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Auswahlaxiom in der Algebra

von H. LAvceLl, Winterthur

Einleitung

In der vorliegenden Arbeit wird von einigen mathematischen S#tzen, vor-
wiegend von Sdtzen aus der Algebra, gezeigt, dafl sie nicht ohne Auswahl-
axiom beweisbar sind.

Zu diesem Zwecke werden Modelle fiir die Mengenlehre konstruiert nach
einer Methode, wie sie erstmals von A. FRAENKEL in [3], spiter von A. Mos-
TOWSKI [6] und R. Fra1sst [4] angewendet wurde. E. SPECKER beschrieb diese
Methode in ihrer allgemeinsten Art in [7].

Wir geben in Kapitel I im wesentlichen eine Zusammenfassung dieser Be-
schreibung. Als Rahmen dient das von P. BErNAYs [1] aufgestellte Axiomen-
system fiir die Mengenlehre. Die Kapitel II-VI bringen Anwendungen der in
Kapitel I beschriebenen Methode.

Wir zeigen in Kapitel IT, dal die folgenden Sitze aus der Koérpertheorie
nicht ohne Auswahlaxiom beweisbar sind: Jeder Korper besitzt einen alge-
braisch-abgeschlossenen Erweiterungskorper; jeder formal-reelle Kérper be-
sitzt einen reell-abgeschlossenen Erweiterungskorper; jeder algebraisch-ab-
geschlossene, algebraische Erweiterungskorper eines abzihlbaren Korpers ist
abzéhlbar (insbesondere: jeder algebraische Erweiterungskérper des Korpers
der rationalen Zahlen ist abziéhlbar); zwischen einem formal-reellen Korper
und einer algebraisch-abgeschlossenen Erweiterung dieses Korpers gibt es
einen reell-abgeschlossenen Korper.

In Kapitel ITI wird ein Modell konstruiert, worin ein (nicht endlich dimen-
sionaler) Vektorraum v existiert mit den folgenden Eigenschaften: a) Jeder
echte Unterraum von v ist endlich dimensional. Daraus ergibt sich beispiels-
weise, dall v keine Basis (im algebraischen Sinne) besitzt, und da der duale
Raum »* nur aus der 0-Abbildung besteht. b) Die einzige zulédssige Vektor-
raumtopologie auf » ist die triviale (grobste). ¢) Die einzigen linearen Selbst-
abbildungen von v sind die Vielfachen der Identitit.

In Kapitel IV wird gezeigt, daBl der Schreiersche Satz iiber die Untergruppen
freier Gruppen nicht ohne Auswahlaxiom beweisbar ist.

In Kapitel V wird ein Modell angegeben, worin isomorphe Vektorriume mit
ungleich michtigen Basen existieren. Das heif3t der Satz, wonach alle Basen
eines Vektorraumes gleich méchtig sind, ist nicht ohne Auswahlaxiom beweis-
bar. Im gleichen Modell existieren verschieden michtige Mengen mit gleich

1 CMH vol. 387



2 H. LivoHLI

méchtigen Potenzmengen. Nach derselben «Methode der direkten Summen»,
wie sie hier zur Anwendung gelangt, kénnen viele weitere Beispiele behandelt
werden.

In Kapitel VI wird im wesentlichen gezeigt, daf der Satz von Urysohn (aus
der Topologie) nicht ohne Auswahlaxiom beweisbar ist. Dabei gelangt ein Mo-
dell zur Anwendung, das sich von allen vorher konstruierten insofern unter-
scheidet, als es kein Normalmodell ist (vgl. 1.6).

Da das Hauptgewicht der Arbeit auf Anwendungen der in [7] beschriebenen
Methode zur Konstruktion von Modellen liegt und nicht auf axiomatischen
Untersuchungen der Mengenlehre, wurde auf einen formalen Aufbau im Sinne
der Mathematischen Logik verzichtet.

I. Permutationsmodelle?)

1. Wir legen der Mengenlehre die Axiome I-VI des Axiomensystems von
BERNAYS [1] zugrunde: Dies sind die Axiome der Extensionalitéit, der direkten
Mengenkonstruktion, der Klassenkonstruktion, das Auswahlaxiom, das Axiom
itber die Darstellung von Klassen durch Mengen, das Unendlichkeitsaxiom.

Zusétzlich erfiille die Mengenlehre ein «Fundierungsaxiom beziiglich einer
Basismenge a,».

Das heiit a) Die Klasse A derjenigen Mengen, die sich selbst als einziges
Element enthalten, 4 = {x | x = ()}, werde durch eine Menge repriisentiert:
Die Basismenge a,.

b) Jede nicht leere Klasse C enthalte ein Element ¢, sodaB C~c¢ c a,.

Dieses Axiom hat die folgende Bedeutung: Sei y die Funktion, die jedem
Paar a,x, gebildet aus einer beliebigen Menge @ und einer Ordnungszahl o,
eine Menge y(a,x) zuordnet, so dafl gilt: y(a, 0) =0, yp(a,x+1) ist die
Potenzmenge von y(a,x), fiir eine Limeszahl A ist y(a,A) die Vereinigung
der Mengen y(a,&) mit &eA. II(a) sei die Vereinigungsklasse der Menge
y(a,x), wo « die Klasse aller Ordnungszahlen durchliuft. Das Fundierungs-
axiom beziiglich a, ist nun &quivalent mit der Forderung, daB I7(a,) die
Allklasse sei.

Die Elemente der Basismenge a, iibernehmen die Rolle der Urelemente in
Zermelos Terminologie. Das klassische Fundierungsaxiom besagt, daf I7(0) die
Allklasse sei.

Das Fundierungsaxiom beziiglich a, ist konsistent mit den Axiomen I-VI;
dabei darf die Michtigkeit von a, frei vorgeschrieben werden (vgl. [7]).

Die von uns betrachtete Mengenlehre soll von abzihlbarer Basis sein. a,
wird zugleich Basismenge der Modelle sein, die wir, ausgehend von dieser

1) Vgl. mit der in [7], S.193-199, gegebenen Darstellung.
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Mengenlehre, konstruieren werden; a, wird jedoch im Modellsinn nicht abzahl-
bar sein.

In unserer Mengenlehre gibt es keine anderen Objekte als Mengen und
Klassen. So werden geordnete Paare von Mengen, Abbildungen, Ordnungs-
zahlen usw. in der iiblichen Art durch Klassen (Mengen) dargestellt. Alge-
braische Strukturen konnen in natiirlicher Weise durch Mengen reprasentiert
werden: Ein Korper & ist beispielsweise ein Trippel k = {x,x, u>, wobei «
(die Addition) und u (die Multiplikation) Abbildungen von = Xx auf » sind,
welche den Korperaxiomen geniigen; » ist die Menge der «Korperelemente»,
auch das «Feld» von %k genannt.

