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tîber eine Kontinuitatsgleichung

von Ktjbt Egg, Zurich

I. Einleitung

Wir stellen uns das Problem, Losungen u(t, x) der Kontinuitatsgleichung
1. Ordnung

£+¦£'<•>-• a.

bei vorgegebenen Anfangs- resp. Randwerten

u{0, x) a(x) x^O
u(t,0) g(t) t ^ 0

{ '

und moglichst beliebigem F (u) zu suchen. 1 ist unter gewissen Voraussetzungen
dem System

dt _ dx Tll. du
ds ds v ' ds v ;

âquivalent. Die Losungen von (3) sind Geraden, parallel zur t — a;-Ebene mit
der Steigung dxjdt F' (u). Ist nun F(u) nicht linear, so sieht man leicht,
daB das System auch bei noch so glatten Anfangs- und Randwerten im allge-
meinen keine eindeutigen und stetigen Losungen besitzt. Man hat daher, unter
Verzicht auf die Stetigkeit, den Begriff der Lôsung von (1) zweckmâBig zu ver-
allgemeinern. Die Kontinuitatsgleichung (1) konnen wir auch als Integral-
gleichung schreiben

Xl
t, x) dx F(u{t, x,)) - F(u(t, x2)) (4)

Sind u und F stetig differenzierbar, so sind (1) und (4) âquivalent. (4) stellt
aber die natiirliche Verallgemeinerung von (1) dar. In dieser Form stellt sich

zum Beispiel das Problem, die Dichte u(t, x) einer kompressiblen Flûssigkeit
zu bestimmen, die durch ein zylindrisches, mit porosem Material gefulltes Rohr
gepreBt wird.

Définition. Eine Losung von (4) heiBt eine verallgemeinerte oder schwache

Lôsung von (1).
Es gibt aber auch andere Môglichkeiten, verallgemeinerte Losungen von (1)

zu definieren; zum Beispiel nennt P.D.Lax in [1] eine integrierbare Funktion
u(t, x) eine schwache Losung der Gleichung (1) in 2^0 mit den Anfangs-
werten u(0, x) uo(x), wenn dièse die Relation
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242 Kttbt Egg

J J ftu + fxF(u)dxdt+ ]f(O,x)uo(x)dx O (5)
0 —oo —oo

erfûllt, wobei uo(x) eine integrierbare, fur aile — oo<#<oo definierte
Funktion ist und f(t, x) eine beliebige, stetig-differenzierbare Funktion, die
auBerhalb eines beliebig groBen, abgeschlossenen Gebietes verschwindet. (4)
und (5) sind fur stûckweise stetig-differenzierbare Funktionen u(t, x) âqui-
valente Définitionen, denn fur beide gibt es eine gleiehwertige Formulierung :

Eine, in einem abgeschlossenen Gebiet Q der t — #-Ebene stûckweise
stetig-differenzierbare Lôsung u(t, x) von (1), deren Unstetigkeitsstellen nur
lângs stûckweise glatten Kurvenstùcken x £(t) auftreten, die sich hôeh-
stens in ihren Endpunkten treffen konnen, ist in Q genau daim eine schwache

Lôsung, falls làngs diesen Unstetigkeitslinien die Gleichung gilt

dS_ F(u_) - F(u+)
dt u__ — u+

u_ u(t, 1-0), u+ u(t,i + O).

(6) ist eine Verallgemeinerung der Schock-Relation von Rankine und
Hygokiot fur kompressible Flussigkeiten und stellt eine Differenzialgleichung
fur die Fortpflanzung der Unstetigkeitsstellen dar, s. [5]. O.A.Olejnik gibt
in [2] eine 3. Définition einer schwachen Lôsung : In der £-#-Ebene betrachtet
man den Rand G, gebildet aus den Projektionen zweier Charakteristiken von
(3) dureh den Punkt (£0, xQ) und dem Stûck der Geraden t t', das jene
aus dieser herausschneiden, wobei 0<£'<y,y>0. Eine beschrânkte,
integrierbare Funktion u(t, x) heiBt jetzt eine schwache Lôsung von (1), wenn

$udx — Fdt O (7)
a

fur jeden solchen Rand. Dièse Définition ist etwas weniger allgemein als die
zuerst gegebenen.

Keine der drei Definitionen geniigt aber, um die Eindeutigkeit der Lôsungen,
bei gegebenen Anfangs- und Randwerten zu garantieren, wie schon ganz ein-
fache Beispiele zeigen.

