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Sur les théorémes de KormMocorov et SMIRNOV
dans le cas d’une distribution discontinue

Par HENRI CARNAL, Zurich

Introduction

Les théorémes de KoLMoGgorOV et SMIRNOV qui ont trait a 1’écart, 'un entre
une loi de distribution empirique et une loi de distribution théorique continue,
I’autre entre deux distributions empiriques furent démontrés pour la premiére
fois en 1933, respectivement 1939. KoLM0oGOROV [1] base sa démonstration sur
un lemme qui généralise le théoréme de la limite centrale. D’autres démons-
trations des mémes théorémes furent publiées par FELLER [2] et par Doos [3]
et DONSKER [4]. FELLER utilise les fonctions génératrices et DooB emploie la
théorie des processus stochastiques.

Ces théorémes furent généralisés dans le cas discontinu par M.P.ScamID [5],
en utilisant la méthode de démonstration de KorLmMocorov. Dans ce travail,
nous nous proposons d’étendre également au cas discontinu la méthode de
FELLER.

Dans le paragraphe 1, nous définissons les fonctions @(z, f,, ..., f,) et
D*(z, f1,..., f,) quicaractérisent I’écart entre les lois de distribution théorique
et empirique. Les paragraphes 2 et 4 sont consacrés aux calculs, le paragraphe 3
a un théoréme sur les transformations de LAPLACE utilisé par FELLER [2]. Le
paragraphe 5 contient les expressions pour @ et @*. Dans le paragraphe 6,
nous démontrons que l’écart entre deux distributions empiriques peut aussi
étre caracténsé par la fonction @.

Note: Cette étude représente la deuxiéme partie d’un travail de diplome
présenté en juin 1961 & PEPF de Zurich. Le sujet de ce travail de dipléme m’a
été proposé par M. le professeur W. SAXER.

1. Enoncé du probléme

Soit F(x) uneloi de distribution présentant des discontinuitésen z,,..., x,.
Nous posons:
P fo=10; fonsr =1
f2v-—1=F(xv_O); f2v=F(x,+0) =13"'5n (1'1)
Soient X,,...,Xy des variables aléatoires indépendantes réparties suivant

la loi de distribution F(x) définie ci-dessus. Nous posons:

Sy (x) = '1%7_ (Nombre de X, ; X, <=z).
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Si F(x + a) = F(x) pour a > 0, la probabilité : Pr {x <X, < x + a} est
nulle. Done, si F(z) > F(X,), on a avec la probabilité 1, x> X,.
Donc, avec probabilité 1 :

Sw(z) = - (Nombre de X, < z) = = (Nombre de F(X,) < F(z)) = S3().

A la variable y = F(x) correspond la loi de distribution suivante:

0 pour y<oO

Fo(y) = y pour fo, <Y < fon v=20,1,...,n
fop—1 POUT fo, 3 S Y <fp, v=1,2,...,n (1.2)
1 poury>1

Alors, avec la probabilité 1:
Sy(x) — F(z) = Sy(y) — F°(y) =Sx(y) —y y=F(x)

Désignons par I la réunion des intervalles fermés [f,,, f5,.1], oW » =0,1,...,7n.
Pour tout z,y(x) = F(x) el.
On a par conséquent:

Pr{ sup |Sy(x)— F(x)|]<A}=Pr{sup|Sy(y) —yl<A4}

—0o<T<® yel
Cette expression ne dépend pas de la forme particuliére de F(x), mais
uniquement de 4, f,,...,f,,. Le probléme particulier que nous traitons

consiste a chercher:

im Pr{ sup |Sy(x)— F(z)|<zN12}=®D(,f,...,fam)

N> —0<T<®

respectivement
lim Pr{ sup (Sy(z) — F(x)) <2z2N712}=>*(,f,,...,f)
N> —0 << o

Puisque ces expressions ne dépendent pas de la forme particuliere de F(x)
entre les points de discontinuité, nous supposerons que F(x) y est monotone
croissante, comme par exemple la loi de distribution définie en (1.2). Donc,
pour fo, <y < fop11, F1(y) est défine univoquement.

2. Réduection du probléme
Nous poserons:
f; = i =By j=1,2,...,2n+1
8, = Sn(z, + 0) 83,1 = Sn(z, — 0) v=1,...,n

8 =20 Sgny1 = 1
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Soit kg = ... =hgypy= ... =hy, 4, =0.