2. Ein Automorphismus ¢ der Mengenlehre ist eine solche 1-1deutige Ab-
bildung der Allklasse II(a,) aufsich, welche die e-Relation erhdlt: x ¢ y genau
dann, wenn @ (x) € p(y).

Jede Permutation der Basismenge a, ldft sich in eindeutiger Weise fort-
setzen zu einem Automorphismus von I7(a,). Die Klasse I7(0) besitzt somit
nur den trivialen Automorphismus. /7(0) wird von jedem Automorphismus
der Klasse II(a,) in sich transformiert und bleibt somit elementweise fest.

Die durch die Elemente einer Permutationsgruppe g von K2 induzierten

Automorphlsmen der Mengenlehre bilden wieder eine Gruppe g (die Elemente

von ¢ sind echte Klassen; ¢ ist kein Objekt der betrachteten Mengenlehre).
Sei g eine Permutationsgruppe von a,. Wir ordnen einer Klasse C' (Mengec)
die Untergruppe 2(C) (%(c)) derjenigen Elemente von g zu, die solche Auto-
morphismen der Mengenlehre induzieren, welche C(c) auf sich abbilden.
Ist f eine Menge von Untergruppen von g, dann existiert die Klasse der
Mengen x mit A(z)ef.

3. Sei g eine Permutationsgruppe von a,. Eine Menge f von Untergrup-
pen von g ist ein Filter auf g, wenn (1) mit einer Untergruppe auch ihre
Konjugierten, (2) mit einer Untergruppe auch jede umfassendere, (3) mit
zwei Untergruppen auch deren Durchschnitt zu f gehort.

4. Wir ordnen einem Filter f das folgende Modell M (f) zu (die Gruppe g

ist durch f bestimmt):

a) Mengen des Modells sind Mengen mit der Eigenschaft, daf3 die ihnen und
den Elementen ihrer transitiven Hiille zugeordneten Untergruppen zu f
gehoren.

b) Klassen des Modells sind Klassen mit der Eigenschaft, dafl die ihnen und
den Elementen ihrer transitiven Hiille zugeordneten Untergruppen zu f
gehoren.
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c¢) Gleichheits- und e-Relation des Modells sind die Gleichheits- und e-Rela-
tion der Mengenlehre.

In M (f) sind, abgesehen vom Auswahlaxiom, alle der oben aufgezihlten Axiome
erfiillt.

Wir erwihnen noch die folgenden Eigenschaften des Modells:

Eine M-Klasse (Klasse des Modells) wird genau dann im Modellsinn durch
eine Menge reprisentiert, wenn sie in der Mengenlehre reprisentiert wird. Die
transitive Hiille einer M-Klasse (M-Menge) im Modellsinn stimmt iiberein mit
der transitiven Hiille im Sinne der Mengenlehre. Die Klasse I7(0) im Modell-
sinn ist die Klasse I7(0) der Mengenlehre, Ordnungszahlen des Modells sind
diejenigen der Mengenlehre.

Der Endlichkeitsbegriff ist derselbe in Modell und Mengenlehre; denn zu-
néchst ist der Begriff der endlichen Ordnungszahl derselbe. Des weiteren ist
eine im Modellsinn 1-1deutige Abbildung von einer M-Menge auf eine endliche
Ordnungszahl eine 1-ldeutige Abbildung im Sinne der Mengenlehre, da die
transitive Hiille dieser Abbildung in Modell und Mengenlehre dieselbe ist. Es
bleibt zu zeigen, dafl eine endliche /-Menge endlich im Modellsinn ist: Sei «
eine M-Menge, ¢ eine 1-1deutige Abbildung von « auf eine endliche Ord-
nungszahl «. Wir zeigen, dal ¢ eine M-Menge ist. Da alle Elemente der
transitiven Hiillen von &« und 2 M-Mengen sind, gilt dasselbe fiir die Elemente
der transitiven Hiille von ¢. Es bleibt zu zeigen, daB %(¢) ¢ f. Durch voll-
stindige Induktion nach « beweist man unter Beriicksichtigung von Filter-
eigenschaft (3), daB N %(y) e f. Diese Gruppe laBt sowohl « als auch «,

yex
somit auch ¢ elementweise fest. Sie ist somit Untergruppe von h(p) (sogar =

= h(p)). Aus Filtereigenschaft (2) folgt 2(¢p) € f.
M (f) erfiillt das auf I7(0) beschrinkte Auswahlaxiom: Es gibt eine Funk-
tion, die jeder nicht leeren Menge aus I7(0) eines ihrer Elemente zuordnet.

b. Der Filter f, bzw. das Modell M (f) heilen nicht trivial, wenn f die
folgenden zusitzlichen Bedingungen erfiillt: (4) Fiir alle r ea, ist h(r) € f, (5)
die triviale Untergruppe (die die Identitéat als einziges Element enthilt) gehort
nicht zu f.

Aus (4) folgt, daB a, Modellmenge ist. @, ist in jedem nicht trivialen Modell
Basismenge. (5) zieht nach sich, da nicht jede Menge M -Menge ist.

Wir werden nur nicht-triviale Modelle betrachten.

Satz, In einem nicht trivialen Modell lift sich a, nicht wohlordnen.

Beweis: Eine im Modellsinn 1-1-deutige Abbildung @ von a, auf eine
Ordnungszahl « wire auch eine solche Abbildung im Sinne der Mengenlehre.
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Sei reag, r,&e®, peh(P), p(r) =1r". Wegen (&) = & folgt ', & =
o(r), (&) = @ (7, &), also ', &) e P. Somit,da P 1-1-deutigist, ' =r.
k(D) ist somit die triviale Untergruppe und gehort nach (5) nicht zu f, Wi-
derspruch.

Wie aus dem Beweis hervorgeht, 148t sich eine M-Menge z genau dann im
Modellsinn wohlordnen, wenn es eine Gruppe in f gibt, deren induzierte Auto-
morphismen z elementweise fest lassen.

Eine Modellmenge « ist genau dann im Modellsinn transfinit (d.h. besitzt
eine abzidhlbare Teilmenge), wenn es eine unendliche Teilmenge z’' von =z
gibt, die von einer Gruppe aus f elementweise fest gehalten wird.

6. Unter dem einer Permutationsgruppe g von a, zugehodrigen Normal-
filter f(g) verstehen wir den durch die Menge {k(r)|r € a,} erzeugten Filter.

