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Sur les théorèmes de Kolmogorov et Smirnov

dans le cas d'une distribution discontinue

Par Henri CabnaIj, Zurich

Introduction

Les théorèmes de Kolmogorov et Smirnov qui ont trait à l'écart, l'un entre
une loi de distribution empirique et une loi de distribution théorique continue,
l'autre entre deux distributions empiriques furent démontrés pour la première
fois en 1933, respectivement 1939. Kolmogorov [1] base sa démonstration sur
un lemme qui généralise le théorème de la limite centrale. D'autres démonstrations

des mêmes théorèmes furent publiées par Feller [2] et par Doob [3]
et Donsker [4]. Feller utilise les fonctions génératrices et Doob emploie la
théorie des processus stochastiques.

Ces théorèmes furent généralisés dans le cas discontinu par M.P.Schmid [5],
en utilisant la méthode de démonstration de Kolmogorov. Dans ce travail,
nous nous proposons d'étendre également au cas discontinu la méthode de

Feller.
Dans le paragraphe 1, nous définissons les fonctions <Z>(z,/l5 ...,/n) et

^* (zJi>"-)/n) ^i caractérisent l'écart entre les lois de distribution théorique
et empirique. Les paragraphes 2 et 4 sont consacrés aux calculs, le paragraphe 3

à un théorème sur les transformations de Laplace utilisé par Feller [2]. Le
paragraphe 5 contient les expressions pour 0 et 0*. Dans le paragraphe 6,

nous démontrons que l'écart entre deux distributions empiriques peut aussi
être caracténsé par la fonction 0.

Note: Cette étude représente la deuxième partie d'un travail de diplôme
présenté en juin 1961 à FEPF de Zurich. Le sujet de ce travail de diplôme m'a
été proposé par M. le professeur W. Saxer.

1. Enoncé du problème

Soit F(x) une loi de distribution présentant des discontinuités en xx,..., xn.
Nous posons :

/O 0 î /2n+l ~ l
/2v-i F(xv - 0) ; /„ F(x, + 0) v 1,..., n (1.1)

Soient Xl9... ,X& des variables aléatoires indépendantes réparties suivant
la loi de distribution F(x) définie ci-dessus. Nous posons :

SN{x) -^- (Nombre de Xi ; X€<x).
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Si F(x + a) F(x) pour a > 0, la probabilité : Pr {x <X{ < x + a} est
nulle. Donc, si F(x) > F(Xi), on a avec la probabilité 1, x >Xt.

Donc, avec probabilité 1 :

8N(x) -^- (Nombre de Xt < x) ~ (Nombre de F(Xt) < F(x)) S^(y).

A la variable y F(x) correspond la loi de distribution suivante :

F°(y) -
0 pour y < 0

y pour f2v<y < f2v+1 v 0, 1,..., n
hv-i pour j2v_x <y<f2v v 1, 2,..., n (1.2)
1 pour y > 1

Alors, avec la probabilité 1 :

SN(x) - F(x) S* (y) - F«(y) 8%(y) -y y F(x)

Désignons par / la réunion des intervalles fermés [f2v, f2v+\], où v 0} l,...,w.
Pour tout x, y(x) F(x) e I,

On a par conséquent :

Pr { sup | SN(x) - F(x)\ < A} Pr { sup | 8$,(y) - y\ < A}

Cette expression ne dépend pas de la forme particulière de F(x), mais

uniquement de A, fx,..., f2n. Le problème particulier que nous traitons
consiste à chercher :

lim Pr { sup | 8N(x) - F(x)\ < zN-*»} 0(z, /1?..., f2n)

respectivement

lim Pr { sup (SN(x) - F(x)) < zN~^} **(», /lf..., /2n)
— oo<a?< oo

Puisque ces expressions ne dépendent pas de la forme particulière de F(x)
entre les points de discontinuité, nous supposerons que F (x) y est monotone
croissante, comme par exemple la loi de distribution définie en (1.2). Donc,

pour f2v <y < f2v+1, F'1 (y) est défine univoquement.