Nous désignerons par jy,..., fap_pr1, OU 3 <73 < ... <Jap_ps1, tous les
indices : 1,...,2n + 1 & lexception de 2y, +1,...,2u4,+ 1, par
Voyeoesr Vp_p BVEC Pp<m <...<w, , tousles indices 0,...,n & l'ex-
ception de y,, ..., #,. Soit finalement a, = s; — s,_, § = Fys5ers Janppr

Les a; ont une loi de distribution polynomiale:

1 !
Pria;, =Fk|N,. Tjan-p+1 = kon—pi1 | = ) ! .. .1\(7]02”_”“)1 h;c: . hf:: -4

avec ky + ...+ kyppy = N.
En faisant tendre N vers l'infini, et en posant:
yj:-(a’z"—hj)'/N jzjl:"'7j2n—p
on obtient la densité de probabilité suivante:

Fon— P

lim f(?/j,> cee ?/j,m_,,) =c-exp(— 3 2 sz?/ji‘/k)
ik

hz’an-zH-l
1 1
L= e = 1y s fan -
73 k, hjzn_p+1 7 71 72 P

En posant encore:

--—-—A‘:yh 7k—f7k)l/N k‘=1,...,2n-—p

1=

en ajoutant z; = Zim-pss — 0 €0 en remarquant que y, ==z; —z; et
que le déterminant de la transformation est 1, on obtient finalement:
im (25,0052, ) =02, .05 25, ) = (2.1)
N—>>w»
2n—p+1 ]
=c-exp(—3 2 5@ — 2:,)?)
t=1 £
P\ 2n—p+1  _
f— (271;)_(” - ?) ﬂ k?i% (2 * 2)
i=1

A la limite, les y,;, répondent & une loi de distribution normale & (2n — p)
dimensions. Puisque E(y,,) = 0, la fonction caractéristique correspondante
sera 1’exponentielle d’une forme quadratique des ¢,..., &, ,. On peut en
dire autant de la fonction caractéristique correspondant aux variables

zj‘, LI zjzn_’o
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Celles-ci sont en effet des formes linéaires des y,.. Cette remarque nous sera
utile ultérieurement (paragraphe 6).
Etant donnés, pour by, >0, 2, = Z,, et z,,,, = Z,,,,, nous montrerons
au paragraphe suivant que
im Pr{ sup |Sn(z)— F(z)|<zN-3|2z,=2,, 2, = Zy.}=

N—>w ry<<2r<zTY+1
=4 (Z, sz’ Z2v+l’ h2v+1) . (2- 3)

Cette grandeur ne dépend donc pas des valeurs de z, pour

k£2,k £2v 4+ 1.
On peut donc écrire, en ajoutant 2, = — oo, %y, = + 00, 2, = 2,4 = 0,
lim Pr{ sup |Sw(z) —F(x)|<eN-}|2,=2,; j=1j1,. ., fanp} =
N—>ow —o<r<®
m-p
= II A (2, Zs,, Z2v+1’ h2v+1)
yu=y,
Comme cette fonction A est naturellement nulle pour Z,, >z et pour
Zy,., = 2z, on obtient:

Q(z’ fl’ e f2n) =
YR-p
-{z"l<;’f fL zf 300 0y zfﬂﬂ—p)vg A (z) 22V’ z2v+1) h2v+1) dz,l PR dzjz”_p (2.4)
respectivement
P (2, fs- oo fon) =
Vn-
== _f- o j fL(zfl, s o ey zj.n_p) -l] A (Z sz, z2v+1, h2v+1) dZ’- d 72”-—1’ (2'41)
2ji<z _—_—

Le probléme consiste & chercher maintenant les fonctions 4, respectivement
4*. A cet effet, nous emploierons un raisonnement analogue & celui de FELLER,
et en particulier le méme théoréme relatif a la transformée de LapPLACE d’une
fonction f(z).