~

Sei e eine endliche Teilmenge von a,. Wir setzen h(e) = n 2(r). Der Nor-
r€e

malfilter f(g) ist die Gesamtheit derjenigen Untergruppe von g, die eine
Gruppe Z(e) umfassen. f(g) ist nicht-trivial, sobald (5) gilt, d.h. sobald es zu
jeder endlichen Teilmenge e von a, eine von der Identitidt verschiedene Per-
mutation in g gibt, die e elementweise fest hélt.

Wir nennen das durch f(g) definierte Modell das zu g gehoérige Normal-
modell N(g): N(g) = M ({(9))-

Der Filter f irgendeines nicht-trivialen Modells umfat den Filter f(g); die
Normalmodelle sind in diesem Sinne minimal.

In der Literatur wurden meines Wissens bisher keine anderen Modelle als
Normalmodelle untersucht. Wir geben in Kapitel VI ein Beispiel fiir ein an-
deres Modell.

I1. Beispiele aus der Korpertheorie

In diesem Kapitel wird gezeigt, daBl gewisse Sitze aus der Korpertheorie
nicht ohne Auswahlaxiom beweisbar sind.

1. Modell. Sei g die durch die Menge aller Transpositionen der Basismenge
a, erzeugte Gruppe, N (g) das zugehorige Normalmodell. N (g) ist nicht-
trivial, jede Gruppe aus dem Normalfilter f(g) enthilt Transpositionen.

Wir beweisen die Sétze

1.1. In N(g) existiert ein Korper, der keinen algebraisch abgeschlossenen
Erweiterungskorper besitzt?).

3) Satz und Beweis bleiben richtig, wenn wir tiberall «algebraisch-abgeschlossener Korper»
durch «Korper, der mit jedem Element auch dessen Quadratwurzeln enthélt» ersetzen.
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1.2. In N(g) existiert ein formal-reeller Korper, der keinen reell abgeschlosse-
nen Erweiterungskorper besitztd).

Beweis von 1.1.: Der Beweis beruht auf dem folgenden algebraischen

Hilfssatz: (i) Jeder Automorphismus der Ordnung 2 eines algebraisch abge-
schlossenen Korpers (mit Char. s 2) vertauscht die beiden Quadratwurzeln
von — 1.

Beweis von (i): Sei ¢ ein Korperautomorphismus der Ordnung 2, ¢(z)=y,

y#x. Esist o(y)=x. Fir z=2 — y ist ¢(2) = — 2z und 2z £ 0. Sei u
eine Quadratwurzel von z. Dann ist ¢(u) eine Quadratwurzel von —z,
also 1 = .?i_(?;@ﬁ)_ eine Quadratwurzel von —1. Es ist ¢@(u) =u, also u =

= @®(u) = p(iu) = ¢(t) -@p(u) = @) iu,alsop@)i=1,¢p(t) = —t.w.z.b.w.
Wir zerlegen den Beweis von 1.1 in zwei Schritte:

1.11. Es gibt in N(g9) einen Korper mit einer Charakteristik verschieden
von 2, dessen Feld die Menge a, umfaf(t.

1.12. Esgibtin N(g) keinen algebraisch-abgeschlossenen Koérper mit einer
Charakteristik verschieden von 2, dessen Feld die Menge a, umfafit.

Beweis von 1.11: Sei P ein Korper mit Charakteristik verschieden von 2,
dessen Feld keine Elemente aus a, enthalte. Auf Grund des Funktions- und
Endlichkeitsbegriffs 1it sich in iiblicher Weise ein Oberkérper konstruieren,
dessen Feld die Menge a, als Menge unabhéngiger Transzendenter iiber P um-
faf3t.

Beweis von 1.12; Sei k = {(x,x, u) ein algebraisch-abgeschlossener Koérper
im Modell mit Charakteristik # 2. Wir zeigen, daB a, ¢ »:
k ist auch im Sinne der Mengenlehre ein Korper mit den genannten Eigenschaf-
ten. Die durch die Elemente von k(k) (h(k) ist die k£ zugeordnete Unter-
gruppe von ¢) induzierten Automorphismen der Allklasse bilden mit % auch
die Mengen x,x, u je auf sich ab. Die Beschrinkung eines solchen Automor-
phismus auf » ist somit ein Korperautomorphismus von k. Sei 7 eine Qua-
dratwurzel von — 1. Wir setzen % = h(k) ~ h(i). Die Elemente von % in-
duzieren solche Automorphismen von k&, die ¢ fest lassen, und somit nach der
Kontraposition von (i) solche, deren Ordnungen von 2 verschieden sind. Da
h ef(g), enthdlt h Transpositionen (von Elementen aus g,). Eine solche
Transposition 7 induziert einen Automorphismus der Mengenlehre von der
Ordnung 2 und somit einen Korperautomorphismus von %, dessen Ordnung
< 2 ist. Wiren die durch v transponierten Elemente von @, in » enthalten,

3) Fiir die Begriffe «formal-reell» und «reell-abgeschlossen» vgl. z.B. [8].
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dann wire diese Ordnung = 2, entgegen dem vorhergehenden. Es ist somit
ay ¢ %, W.2.b.W.

Beweis von 1.2:

1.21. Es gibt in N (g) einen formal-reellen Korper, dessen Feld die Menge
a, umfafBt.

1.22. Es gibt in N(g) keinen reell-abgeschlossenen Korper, dessen Feld die
Menge @, umfaf3t.

Beweis von 1.21: Ist der im Beweis von 1.11 betrachtete Korper P formal-
reell, so ist es auch der dort erwdahnte Oberkorper von P.

Beweis von 1.22: Ein reell-abgeschlossener Korper besitzt eine kanonische
Anordnung (z > 0, wenn x ein Quadrat ist). Es 148t sich somit jede Teil-
menge seines Feldes ordnen. Andrerseits 1a8t sich die Menge a, im Modell
nicht ordnen: Eine solche Ordnungsrelation wire auch Ordnungsrelation im
Sinne der Mengenlehre. Die ihr zugeordnete Gruppe % bestiinde aus ordnungs-
treuen Permutationen von a, und enthielte somit keine Transpositionen. Jede
Gruppe aus f(g) enthélt aber Transpositionen.

2. Modell. Sei %k ein algebraisch abgeschlossener, algebraischer Erweite-
rungskorper seines Primkorpers P mit Charakteristik 0. Das Feld von % sei
die Basismenge aq,.

