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Âuswahlaxiom in der Algebra

von H. Lâtjchli, Winterthur

Einleitung

In der vorliegenden Arbeit wird von einigen mathematischen Sàtzen, vor-
wiegend von Sâtzen aus der Algebra, gezeigt, daB aie nicht ohne Auswahlaxiom

beweisbar sind.
Zu diesem Zwecke werden Modelle fur die Mengenlehre konstruiert nach

einer Méthode, wie sie erstmals von A. Fraenkel in [3], spàter von A. Mos-
towski [6] und R. Fraissé [4] angewendet wurde. E. Speckeb beschrieb dièse
Méthode in ihrer allgemeinsten Art in [7].

Wir geben in Kapitel I im wesentlichen eine Zusammenfassung dieser Be-
schreibung. Als Rahmen dient das von P. Bernays [1] aufgestellte Axiomen-
system fur die Mengenlehre. Die Kapitel II-VI bringen Anwendungen der in
Kapitel I beschriebenen Méthode.

Wir zeigen in Kapitel II, daB die folgenden Sàtze aus der Korpertheorie
nicht ohne Auswahlaxiom beweisbar sind: Jeder Kôrper besitzt einen alge-
braisch-abgesehlossenen Erweiterungskôrper; jeder formal-reelle Kôrper
besitzt einen reell-abgeschlossenen Erweiterungskôrper; jeder algebraisch-ab-
geschlossene, algebraische Erweiterungskôrper eines abzàhlbaren Kôrpers ist
abzâhlbar (insbesondere : jeder algebraische Erweiterungskôrper des Kôrpers
der rationalen Zahlen ist abzâhlbar); zwischen einem formal-reellen Kôrper
und einer algebraisch-abgeschlossenen Erweiterung dièses Kôrpers gibt es
einen reell-abgeschlossenen Kôrper.

In Kapitel III wird ein Modell konstruiert, worin ein (nicht endlich dimen-
sionaler) Vektorraum v existiert mit den folgenden Eigenschaften: a) Jeder
echte Unterraum von v ist endlich dimensional. Daraus ergibt sich beispiels-
weise, daB v keine Basis (im algebraischen Sinne) besitzt, und daB der duale
Raum v* nur aus der O-Abbildung besteht. b) Die einzige zulâssige Vektor-
raumtopologie auf v ist die triviale (grôbste). c) Die einzigen linearen Selbst-
abbildungen von v sind die Vielfachen der Identitât.

In Kapitel IV wird gezeigt, daB der Schreiersche Satz ûber die Untergruppen
freier Gruppen nicht ohne Auswahlaxiom beweisbar ist.

In Kapitel V wird ein Modell angegeben, worin isomorphe Vektorrâume mit
ungleich màchtigen Basen existieren. Das heiBt der Satz, wonach aile Basen
eines Vektorraumes gleich màchtig sind, ist nicht ohne Auswahlaxiom beweisbar.

Im gleichen Modell existieren verschieden mâchtige Mengen mit gleich
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2 H. LAuohli

mâchtigen Potenzmengen. Nach derselben «Méthode der direkten Summe»,
wie sie hier zur Anwendung gelangt, kônnen viele weitere Beispiele behandelt
werden.

In Kapitel VI wird im wesentlichen gezeigt, da8 der Satz von Urysohn (aus
der Topologie) nicht ohne Auswahlaxiom beweisbar ist. Dabei gelangt ein Mo-
dell zur Anwendung, das sich von allen vorher konstruierten insofern unter-
scheidet, als es kein Normalmodell ist (vgl. 1.6).

Da das Hauptgewicht der Arbeit auf Anwendungen der in [7] beschriebenen
Méthode zur Konstruktion von Modellen liegt und nicht auf axiomatischen
Untersuchungen der Mengenlehre, wurde auf einen fonnalen Aufbau im Sinne
der Mathematischen Logik verzichtet.

I. Permutationsmodelle1)

1. Wir legen der Mengenlehre die Axiome I-VI des Axiomensystems von
Bbrnays [1] zugrunde: Dies sind die Axiome der Extensionalitât, der direkten
Mengenkonstruktion, der Klassenkonstruktion, das Auswahlaxiom, das Axiom
liber die Darstellung von Klassen durch Mengen, das Unendlichkeitsaxiom.

Zusâtzlich erfûlle die Mengenlehre ein «Fundierungsaxiom bezuglieh einer
Basismenge a0».

Das heiBt a) Die Klasse A derjenigen Mengen, die sich selbst als einziges
Elément enthalten, A {x \ x =(#)}, werde durch eine Menge reprasentiert:
Die Basismenge aQ.

b) Jede nicht leere Klasse C enthalte ein Elément c, so daB C^c c a0.
Dièses Axiom hat die folgende Bedeutung: Sei \p die Funktion, die jedem

Paar a,oc, gebildet aus einer beliebigen Menge a und einer Ordnungszahl oc,

eine Menge y*(a,oc) zuordnet, so dafi gilt: y)(a,O) 0, y)(a,oc+l) ist die
Potenzmenge von tp(a,oc), fur eine Limeszahl A ist xp(a, X) die Vereinigung
der Mengen y)(a,Ç) mit £cA. II(a) sei die Vereinigungsklasse der Menge
y)(a,oc), wo oc die Klasse aller Ordnungszahlen durchlâuft. Das Fundierungsaxiom

bezuglieh aQ ist nun âquivalent mit der Forderung, daB II(a0) die
Allklasse sei.

Die Elemente der Basismenge a0 ubernehmen die Rolle der Urelemente in
Zermelos Terminologie. Das klassische Fundierungsaxiom besagt, daB 11(0) die
Allklasse sei.

Das Fundierungsaxiom bezuglieh a0 ist konsistent mit den Axiomen I-VI;
dabei darf die Mâchtigkeit von a0 frei vorgeschrieben werden (vgl. [7]).

Die von uns betrachtete Mengenlehre soll von abzâhlbarer Basis sein. a0
wird zugleich Basismenge der Modelle sein, die wir, ausgehend von dieser

*) Vgl. mit der in [7], S. 193-199, gegebenen Darstellung.
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Mengenlehre, konstruieren werden; a0 wird jedoch im Modellsinn nicht abzahl-
bar sein.

In unserer Mengenlehre gibt es keine anderen Objekte als Mengen und
Klassen. So werden geordnete Paare von Mengen, Abbildungen, Ordnungs-
zahlen usw. in der ûblichen Art durch Klassen (Mengen) dargestellt. Alge-
braische Strukturen kônnen in natiirlicher Weise durch Mengen reprâsentiert
werden : Ein Kôrper k ist beispielsweise ein Trippel k <h oc, (à} wobei oc

(die Addition) und fi (die Multiplikation) Abbildungen von x X x auf x sind,
welche den Korperaxiomen geniigen; x ist die Menge der «Korperelemente»,
auch das «Feld» von k genannt.