3. Théoréme auxiliaire

0

Etant donnée, pour ¢> 0, une fonction f(¢), soit @(s) = [e* f(t)dt sa
0
transformée de LAPLACE. On écrit également: @ (s) = L f(t)

Pour une suite %,,..., %,... nous définissons: u().) Z' u, Ak,
Soit f3(t) = u, pour (k — 1)6 <t < ké. L
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o @ ks o —(k—1)ds ,—kds
Bo(s) = [t fr)dt =2 | est-wdt— > ) _
0 k=1 (k—1) k=1 8
SRR 81 5 5
=X — (e% —1) u, €59 = — (e — 1) u(e°).
k=18 8
Hypothése: du(e=®) ;—p @(s) (3.1)
Conclusion: Pour tout ¢ >0, u, = 1) (3.2)

Réciproquement, (3.2) entraine (3.1).
4. Calcul de 4 (2,a,b, h)

Définitions: (-’I’c’—) = C(n, k)
C(n, k) p* (1 — p)»* = B(n, k, p).
A estla négation de ’événement 4.
Soient ' et 2" deux points de discontinuité voisins et
F(z' + 0) = F,; F(z" —0)=F,
h=F —F,>0
i=[NF]+1; j=[NF,]

Lorsque N est suffisamment grand, j > 3.
F(x) étant continue et monotone croissante pour z' <z < z", il est
possible de trouver des points z,,..., &;,..., %,,8 = J — ¢, tels que

F(z,) = z_;k ;k=01,...,8.

Posons, pour simplifier, Sy(z) — F(x) = Cn(x). Sur l'intervalle
¥ <zx<z' NCy(x)

ne prend des valeurs entiéres qu’aux points * = z;,..., * = %, ..., £ = ,.
Posons N -Cn(x,) = p, N-Cn(2z,) = q, et cherchons pour un entier ¢, tel
que ¢>0, c>|pl|, c>|q]:
c p q
Pr{ max |Cyl<—==|Cy(x,) ===, Cy(2,) = ==
xongxsl Nl N N( 0) N’ N( 3) N
Si N.Cy(z) >c, pour z,< x <z, cette relation sera valable pour un
intervalle maximum contenant z et contenu dans [z,, z,]. A Pextrémité
droite de cet intervalle, on aura N-Cy(x) = ¢. Comme ¢ est entier, cette
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extrémité sera I'un des z,. Le méme raisonnement est valable lorsqu’on rem-
place ¢ par — ¢ et que I’on considére I'extrémité gauche de l'intervalle. Nous
désignons par A,(c) I'événement N-Cy(x) = c¢. En posant:

U, = A,(0) Ay (—¢) ... 4,1 (— ¢)4,(c)
V, = A,(0) 4, (— ¢)... A, (— ¢) A, (c) A, (— ¢) (4.1)

nous aurons donc, suivant notre raisonnement, et puisque les événements
U,...,Us... et Vy,..., V,,... s’excluent mutuellement:

Pr{ max |0N(x)|2—"—}=28Pr{0,}+2’71>r{v,} (4.2)
r=1

Te< 2 28 'N

r=}

Pr {4,(c)} = ZI;PT {U,}-Pr {4;(c)| 4.(c)} + ;Pr {V,}-Pr{4;(c)| A,(— ¢)}

r=1 r=1

k
Pr{A,(—c)} = ZPr{U,} Pr{d,(—c)|4,(c)} + 2 Pr{V,}-Pr{d;(—c)| 4, (—c)}
r=1 r=1 (4 . 3)

Nous pouvons calculer les facteurs de ce systéme de 2s équations pour les 2s
inconnues Pr {U,} et Pr {V,}. Posons encore m =3 + q — (¢ + p). Alors:

Pr {4,(c)} = B(m, k4 c— p, %)

Pr{Ak(c)lA,(c)}=B(m—r——c+p,k—r, f::)
Pr{A,c(c)lA,(—c)}=B(m—r+c+p,k——r+2c,]:

_‘_:) (4.4)

Ces relations valent aussi pour ¢ << 0. Posons, pour k£ et c¢ entiers,

kk+e
pe(c) = e"km . (4.5)
Les relations (4.4) deviennent alors:
_ Pl — D) Pos(m —c+ p—8)
PT {Ak(c)} - ps(m___ 8)
Pr{A4,(c)| 4,(c)} = Pi—r(0) pyy(m —c + p — ) (4.6)

Psr(m —cC + p — 8)
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En posant encore:

. py(m — 8) Ps(q — D)
w= P S —erp—s U a0
. Py(m — 8) P:(q — p)
o= PriVy ey — P Ty @)

on obtient, a partir de (4.3)

k k
pi(c — p) = 2 U, 0, (0) + 20,0, (2¢)

r=1 r=1
k k
Pe(— ¢ — p) = Zlurpk——r(_ 2¢) + Z'lvrpk-—r(o)' (4.8)
r= =

La derniére équation est obtenue a partir de la précédente en remplagant ¢ par
—c.