Die Bedingungen fur eine schwache Lôsung mûssen also durch ein geeignetes
Prinzip ergânzt werden, das gestattet, aus der Vielzahl der Lôsungen eine

bedeutende herauszulesen. Ein Kriterium dafiir, welche aus den môglichen
Lôsungen man auswâhlen soll, liefert sicher das tatsâchliche Verhalten einer

physikalischen GrôBe, die den genannten Bedingungen gehorcht.
Hier eine kurze Ûbersicht liber die von versehiedenen Autoren benutzten

Eindeutigkeitskriterien :
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Die Tatsache, da8 die Lôsung des Problems (2), (4) nicht eindeutig bestimmt
ist, beruht darauf, daB ein reaies Médium gar keine Unstetigkeiten in den

ZustandsgrôBen u entwickelt. Man kann hôchstens ein sehr starkes Anwachsen
von gra,d(u) feststellen. grad(w) kann allerdings so groB werden, daB u dort
genûgend gut durch eine unstetige Funktion approximiert werden kann. An
solchen Stellen, wo grad(w) sehr groB ist, treten aber viskose Krâfte auf, und
u geniigt dann nicht mehr der Gleichung (1), in der ja die Viskositât vernach-
lâssigt wurde. Dièse sorgt dafûr, daB u keine Sprtinge machen kann, sie glàttet
die Unstetigkeiten in u. TJm die Viskositât berucksichtigen zu konnen, er-
gànzen wir (1) durch einen Term 2. Ordnung.

puxx. (8)

li heiBt der Viskositâtskoeffizient. Gleichung (8) hat, bei beliebigen, integrier-
baren Anfangs- und Randwerten fur aile x ^ 0, t ^ 0 stetig-difïerenzierbare
Losungen. Kônnte man nun in der Losung von (8) ju->0 gehen lassen, so

erhielte man eine solche von (1). In der Tat hat 0. A. Ladyzenskaya in [3]
gezeigt, daB fur das einfache Anfangswertproblem und fur konvexe F dieser
Grenzwert existiert, und daB die Grenzlôsung eine schwache Losung im Sinne

von Lax ist. Eine schwache Losung von (1) als Grenzlôsung einer solchen

parabolischen Gleichung 2. Ordnung, wenn der Koeffizient der hochsten Ab-
leitung verschwindet, zu definieren, wâre also eine Môglichkeit, um die Ein-
deutigkeit zu erzwingen. Eine explizite Losung wurde auf diesem Wege von
E.Hopf in [4] fur das einfache Anfangswertproblem und die Funktion F(u)

\u2 gegeben. Hopf gelingt es durch eine einfache Transformation y =cp(u)
die Gleichung

ut + uux fiuxx
auf die Form

V> <Pxx <Pt

zu bringen. Das ist die gewôhnliche Wàrmeleitungsgleichung, und fur sie hat
man eine explizite Lôsung, und die Grenzfunktion fur /u, -> 0 kann direkt
berechnet werden. Hopf behauptet jedoch, es sei nieht moglich, fur eine
andere Funktion F(u) auf diesem Wege eine explizite Lôsung zu finden.

Wenn in der Umgebung von «Unstetigkeitsstellen» in der ZustandsgrôBe
u eines Médiums viskose Kràfte auftreten, hat das zur Folge, daB die Entropie
S des Médiums beim Durchgang durch eine Unstetigkeitsstelle zunimmt. Wird
8 als Funktion vom Druck p und dem spezifischen Volumen r dargestellt, so

ist, wie R.Courant und K.O.Friedrichs in [5] zeigen, die Zunahme AS der

Entropie von 3. Ordnung in Ap und Ax. Diesen Sachverhalt drûckt die Ein-
deutigkeitsbedingung (9) von O.A.Olejnik aus. Sie beweist in [6] fur konvexe

F, daB die Bedingungen (5) und
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u(t, xj - u(t, x2) < K(t) (xt - x2) (9)

fur zwei beliebige Punkte (t, xx), (t, x2), wo K(t) eine monoton fallende
Funktion ist, nur durch eine einzige Funktion u(t, x) befriedigt werden
kônnen. (9) wird die Entropiebedingung genannt. Man vermutet, siehe bei
A.Dotjglis in [7], daB (9) durch die viel allgemeinere Bedingung

u(t, x - 0) >u(t, x + 0)

ersetzt werden kônne. Dièse Vermutung wurde von B.L.Roschdestvensky
in [10] fur stuckweise glatte u bestâtigt.