2. Ein Automorphismus cp der Mengenlehre ist eine solche 1-1 deutige Ab-
bildung der Allklasse II(a0) auf sich, welche die €-Relation erhàlt : x ey genau
dann, wenn q> (x) e cp (y).

Jede Permutation der Basismenge a0 lâBt sich in eindeutiger Weise fort-
setzen zu einem Automorphismus von II(a0). Die Klasse 77(0) besitzt somit
nur den trivialen Automorphismus. 77(0) wird von jedem Automorphismus
der Klasse 77(a0) in sich transformiert und bleibt somit elementweise fest.

Die durch die Elemente einer Permutationsgruppe g von a0 induzierten

Automorphismen der Mengenlehre bilden wieder eine Gruppe g (die Elemente

von g sind echte Klassen; g ist kein Objekt der betrachteten Mengenlehre).
Sei g eine Permutationsgruppe von a0. Wir ordnen einer Klasse G (Mengec)

die Untergruppe h(C) (h(c)) derjenigen Elemente von g zu, die solche
Automorphismen der Mengenlehre induzieren, welche C(c) auf sich abbilden.

Ist / eine Menge von Untergruppen von g, dann existiert die Klasse der
Mengen x mit h(x)ef.

3. Sei g eine Permutationsgruppe von a0. Eine Menge / von Untergruppen

von g ist ein Pilter auf g, wenn (1) mit einer Untergruppe auch ihre
Konjugierten, (2) mit einer Untergruppe auch jede umfassendere, (3) mit
zwei Untergruppen auch deren Durchschnitt zu / gehôrt.

4. Wir ordnen einem Filter / das folgende Modell M(f) zu (die Gruppe g
ist durch / bestimmt) :

a) Mengen des Modells sind Mengen mit der Eigenschafb, da8 die ihnen und
den Elementen ihrer transitiven Huile zugeordneten Untergruppen zu /
gehôren.

b) Klassen des Modells sind Klassen mit der Eigenschaft, da6 die ihnen und
den Elementen ihrer transitiven Huile zugeordneten Untergruppen zu /
gehôren.
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c) Gleichheits- und €-Relation des Modells sind die Gleichheits- und €-Rela-
tion der Mengenlehre.

InM(f) sind, abgesehen vom Auswahlaxiom, aile der oben aufgezâhlten Axiome
erfullt.

Wir erwâhnen noch die folgenden Eigenschaften des Modells :

Eine Jf-Klasse (Klasse des Modells) wird genau dann im Modellsinn durch
eine Menge reprâsentiert, wenn sie in der Mengenlehre reprâsentiert wird. Die
transitive Huile einer M-Klasse (M-Menge) im Modellsinn stimmt iiberein mit
der transitiven Huile im Sinne der Mengenlehre. Die Klasse 11(0) im Modellsinn

ist die Klasse 11(0) der Mengenlehre, Ordnungszahlen des Modells sind
diejenigen der Mengenlehre.

Der Endlichkeitsbegriff ist derselbe in Modell und Mengenlehre; denn zu-
nâchst ist der Begriff der endlichen Ordnungszahl derselbe. Des weiteren ist
eine im Modellsinn 1-ldeutige Abbildung von einer M-Menge auf eine endliche
Ordnungszahl eine 1-ldeutige Abbildung im Sinne der Mengenlehre, da die
transitive Huile dieser Abbildung in Modell und Mengenlehre dieselbe ist. Es
bleibt zu zeigen, daB eine endliche M-Menge endlich im Modellsinn ist : Sei x
eine M-Menge, <p eine 1-1 deutige Abbildung von x auf eine endliche
Ordnungszahl oc, Wir zeigen, daB q> eine M-Menge ist. Da aile Elemente der
transitiven Hlillen von oc und x M-Mengen sind, gilt dasselbe fur die Elemente
der transitiven Huile von ç?. Es bleibt zu zeigen, daB h(cp) e/. Durch voll-
stândige Induktion nach oc beweist man unter Berûcksichtigung von Filter-
eigenschaft (3), daB fl h (y) e/. Dièse Gruppe lâBt sowohl x als auch oc,

V€X
somitauch <p elementweise fest. Sie ist somit Untergruppe von h(q>) (sogar

h(cp)) Aus Filtereigenschaft (2) folgt h(<p) c /.
M(/) erfullt das auf 11(0) beschrânkte Auswahlaxiom: Es gibt eine Funk-

tion, die jeder nicht leeren Menge aus 11(0) eines ihrer Elemente zuordnet.

5. Der Filter /, bzw. das Modell M(f) heiBen nicht trivial, wenn / die

folgenden zusàtzlichen Bedingungen erfullt: (4) Fur aile r € a0 ist h(r) e /, (5)
die triviale Untergruppe (die die Identitât als einziges Elément enthâlt) gehôrt
nicht zu /.

Aus (4) folgt, daB a0 Modellmenge ist. a0 ist in jedem nicht trivialen Modell
Basismenge. (5) zieht nach sich, daB nicht jede Menge M-Menge ist.

Wir werden nur nicht-triviale Modelle betrachten.

Satz. In einem nicht trivialen Modell lajit sich a0 nicht wohlordnen.

Beweis; Eine im Modellsinn 1-1-deutige Abbildung 0 von aQ auf eine

Ordnungszahl oc wâre auch eine solche Abbildung im Sinne der Mengenlehre.
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Sei rca0, <r,|>e<P, <p * h{0)9 <p(r) r'. Wegen <p(£) f folgt <r',£>
<y(r),ç?(f)> ç?«r,f», also <r',£>c<P. Somit,da 0 1-1-deutigist, r' r.
h(0) ist somit die triviale Untergruppe und gehôrt nach (5) nicht zu /, Wi-
derspruch.

Wie aus dem Beweis hervorgeht, lâût sich eine Jf-Menge x genau dann im
Modellsinn wohlordnen, wenn es eine Gruppe in / gibt, deren induzierte Auto-
morphismen x élémentweise fest lassen.

Eine Modellmenge x ist genau dann im Modellsinn transfinit (d.h. besitzt
eine abzâhlbare Teilmenge), wenn es eine unendliche Teilmenge x1 von x
gibt, die von einer Gruppe aus / elementweise fest gehalten wird.