Nous passons maintenant aux fonctions génératrices. Il est important de
remarquer que p,(c) est défini pour tout k et que le systeme (4.8) définit par
conséquent les inconnues w, et v, pour tout r > 0.

u(A) = Zuk}." v(A) = v, Ak

k=1

p(h,¢) = N X p(c) 2.
k=1

Les équations (4.8) deviennent alors:
p(d, ¢ — p) = u(A)p(4, 0) + v(A)p(4, 2¢)
p(d, —c — p)=u(d) p(d, — 2¢) + »(4) p(4, 0) . (4.9)

Nous transformons encore 1’équation (4.2) en posant

1 k
X urpk-—r(q - C)

=D =) e

771: 2 vrpk—r(q + C)

Ps(q — D) »

Pr{ max |Cn(z)| 2| =&+ 7, (4.10)

MMMLQ-@N%
Ps(g — P)

v(A) p(d, g + ¢) N?
P,(g — P) )

ﬂn=fg%=
k=1

n(d) = < k)'k
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En passant & la limite, N — oo, nous posons:

¢ =2N¥; (2>0)

p=alt; (laj<2) g=bNt; ([b]<2) (4.11)
%——)h -l%--—>t>0.

La distribution p,(c) définie en (4.5) a la fonction caractéristique

@e(7) = exp (k(¢" — 17 — 1))

() = exp (k(e ¥ — v N7 — 1)) ~ exp(— 5T~ exp( - 1),

Done

N p,(0) 552 (2at) *exp( ;i) (4.12)

Nous utilisons la réciproque du théoreme du paragraphe 3 et posons 6§ = 1/N,
u, = N¥p (c). (4.12) entraine
2

p(e'%‘, zN%) — §(2nt)_% exp(—- to — —%)dt = (20)”} exp (— (2 az2)%) (4.13)

Les équations (4.9) deviennent alors

exp (— (z — a) (20)5) = lim u(e_%) + lim v(e_—;—) -exp (— 22(2 c)%)

N—x N—

exp (— (z + a) (20)}) = lim u(e_{’—) cexp (— 2z (20)}) + lim v(e—{’—) (4.14)

N—>w N—>o0

Nous tirons également de (4.12), puisque s/N —h :

- — b)?
ps(q—p)”)'(27zNh) %GXP<—- (a oh ) )

Nous aurons alors:

o= (i ol 5.

Jlimu(e”F) - exp (— (2 — b) (20)}) = g(0)

i 1) = (22 b enp( 25202

-lim v(e'fz‘) exp (—(z + b) (20)5) = y(0). (4.15)
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Posons, pour simplifier les calculs,

exp (— 22(20)}) =X < 1
exp (— a (20)}) =
exp (— b(20)}) = B

Nous résolvons alors les équations (4.14):

a % -1 . _g % — % —
limu(e"'iv—)=X‘;1__X‘§%A lim v(e™¥) = X f_prl‘
. —1 -2 _
limu(e“i)exp(—-(z—b)(zo')%):XB IA—EAX2 X) —
= — X - X2 ===
=B AT By =

— BlA V(X + XP 4+ X5+ ...)— BlAX2+ X4 +...).

De méme

Lim v(e_—l%') exp (— (z + b) (20)}) = BA(X+X3+...) — BA1(X+X2...)
Lorsque |&| =[] =1:

(%)%AaBanzL{t*%exp(—- (2nz + o “+ﬂb)2)}. (cf. (4.13))

21
Donc
¢(0) = L[h%exp<‘ ;h“ )t é{é’ioexp( j——a—-b)z)
s || S
'P(U)=L[h%exp(( ;—hb)2) {,iexp( 2(2» + 1 2t+a+b))
“éexp(“‘ re ot )2)”=Lg(t).