In [8] verwendet O.A.Olejnik eine dritte Art von Eindeutigkeitsforderung.
Sie zeigt dort, daB durch (7) eine schwache Lôsung eindeutig bestimmt ist,
wenn dièse die Randbedingungen erfullt und noch folgenden zwei Bedingungen
genugt:

1. Ist u (t, x) in einem Punkte (tOi x0) stetig, so gibt es genau eine Charak-
teristik aus (3), die durch den Punkt (t0, x0, u (t0, x0)) geht und auf der
u(t, x) fur 0 <t <t0 stetig ist.

2. Ist u(t, x) in (t0, x0) unstetig, so gibt es mindestens zwei Charakte-
ristiken aus (3), deren Projektionen in die t — #-Ebene durch (t0, x0) gehen und
auf denen u(t, x) fur 0 < t < t0 stetig ist.

Nennen wir eine Unstetigkeitslinie x — Ç(t) einen Schock, und die Punkte
(t, x < Ç(t)) dessen Riickseite und die Punkte (t, x > $(t)) dessen Vorder-
seite, so lassen sich die obigen zwei Bedingungen physikalisch so interpretieren :

Die Geschwindigkeit des Médiums unmittelbar hinter dem Schock ist groBer
und unmittelbar davor kleiner als die Schockgeschwindigkeit.

Dièse Eindeutigkeitsforderung werden wir in unserm Falle des gemischten
Anfangs-Randwertproblems anwenden.

II. Existenz einer Losung

Wie schon erwâhnt, gelang es E.Hopf in [4] eine verallgemeinerte Losung
der Aufgabe (1) mit F u2j2 fur das einfache Anfangswertproblem zu finden.
Seine Lôsung hat die Form

x - y*(t,x)u(t, x)

wo y*(t, x) der grôBte Wert ist, wo

> *> V)

als Funktion von y ihr Minimum aiuiimmt. uo(x) sind die Anfangswerte
u(0}x).
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Fur die Funktion F(u) — log (a + b e~u), a + b 1, lôst P.D.Lax in
[1] die Gleichung durch Betrachtung der entsprechenden Differenzengleichung

u(t + A, x) - u(t, x) - F(u(t, x)) ~ F(u(t, x ~ A))

Die Grenzlosung (A -> 0) lautet

wo i/* der groBte Wert ist, wo

als Funktion von y ihr Maximum annimmt.
Im ersten Fall ist F eine konvexe, im zweiten Fall eine konkave Funktion

von u. Fur solche Funktionen kônnen wir, siehe S.Mandelbrojt [9] eine

Konjugierte H definieren, fur konvexes F durch

und

fur konkaves F.
Ist F differenzierbar,

H(s) 1

H(s) ]

so ist

tëax {u
u

Mm{u
u

8 - F(U)}

s - F(u)}

H(8) G(8).8-F(Q(8)), (10)

wo G (s) der Wert u ist, wo {us — F(u)} als Funktion von u ihr Max. resp.
ihr Min. annimmt. Ofïensichtlich ist

G(F'(8)) =8. (11)

Daraus folgt unmittelbar mit (10)

(12)

Eine einfache Rechnung zeigt aber, dafi die beiden oben verwendeten Funk-
tionen 0 vom Typ

t

sind, mit H als Konjugierter zur entsprechenden Funktion F. Ist uQ beschrânkt,
so hat 0 fur jedes (t, x) ein Extremum, weil H ebenfalls konvex resp. konkav
ist. Ist y*(t, x) wieder der groBte Wert, wo dièses Extremum angenommen
wird, so haben die beiden oben angegebenen Losungen die Form
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wie man leicht uberlegt. Ist u0 stetig, so folgt sofort durch Difïerenziation von
0(t, x,y) nachi/

und daraus wegen (11)

g~y* =F'(uo(y*)).

Das verlangen aber gerade die Gleichungen (3), nâmlich u konst. uo(y*)

lângs den Geraden — konst. Die Lôsung (13) besteht also aus Cha-
t

rakteristiken, definiert durch (3). Die Vermutung, daB es sich um eine verall-
gemeinerte Lôsung von (1) handelt, liegt somit auf der Hand.

Den hier skizzierten Weg, schwache Lôsungen der Gleiehung (1) zu finden,
wollen wir auch im Falle des gemischten Anfangs-Randwertproblems begehen.

tîber die auftretenden Punktionen setzen wir folgendes voraus :

1. F(u) ist zweimal stetig differenzierbar (14.1)

2. F'(0) 0 und F" > 0 (14.2)

3. Die beiden Funktionen a(x) und ç(t) in (2) sind positiv, (14.3)
beschrànkt und integrierbar.

Die Punkte auf F {(t > 0, 0), (0, x > 0)} bezeichnen wir kurz mit s,
und zwar s — t auf x 0 und s -\- x auf t 0.