Es gibt einen solchen Korper: denn es gibt einen abziéhlbaren Kérper A, der
auller der letztgenannten alle diese Eigenschaften besitzt. Das Feld von &
1486 sich 1 — 1deutig auf @, abbilden. Diese Abbildung induziert auf a, in
natiirlicher Weise eine Korperstruktur ¥ von der verlangten Art.

g sei die Gruppe aller Automorphismen von k. g ist eine Permutations-
gruppe von a,. Wir betrachten das Normalmodell N(g). % ist auch im Mo-
dellsinn ein algebraisch-abgeschlossener, algebraischer Erweiterungskdrper von
P; P ist auch im Modellsinn abzéhlbar (die Gruppe ¢ 148t das Feld von P
elementweise fest).

Wir beweisen die folgenden Sitze:

2.1, Das Feld von k st tm Modell nicht abzihlbar.

R.2. k besitzt tm Modell keinen reell-abgeschlossenen Unterkorper.
Bemerkung zu 2.1: Der Primkorper P von k ist der Korper der rationalen
Zahlen. k ist ein nicht abzdhlbarer, algebraischer Erweiterungskérper von P.

Beweis von 2.1: Nach Kap. I, Abschnitt 5, geniigt es zu zeigen, dall das
Modell N (g) nicht trivial ist. k ist nicht endlich iiber P. Jede endliche Teil-
menge e von a, spannt einen endlichen Erweiterungskérper £ von P auf.
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Ee existieren nicht triviale Automorphismen von k rel. E*) (Auswahlaxiom
in der umfassenden Mengenlehre!). N(g) ist somit nicht trivial.

Beweis von 2.2: Jeder reell-abgeschlossene Koérper des Modells ist reell-
abgeschlossen im Sinne der Mengenlehre. Sei %' im Sinne der Mengenlehre ein
reell-abgeschlossener Unterkorper von k. Es ist zu zeigen, daB es zu jedem
endlichen Erweiterungskorper £ von P einen Automorphismus von k& rel.
E gibt, der k' nicht auf sich abbildet.

Sei E ein endlicher Erweiterungskorper von P. k' ist nicht Unterkérper
von E, da ein endlicher Erweiterungskérper von P nicht reell-abgeschlossen
ist. Sei x ein Korperelement von k', das nicht in £ liegt. Es gibt einen
Automorphismus ¢ von k rel. £ mit ¢(x) %% x. Wiirde £’ von ¢ aufsich
abgebildet, dann beséfle %' einen nicht trivialen Automorphismus, was be-
kanntlich fiir reell-abgeschlossene, algebraische Erweiterungskorper von P
nicht der Fall ist.

Mit den eben verwendeten Methoden ldaf3t sich zeigen, daB auch der folgende
Satz nicht ohne Auswahlaxiom beweisbar ist: Zu jedem Erweiterungskorper &'
eines Korpers %k gibt es einen Zwischenkorper z, so dafl &' algebraisch iiber 2z
und z rein transzendent iiber k& (bzw. = k) ist.

Hingegen ist ohne Auswahlaxiom beweisbar, dafl jeder reell-abgeschlossene,
algebraische Erweiterungskorper k' eines abzéhlbaren Korpers & abzéhlbar
ist: Erstens ist der Polynomring k[xz] abzéhlbar; zweitens gibt es vermoge der
kanonischen Anordnung von %' eine Funktion, die jedem Polynom f aus
k [«] eine Ordnung der Menge der in %' liegenden Nullstellen von f zuordnet.
Da nun jedes Korperelement von %' 0-Stelle eines Polynoms aus & [«] ist, ist
somit das Feld von %' abzdhlbar.

II1. Beispiel aus der Theorie der Vektorrdume

Es sei k& ein Korper in I7(0) mit abzéhlbarem Feld. v sei ein unendlich
dimensionaler?®) Vektorraum iiber ¢ mit ¢(v) = a,.%) Analog wie anlédBlich der
Definition des zweiten Modells im vorhergehenden Kapitel zeigt man, daBl ein
solcher Vektorraum existiert. Die Automorphismengruppe g von v ist eine
Permutationsgruppe von a@,. v ist im Normalmodell N(g) ein unendlich
dimensionaler Vektorraum iiber k& mit den folgenden Eigenschaften:

1. Jede Teilmenge von t(v) ist entweder Teilmenge des Feldes eines endlich

¢) Ein Automorphismus von k rel. E ist ein solcher, der E elementweise fest 1aBt.
5) Unendlich dimensional soll heilen: Es existiert keine endliche Basis.,
¢) Mit ¢(v) bezeichnen wir das Feld von v,
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dimensionalen Unierraumes von v, oder dann Komplement (beztiglich t(v))
einer solchen Menge.

Beweis: Sei x c t(v) eine Modellmenge. Es existiert eine endliche Teil-

menge ¢’ von a, = ¢(v), sodafl z von der Gruppe h (¢’) in sich transformiert
wird (vgl.I.6.). Ist e der von e’ aufgespannte Unterraum von v, so wird z
von jedem Automorphismus von v rel. e in sich transformiert. Da zu je zwei
Elementen s,¢ aus #(v) — t(e) ein Automorphismus von v rel. e existiert,
der s in ¢ iiberfiihrt?), folgt, dall entweder x c t(e) oder x > t(v) — t(e),
w.z.b.w.

Aus 1. ergeben sich die folgenden Korollare:

1.1. Jeder echte (lineare) Unterraum von v ist endlich dimensional.

Beweis: Es ist ohne Auswahlaxiom beweisbar, dal jeder Unterraum eines
endlich dimensionalen Vektorraumes endlich dimensional ist. Wegen 1. mul}
daher das Feld ¢(u) eines unendlich dimensionalen Unterraumes % von v
das mengentheoretische Komplement des Feldes ¢(e) eines endlich dimensio-
nalen Unterraumes e von v umfassen. Daraus folgt ¢(u) = ¢(v):

Sei zet(v). t(v) — t(e) ist nicht leer, da » nicht endlich dimensional ist.
Sei yet(v) —t(e), also yet(w). Falls =z + yet(e), dann =z ¢ {(e), da
y ¢t(e); also xet(v) —t(e) c t(u). Falls v + y ¢ t(e), dann « + y et(u),
und wegen y e ¢(u) folgt auch hier z e¢(u). Es ist somit ¢(u) = t(v), v = v,
w.z.b.w.

1.2. v besitzt keine Basis.

Beweis: Eine Basis von v wire nicht endlich und besiBe somit echte, un-
endliche Teilmengen (z.B. Weglassen eines Elementes). Eine solche Teilmenge
wiirde einen echten, unendlich dimensionalen Unterraum von » aufspannen,
entgegen 1.1.

1.3. v besitzt keine echie, komplementire Unterrdume.

Beweis: Von zwei komplementidren Unterriumen kann hochstens der eine
endlichdimensional sein. Nach 1.1 mul3 dann der andere mit v iibereinstim-
men; die Zerlegung ist nicht echt.