2. Réduction du problème

Nous poserons :

U-ti-x^h ; 1,2,..., 2n+ 1

%v SN{xv + 0) s^ SN{xv - 0) v 1,. n
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Soit h2/4i+1 h2tti+1 h2/ip+1 0.
Nous désignerons par jl9... 9 j2n-9+1, où jx < j2 < < fa-p+i, tous les

indices : 1,..., 2n + 1 à l'exception de 2^ + 1,..., 2/z9 -f- 1, par
vQ,..., rw_P avec v0 < vx < < vn-1, tous les indices 0,... n à

l'exception de nx,..., fxp. Soit finalement ai s, — *,_,_ / jx,..., /8n-p+i •

Les a, ont une loi de distribution polynomiale :

Pr j a9l JcJN,..., aJ2n_p+1 -11^_,+1 J (^ i... (jfc^^) i
**x- • ' *to+i

avec ^ + •. • + *2«-p+i N-
En faisant tendre N vers l'infini, et en posant :

î À»

on obtient la densité de probabilité suivante:

?2fl-3>
Km f(yh,..., y, c exp (- \ E L^

OÙ Ljk -r j
rt/32n-P+l

¦^33 ~% r ~T 9 =z
") fl/32n-v+l

En posant encore :

zn ZyJ% (sJk - fn) ]/W k=l,...,2n-p
en ajoutant z3q zHnj)+i 0 et en remarquant que yih — zjk — zjk_x et
que le déterminant de la transformation est 1, on obtient finalement:

Km / (zH,..., 2 fL (zH,... 2/i||_ (2.1)

2n-p+l I

(~| 27 —(zu -zu_x)*)

c (2n)-\n-T) n hj (2.2)
i*=i

A la limite, les yJK répondent à une loi de distribution normale à (2n — p)
dimensions. Puisque E(yjK) 0, la fonction caractéristique correspondante
sera l'exponentielle d'une forme quadratique des t±,,.., t2n_P. On peut en
dire autant de la fonction caractéristique correspondant aux variables
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Celles-ci sont en effet des formes linéaires des yJK. Cette remarque nous sera
utile ultérieurement (paragraphe 6).

Etant donnés, pour h2v+1 > 0, z2v Z2v et z2v+1 Z2v+li nous montrerons
au paragraphe suivant que

lim Pr { sup | 8»(x) - F(x) \ < zN~h | z* Z2v, z*v+1 Zir+1}
N—>oo xp<x<xv+1

A(z,Z2v,Z2v+1,h2v+1). (2.3)

Cette grandeur ne dépend donc pas des valeurs de zk pour

h ^ 2v,k ^ 2v + 1.

On peut donc écrire, en ajoutant x0 — oo, x2n+1 -f- oo, zù z2n+1 0,

lim Pr { sup | 8N(x) - F(x)\ < zN~ï \z, Zi; j jl9..., j2n_P}
N—>oo —oo<a;<oo

n A (z, Z2v, Z2v+1, h2v+1)

Comme cette fonction A est naturellement nulle pour Z2v >z et pour
^2y+i ^ z on obtient :

/ ^ tn, A2v+1) d^ dzhnp (2.4)
\zji\<z v~v*

respectivement

S--Ul (zh, • • •, 2/tll.p) il ^ * («, «a,, ^y+i, hv+1) dzh... dzhnp (2Af)
zji<z *~v9

Le problème consiste à chercher maintenant les fonctions A, respectivement
A *. A cet effet, nous emploierons un raisonnement analogue à celui de Feuler,
et en particulier le même théorème relatif à la transformée de Laplace d'une
fonction f(t).

3. Théorème auxiliaire

00

Etant donnée, pour £>0, une fonction f(t), soit 0(s) $ e~8t f(t)dt sa
o

transformée de Laplace. On écrit également: &(s) L f(t)
00

Pour une suite %,...,%,... nous définissons: u{X) E uk Xk.