6. Unter dem einer Pennutationsgruppe g von a0 zugehôrigen Normal-
filter f(g) verstehen wir den durch die Menge {A(r)| r ea0} erzeugten Filter.
Sei e eine endliche Teilmenge von a0. Wir setzen h(e) f]h(r). Der Nor-

rçe
malfilter f(g) ist die Gesamtheit derjenigen Untergruppe von g, die eine

Gruppe h(e) umfassen. f(g) ist nicht-trivial, sobald (5) gilt, d.h. sobald es zu
jeder endlichen Teilmenge e von aQ eine von der Identitât verschiedene
Permutation in g gibt, die e elementweise fest hait.

Wir nennen das durch f(g) definierte Modell das zu g gehôrige Normal-
modeU N(g):N(g) M(f(g)).

Der Filter / irgendeines nicht-trivialen Modells umfafit den Filter f(g); die
Normalmodelle sind in diesem Sinne minimal.

In der Literatur wurden meines Wissens bisher keine anderen Modelle als
Normalmodelle untersucht. Wir geben in Kapitel VI ein Beispiel fur ein an-
deres Modell.

II. Beispiele aus der Eorpertheorie

In diesem Kapitel wird gezeigt, daB gewisse Sâtze aus der Kôrpertheorie
nicht ohne Auswahlaxiom beweisbar sind.

1. Modell. Sei g die durch die Menge aller Transpositionen der Basismenge
a0 erzeugte Gruppe, N(g) das zugehôrige Normalmodell. N(g) ist nicht-
trivial, jede Gruppe aus dem Normalfilter f(g) enthâlt Transpositionen.

Wir beweisen die Sàtze

1.1. In N(g) existiert ein Kôrper, der keinen algebraisch abgeschlossenen

Erweiterungslcôrper besitzt2).

*) Satz und Beweis bleiben richtig, wenn wir ûberall «algebraisch-abgeschlossener Kôrper»
durch «Kôrper, der mit jedem Elément auch dessen Quadratwurzeln enthâlt» ersetzen.
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1.2. In N(g) existiert ein formal-reeller Kôrper,der keinen reell abgeschlosse-

nen Erweiterungskôrper besitzfî).

Beweis von 1.1.: Der Beweis beruht auf dem folgenden algebraischen

Hilfssatz: (i) Jeder Automorphismus der Ordnung 2 eines algebraisch abge-
schlossenen Kôrpers (mit Char. =£ 2) vertauscht die beiden Quadratwurzeln
von — 1.

Beweis von (i); Sei <p ein Kôrperautomorphismus der Ordnung 2, (p(x) y,
y î& x. Es ist q>{y) x. Fur z x — y ist <p(z) — z und z ^ 0. Sei u
eine Quadratwurzel von z. Dann ist cp(u) eine Quadratwurzel von —z,

also i eine Quadratwurzel von — 1. Es ist 9? (u) iu, also uu
q)2(u) cp(iu) (p{i) -<p(u) <p(i) iu, also cp(i) i 1, ç?(i) —i. w.z.b.w.
Wir zerlegen den Beweis von 1.1 in zwei Schritte :

1.11. Es gibt in N(g) einen Kôrper mit einer Charakteristik verschieden
von 2, dessen Feld die Menge aQ umfaBt.

1.12. Es gibt in N(g) keinen algebraisch-abgeschlossenen Kôrper mit einer
Charakteristik verschieden von 2, dessen Feld die Menge a0 umfaBt.

Beweis von 1.11: Sei P ein Kôrper mit Charakteristik verschieden von 2,
dessen Feld keine Elemente aus a0 enthalte. Auf Grund des Funktions- und
Endliehkeitsbegriffs lâBt sich in ublicher Weise ein Oberkôrper konstruieren,
dessen Feld die Menge aQ als Menge unabhângiger Transzendenter uber P
umfaBt.

Beweis von 1.12; Sei h (x>ot, [â) ein algebraisch-abgeschlossener Kôrper
im Modell mit Charakteristik 7^ 2. Wir zeigen, daB a0 cf x :

k ist auch im Sinne der Mengenlehre ein Kôrper mit den genannten Eigenschaf-
ten. Die durch die Elemente von h(k) (h(k) ist die k zugeordnete Unter-
gruppe von g) induzierten Automorphismen der Allklasse bilden mit k auch
die Mengen #,<%, fi je auf sich ab. Die Beschrânkung eines solchen Automorphismus

auf k ist somit ein Kôrperautomorphismus von k. Sei i eine
Quadratwurzel von — 1. Wir setzen h h(k) r\ h(i). Die Elemente von h in-
duzieren solche Automorphismen von k, die i fest lassen, und somit nach der

Kontraposition von (i) solche, deren Ordnungen von 2 verschieden sind. Da
Ji€f(g), enthâlt h Transpositionen (von Elementen aus a0). Eine solche

Transposition t induziert einen Automorphismus der Mengenlehre von der

Ordnung 2 und somit einen Kôrperautomorphismus von k, dessen Ordnung
< 2 ist. Wâren die durch r transponierten Elemente von a0 in k enthalten,

8) Fur die Begriffe «formal-reell» und <creell-abgeschlossen» vgl. z.B. [8].
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dann wâre dièse Ordnung 2, entgegen dem vorhergehenden. Es ist somit
a0 cf h, w.z.b.w.

Beweis von 1.2:

1.21. Es gibt in N(g) einen formal-reellen Kôrper, dessen Feld die Menge
aQ umfaBt.

1.22. Es gibt in N(g) keinen reell-abgeschlossenen Kôrper, dessen Feld die

Menge aQ umfaBt.
Beweis von 1.21 : Ist der im Beweis von 1.11 betrachtete Kôrper P formal-

reell, so ist es auch der dort erwâhnte Oberkôrper von P.
Beweis von 1.22 : Ein reell-abgeschlossener Kôrper besitzt eine kanonische

Anordnung (x > 0, wenn x ein Quadrat ist). Es lâBt sich somit jede Teil-
menge seines Feldes ordnen. Andrerseits làBt sich die Menge a0 im Modell
nicht ordnen: Eine solche Ordnungsrelation wâre auch Ordnungsrelation im
Sinne der Mengenlehre. Die ihr zugeordnete Gruppe h bestunde aus ordnungs-
treuen Permutationen von a0 und enthielte somit keine Transpositionen. Jede

Grappe aus f(g) enthàlt aber Transpositionen.

2. Modell. Sei Je ein algebraisch abgeschlossener, algebraischer Erweite-
rungskôrper seines Primkôrpers P mit Charakteristik 0. Das Feld von k sei
die Basismenge a0.

