i}+1}^{*} - h_{2\nu_{i}+1}| < \varepsilon \\ - \prod_{\nu=\nu_{0}}^{\nu_{n} - p} \Delta(z, z_{2\nu}, z_{2\nu+1}, h_{2\nu+1}^{*}) - \frac{1}{2\nu_{0}} dz + \frac{1}{2\nu_{$$

L'intégrale de l'avant-dernière ligne vaut $\Phi(z, f_1, \ldots, f_{2n})$ puisque

$$\int \ldots \int g_L(\ldots) dh_{2\nu_0+1}^* \ldots dh_{2\nu_{n-p}+1}^* = 1.$$

Pour la même raison et parce que la valeur entre crochets peut être rendue plus petite que $\delta(\delta > 0)$ par un choix judicieux de ε , la dernière intégrale dans (6.12) peut être rendue aussi petite que l'on veut. Ceci prouve (6.1).

(Eingegangen den 9. November 1961)

REFERENCES

- [1] A.N.Kolmogorov; Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari, Vol. 4 (1933), pp. 83-91.
- [2] W. FELLER: On the Kolmogorov-Smirnov theorems for empirical distributions. Ann. Math. Stat., Vol. 19 (1948), pp. 177-189.
- [3] J.L.Doob; Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat., Vol. 20 (1949), pp. 393-403.
- [4] M.D.Donsker: Justification and extension of Doobs heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat., Vol. 23 (1952), pp. 277-281.
- [5] P. Schmid: On the Kolmogorov and Smirnov theorems for discontinuous distribution functions. Ann. Math. Stat., Vol. 29 (1958), pp. 1011-1027.