Wàhlen wir nun einen beliebigen Punkt (t, x) aus

© {(t,x), t>0, x>0}
und einen Punkt s aufF, dann hat das System (3) genau eine Lôsung U (t, x,s),
deren Projektion durch dièse beiden Punkte geht :

U(t,x,s)
s>0

(15)

Dann betrachten wir die Funktion

8>0
<P(t,x,s) 0 (16)

s<0



Ûber eine Kontinuitâtsgieichung 247

0 ist in allen 3 Argumenten stetig, wie man sofort sieht. AuBerdem strebt <t>

gegen + oo, fur s gegen +oo, und —t.
Die Richtigkeit der ersten dieser beiden Behauptungen ergibt sich aus

0(t, X, 8)

wegen (12). Da H konvex, geht die rechte Seite dieser Gleichung gegen -f oo,
fur s gegen + oo. Um auch die zweite der obigen Behauptungen zu beweisen,
bemerken wir zuerst, daB wegen (10)

ist, und daher

also

und somit

(t, x, «)

Aber weil H konvex ist, geht H{u)ju gegen oo, fur \u\ gegen oo, also

gegen oo, fur s gegen — t.
0 hat also bei jedem festen (t, x) auf dem Intervall — t < s <oo ein

wohlbestimmtes Minimum. 8+(t, x) sei der grôBte, 8__(t,x) der kleinste Wert,
wo 0 dièses Minimum erreicht. Dann gilt

Lemma I. Ist x < xx, dann ist fur jedes t s+(t, x) < s_(t, xx).

Beweis. Wir betrachten die DifiFerenz

0(t,Xt,8) -0(t,X1,8+(t,x))
fur 0 <8<s+(t, x).
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J

/ ® s
8+(t,X) \ t I («

Hier ist das 1. Intégral nicht negativ, wegen der Définition von s+(t, x),
und das 2. Intégral ist positiv, weil 0 monoton wachsend ist, und x < x1,
also

Somit ist 0(t, xx,s) — &(t, xlf s+(t, x)) > 0 fiir aile 0 < s < s+(t, x).
Wir haben aber zu zeigen, daB dièse Ungleichung richtig ist fur aile

— t < s < s+ (t, x). Zunàchst ist

0(t,X1,8) - #(«,3!, *+(*,«)) [0(t,X1,S) - 0{t,X,8)] +
[0(ty X, 8+(t, X)) - 0(t, Xt, S+(t, X))] + [0(t, X, S) - 0{t, Xy S+(t, x)

Die letzte Klammer ist nicht negativ fiir aile — t < s < s+(t, x), die zweit-
letzte ist positiv, denn

0(t, z, s+(t, x)) - <P(t, xlys+(t, x)) ='+f

weil x < x1, und fur die erste folgt

xlt s) - 0(t, x, s)

Wegen (14.2) und (11) ist nâmlich auch

0(0) 0, (17)

also ist G(u) > 0 fur «>0, und F(u) ist, auch wegen (14.2), monoton
wachsend fiir u > 0, und da x < xx, ist auch die erste Klammer positiv.
Damit ist gezeigt, daB fur s+(t, x) > 0

0(t,xlts) - 0(t,x1,s+(t,x))>O

fur aile — t < s < s+(t, x). Ist aber s+(2, x) < 0, dann ist

0(t,x1,s) - 0{t,xl,s+(t,x))
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Hier ist das 1. Intégral nicht negativ fur s < s+(t, x), und das 2. Intégral ist
positiv, wegen x < x1. Somit gilt fur einen beliebigen Punkt (t, x) und aile

+ '
0(t,x,s) ~ 0(t,x1,s+(t,x))>Oi

und daraus schlieBt man
S-ittXj) >8+(t,x)

Lemma II. Fur jeden Punkt (t0, x0) in © gelten die Relationen

lim s_(t, x) s_(t0, x0) ; s_(t0, x0 - 0) s_(t0, x0)
<*,*)-><«o.*o)

lim s+(t, x) s+(t0, x0) ; s+(t0, x0 + 0) s+{t0, xQ),
«,»)->«o,*o)