Es gibt einen solchen Kôrper : denn es gibt einen abzàhlbaren Kôrper h, der
auBer der letztgenannten aile dièse Eigenschaften besitzt. Das Feld von h
làBt sich 1 — ldeutig auf aQ abbilden. Dièse Abbildung induziert auf a0 in
natûrlicher Weise eine Kôrperstruktur k von der verlangten Art.

g sei die Gruppe aller Automorphismen von k. g ist eine Permutations-
gruppe von a0. Wir betrachten das Normalmodell N(g). k ist auch im Mo-
dellsinn ein algebraisch-abgeschlossener, algebraischer Erweiterungskôrper von
P ; P ist auch im Modellsinn abzâhlbar (die Gruppe g lâBt das Feld von P
elementweise fest).

Wir beweisen die folgenden Sâtze:

2.1. Das Feld von k ist im Modell nicht abzâhlbar.

2.2. k besitzt im Modell keinen reell-abgeschlossenen Unterkôrper.
Bemerkung zu 2.1 : Der Primkôrper P von k ist der Kôrper der rationalen

Zahlen. k ist ein nicht abzâhlbarer, algebraischer Erweiterungskôrper von P.
Beweis von 2.1: Nach Kap. I, Abschnitt 5, genugt es zu zeigen, daB das

Modell N(g) nicht trivial ist. k ist nicht endlich uber P. Jede endliche Teil-
menge e von aQ spannt einen endlichen Erweiterungskôrper E von P auf.
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Es existieren nicht triviale Automorphismen von k rel. EA) (Auswahlaxiom
in der umfassenden Mengenlehre!). N(g) ist somit nicht trivial.

Beweiâ von 2.2: Jeder reell-abgeschlossene Kôrper des Modells ist reell-
abgeschlossen im Sinne der Mengenlehre. Sei k' im Sinne der Mengenlehre ein
reell-abgeschlossener Unterkôrper von k. Es ist zu zeigen, daB es zu jedem
endlichen Erweiterungskôrper E von P einen Automorphismus von k rel.
E gibt, der k1 nicht auf sich abbildet.

Sei E ein endlicher Erweiterungskôrper von P. k' ist nicht Unterkôrper
von E, da ein endlicher Erweiterungskôrper von P nicht reell-abgeschlossen
ist. Sei x ein Kôrperelement von kf, das nicht in E liegt. Es gibt einen

Automorphismus ç? von k rel. E mit q>(x) ^ x. Wiirde k' von q? auf sich
abgebildet, daim besâBe kr einen nicht trivialen Automorphismus, was be-
kanntlich fur reell-abgeschlossene, algebraische Erweiterungskôrper von P
nicht der Fall ist.

Mit den eben verwendeten Methoden lâBt sich zeigen, daB auch der folgende
Satz nicht ohne Auswahlaxiom beweisbar ist: Zu jedem Erweiterungskôrper k1

einesKôrpers k gibt es einen Zwischenkôrper z, sodaB k' algebraisch iiber z
und z rein transzendent iiber k (bzw. k) ist.

Hingegen ist ohne Auswahlaxiom beweisbar, daB jeder reell-abgeschlossene,
algebraische Erweiterungskôrper k' eines abzâhlbaren Kôrpers k abzàhlbar
ist: Erstens ist der Polynomring k[x~\ abzàhlbar; zweitens gibt es vermoge der
kanonischen Anordnung von k' eine Funktion, die jedem Polynom / aus
k [x] eine Ordnung der Menge der in k' liegenden Nullstellen von / zuordnet.
Da nun jedes Kôrperelement von k' O-Stelle eines Polynoms aus k [x] ist, ist
somit das Feld von kf abzàhlbar.

III. Beispiel ans der Théorie der Vektorrâume

Es sei k ein Kôrper in 11(0) mit abzàhlbarem Feld. v sei ein unendlich
dimensionaler5) Vektorraum ûber k mit t(v) a0.6) Analog wie anlàBlich der
Définition des zweiten Modells im vorhergehenden Kapitel zeigt man, daB ein
solcher Vektorraum existiert. Die Automorphismengruppe g von v ist eine

Permutationsgruppe von Oq. v ist im Normalmodell N(g) ein unendlich
dimensionaler Vektorraum iiber k mit den folgenden Eigenschaften :

1. Jede Teilmenge von t(v) ist entweder Teilmenge des Feldes eines endlich

4) Ein Automorphismus von k rel. E ist ein solcher, der E elementweise fest lâfit.
*) Unendlich dimensional soll heiûen: Es existiert keine endliche Basis.
•) Mit t(v) bezeichnen wir das Feld von v.
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dimensionalen Unterraumes von v, oder dann Komplement (beziiglich t(v))
einer solchen Menge.

Beweis: Sei x c t(v) eine Modellmenge. Es existiert eine endliche Teil-

menge e' von aQ t(v), sodaB x von der Gruppe A(e') in sich transformiert
wird (vgl.1.6.). Ist e der von e' aufgespannte Unterraum von v, so wird x
von jedem Automorphismus von v rel. e in sich transformiert. Da zu je zwei
Elementen s,t aus t{v) — t(e) ein Automorphismus von v rel. e existiert,
der s in t iiberfûhrt7), folgt, daB entweder x at(e) oder x z> t(v) — t(e),
w.z.b.w.

Aus 1. ergeben sich die folgenden Korollare :

1,1. Jeder echte (lineare) Unterraum von v ist endlich dimensional.

Beweis: Es ist ohne Auswahlaxiom beweisbar, daB jeder Unterraum eines

endlich dimensionalen Vektorraumes endlich dimensional ist. Wegen 1. muB
daher das Feld t(u) eines unendlich dimensionalen Unterraumes u von v
das mengentheoretische Komplement des Feldes t(e) eines endlich dimensionalen

Unterraumes e von v umfassen. Daraus folgt t{u) t(v):
Sei x € t(v). t(v) — t{e) ist nicht leer, da v nicht endlich dimensional ist.

Sei y € t(v) — t(e), also y €t(u). Falls x + y e t(e), dann x i t(e), da

y i t(e) ; also x e t(v) — t(e) c t(u). Falls x -\- y i t(e), dann x -\- y € t(u),
und wegen y et(u) folgt auch hier x e t(u). Es ist somit t(u) t(v), ^ t/,
w.z.b.w.

1*2« v besitzt keine Basis.

Beweis: Eine Basis von v wâre nicht endlich und besaBe somit echte, un-
endliche Teilmengen (z.B. Weglassen eines Elementes). Eine solche Teilmenge
wûrde einen echten, unendlich dimensionalen Unterraum von v aufspannen,
entgegen 1.1.

1.3. v besitzt keine echte, komplementare Unterrâume.