Soit f*{t) % pour (Je - l)ô < t < ko. k"1
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00 CO kd 00 n, /g-(ifc-l)S« g-&8«\
0d (8) J e~8t fd (t)dt ==¦- Z J e~8t • ukdt Z1 -^ -

0 *«*1 (* —l)ô *—1 *

00 J 1

Jfc—1 S k
S

Hypothèse: àu{e~h8) -^+ 0(s) (3.1)
Conclusion: Pour tout t > 0, %-r—? f(t) (3.2)
Réciproquement, (3.2) entraîne (3.1).

4. Calcul de A (z, a, b, h)

Définitions : I -j- J =- C (n, k)

C(n,k)pk(l - p)n~k B(n,kfp).

A est la négation de l'événement A.

Soient x' et x" deux points de discontinuité voisins et

F(xr + 0) Fx\ F{x" - 0) F2

h F±- F2>0

Lorsque N est suffisamment grand, / > i.
.F(#) étant continue et monotone croissante pour x1 < x < x", il est

possible de trouver des points x0,..., xk,..., x8is — j — i, tels que

;fc 0,1,...,- v~*/ N

Posons, pour simplifier, Sn(x) — F(x) Cn{%)> Sur l'intervalle

xr <x< x\ NCN(x)

ne prend des valeurs entières qu'aux points x xQi..., x xk>..., x x8.
Posons N - Cn{xq) P, N'C^(x8) q, et cherchons pour un entier c, tel
que c>0, c> | p |, c > | g | :

f c p q)Pr {
x ™*<x8

' °N ' <~N °N {Xo) ~N9°n (Xs)
~N]

Si N-Cn(x) > c, pour a;0 < a; < a:,, cette relation sera valable pour un
intervalle maximum contenant x et contenu dans [x0)x8], A l'extrémité
droite de cet intervalle, on aura N*Cn(x) c. Comme c est entier, cette
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extrémité sera l'un des xk. Le même raisonnement est valable lorsqu'on
remplace c par — c et que Ton considère l'extrémité gauche de l'intervalle. Nous
désignons par Ak(c) l'événement N-Cn(x) c. En posant:

Ur Â1(c)I1{- c)... 2r-1(- c)ilr(c)

Fr Z^c)Jx(- c)... Z^- c)Zr(c)Ar(- c) (4.

nous aurons donc, suivant notre raisonnement, et puisque les événements

U1,..., Ur,... et Vl9..., Vr9... s'excluent mutuellement:

Pri max | CN(x)\ > j^\ ZPr {Ur} + S Pr {Vr} (4.2)

h h

Pr {Ak(c)} ZPr {Ur}-Pr {Ak(c)\ Ar(c)} + ZPr {Vr}-Pr {Ak(c)\ Ar{- c)}
r-l r-l

r-l r-l (4>3)

Nous pouvons calculer les facteurs de ce système de 2s équations pour les 2 s

inconnues Pr {Ur} et Pr {Vr}. Posons encore m j-\-q—(i-\-p). Alors:

Pr {Ak(c) | Ar(c)}

Pr {Ak(c)\Ar(- c)}=B(m-r + c + p,k-r + 2c,y£-p) (4.4)

Ces relations valent aussi pour c<0. Posons, pour k et c entiers,

hk+c

(M^)! (4-5)

Les relations (4.4) deviennent alors:

Pr {Ak(c)}
y*(c ~ P) P^(W ~ e + P " 8)

Pr Mfc(6)| ^(c)}
P*-r(O) p,-k(m-c + P - s) (4>6)- s)

.-r(»» - C + p -
Pr {Ak(c)\Ar(- c)} R^C^pJm-e +
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En posant encore :

ur Pr {Ur} Jbk!L=A Pr{Ur} *&*\ri p(m -c + p -s) spPr{Ur} \

vr Pr{Vr} *<* -ê)
v Pr{Vr} Rfa-P) (4.7)ri ps__r(m + c + p -s) x rS ps_r(q + c)

v ;

on obtient, à partir de (4.3)
Te k

VÀC ~ V) ZUrPh-rW + Zvrpk_r(2c)

k k

Pk(- c - p) Zurpk..r(- 2c) + Zvrpk_r(0). (4.8)

La dernière équation est obtenue à partir de la précédente en remplaçant c par
— c.