1.4. Der duale Raum v* ist trivial, d.h. enthdlt nur die Nullfunktion.

Beweis: Sei ¢ eine lineare Funktion auf v mit Werten im Koeffizienten-
korper k£, und sei % der Kern von ¢. Dann ist dim (v/u) < 1. Daraus folgt,
daB % nicht endlich dimensional ist, also wegen 1.1: % = v, w.z.b.w.

7) Man wihle geeignete Basen von v (im Sinne der Mengenlehre). Die Existenz einer solchen
Basis ergibt sich auf Grund des Auswahlaxioms in der Mengenlehre, oder auf Grund der Abz#hl-
barkeit von ¢(v) im Sinne der Mengenlehre,
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Von Interesse ist das folgende Korollar zu 1.4:

1.8. Ein nicht-triviales Element des dualen Raumes u* eines Unterraumes u
von v ldft sich nicht auf ganz v erweitern.

Der néchste Satz bezieht sich auf den Fall, daBl der Kérper £ mit einer nicht-
diskreten Topologie versehen ist. Eine zuldssige Topologie auf v ist dann stets
absorbierend: Zu jeder Umgebung U der Null und zu jedem Vektor z gibt
es ein Korperelement A, 4 £ 0, mit Aze¢U. Wir nennen die Topologie, in der
der ganze Raum und die leere Menge die einzigen offenen Mengen sind, die
triviale Topologie. Mit dem Auswahlaxiom ist fiir jeden Vektorraum die Exi-
stenz einer nicht trivialen Topologie beweisbar, sofern der Korper mit einer
nicht trivialen Topologie versehen ist.

2. Die einzige Vektorraumtopologie auf v ist die triviale Topologie.

Beweis: Wir zeigen, daB fiir jede Umgebung U der Nullgilt U 4 U = {(v).
Daraus folgt wegen der Stetigkeit der Addition, daBl ¢(v) die einzige Umgebung
der Null ist, und wegen der Translationsinvarianz der Topologie, daBl ¢(v) die
einzige nicht leere offene Menge ist.

Es sei U eine Umgebung der Null. Da U absorbierend ist, ist U mnicht
Teilmenge des Feldes eines echten linearen Unterraumes von v. Nach 1. exi-
stiert somit ein endlich dimensionaler Unterraum e von » mit #(v) — i(e) c U.
Daraus folgt U 4+ U = t(v):

Vorerst ist U + U o t(v) — t(e). Ist xei(e), yei(v) — t(e), dann auch
x—yet(v) —t(e). Also 2=y + (x —y) mit ye U und 2 — ye U. Also
t(e) c U+ U und somit t(v) = U + U, w.z.b.w.

3. Die einzigen linearen Selbstabbildungen von v sind die Vielfachen der Iden-
titgt (d.h. die Abbildungen A-1, Aet(k)),; insbesondere ist die Nullabbildung
die einzige singuldre lineare Selbstabbildunyg.

Beweis: Sei ¢ eine lineare Selbstabbildung von v. e sei ein endlich dimen-
sionaler Unterraum von v, so dal ¢ von jedem Automorphismus von » rel.
e in sich transformiert wird. w sei ein zu e komplementérer Unterraum (im
Sinne der Mengenlehre). w ist unendlich dimensional. Wir zerlegen ¢ =
= @, + @a, s0 daB ¢,(x) et(e), @.(x)et(w). Der Kern r der auf w be-
schrinkten Abbildung ¢, ist nicht endlich dimensional, da e, hingegen nicht
w, endlich dimensional ist. ¢ bildet » in w ab. Fir x<¢(r) ist @(x) ein
Vielfaches von z; denn sonst giibe es einen Automorphismus von w, der z,
aber nicht ¢(z), fest lieBe, und jeder Automorphismus von w a8t sich fort-
setzen zu einem solchen von v rel. e. Also ¢(z) = A(x)-x fiir alle x ef(r).
Aus der Linearitidt von ¢ folgt, daB die Funktion A konstant ist. Das heif3t, es
existiert ein Aet(k), so daB ¢@(z) = A-z fir alle zef(r). Im Modellsinn



Auswahlaxiom in der Algebra 11

existiert der lineare Raum u derjenigen =z e?¢(v), fiir welche ¢(z) = 1. =.
w ist nicht endlich dimensional, da % im Sinne der Mengenlehre einen nicht
endlich dimensionalen Raum r umfaft. Aus 1.1 folgt v = v, w.z.b.w.

IV. Beispiel aus der Gruppentheorie

Wir zeigen, daB3 der ScErREIERsche Satz iiber die Untergruppen freier Grup-
pen im allgemeinen Fall (freie Gruppen iiber beliebig unendlichem Erzeugen-
densystem) nicht ohne Auswahlaxiom bewiesen werden kann.

Sei S ein freies Erzeugendensystem einer Gruppe F, und sei %,v e S. Wir
betrachten den Automorphismus ¢ von F, der durch die Transposition

w<—>v induziert wird. Wir setzen & = @(x) (x € F). Dann gilt:

1. Stellt das Wort W = X;I X ou

u b

x; eS8, ¢,= + 1, das Element «
dar, dann wird « durch W = z}:... xf dargestellt. Das Wort W ist  genau

u

dann ausgekiirzt, wenn W esist. Fiirzwei Worte W,, W, ist W1 Wy = W1 Wg,
insbesondere ist W, W, genau dann ausgekiirzt, wenn W, W, es ist.

2. Ist W = W, dann kommen in W die Symbole %, v nicht vor.

3. Ist @ ein freies System von Elementen aus F, welches durch ¢ in sich
transformiert wird, U die durch @ erzeugte Untergruppe von F,x eine Ele-
ment aus U mit & =1, dann gibt es ein f e U mit & = BB1.

Beweis von 3.:

Sei o =1¢&pr... &%, & €Q, die beziiglich @ ausgekiirzte Darstellung

von «. Es ist 5 €@ und es sind auch die Darstellungen & = 50 ym g;"
ol =EFfu ., 5 ausgekurzt Wegen « x =1 ist somit 5u_K == F oy Egeay ==
= — &, fiir k=0, ,u. Aus e, , = — ¢, folgt, daB u -+ 1 gerade ist.

Fir g=§&p...63, wo 21+ 1=u, gilt & = ﬂ?i'l, w.z.b.w.
Wir betrachten nun das Normalmodell N(g), wo g wie in II.1. die durch

alle Transpositionen der Basismenge a, erzeugte Gruppe sei. Wir betrachten
(im Modell) die freie Gruppe F iiber S = q,.

Satz. Die Kommutatorgruppe C von F besitzt kein freies Erzeugenden-
system.