Beweis: Von zwei komplementâren Unterrâumen kann hôchstens der eine
endlichdimensional sein. Nach 1.1 muB dann der andere mit v ùbereinstim-
men; die Zerlegung ist nicht echt.

1.4. Der duale Raum t;* ist trivial, d.h. enthâlt nur die Nullfunktion.
Beweis : Sei q> eine lineare Funktion auf v mit Werten im Koeffîzienten-

kôrper k, und sei u der Kern von ç>. Dann ist dim (vju) < 1. Daraus folgt,
daB u nicht endlich dimensional ist, also wegen 1.1 : u v, w.z.b.w.

7) Man wahle geeignete Basen von v (im Sinne der Mengenlehre). Die Existenz einer solchen
Basis ergibt sich auf Grand des Auswahlaxioms in der Mengenlehre, oder auf Grand der Abzâhl-
barkeit von t(v) im Sinne der Mengenlehre.
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Von Interesse ist das folgende Korollar zu 1.4:

1*6. Ein nicht-triviales Elément des dualen Baumes w* eines Unterraumes u
von v làfit sich nicht auf ganz v erweitern.

Der nâchste Satz bezieht sich auf den Fall, daB der Kôrper k mit einer nieht-
diskreten Topologie versehen ist. Eine zulâssige Topologie auf v ist dann stets
absorbierend : Zu jeder Umgebung U der Null und zu jedem Vektor x gibt
es ein Korperelement A, A ^ 0, mit XxtU. Wir nennen die Topologie, in der
der ganze Raum und die leere Menge die einzigen offenen Mengen sind, die
triviale Topologie. Mit dem Auswahlaxiom ist fur jeden Vektorraum die Exi-
stenz einer nicht trivialen Topologie beweisbar, sofern der Kôrper mit einer
nicht trivialen Topologie versehen ist.

2. Die einzige VeJctorraumtopologie auf v ist die triviale Topologie,
Beweis : Wir zeigen, dafi fur jede Umgebung U der Null gilt U + U t(v).

Daraus folgt wegen der Stetigkeit der Addition, daB t(v) die einzige Umgebung
der Null ist, und wegen der Translationsinvarianz der Topologie, daB t(v) die
einzige nicht leere ofïene Menge ist.

Es sei U eine Umgebung der Null. Da U absorbierend ist, ist U nicht
Teilmenge des Feldes eines echten linearen Unterraumes von v. Nach 1. exi-
stiert somit ein endlich dimensionaler Unterraum e von v mit t(v) — t(e) c U.
Daraus folgt U + V t(v):

Vorerst ist U + U 3 t(v) — t(e). Ist x e t(e), y e t(v) — t(e), dann auch

x — y e t(v) — t(e). Also x y + (x — y) mit y e U und x — y c U. Also
t(e) c U + U und somit t(v) U + U, w.z.b.w.

3. Die einzigen linearen Selbstabbildungen von v sind die Vielfachen der Iden-
titat (d.h. die Abbildungen X • 1, A €t{h)); insbesondere ist die Nullabbildung
die einzige singulâre lineare Selbstabbildung.

Beweis : Sei cp eine lineare Selbstabbildung von v. c sei ein endlich
dimensionaler Unterraum von v, so daB <p von jedem Automorphismus von v rel.
e in sich transformiert wird. w sei ein zu e komplementârer Unterraum (im
Sinne der Mengenlehre). w ist unendlich dimensional. Wir zerlegen y

(px + 9?2, so daB <px(x) e t(e), <p2(x) €t(w). Der Kern r der auf w be-

schrânkten Abbildung ç?x ist nichb endlich dimensional, da 6, hingegen nicht
w, endlich dimensional ist. cp bildet r in. w ab. Fur xet(r) ist q?(x) ein
Vielfaches von x; denn sonst gàbe es einen Automorphismus von w, der x,
aber nicht (p{x)> fest lieBe, und jeder Automorphismus von w lâBt sich fort-
setzen zu einem solchen von v rel. e. Also <p(x) X(x) • x fur aile x e t(r).
Aus der Linearitât von q? folgt, daB die Funktion A konstant ist. Das heiBt, es

existiert ein A € t(k), so daB <p(x) A • x fur aile x c t(r). Im Modellsinn
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existiert der lineare Raum u derjenigen xet(v), fur welche <p(x) A- x.
u ist nicht endlich dimensional, da u im Sinne der Mengenlehre einen nicht
endlich dimensionalen Raum r umfaBt. Aus 1.1 folgt u v, w.z.b.w.

IV. Beispiel aus der Gruppentheorie

Wir zeigen, da6 der ScKREiEKsehe Satz ûber die Untergruppen freier Grup-
pen im allgemeinen Fall (freie Gruppen ûber beliebig unendlichem Erzeugen-
densystem) nicht ohne Auswahlaxiom bewiesen werden kann.

Sei S ein freies Erzeugendensystem einer Gruppe F, und sei u, v c S. Wir
betrachten den Automorphismus q> von F, der durch die Transposition

induziert wird. Wir setzen a <p(oc) (oc eF). Dann gilt:

1. Stellt das Wort W X^.. .X«« x{l€ S, e{ ± l, das Elément oc

dar, dann wird oc durch W x[*... x^u dargestellt. Das Wort W ist genau
dann ausgekiirzt, wenn W esist.FurzweiWorte Wx, W2 ist W1W2= WiW2]
insbesondere ist Wx W2 genau dann ausgekiirzt, wenn W1W2 es ist.

2. Ist W=W, dann kommen in W die Symbole u,v nicht vor.

3. Ist Q ein freies System von Elementen aus F, welches durch q? in sich
transformiert wird, U die durch Q erzeugte Untergruppe von F, oc eine

Elément aus U mit oc =oc~1, dann gibt es ein /? € U mit oc fi fi-1.
Beweis von 3.:
Sei oc fj°... |J«*, iicQ, die beziiglich Q ausgekiirzte Darstellung

von oc. Es ist ^ € Q und es sind auch die Darstellungen oc £|J0,... £•«

oc'1 |^e«* Ç^8* ausgekiirzt. Wegen oc =oc~x ist somit fu_K ÇK, eu_K
— eK fur Je 0, u. Aus £M_K. — eK folgt, daB u + 1 gerade ist.

Fur 0 £$•... £? wo 21 + l u, gilt oc 0/?-1, w.z.b.w.
Wir betrachten nun das Normalmodell iV(^), wo ^ wie in II. 1. die durch

aile Transpositionen der Basismenge a0 erzeugte Gruppe sei. Wir betrachten
(im Modell) die freie Gruppe F ûber 8 a0.

Satz. Die Kommutatorgruppe C von F besitzt hein freies Erzewgenden-

system.