En employant le théoréme du paragraphe 3, nous obtenons:
& > f(8/N)~f(h); n,—>g(s/N)~g(h)
lim Pr{ max N}|Cy(z)| <z| N¥Cy(2,) - a, N¥COn(z,) - b} =

N—>o0 Ty T<Tg
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=1—fh)—gh)=1— exp(m ;hbﬁ)

5 [exp <__ (2(2v + l)z-—a—-b)2) + exp (__ (2(2v + l)z—|—a+b)2)]

pum0 2h 2h
® 4 — b)? — 2
e e e e e | |
= exp(“ ) Fi o - O e

(4.16)
Les calculs se simplifient lorsqu’il s’agit de déterminer A;‘ (2,a,b,h). Nous
obtenons alors les expressions suivantes:

U, = 4,(0)A5(0). .. 4,4 (c) 4, (c) (4.1)

Pr (4,(0) = Z Pr (U Pr (4,(0)] (@) +.3)
p(2,c — p) = w() p(k, 0) (4.9)
Nli’fw“‘e_%’ — exp (— (2 — @) (20)}) (4.14')

lim N-1 -2z :h% (a~—b)2 2n % _ —a—b 3 _
Jim g ) = exp (E325) (ST exp (02 —a =ty 0oy = o)

gt(o) = L[h‘}t_%exp(—(—q—;—hﬂz—)exp(—— (22 —;t_ b)* )] =L f* ()

lim Pr{ max N}.Cn(z) <z| N¥Cy(x,) - a, N¥Cy(z,) - b} =1 — f+(h) =

N—>w T, <x<Zg

- exp(!g_f_f)_z_) 2%‘ (— 1) exp(— (2vz + (= 1ra — b)z) = A} (z,a,b,h) .

2
2h ] =0 i (4.16)
Revenons maintenant aux points 2’ et z". F, a la forme
, — 1
—'——Ni-—e— 0<0<1).
+ =

Sy(x' + 0) ala forme : (m < p) et Sy(z” — 0)la forme )Ty y=>9q .

N
Pr | Cu(ay — o sne + 0 =15 e —0) =

__ (+y—m)! (_0_)”-"(1~i)‘+7—7’
T p—m)!(s+y—p!\N N

N
It+7|_
N

=B(8+y—n,p——n,—§—7—)
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(8+y —=a)!
(s+v —p)!

En posant n=ocNJ~’,p=aN%, et

Comme 8 +y —x < N, < N?~", et la probabilité cherchée

1
est plus petite que ——— .
PP A o —a)!
|le —a]|>e>0,
lim Pr {| Cn (%) — Cn{a’ + 0)| N¥ > ¢} <lim X —
N—>< N> nzen? 7!
soit £€. Méme raisonnement pour (Cy(z" — 0) —Cn(z,)) Nt ~fB —b.

En notant par gr(a, b) dadb la probabilité limite pour que
o < N¥Oy(z)) <a +da, b <N¥COy(x,)<b + db,
et en considérant (2.3) et (4.16):
Az, x,8,h) = [ 4d,(z,a,b,h)gr(a,b|x,p)dadb =
=A,(z,«,6,h) + ff [4,(2,a,b,h) — A,(2,x,0,h)] gL(a, b| x, B)-da-db .

[b—B|<e
|6 —a|<e

La derniére intégrale peut étre rendue aussi petite que 1’on veut car la valeur
entre crochets peut étre rendue plus petite que (6 > 0) par un choix judicieux
de ¢, indépendamment de a et de b, et [fgrda-db = 1. Ceci rend I'inté-
grale plus petite que d, arbitrairement petit. Donc

A (@, B k) =A,(z 8,k (4.17)
a+(z,«,B,h) = Af (z,«, 8, k) (Méme raisonnement) (4.17)

= 0, aussi petit que

b. Résultats finaux

Nous tirons de (2.1), (2.4), (4.16) et (4.17)

2n—p+1 1
¢(Z,fl,...,fzn):‘—:C'(f...‘fdzh...dz,-m__?exp ['— % '2 T(Z,i —Zﬁ_l)z—{—
zjil<z i=1 i
n—p
yn— — 2 + o0 Zly
_+_ _% 2” (zzv-i}; z2v) . % X (__ 1)1.=0 ‘.
y=v, 2y+1 Wy lvp_p=—c0
) vnz‘;p (Zlvz_i—("’].)lv sz—22v+1)2] .
y=y, h2v+1
En permutant encore les signes [...f et X, on obtient le résultat final:
n—p
+oo Zly‘
Dz, fryeeesfan) = z (—1)i=0 ¢ - f...fexp