Beweis: F (bzw. C) ist auch in der umfassenden Mengenlehre die freie
Gruppe iiber 8 (bzw. die Kommutatorgruppe von F). Ein freies Erzeugen-
densystem @ von C wire dies auch im Sinne der Mengenlehre. Die Gruppen
h(Q), h(F) (vgl.1.2.), und somit auch A = h(F)~ h(¢), wiren Elemente des
Normalfilters f(g). h enthilt diejenigen Elemente von g, die solche Auto-
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morphismen der Mengenlehre induzieren, deren Beschrinkung auf das Feld
von F ein Gruppenautomorphismus von F ist, und die @ auf sich abbilden.
k enthielte eine Transposition ¢ : u<—>v, %, v ea,.

Wir betrachten das Gruppenelement &« = uvu~v1. Es ist « ¢ C, und die
Voraussetzungen fiir 3. sind erfiillt (8 = a,). Also gébe es ein feC mit
x = ﬂﬁ“l. W sei das ausgekiirzte Wort in Elementen aus S, das g darstellt.
Dann wird E"l durch das ausgekiirzte Wort w1 dargeste]lt (1.). W, sei das-
jenige Endstiick von W, das bei der Komposition W W-1 Weggekurzt wird :
W=WW, W1= W3 W (1.). Dasjenige Anfangsstiick von W-1, das
weggekiirzt wird, ist von derselben Linge wie W,. Es wird somit genau Wyt

weggekiirzt, also W, = W2 %, v kommen somit in W, nicht vor (2). Wegen
feC haben w und v in W = W, W, je die Exponentensumme 0, und

somit auch in W,. Andrerseits folgt aus dem Vorhergehenden, daf3 W, Wy

die ausreduzierte Darstellung von o« ist (beziiglich ), das heiBt W,W,~! =
= wvy v, W, =wuv: Widerspruch.

V. Methode der direkten Summe

Es gelangt in diesem Kapitel eine Methode zur Anwendung, mit der viele
weitere Beispiele behandelt werden konnten. Es wird darauf verzichtet, die
Methode als solche zu beschreiben; das folgende Beispiel moge hinreichend
instruktiv sein.

Unser Ziel ist, ein Modell zu konstruieren, worin isomorphe Vektorrdume mit
ungleich méchtigen Basen existieren.

Wir prigen der Basismenge a, die folgende Struktur auf: a, sei Vereini-
gung abzihlbar vieler, paarweise disjunkter, 12-zahliger Mengen a,. Fiir alle j
sei @, nochmals unterteilt in zwei geordnete 6-zahlige Mengen a;,, a;;. Wir
setzen b,= U a,, t=1,2. Es ist a=0b,vb,. g, = {1,x, B,y} sei die

7
(abstrakte) KLeInsche Vierergruppe. d,;,7 = 1,2, seien die folgenden Dar-
stellungen von g, als Permutationsgruppe von a;;:

d () = (12) (34) (5) (6)  djp(x) = (12) (34) (5) (6)
dn(B) = (13) (24) (5) (6)  dy(B) = (12) (3) (4) (56)
dn(y) = (14) (23) (5) (6)  dyn(y) = (1) (2) (34) (56) .

(Ziffern beziehen sich auf die ausgezeichneten Ordnungen der ay; es wird die
iibliche Zyklen-Schreibweise fiir Permutationen verwendet).

g, sei das Bild von g, bei der Darstellung d, + d;; das heilit g, ist die
Gruppe derjenigen Permutationen z von a,, zu denen ein §eg, existiert
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mit d;(§) = /g, dp(f) = A/en. g=2g; sei die direkte Summe der
j

Gruppen g¢,; das heiit, g ist die Permutationsgruppe von ga,, die erzeugt
wird durch alle diejenigen Permutationen, die auf irgendeinem der Teile a,
mit irgendeinem Element aus g;, auf den iibrigen Teilen als Identitat wirken.
Wir betrachten das zu g gehorige Normalmodell. Die Mengen b,, b, sind
Modellmengen, da sie von ¢ je in sich transformiert werden. Dasselbe gilt fiir
die Mengen a;.
Wir beweisen die folgenden Satze:

Satz 1. Im Modell N (g) exisiiert ein Vektorraum mit zwei ungleich mdchiigen
Basen.

Satz 2. In N(g) existieren zwei Kardinalzahlen m,n mit 2™ = 2" wund
m = R,, aber nicht n > X,.

Fiir den Beweis der Sétze 1., 2. betrachten wir im Modell einen Kérper &
von der Charakteristik 0. »; und », seien (im Modell) Vektorrdume iiber k
mit b, bzw. b, als Basis. Der Korper £ sei Element der Klasse I7(0). Die
Elemente der Felder von v,,7 = 1, 2, seien solche Abbildungen von b; in
das Feld von £k, die «fast iiberall» 0 sind (Funktions- und Endlichkeits-
begriff der Mengenlehre). Dann sind die zugeordneten Untergruppen A(v;) und
h(v;) von g mit g identisch. Das heift, jede Permutation aus g erzeugt einen
solchen Automorphismus der Mengenlehre, dessen Beschrinkung auf das Feld
von v; ein Vektorraum-Automorphismus ist.

Wir zeigen nun, daB gilt:

I. Die Réume v,, v, sind (im Modell) isomorph.

Firm=b,|, n=|by]:

II. Esist m > R,, aber nicht » > R, (im Modell).
IIT. Esist 2™ = 2" (im Modell).

Aus I, II.. folgt unmittelbar Satz 1.: Sei b; das Bild von b, unter einem
Isomorphismus von », auf v,. b; und b, sind ungleich michtige Basen von
v,. Die Behauptung von Satz 2. wird durch II. und III. zusammen ausge-
driickt.

Beweis von I.: v;; sei der durch a,; aufgespannte Unterraum von v; (so-
wohl im Modellsinn als auch im Sinne der Mengenlehre). d;,- sei die durch d,;
induzierte Darstellung von g, als Automorphismengruppe von #,,. Nach dem
Vorhergehenden induziert die Gruppe g, =(d; + d;) (g) auf v, + v,
die Automorphismengruppe (d;, + dj,;) (9). Die Darstellungen d;,d;,
sind dquivalent. Denn ihre Charaktere y,, y, sind gleich: x;(«) = x; (f) =
= x;(y) =2,7=1,2. Also existiert ein Isomorphismus g; von v, auf
Vs, der von allen durch Elemente von g, induzierten Automorphismen der
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Mengenlehre, und somit von allen durch Elemente von ¢ induzierten Auto-
morphismen der Mengenlehre in sich transformiert wird. Das heilit A(g;) = g.
Also ist p; ein Isomorphismus im Modellsinn, und eine Funktion @ im Sinne
der Mengenlehre, die jeder natiirlichen Zahl j einen solchen Isomorphismus
¢, zuordnet, ist Funktion im Modell: A(®) = g. Es existiert somit im Modell
der Isomorphismus ¢ von v, auf v,, der auf den Komponenten v, mit
o, = P(j) ilibereinstimmt.