Beweis: F (bzw. C) ist auch in der umfassenden Mengenlehre die freie

Gruppe ûber S (bzw. die Kommutatorgruppe von F). Ein freies
Erzeugendensystem Q von C wàre dies auch im Sinne der Mengenlehre. Die Gruppen
h(Q), h(F) (vgl. 1.2.), und somit auch h h(F)^h(Q), wâren Elemente des

Normalfîlters f(g). h enthâlt diejenigen Elemente von g, die solche Auto-
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morphismen der Mengenlehre induzieren, deren Beschrànkung auf das Feld
von F ein Gruppenautomorphismus von F ist, und die Q auf sich abbilden.
h enthielte eine Transposition <p : u+—>v, u,V€d0.

Wir betrachten das Gruppenelement oc uvvrx v~x. Es ist oc € C, und die
Voraussetzungen fur 3. sind erfûllt (S a0). Also gàbe es ein p e C mit

oc — ftp-1. W sei das ausgekurzte Wort in Elementen aus S, das p darstellt.
Dann wird /S"1 durch das ausgekiirzte Wort W~x dargestellt (1.). W2 sei das-

jenige Endstuck von W, das bei der Komposition TFTF"1 weggektirzt wird:
W WXW2, W-1 W^Wl1 (1.). Dasjenige Anfangsstïick von W'1, das

weggektirzt wird, ist von derselben Lange wie W2. Es wird somit genau W2~x

weggekûrzt, also W2= W2. u,v kommen somit in W2 nicht vor (2). Wegen
p € G haben u und v in W—WXW2 je die Exponentensumme 0, und

somit auch in W1. Andrerseits folgt aus dem Vorhergehenden, dafi W-^W-^1

die ausreduzierte Darstellung von oc ist (bezuglich S), das heiBt TFiTTx"1

uvvr1 v1, W1 uv: Widerspruch.

V. Méthode der direkten Summe

Es gelangt in diesem Kapitel eine Méthode zur Anwendung, mit der viele
weitere Beispiele behandelt werden kônnten. Es wird darauf verzichtet, die
Méthode als solehe zu beschreiben; das folgende Beispiel môge hinreichend
instruktiv sein.

Unser Ziel ist, ein Modell zu konstruieren, worin isomorphe Vektorràume mit
ungleich mâchtigen Basen existieren.

Wir pràgen der Basismenge a0 die folgende Struktur auf: a0 sei Vereini-

gung abzâhlbar vieler, paarweise disjunkter, 12-zahliger Mengen ar Fur aile j
sei aj nochmals unterteilt in zwei geordnete 6-zahlige Mengen an, aj2. Wir
setzen 6< U aj{, i 1, 2. Es ist a bx ^b2. g0 {l,oc, P, y} sei die

j
(abstrakte) KxEiNsche Vierergruppe. dH, i 1, 2, seien die folgenden Dar-
stellungen von g0 als Permutationsgruppe von aH:

dn(oc) (12) (34) (5) (6) dj2(oc) (12) (34) (5) (6)

dniP) (13) (24) (5) (6) di2(p) (12) (3) (4) (56)

dn(y) (14) (23) (5) (6) dj2(y) (1) (2) (34) (56)

(Ziffern beziehen sieh auf die ausgezeichneten Ordnungen der aôi ; es wird die
ûbliehe Zyklen-Sehreibweise fur Permutationen verwendet).

gj sei das Bild von g0 bei der Darstellung dn + di2 ; das heiBt gj ist die

Gruppe derjenigen Permutationen n von ai9 zu denen ein ^eg0 existiert
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mit dn(£) n/qu dj2(i) n/^. g Zgj sei die direkte Summe der

Gruppen g}\ das heiBt, g ist die Permutationsgruppe von a0, die erzeugt
wird durch aile diejenigen Permutationen, die auf irgendeinem der Teile a§

mit irgendeinem Elément aus gj, auf den ubrigen Teilen als Identitàt wirken.
Wir betrachten das zu g gehôrige Normalmodell. Die Mengen blt b2 sind

Modellmengen, da sie von g je in sich transformiert werden. Dasselbe gilt fur
die Mengen aH.

Wir beweisen die folgenden Sâtze :

Satz 1. Im Modell N(g) exisiiert ein Vektorraum mit zwei urvgleich màchtigen
Basen.

Satz 2, In N(g) existieren zwei Kardinalzahlen m, n mit 2m — 2n und
m ^ Xo »

a^er nicht n > So •

Fur den Beweis der Sàtze 1., 2. betrachten wir im Modell einen Korper k
von der Charakteristik 0. vx und v2 seien (im Modell) Vektorrâume ûber k
mit bx bzw. b2 als Basis. Der Korper k sei Elément der Klasse 11(0). Die
Elemente der Felder von vifi= 1,2, seien solche Abbildungen von b{ in
das Feld von k, die «fast ùberall» 0 sind (Funktions- und Endlichkeits-
begriff der Mengenlehre). Dann sind die zugeordneten Untergruppen h(vx) und
h(v2)von g mit g identisch. Das heiBt, jede Permutation aus g erzeugt einen
solchen Automorphismus der Mengenlehre, dessen Beschrânkung auf das Feld
von v{ ein Vektorraum-Automorphismus ist.

Wir zeigen nun, daB gilt :

I. Die Râume vx, v2 sind (im Modell) isomorph.
Fur m | 6i |, n \ b2 \ :

II. Es ist m > Ko» aber nicht n ^ So (im Modell).
III. Es ist 2m 2n (im Modell).

Aus I., IL. folgt unmittelbar Satz 1.: Sei b[ das Bild von bx unter einem
Isomorphismus von vx auf v2. b[ und b2 sind ungleich màchtige Basen von
v2. Die Behauptung von Satz 2. wird durch IL und III. zusammen ausge-
drûckt.

Beweis von I. : vj{ sei der durch aH aufgespannte Unterraum von vi (so-
wohl im Modellsinn als auch im Sinne der Mengenlehre). d'^ sei die durch dH
induzierte Darstellung von g0 als Automorphismengruppe von vH. Nach dem
Vorhergehenden induziert die Gruppe gi (dn + di2) (g0) auf vn + vj2
die Automorphismengruppe (d'^ -f d'j2) (g0). Die Darstellungen d'jx, d'j2

sind âquivalent. Denn ihre Charaktere Xi> %% s^n^ gleich: xA**) — Xi (P) ^
Xi (y) 2, i 1,2. Also existiert ein Isomorphismus qt von vn auf

vj2i der von allen durch Elemente von ^i induzierten Automorphismen der
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Mengenlehre, und somit von allen durch Elemente von g induzierten Auto-
morphismen der Mengenlehre in sich transformiert wird. Das heifit h(qj) g.
Also ist Qj ein Isomorphismus im Modellsinn, und eine Funktion 0 im Sinne
der Mengenlehre, die jeder natiirlichen Zahl j einen solchen Isomorphismus
Qi zuordnet, ist Funktion im Modell : h(@) g. Es existiert somit im Modell
der Isomorphismus q von vx auf v2i der auf den Komponenten vn mit

ubereinstimmt.