Voyeenyl¥p—p=—00

2n . YR 1\ — 2
[__ % 2 (zh' za’i—l)z . % Z” (2lvz + ( 1) %2y z2v+l) ] . d271 L dzjzn_,

.f-2,4,6... h" =y, h2 1
’ i o (5.1)
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¢ est défini en (2.2) et h; = f, — f,_,. La formule (5.1) coincide avec la for-
mule (25) du travail de M.P.ScamiDp, & condition de poser A, > 0 pour
j=1,2,...,2n + 1 c’est-a-dire p = 0. Dans ce cas, j,_, =j, — 1.

On trouve de la méme fagon:

n—p
1 21,
Dt(z, f1,eees for) = 2 (—1)i=0 ¢-f...fexp
Woyeurylvn_p=0 zji<z
2 (2 — 2, %2 L2+ (1) 2, — 25,40)°
[_ %7'1'==2‘::4:6--- - hi:i - %”f"’o h2v+12 = del B dz,-m-,,
(5.1")
6. Deux ensembles de variables aléatoires indépendantes

Soient X,,..., Xm et Y;,..., Yy, deux ensembles de variables aléa-

toires indépendantes possédant la méme loi de distribution discontinue F(x)
définie en (1.1). Nous poserons

Sy () — Smz(x) = Crtymz (%)

M, M,

MM, o .
A S A

it St S |
o, + I,

Si M, > co et M, - co de telle sorte que M,/M, = q,/q, — a (@ = const.),
alors, pour un z donné, z > 0, on démontre le théoreme:

im Pr{ sup |Cmm(x)| < zN‘%} = @(2) (6.1)
N—o>ow —o<T<®
ou ®D(z) est défini en (5.1).
Nous allons ramener ce probleme a celui traité dans les paragraphes pré-
cédents de la maniére suivante:

Soit 8;.av = Sm;(x, + 0) ; 8; 201 = Smi (%, — 0) 1=1,2
zik'——-(sik“fk)M% 1=1,2
ME— 2, M}
B = s B e =(81k_82k)N%'

(M, + M)}

A la limite, les variables z;,..., 2;,,_, sont réparties selon (2.1).
La remarque du paragraphe 2 nous permet d’écrire, en désignant par 7' une
forme quadratique des ¢,,..., ty,_,,

lim @, ..., tyypy) = exp(T) .
N—>x
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La fonction caractéristique correspondant aux variables (———-—-———2———~—)%zlk
M, + M,
sera a la limite:

. * . M2
th (}91 (tl’ oo ey t2n—p) = exp (m T) .
De méme, aux variables — 2z, (—Lﬁ correspond a la limite:
M, + M,

. y M
lim @, (tl’ ooy t2'n—p) = exp (m T) .

N—>o
Les variables z, ont donc a la limite la fonction caractéristique:
P (s e e by y) = lim @) @7 = exp (7))

Les variables 2z, sont donc réparties & la limite comme les variables z;,
c’est-a-dire selon (2.1).

D’apres les considérations précédentes, et en vertu de (2.4), il suffit pour
prouver (6.1) de prouver

Hm Pr{ sup |Cuys(®)| <2zN7Y 2z, =2, 25, ="2,,}=
N~>w Zy<T<LTY41
= Az, Z2v’ Z2v+1’ k2v+l) . (6.2)
Démonstration de (6. 2)
Nous pouvons supposer sans restriction:
@ =<q (6.3)

Soient de nouveau ' et z" deux points de discontinuité voisins de la
fonction F(z). Nous poserons:

M, Suy (x' + 0) = 14, ; M, Sy (2" — 0) =3, ; 7:1 - 7{1 =
M, Spz(z’ + 0) = 45 ; M, Spp(z” — 0) = 4, ; Jo — g = My

Les X, et les Y, sont ordonnés de telle maniere que
X, <X, (=1,2,..., M, —1); , <Y, (=1,2,...,M; — 1)
Nous définissons », de telle maniére que
Xiwp <Yirx <Xipnns k=1,2,...,m
a, = [ﬁl- (k + iz)] — i, (6.4)
72