Nous passons maintenant aux fonctions génératrices. Il est important de

remarquer que pk(c) est défini pour tout k et que le système (4.8) définit par
conséquent les inconnues ur et vr pour tout r > 0.

v(X)

-i Zpk(c)Xk.

Les équations (4.8) deviennent alors:

p(k, c-p) u(X)p(X, 0) + vWp(X, 2c)

p{X, -c-p) «(A)p(A,-2c)+»(A)p(A,0). (4.9)

Nous transformons encore l'équation (4.2) en posant

Pr\ max | CN(x)\ >-^\ f. + (4-10)

P.(q- P)

t-i
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En passant à la limite, N -> oo, nous posons:

c zNi ; (z>0)

p aNi; (\a\<z) q bNÏ; (\b\<z) (4.11)

h t>0

La distribution pk(c) définie en (4.5) a la fonction caractéristique

<po(r) exp (k(eiT — ir — 1))

__1 -1 / lCT2\ I
9z(r) exP (^(«iTjy — * ^iV * — 1)) r^j expl —ôl^") /^/ exP "~

Donc

N* pk (c) ^—> (2W0"1 exp - -£- (4.12)

Nous utilisons la réciproque du théorème du paragraphe 3 et posons (5 1/JV,

ttfc Nipk(c). (4.12) entraîne

Jt) (2^ exp (-(2 cr^)*) (4.13)

Les équations (4.9) deviennent alors
or a

exp (- (z - a) (2a)*) Km w(e"^) + lim v(e"^") • exp (- 2z(2cr)*)

exp (- (z + a) (2or)*) lim ^(e"^") • exp (- 22 (2er)*) + Mm v{e"*') (4.14)

Nous tirons également de (4.12), puisque sjN -> A :

P.(ï - V) ~> (*tNh)-i exp (- (a

Nous aurons alors :

"F). exp (— (z — 6)

• Hm t; (e~i") exp - (z + b) (2 <j)*) y (a). (4.15)
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Posons, pour simplifier les calculs,

exp (- 2z(2<r)*) =X< 1

exp — a(2o)%) A
exp (- 6(2a)*) B

Nous résolvons alors les équations (4.14) :

/,Hn XÏ A-XÏ A-1(e jv)hmu(e n)= ^

hmu{e jy)exp(-(« - 6) (2a)*)

5141 Bl
B^A-1 (X + X8 + X5 + - B-^AiX* + X* + ...)•

De même

lim tf(e~^") exp (- (z + 6) (2a)*) BA(X+X*+ - JS^L"1 (Z+X2...)
Lorsque | # | | /? | 1 :

Donc

En employant le théorème du paragraphe 3, nous obtenons :

£» -> f{s/N) ~ f(h) ; tj8 -> g(s/N) ~ g(h)

lim Pr { max N%\ Cn{x)\<z\
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!-/(*)-?(*) !-exp

exp

(o ~
2h

(2(2r+ l)z-a-by
2*

2 A exp — - a + 6)2

—- exp
(a-*)«

Les calculs se simplifient lorsqu'il s'agit de déterminer A^ (z, a, b, h). Nous
obtenons alors les expressions suivantes :

Ur A1{c)Ai(c)...Ar_x(c)AT{c)

Pr {Ak(c)} i Pr {Ur} Pr {Ak(c)\ Ar{d)}

lim N'1

(4.1')

(4.3')

(4.9')

lim u(e~~ïï~) exp (- (z - a) (2 a)*) (4.14')

~ F exp (- (2z - a - b) (2a)*) <p+(a)A*exp

max ar)< 21

Revenons maintenant aux points a;' et x". F1 a la forme

»- 1 +

A+(z,a,b,h)
(4.16')

N {0<6 < 1).

x' + 0) a la forme
N— (n < <p) et SN(x" - 0) la forme 7 ~LY (y>q)

J + Y

B s

SN(x' + 0) -^1, 8N(x" - 0) -N
(s + y - n)