Beweis von II : Die Menge bx besitzt beziiglich der ganzen Gruppe g un-
endlich viele Fixpunkte: Je die beiden letzten Elemente (beziiglich der im
Sinne der Mengenlehre ausgezeichneten Ordnung) eines jeden Teiles ajX. Die
Menge 62 besitzt bezûglieh keiner Gruppe aus f(g) unendlich viele
Fixpunkte: Eine Gruppe aus f(g) wirkt, abgesehen von endlich vielen j, auf
jedem Teil as mit der ganzen Gruppe gi ; gj besitzt in aj2 keine Fixpunkte.

Nach 1.5 folgt daraus, da6 im Modellsinn bx transfinit, b2 nicht transfinit
ist. Das heiBt m ^ Ko» a^er nicht n ^ Xo-

Beweis von III : Wir betrachten die durch dH induzierte Darstellung d^
von g0 als Permutationsgruppe der Potenzmenge P(%t) von aj{. Um zu
beweisen, daB P(6X) und P{b2) im Modellsinn gleichmàchtig sind, geniigt es,

analog wie im Beweis von I. zu zeigen, daB die Darstellungen d^[ und d^2

âquivalent sind.
Die Gruppe g0 besitzt die Untergruppen ^={1}, u2 {l,oc}, us
{1,/S}, ué={l,y}, uB g0. Mit /^j., i=l,2, i=l,..5, bezeichnen

wir die Anzahl der Fixpunkte in P (aj{) beziiglich der Gruppe d'^ (uk). Nach
W. Bubnside sind die Darstellungen d^[, d'/2 genau dann âquivalent, wenn

gilt ju\ jul, k 1,.. 5 (vgl. [2]). In unserem Fall ist /4 ^m%k
» wo mï

die Anzahl der Transitivitàtsgebiete der Gruppe dH(uk) in aH bedeutet. Es ist

m\ m\ 6

m\ ml ==4, Jfc 2, 3, 4,
™\ w| 3

also sind die Darstellungen d'^d'^ aequivalent.
Die Konstruktion des eben betrachteten Modells beruht auf der folgenden

Idée: Zwei im Sinne der Âquivalenz von Darstellungen verschiedene Permu-
tationsgruppen konnen auf den durch die permutierten Mengen aufgespannten
Vektorràumen gleiche Automorphismengruppen induzieren. Beispiele solcher

Gruppen gab Burnside in [2]. Die beiden permutierten Mengen lassen dann
keine 1-ldeutige Zuordnung zu, die beziiglich simultanen Ausûbens der beiden

Permutationsgruppen invariant ist. Hingegen lassen die durch die Mengen
aufgespannten Vektorràume invariante Isomorphismen zu. Mit der «Méthode
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der direkten Summe» werden dièse Eigenschaften vom Endlichen ins Un-
endliche ûbertragen.

YI. Beispiel aus der Topologie

Das Lemma von Urysohn, wonach es zu zwei abgeschlossenen, disjunkten
Mengen A, B eines ÏVRaumes8) eine stetige, reellwertige Funktion gibt, die
in den Punkten von A den Wert 0, in denjenigen von B den Wert 1 an-
nimmt, ist nicht ohne Auswahlaxiom beweisbar. Wir zeigen dies fur einen î74-

Raum, der sogar das erste Abzâhlbarkeitsaxiom Ax erfûllt und lokal-kompakt
ist.

Dagegen lafit sich ohne Auswahlaxiom beweisen, dafi in jedem lokal-kom-
pakten ^-Raum, der das zweite Abzâhlbarkeitsaxiom A2 erfûllt, das Lemma
von Urysohn gilt, sogar, dafi jeder solche Raum metrisierbar ist. Ob die
Metrisierbarkeit eines beliebigen A2 — ÏVRaumes (der nieht lokal-kompakt
zu sein braucht) ohne Auswahlaxiom beweisbar ist, bleibt eine offene Frage.
Die von uns betrachteten Modelle geben jedenfalls keine Auskunft daruber;
denn in einer Mengenlehre, in der sieh das Kontinuum wohlordnen lâfit, ist jeder
solche Raum metrisierbar. Unsere Modelle erfûllen aber das auf 11(0) be-
schrànkte Auswahlaxiom.

Wir definieren nun ein Modell, worin ein lokal-kompakter Ax — TA-Raum
existiert (der aus mehr dis einem Punkt besteht), dessen einzige stetige,
reellwertige Funktionen die Konstanten sind.

Die Basismenge a0 sei geordnet nach dem Ordnungstypus der rationalen
Zahlen. g sei die Gruppe aller ordnungstreuen Permutationen von a0. Eine
Teilmenge t von a0 sei Elément der Menge g, wenn (1) sich t in hôchstens
endlich vielen Punkten hâuft (beziiglich der Intervall-Topologie auf a0), und
wenn (2) jede unendliche Teilmenge von t einen Hâufungspunkt besitzt. Gilt
(1), dann ist (2) mit der folgenden Aussage àquivalent: Ist ht die Menge der

Hàufungspunkte von t und U eine Umgebung von ht, dann befinden sich
auBerhalb U nur endlich viele Punkte aus t.

h(t) sei die Untergruppe derjenigen Permutationen aus g, die t element-
weise fest lassen. Durchschnittsbildung und Konjugieren mit Elementen aus

g fùhrt nicht aus der Menge /' der Gruppen h(t), teq. heraus; /' ist somit
Basis eines Filters /.

Wir betrachten das zugehôrige Modell M(f)9). Die auf a0 definierte Ord-

8) Wir verwenden die Terminologie von Keixey [5]: Tt enthalte die Forderung, daÛ jeder
einzelne Punkt abgeschlossen ist.

•) Das zu g gehôrige Normalmodell N(g) ist das Modell von Mostowski [6. 1.]; unser
Modell M (/) ist davon verschieden.
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nungsrelation ist eine Ordnungsrelation im Modellsinn. x sei die zugehôrige
Intervall-Topologie im Modell.