Beweis von I1: Die Menge b, besitzt beziiglich der ganzen Gruppe ¢ un-
endlich viele Fixpunkte: Je die beiden letzten Elemente (beziiglich der im
Sinne der Mengenlehre ausgezeichneten Ordnung) eines jeden Teiles a;,. Die
Menge b, besitzt beziiglich keiner Gruppe aus f(9) unendlich viele Fix-
punkte: Eine Gruppe aus f(g) wirkt, abgesehen von endlich vielen j, auf
jedem Teil a, mit der ganzen Gruppe g,; g, besitzt in a,, keine Fixpunkte.

Nach 1.5 folgt daraus, daBl im Modellsinn b, transfinit, b, nicht transfinit
ist. Das heillt m > 8,, aber nicht » > §,.

Beweis von I1I: Wir betrachten die durch d,; induzierte Darstellung d;
von ¢, als Permutationsgruppe der Potenzmenge P(a;;) von a;;. Um zu
beweisen, da P(b,) und P(b,) im Modellsinn gleichmichtig sind, geniigt es,
analog wie im Beweis von I. zu zeigen, daf die Darstellungen dj; und dj,
#quivalent sind.

Die Gruppe g, besitzt die Untergruppen wu, = {1}, u, = {1,&}, us=
={1,8}, wg={1,9}, ug=¢go- Mit pi, i=1,2, k=1,..5, bezeichnen
wir die Anzahl der Fixpunkte in P (a,;;) beziiglich der Gruppe dj;(u;). Nach
W. BUrNSIDE sind die Darstellungen d;,d;; genau dann &quivalent, wenn
gilt pul=p2, k=1,..5 (vgl.[2]). In unserem Fall ist ui = 2™, wo m}
die Anzahl der Transitivitatsgebiete der Gruppe d;;(u;) in a,; bedeutet. Es ist

m}:mf:ﬁ,
mp,=mi =4, k=2,3,4,
mi = mg = 3,

also sind die Darstellungen d;;, d;; aequivalent.

Die Konstruktion des eben betrachteten Modells beruht auf der folgenden
Idee: Zwei im Sinne der Aquivalenz von Darstellungen verschiedene Permu-
tationsgruppen kénnen auf den durch die permutierten Mengen aufgespannten
Vektorrdumen gleiche Automorphismengruppen induzieren. Beispiele solcher
Gruppen gab BURNSIDE in [2]. Die beiden permutierten Mengen lassen dann
keine 1—-1deutige Zuordnung zu, die beziiglich simultanen Ausiibens der bei-
den Permutationsgruppen invariant ist. Hingegen lassen die durch die Mengen
aufgespannten Vektorriume invariante Isomorphismen zu. Mit der «Methode
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der direkten Summe» werden diese Eigenschaften vom Endlichen ins Un-
endliche iibertragen.

V1. Beispiel aus der Topologie

Das Lemma von URYSOHN, wonach es zu zwei abgeschlossenen, disjunkten
Mengen A, B eines 7T,-Raumes®) eine stetige, reellwertige Funktion gibt, die
in den Punkten von 4 den Wert 0, in denjenigen von B den Wert 1 an-
nimmt, ist nicht ohne Auswahlaxiom beweisbar. Wir zeigen dies fiir einen 7',-
Raum, der sogar das erste Abzihlbarkeitsaxiom A4, erfiillt und lokal-kompakt
ist.

Dagegen lift sich ohne Auswahlaxiom beweisen, dafl in jedem lokal-kom-
pakten 7',-Raum, der das zweite Abzahlbarkeitsaxiom A, erfiillt, das Lemma
von UrysoHN gilt, sogar, dafl jeder solche Raum metrisierbar ist. Ob die
Metrisierbarkeit eines beliebigen A4, — 7,-Raumes (der nicht lokal-kompakt
zu sein braucht) ohne Auswahlaxiom beweisbar ist, bleibt eine offene Frage.
Die von uns betrachteten Modelle geben jedenfalls keine Auskunft dariiber;
denn in einer Mengenlehre, in der sich das Kontinuum wohlordnen 148t, ist jeder
solche Raum metrisierbar. Unsere Modelle erfiillen aber das auf I7(0) Dbe-
schrankte Auswahlaxiom.

Wir definieren nun etn Modell, worin ein lokal-kompakter A, — T,-Raum
existiert (der aus mehr als esnem Punkt besteht), dessen einzige stetige, reell-
wertige Funktionen die Konstanten sind.

Die Basismenge a, sei geordnet nach dem Ordnungstypus der rationalen
Zahlen. ¢ sei die Gruppe aller ordnungstreuen Permutationen von a,. Eine
Teilmenge ¢ von @, sei Element der Menge ¢, wenn (1) sich ¢ in hochstens
endlich vielen Punkten héuft (beziiglich der Intervall-Topologie auf a,), und
wenn (2) jede unendliche Teilmenge von ¢ einen Haufungspunkt besitzt. Gilt
(1), dann ist (2) mit der folgenden Aussage dquivalent: Ist h, die Menge der
Héufungspunkte von ¢ und U eine Umgebung von %,, dann befinden sich
auBerhalb U nur endlich viele Punkte aus ¢.

I‘;(t) sei die Untergruppe derjenigen Permutationen aus g, die ¢ element-
weise fest lassen. Durchschnittsbildung und Konjugieren mit Elementen aus

g fiihrt nicht aus der Menge f' der Gruppen hA(t), teq. heraus; f' ist somit

Basis eines Filters f.
Wir betrachten das zugehorige Modell M (f)?). Die auf @, definierte Ord-

8) Wir verwenden die Terminologie von KerLieY [6]: 7', enthalte die Forderung, da8 jeder
einzelne Punkt abgeschlossen ist.

%) Das zu g gehorige Normalmodell N (g) ist das Modell von MosTowskx [6. 1.]; unser Mo-
dell M (f) ist davon verschieden.
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nungsrelation ist eine Ordnungsrelation im Modellsinn. © sei die zugehérige
Intervall-Topologie im Modell.