A,(c) est 'événement v, = ay,, .
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Lemme: Si, pour un z,, ' < z, < 2", et pour ¢ entier,

. . Qs . A c
c>0,c>13—y,—=—| et ¢c>|)p — 95—, |C Zy) | >—=+(6.5),

2 g, J2—h 7 | Catinaz (%) | Mz( )
alors 'un au moins des événements 4,(c), 4,(—¢),..., 4,,(c), 4., (— ¢)

arrive. Inversément, si I’'un de ces événements arrive, il existe un

Zy, ¥ < x;p< ",
tel que
c 1

—— (6.6)

| Cary p2 (%) | > M, M,

Démonstration du lemme: Il suffit de considérer Cas, arg(,) > 7}% . Cette
2

relation sera vérifiée pour tout un intervalle compris dans [z', 2"], puisque
c
| Cmioaa (2" + 0) |, [ Coryana (2" = 0)| < 57~

2
intervalle. On aura nécessairement un k,0<k <m,, tel que Y,=¢&.

. Soit & Pextrémité droite de cet

Sara(E ~ 0) + =< Sty (€) < Sora (€ + 0) + -

wt+k—14c A ta+k+c
M, M, =T M,

Comme M, < M,,», = [(iz—I— k + c)%l] — 1 = @,,, Ce qui prouve le
2

théoréme. Inversément, si A,(c) arrive, et si ’on pose & = Y}, on aura par
définition:

SMl (E) —_ ?'1 ]—:'l'lvk — ?’1 —Ij—l[c:k-{-c : SMz (E) — 7’2};4:]0
b+ &+ ¢ 1 ¢ 1
SM1(£)> M2 — Ml “—SMz(f)‘}“M;—'E.

Ceci prouve la réciproque. Les conditions (6. 5) et (6.6) sont symptotiquement
égales et notre lemme dit que la probabilité de (6.5) est asymptotiquement la
méme que celle que I'un au moins des événements A4,(c),..., 4, (c) arrive.

Nous définissons U, et V, comme en (4.1) et les relations (4.3) sont
également conservées. Pour évaluer les coefficients dans (4.3), nous remar-
quons que la probabilité de A,(c) est la méme que celle de tirer a,,, boules
blanches avant la k-iéme boule noire hors d’une urne contenant m; boules
blanches et m, boules noires, les boules n’étant pas remises dans 'urne. On
trouve donc:
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Clag +k—1,kk—1)C(m +my —ay,, — k, my — k)
C (my 4 my, my)

Pr{di(c)} =

Pr{4,(c)| A,(c)} =
_ Clrye — Oy +b—r—1,kk—r—1)Cm +my — ayy, — k, my — k)
) C(my + mg — @y o — 7, My — 7)
Pr {4, (c)| 4,(— c)} =

Clagpe =t bk—r—1,k—r—1C(m + m — ay,. — k, my — k)

Cimy +mg —a,_, — 1, my — 7)

(6.7)

En amplifiant numérateur et dénominateur dans ces expressions, de maniére
a en faire des termes de la forme B(n, k, q,), et en posant au lieu de (4.7)

B(my + my, my, q,)

uTZPT{Ur} B(m1+m2_ar+c—7',m2—r7q2)

(6.8)
} B(ml+m2’m2> Q)
B(my +my — @y, — 7, My — 7, Q)

nous obtenons a partir de (4.3), (6.7) et (6.8)

v, = Pr {V,

k
B(ak+c+k—1’]6_"13Q2)=ZurB(ak+c“ar+c+k°"r_l;k"‘r“"l,Q2)

r=1

k
+2/UrB(a’k+c_a’r—c+k—T'—I’Q2) (69)
rel
Nous prouverons plus bas que si, dans I’équation (6.9), nous remplagons
a, par (k -+ 4,)¢,/9. — %, nous commettons une erreur asymptotiquement
négligeable. En posant alors:

pk(c)=3<m_ 1, k-1, %)

/P

s:mz;m=m1g2~; p=-g2-?31—732; ng‘g“ﬁ“?.z (6.10)
51 s %
I'équation (6.9) devient semblable & la premiére des équations (4. 8). Il est clair
que 'on obtiendrait de la méme fagon la 2éme de ces équations (4.8). Avec les
notations de (6.10), les équations (6.8) prennent la forme des équations (4.7).
Les deux systémes d’équations seront donc asymptotiquement équivalents si
les nouvelles grandeurs définies en (6.10) se comportent a la limite suivant
(4.11) et (4.12).
Par une propriété bien connue des distributions binomiales, on sait que
h —mnp

Vap(l — p)

lorsque 7 — oo et

Y,

3 CMH vol. 87
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Vnap(l —p) B(n,bh,p,) -

l/ exp (— 4% (6.11)

En ce qui concerne p,(c), on a:

k—-l_—_qz(l“_‘_"__"ﬂ__ k+cqy

q.