Eine Modellmenge ist genau dann offen (abgeschlossen) im Modellsinn, falls
sie es im Sinne der Mengenlehre ist. Denn vorerst ist ein Intervall in a0 das-
selbe in Modell und Mengenlehre. Eine Vereinigungsmenge im Modellsinn von
Intervallen ist dies auch im Sinne der Mengenlehre. Das heiBt, otfene Mengen
im Modell sind offen im Sinne der Mengenlehre. Ist umgekehrt eine Modellmenge

offen im Sinne der Mengenlehre, dann ist sie Vereinigung der Menge y
aller offenen Intervalle, die in x liegen. Die x und y zugeordneten Unter-
gruppen von g sind dieselben. Mit x ist somit auch y Modellmenge; also ist
x auch im Modellsinn Vereinigung offener Intervalle und somit offen. Die ent-
sprechende Aussage liber abgeschlossene Mengen ergibt sich daraus, daB der
Begriff «komplementâre Teilmengen in a0» in Modell und Mengenlehre der-
selbe ist.

1. Der Raum (,aOix} erfullt Ax

Sei x e a0. t sei die Vereinigungsmenge zweier Punktfolgen, von denen die
eine von links und die andere von rechts gegen x konvergiert. Es ist t e q.
Denn x ist der einzige Hâufungspunkt von t, und auBerhalb jeder Umgebung
von x befinden sich nur endlich viele Punkte der Menge t. Jedes Intervall
zwischen zwei Punkten von t wird von allen Permutationen aus h (t) auf sich

abgebildet. Die Menge aller dieser Intervalle ist daher auch im Modellsinn ab-
zâhlbar (vgl. 1.5). Die Teilmenge derjenigen Intervalle, die x enthalten, bildet
eine abzâhlbare Basis fur die Umgebungen des Punktes x.

2. Der Raum <a0, r) ist lokal-kompakt

Wir zeigen, daB der Ordnungstypus von a0 im Modell das DEDEKiNDsche
Schnittaxiom erfullt. Daraus folgt in ûblicher Weise ohne Auswahlaxiom, daB

jedes abgeschlossene Intervall kompakt ist.
Wir betrachten eine Zerlegung im Modell : a0 6 ^ c, 6,c^0, u <v fur

aile u € b und v c c. (b, c> ist auch im Sinne der Mengenlehre eine Zerlegung
und definiert infolgedessen entweder einen Schnitt oder eine Lûcke. Wir
zeigen, daB der zweite Fall auszuschlieBen ist. Die Gruppe h(t), teq, transfor-
miere sowohl b als auch c in sich. Wûrde <6,c> eine Lûcke definieren, dann
gâbe es, da t hôchstens endlich viele Hâufungspunkte besitzt, ein u' c 6 und
ein v1 ce, so daB aile Hâufungspunkte von t auBerhalb des Intervalls I(u',v')
làgen. Aus Eigenschaft (2) von t folgt, daB hôchstens endlich viele Punkte aus
t in I^'.v') lâgen. Also gâbe es ein ucb und ein vec, so daB I(u,v) mit
t durchschnittsfremd wâre. h(t) wirkte daher transitivim Innern von I(u,v).
Es wâre somit entweder jeder Innere Punkt von I(u,v) Elément von b oder
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jeder Elément von c. Das heiBt es wàre entweder v das erste Elément von c

oder u das letzte Elément von b, im Widerspruch zur Annahme, daB <6, c>

eine Lucke definiert. <6, c) definiert in der Mengenlehre, und somit auch im
Modell, einen Schnitt.

3. Der Raum <a0, t> erfullt T4

Jeder Punkt ist abgeschlossen : Denn jeder Punkt ist im Sinne der Mengenlehre

abgeschlossen.
Zwei dispunkte, abgeschlossene Mengen A, 2? besitzen disjunkte, offene

Umgebungen: ^
Die Gruppe h(t),t eq, transformiere sowohl A als auch B in sich. Es sei

ht die (endliche) Menge der Hâufungspunkte von t, (xlf... xm) ht^ A,
(Vi > • • • Vn) — ht — (xi y • • • xm) • ^a A > & abgeschlossen und disjunkt sind, ist
jeder Punkt x{ innerer Punkt eines Intervalls Ut mit Î7t^ B 0, und
jeder Punkt yi innerer Punkt eines Intervalls Vj mit V^ A 0. Die
Uu V5 lassen sich so wàhlen, daB zusatzlich gilt U{ ^ Vt 0 fur aile i

1,... m, j= 1 n. Sei A'=A ^ U U{, B' JS ^ u Fi# ^', 5' sind
abgeschlossen und disjunkt. * 7

Sowohl <4' als auch B' zerfâllt in hochstens endlich viele Komponenten.
Denn U U U{ ^ U Vê ist eine Umgebung von A^ ; auBerhalb U befinden

sich somit nur endlich viele Punkte von t. Dièse Punkte, zusammen mit den

Endpunkten der Intervalle Uif Vj} zerlegen a0 in endlich viele Abschnitte,
von denen jeder entweder ganz zu Af oder ganz zu B' gehôrt, oder sowohl

mit A1 als auch mit Br durchschnittsfremd ist (h(t) wirkt transitiv auf
jedem offenen Intervall, das keine Punkte von t enthâlt).

Es gibt daher offene, disjunkte Umgebungen 01,02 von A\B\ die ihrer-
seits in nur endlich viele Komponenten zerfallen. C^, 02 sind somit Modell-

mengen. Wegen A c Ar, B c Bf ist damit der Satz bewiesen.

4. Die einzigen stetigen, reellwertigen Funktionen von <a0, r) sind die Kon-
stanten

Aus dem DEDEKiNDschen Schnittaxiom folgt, daB <a0, r> zusammenhân-
gend, das heiBt nicht Vereinigung zweier disjunkter, abgeschlossener, nicht-
leerer Mengen ist. Fur stetige, reellwertige Abbildungen <p gilt somit der
Zwischenwertsatz : Mit den reellen Zahlen |, p gehôren auch aile dazwischen-

liegenden Zahlen zum Wertebereich von q>. <p erfullt auch im Sinne der

Mengenlehre den Zwischenwertsatz (die reellen Zahlen sind in Modell und
Mengenlehre dasselbe). Da a0 im Sinne der Mengenlehre abzâhlbar ist, ist das

Bild von a0 hochstens abzâhlbar. Mit dem Zwischenwertsatz folgt, daB das

Bild nur aus einem Punkt besteht; das heiBt cp ist eine konstante Abbildung.
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Bemerkung: Der Raum <a0, t> besitzt zusâtzlich die Eigenschaft, daB keine
zwei verschiedenen Punkte durch einen Weg verbindbar sind (obwohl <a0, t>
zusammenhângend ist).
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