(î)-OT)!(s + y-23)!\iV
±
N

8+y-p
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Comme s + y - n < N, |* ^ ~ n
j < Np~", et la probabilité cherchée

est plus petite que _ f
En posant n oc Ni, p aNi, et

\a — oc\>6> 0,

lim Pr {| CN(x0) - C^a' + 0) | JV* > e} < lim Z .-^y 0, aussi petit que

soit e. Même raisonnement pour (Cn(x" — 0) — Cn(%s)) Ni ~ j8 — 6.
En notant par <7l(#, 6) dadb la probabilité limite pour que

a < NiCN{x0) <a + da, b < NiCN(x8) <b + db,

et en considérant (2.3) et (4.16):

A(z,<x,(l,h) JJ A1{zya,b,h)gL{a,b\(x,p)dadb
4(2, «, j8, A) + JJ [4(2, a, 6, A) - 4(«. «.&

La dernière intégrale peut être rendue aussi petite que l'on veut car la valeur
entre crochets peut être rendue plus petite que ô (ô > 0) par un choix judicieux
de e, indépendamment de a et de b, et jjgLda-db 1. Ceci rend l'intégrale

plus petite que ô, arbitrairement petit. Donc

A (z,*,p,h) =4(2,«,j8,A) (4.17)
A+(z, oc, fS, h) Af(z, oc, ^, h) (Même raisonnement) (4.17;)

5. Résultats finaux

Nous tirons de (2.1), (2.4), (4.16) et (4.17)

[2n-p+l
1

1-1 %<

£«

l
_

J

En permutant encore les signes J...J et S, on obtient le résultat final :

n-v

*(*./i,-.../t»)=fr ^ _J-l)i-o"c • J...Jexp

f- i ^i-^1! _ ^>(2^ + (-i)^-^)M dZh... dZhn
L ><-2,4,6... %t ,_,. A&2H-1 J

(51)(5.1)



30 Henbi Caunal

c est défini en (2.2) et %i=z j. — fj_x. La formule (5.1) coïncide avec la
formule (25) du travail de M.P.Schmid, à condition de poser ^>0 pour
j 1, 2,..., 2n + 1 c'est-à-dire p 0. Dans ce cas, ji-x j{ — 1.

On trouve de la même façon :

n-p

h,...,U= h (-l)i-o"c-J...Jexp
lVto...,lvn-pa*0 zji<z

(5.1')

6. Deux ensembles de variables aléatoires indépendantes

Soient X1,..., Xm\ et Y1,..., Fm2 deux ensembles de variables
aléatoires indépendantes possédant la même loi de distribution discontinue F(x)
définie en (1.1). Nous poserons

(x) - SM2(x)

M1M2 _ Mx
__ m

M2

Si M! -> oo et M2 ->oo de telle sorte que MX\M2 qx\q2 -> a (a const.),
alors, pour un z donné, z > 0, on démontre le théorème:

lim Pr { sup | CMim2(x)\ < zN~*} ®{z) (6.1)
JV—>oo —oo<a;<oo

où 0(z) est défini en (5.1).
Nous allons ramener ce problème à celui traité dans les paragraphes

précédents de la manière suivante :

Soit sit2v SMi(xP + 0) ; siJÊI^1 SMi(xv - 0) i 1, 2

« __
zlkM\-z2kM\

A la limite, les variables ziiv Zn%n-.v sont réparties selon (2.1).
La remarque du paragraphe 2 nous permet d'écrire, en désignant par T une

forme quadratique des ^,..., ^n_p,

lim
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La fonction caractéristique correspondant aux variables (21 Z

sera à la limite :

De même, aux variables — z2k l -=-=—*
1Uf correspond à la limite :

lim y*(^,..., ^p) exp
* ÏM

Les variables zk ont donc à la limite la fonction caractéristique:

V*(h, • • •, W-p) lim ^>* - exp (T)

Les variables 2;fc sont donc réparties à la limite comme les variables zik9

c'est-à-dire selon (2.1).
D'après les considérations précédentes, et en vertu de (2.4), il suffit pour

prouver (6.1) de prouver

lim Pr { sup | CMim2(x) \ < zN~b\ z2v Z2v, z2v+1 Z2v+1}
^~>oo xv<x<xv+t

A(z,Z2v,Z2v+1,h2v+1). (6.2)