2

1)+(qz—cq1)=qz( ~1)+

+yVk+cq, — @) g -

A la limite, nous poserons ¢/ M, = zN% done ¢ =2 ]/J__ui et k/M,=1t¢.
a4

’ — 9 —°h 3 i
Dot y = ~—zMItM,+ 2V Myq) 2.
Vik+cq — )@ * .

Pour un z fixe et pour ¢>0, ona y ~ — zt~¥, done

(27)% exp (—— ——-) ~V(k+cqy — g) @ - Pe(c) ~V Myt - plc

Ceci correspond & (4.12). Nous justifions immédiatement la transformation
de (6.9). Nous avons remplacé une expression B(n, h,q,) par B(n + 6, h, ¢s)
ou |d| <1, et hin —>gq,.

. h — ngy

Si

Vng(l — ¢)
et la relation (6.11) est également valable lorsqu’on remplace n par n -+ d;

— y, il en sera de méme lorsqu’on remplacera n par n -+ é

en ajoutant encore l/nqz( 1 —¢q,) ~ V(n + 8) ¢,(1 — ¢,), on obtient:
B(n,h,q) ~B(n -+ 0,k,q).

A la limite, nous poserons également

Cuyma (' + 0) = bt aN-% donec p = a<M2)%

Crmyma (2" —-O)——-—-?—l——-—————-bN -+ donc q—b<M>%.

/1
Malheureusement, on ne peut pas poser 8/M, ~ h, mais seulement, puisque

Pr {s} = B(M,, s, h)
Pr{

2 h' 28} — 0, aussi petit que soit ¢ .
M,

m s — p*
Posons lim i, h*. Alors

N0 z'<z<z"”

lim Pr { sup | COmms(2)| < 2N~3| N¥ Copy pro(2' + 0) =
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—a,NY.Opy ez’ — 0) = b, = h*¥{ = A*(2,a,b, b*).

8
M,

Si h* = h notre systéme d’équations est asymptotiquement égal au sys-
téme (4.7), (4.8) et (4£.5). Done 4*(z,a,b,h) = A(z,a,b, k), cette derniére
grandeur étant définie par (4.16) et (4.17). A4* est une fonction continue en
h* dans le voisinage de h.

En désignant par gr(hg, ;- - boyy pr) dhgy s - - - dhy,, ., la probabilité
limite pour que hy,,,; < ]‘?{L; < hgy,iq + dhg, 4y
lim Pr{ sup |Cams(z)] <2zN-%} =
N—>c0 —0o<r<®0
Yn-9
“—If l .”L(z:l’ . gl-(th.,“a- ) T A%(2, 29, 2941, h2v+1)dk;v,+1' . 'dh;m_p+1 dzy .=
i<z V=9,
o ]f | S 1l (25,5 - gL(kzv,,+1’ )T A(z, Zays Zay41> Pay41) dh2, +1° dh;lln_p'l'l sdzy .+
i<z y=yp,
n—op
+ .[ ."fL( )gL )[ 11 A (2, %2y “2p+15 h;v+1) -
[Z;nl<z y=y,
|h3yi+1— hoys1l<e
Vn—p
— 114 (2, Z2v> Roy41s h2v+1)] dh2v,,+1 tte (6 . 12)
L’intégrale de I’avant-derniére ligne vaut @(z, f,,..., f,;,) puisque

Joofgu(...) dh;,o+1. .. dh;,”_p_H == f .

Pour la méme raison et parce que la valeur entre crochets peut étre rendue plus
petite que d(6>0) par un choix judicieux de &, la derniére intégrale dans
(6.12) peut étre rendue aussi petite que I’'on veut. Ceci prouve (6.1).

(Eingegangen den 9. November 1961)
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