Eine Modellmenge ist genau dann offen (abgeschlossen) im Modellsinn, falls
sie es im Sinne der Mengenlehre ist. Denn vorerst ist ein Intervall in a, das-
selbe in Modell und Mengenlehre. Eine Vereinigungsmenge im Modellsinn von
Intervallen ist dies auch im Sinne der Mengenlehre. Das heifit, offene Mengen
im Modell sind offen im Sinne der Mengenlehre. Ist umgekehrt eine Modell-
menge offen im Sinne der Mengenlehre, dann ist sie Vereinigung der Menge y
aller offenen Intervalle, die in z liegen. Die 2 und y zugeordneten Unter-
gruppen von g sind dieselben. Mit 2 ist somit auch y Modellmenge; also ist
« auch im Modellsinn Vereinigung offener Intervalle und somit offen. Die ent-
sprechende Aussage iiber abgeschlossene Mengen ergibt sich daraus, daf3 der
Begriff «komplementire Teilmengen in ay» in Modell und Mengenlehre der-
selbe ist.

1. Der Raum <{a,, vy erfillt A,

Sei xea,. ¢t sei die Vereinigungsmenge zweier Punktfolgen, von denen die
eine von links und die andere von rechts gegen x konvergiert. Es ist feq.
Denn z ist der einzige Hiufungspunkt von ¢, und auBlerhalb jeder Umgebung
von z befinden sich nur endlich viele Punkte der Menge ¢. Jedes Intervall

zwischen zwei Punkten von ¢ wird von allen Permutationen aus A(f) auf sich
abgebildet. Die Menge aller dieser Intervalle ist daher auch im Modellsinn ab-
zéhlbar (vgl. 1.5). Die Teilmenge derjenigen Intervalle, die = enthalten, bildet
eine abziéhlbare Basis fiir die Umgebungen des Punktes z.

2. Der Raum <a,, t) ist lokal-kompakt

Wir zeigen, da der Ordnungstypus von g, im Modell das DEDEKINDsche
Schnittaxiom erfiillt. Daraus folgt in iiblicher Weise ohne Auswahlaxiom, daf3
jedes abgeschlossene Intervall kompakt ist.

Wir betrachten eine Zerlegung im Modell: a, = b v¢, b,¢c # 0, u <v fiir
alle v eb und vec. <b,c) ist auch im Sinne der Mengenlehre eine Zerlegung
und definiert infolgedessen entweder einen Schnitt oder eine Liicke. Wir zei-

~

gen, daf3 der zweite Fall auszuschlieBen ist. Die Gruppe h(f), {eq, transfor-
miere sowohl b als auch ¢ in sich. Wiirde <b, ¢) eine Liicke definieren, dann
gibe es, da ¢ hochstens endlich viele Haufungspunkte besitzt, ein %' € b und
ein v’ e ¢, so daB alle Hiufungspunkte von ¢ aullerhalb des Intervalls I (u',v')
lagen. Aus Eigenschaft (2) von ¢ folgt, daBl hochstens endlich viele Punkte aus
t in I(u', ') ligen. Also gibeesein uw eb und ein v ec, sodal I(u,v) mit
¢ durchschnittsfremd wire. % (¢) wirkte daher transitivim Innern von I (u, v).
Es wire somit entweder jeder Innere Punkt von 7 (u,v) Element von b oder



Auswahlaxiom in der Algebra 17

jeder Element von c¢. Das heiflt es wire entweder v das erste Element von ¢
oder u das letzte Element von b, im Widerspruch zur Annahme, daB3 <b, ¢)
eine Liicke definiert. <b,c¢)> definiert in der Mengenlehre, und somit auch im
Modell, einen Schnitt.

3. Der Raum <{a,, t) erfillt T,

Jeder Punkt ist abgeschlossen: Denn jeder Punkt ist im Sinne der Mengen-
lehre abgeschlossen.

Zwei dispunkte, abgeschlossene Mengen A4, B besitzen disjunkte, offene
Umgebungen: _

Die Gruppe k(t),teq, transformiere sowohl A4 als auch B in sich. Es sei
h, die (endliche) Menge der Haufungspunkte von ¢, (z,,...=%,) =h,~ A4,
Y15 Yp) = hy — (24,...2,). Da 4, B abgeschlossen und disjunkt sind, ist
jeder Punkt x; innerer Punkt eines Intervalls U, mit U,~ B = 0, und
jeder Punkt y; innerer Punkt eines Intervalls ¥V, mit V,~ A4 = 0. Die
U;, V, lassen sich so wihlen, da} zusdtzlich gilt U;~ V, = 0 fiiralle ¢ =
=1,...m, j=1,...n. SelA’_AvUUi, B'=BvU V. A, B sind
abgeschlossen und disjunkt. j

Sowohl A4’ als auch B’ zerfillt in hochstens endlich viele Komponenten.
Denn U = U U, v U V, ist eine Umgebung von %,; aullerhalb U befinden

sich somit nur endhch viele Punkte von ¢. Diese Punkte, zusammen mit den
Endpunkten der Intervalle U,, V,, zerlegen a, in endlich viele Abschnitte,
von denen jeder entweder ganz zu A4’ oder ganz zu B’ gehort, oder sowohl

mit A’ als auch mit B’ durchschnittsfremd ist (7& (t) wirkt transitiv auf
jedem offenen Intervall, das keine Punkte von ¢ enthilt).

Es gibt daher offene, disjunkte Umgebungen 0,,0, von A4’, B’, die ihrer-
seits in nur endlich viele Komponenten zerfallen. 0,, 0, sind somit Modell-
mengen. Wegen 4 < A’, B ¢ B’ ist damit der Satz bewiesen.

4. Die einzigen stetigen, reellwertigen Funktionen von <{a,, > sind die Kon-
stanten

Aus dem DeprrIiNDschen Schnittaxiom folgt, daB <{a,, v>) zusammenhin-
gend, das heiBt nicht Vereinigung zweier disjunkter, abgeschlossener, nicht-
leerer Mengen ist. Fiir stetige, reellwertige Abbildungen ¢ gilt somit der
Zwischenwertsatz: Mit den reellen Zahlen &, u gehéren auch alle dazwischen-
liegenden Zahlen zum Wertebereich von ¢. ¢ erfiillt auch im Sinne der
Mengenlehre den Zwischenwertsatz (die reellen Zahlen sind in Modell und
Mengenlehre dasselbe). Da a, im Sinne der Mengenlehre abziblbar ist, ist das
Bild von a, hochstens abzihlbar. Mit dem Zwischenwertsatz folgt, dal das
Bild nur aus einem Punkt besteht; das heiBt ¢ ist eine konstante Abbildung.
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Bemerkung: Der Raum {a,, ) besitzt zusitzlich die Eigenschaft, daB keine
zwei verschiedenen Punkte durch einen Weg verbindbar sind (cbwohl {a,, )
zusammenhdngend ist).
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