Démonstration de (6. 2)

Nous pouvons supposer sans restriction :

qx<q2 (6.3)

Soient de nouveau x' et x" deux points de discontinuité voisins de la
fonction F(x). Nous poserons :

Mx SMl(x' + 0) ix ; Mx SMl{x" - 0) jx ; jx - ix mx

M2 SMt(x' + 0) i2 ; M2 SM2(x" - 0) ?2 ; j, - i2 m2

Les X€ et les Yô sont ordonnés de telle manière que

*i<XM (i l,2,...,M1-l); Yt<Yi+1 (j 1, 2,..., M2 - 1)

Nous définissons vk de telle manière que

¦X-h+vjc < Yi%+k < -^^+^+1 »
A; 1, 2,..., m2

«» [|M* + h)] - »'t (6-4)

-4fc(c) est l'événement vk ak+e.
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Lemme: Si, pour un x0, x' < x0 < x", et pour c entier,

c>0,c> h - V et c>

alors l'un au moins des événements A^c), Ax( — c),..., Am%(c), Am%(— c)
arrive. Inversement, si l'un de ces événements arrive, il existe un

x x
tel que

(6-6)

pDémonstration du lemme: II suffit de considérer Cm\m2{xo) >"ït~ • Cette
M2

relation sera vérifiée pour tout un intervalle compris dans [x', x"], puisque

| CmiM2(x' + 0) I, | CW1M2 W - 0) | < -^r- Soit | l'extrémité droite de cet

intervalle. On aura nécessairement un k, 0 < h < m2, tel que Yk £

o) + -£- < sMl (i) < sM* (i + o) +

k — l+c vk + h ^ H + k + c

M2 M2

Comme Mx < M2 ,vk= \(i2 + Je + c) —^ — ix ak+c, ce qui prouve le
L M2 J

théorème. Inversement, si Ak(c) arrive, et si l'on pose Ç Yk, on aura par
définition :

Ceci prouve la réciproque. Les conditions (6.5) et (6.6) sont symptotiquement
égales et notre lemme dit que la probabilité de (6.5) est asymptotiquement la
même que celle que Fun au moins des événements A1(c)f..., Am2(c) arrive.

Nous définissons Ur et Vr comme en (4.1) et les relations (4.3) sont
également conservées. Pour évaluer les coefficients dans (4.3), nous remarquons

que la probabilité de Ak(c) est la même que celle de tirer ak+c boules
blanches avant la i-ième boule noire hors d'une urne contenant m^ boules
blanches et mz boules noires, les boules n'étant pas remises dans l'urne. On
trouve donc :
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x _ C(ate+C + k - 1, k - 1) C(wh + m2 - afc+c - A, w2 - A)

Pr{Ak{e)\Ar(e)}
k — r — l,k — r — l)C(m, + m2 — afc+(! — ik, m2 — A;)

m2 — ar+c — r, m2 — r)

Pr{Ak(e)\Ar(-e)}=
(6<7)

__
C(ak+C — ar_c + Je — r — 1, Je — r — 1) (7(7/1! + m2 - ak+c — Jc,m2 — &)

- m2 — ar_c — r, m2 — r)

En amplifiant numérateur et dénominateur dans ces expressions, de manière
à en faire des termes de la forme B(n,Je,q2), et en posant au lieu de (4.7)

«, Pr {UT}
B(mt + m2 - ar+c - r,m2- r, q2)

(6.8)

v =Pr{V\ B(m1 + m2,m2iq)
r r] B(mt + m2 — ar_c — r,m2 — r, q2)

nous obtenons à partir de (4.3), (6.7) et (6.8)
k

B(ak+C + Je - 1, Je - 1, q2) I ur B(ak+C - aT+c + Je - r - l,&-r- l,q2)

k

+ Zvr B(ak+C - ar_c + Je - r - 1, q2) (6.9)

Nous prouverons plus bas que si, dans l'équation (6.9), nous remplaçons
ak par {Je -f- i2) qx jq2 — ix, nous commettons une erreur asymptotiquement
négligeable. En posant alors:

8==m2;m==nhlî-; p^A^-i,; q ÎLjx-j% (6.10)

l'équation (6.9) devient semblable à la première des équations (4.8). Il est clair
que Ton obtiendrait de la même façon la 2ème de ces équations (4.8). Avec les

notations de (6.10), les équations (6.8) prennent la forme des équations (4.7).
Les deux systèmes d'équations seront donc asymptotiquement équivalents si
les nouvelles grandeurs définies en (6.10) se comportent à la limite suivant
(4.11) et (4.12).

Par une propriété bien connue des distributions binomiales, on sait que
h —nplorsque n -* oo et -> y

Vnp(l - p)
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Vnp(l - p) B(n, h, p,) -> —L- exp (-J^) (6.11)

En ce qui concerne pk(c), on a :

+ y vW+ cii - î«) & •

A la limite, nous poserons cjM2 «JVi donc c z 1/—?- et kjM2 £.

D'où y
gg - ^i===^ „ _ zM\{tM2 +

K (* + ^ - q2) qK + ^ q2) qA

Pour un z fixe et pour £>0, on a y ^ — zt », donc

(27r)-i exp - A
Ceci correspond à (4.12). Nous justifions immédiatement la transformation

de (6.9). Nous avons remplacé une expression B(n,h, q2) par B(n + à, h, q2)

où |<5|<1, et A/w->^2-
fi — wq»

Si -> t/, il en sera de même lorsqu'on remplacera n par ?i + à
Vnq2(l - q2)

et la relation (6.11) est également valable lorsqu'on remplace n par n + ô;

en ajoutant encore Vnq2(\ — g2) ~ ^ (^ + ^) ?2(1 ~ ^2)? on obtient:

B(n, h, q2) ~ 5(n + 5, A, q2).

A la limite, nous poserons également

' + 0) -^- - -^ aN-i donc p

CMxM2{x" - 0) \ - -JL. bN-i donc q b(^fm1 ju2 \ q\

Malheureusement, on ne peut pas poser s/M2 ~ h, mais seulement, puisque

> e | -> 0, aussi petit que soit e

a
Posons lim-^rp- A*. Alors

lim Pr{ sup \CMlMi(z)\<zN-i\NiCMiMi(x' + O)
JV—>-00 \Xt<X<X"
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a,Ni.CMlMl(x" - 0) b, JL h*\ A*(z, a, b, h*).

Si h* h notre système d'équations est asymptotiquement égal au
système (4.7), (4.8) et (4.5). Donc A*(z, a, 6, h) A(z, a, 6, h), cette dernière
grandeur étant définie par (4.16) et (4.17). J* est une fonction continue en
h* dans le voisinage de h.

En désignant par gL (Aj,#+1,..., h*Vnp+l) dhlu+1... dJ4,nmmp+1 la probabilité

limite pour que h£u+1 <~jf< Kn-i + *Wi :

lim Pr { sup | CmiM^x) \ < zN'i}
N —oo<a;<oo

vn-p
J- • '5h(zh>' • -)0l(*ÎvK,. • •)
\zji\<z v~v0

vn-v
J- • -$fL(zh,-. -)gL(KP9+1,...) II A(z,z2v,z2v+vh2v+1)dhlVo+1.. .dhl, +1 • dzh..
\zji\<z v~v9

vn—p

+ J- • -J/l(. • .)^(- • •)[ ^ ^*(^22y,28v+l, *5,+l) ~
\zji\<z p=r0

\h2vi+l~ h2vi+l\<e
vn—p- n A(z,z2v,z2v+1,h2v+1)]dhlo+1... (6.12)

L'intégrale de l'avant-dernière ligne vaut 0(z, /1?..., f2n) puisque

J...JgL(- ..)dhlVo+1... dhlvnp+1 1

Pour la même raison et parce que la valeur entre crochets peut être rendue plus
petite que ô(ô>0) par un choix judicieux de e, la dernière intégrale dans
(6.12) peut être rendue aussi petite que l'on veut. Ceci prouve (6.1).

(Eingegangen den 9. November 1961)
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