Beweis. Zuerst beweisen wir, daB s_(t0, xQ) s_(tQ, xQ — 0). Aus Lemma I
folgt zunâchst, daB s_(t, x) <s_(t, x0) fiir x < x0. s_(t, x) ist also eine
monoton nicht abnehmende Funktion von x, bei festem t. Also ist nur zu
zeigen, daB s_(t0, xQ) — s_(t0, x) < e, sobald xQ — x < ôe. Sei s_(t0, x0)

wieder zuerst positiv und 0 < s < s_(t0, x0) — e, fiir ein beliebiges e > 0,
dann ist

0(to, x, s) - &(t0, x, s_(t0, x0))

Hier ist das zweite Intégral negativ. Der Integrand ist positiv, weil x0 > x.
Er kann beliebig klein gemacht werden, wenn nur xQ — x genûgend klein,
so daB sich das Intégral um beliebig wenig von Null unterscheidet. Das 1. Intégral

ist aber groBer als eine, von Null verschiedene, positive Zahl. Das ergibt

0(to, X, S) - 0(to, X, S_(t0, Xo)) > 0

fur 0 < s < s_ (t0, x0) — e.

Jetzt sei — t < s < 0 < s_(t0, x0) — s, dann ist

0(to, x, s) - 0(to, x, s_(t0, x0))

[0(to, X, S) - 0{to, Xo, S)] + [0{to, Xo, S) - 0(to, Xo, S_(t0, Xo))] +
- 0(to, x, s_(tOi Xo))]

- F ^
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Die beiden Intégrale hier sind negativ, konnen aber dem Betrag nach beliebig
klein gemacht werden, dadurch daB man x0 — x genugend klein macht. Die
Difïerenz in der zweiten Klammer ist natiïrlich positiv, wegen der Définition
von s__(t0, xQ) und s < s_(t0, x0) — e, und aueh groBer als eine bestimmte,
positive, von e abhângige Zahl. Dadurch ist

0(to, x, s) - 0(to, x, s_(t0, x0)) > 0

fur — t < s < 0 < s__(t0, xQ) — e.
Nun wollen wir aber noch zeigen, daB dièse Ungleichung auch fur s_ (t0, x0) < 0

gilt. Sei wieder s < s_(tQ, x0) — s, dann ist

x, s) - 0(to, x, s_(t0, x0))

Hier schlieBt man wieder, gleich wie oben, daB, falls nur xQ — x < ôe

0(to, x, s) - 0(to, x, s_(t0, x0)) > 0

fur aile — t < s < s_(t0, x0) — e. Dièse Ungleichung gilt also fur aile (£0, x0),

woraus folgt, daB
s_(t0, x)>s_(t0, x0) - s

oder
8_(t0, Xo) - 8_(t0, X)<€

sobald
xQ — x < ôe

Um auch die 1. Behauptung von Lemma II zu beweisen, ûberlegen wir so:
Aus

0(t,X,8) >0(t,X,8_(t,x))

folgt, wenn wir den Grenziibergang (t, x) gegen (£0, x0) ausfiihren,

®(to,xo,8)>0(to,xo, lim s_(t,x)),

das heiBt aber
s_(t0, x0) < lim s_(t, x)

aberweil
M*0> ^o) S-(to> X0 — °) ^ iim «-(^> X) > 5-(^0>

(t,x)^(to,xo)
folgt

lim s_(t, x) s_(tQi x0)

(t,x)-+(to,xo)

Die Behauptungen betreffend 8+(t0, x0) beweist man analog.
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Lemma III. Ist im Punlcte (t^, xx) 0{t1,x1, s+fa, xx)) — 0^, xx,s'), dann
ist in jedem Punkt (t, x), t < ^, x < xly der Charakteristik, welche (tx, x^)
mit dem Punkt sr auf F verbindet, s+(t, x) sf s_(t, x).

Beweis. Wir haben nur zu zeigen, daB

0(t,x,s) >0(t, x,s+{tx, xx))

fiir aile s ^ sf in den genannten Punkten (t, x) dieser Charakteristik, denn
dann erreicht 0(t, x,s) ihr Minimum in diesem Punkte nur in s s'. Ist
0 >s' > s> — t, dann ist

0(t,x,s) - 0(t,xis')

))HA)) *¦
x xDas 1. Intégral ist positiv; das 2. ebenfalls, weil > ^-r- fiir — sr < f < t.

t — ç &L — g
Ist 0 > s > s', dann ist der 2. Integrand negativ, daher das Intégral ebenfalls

positiv.
Ist s > 0 > s', dann ergânzen wir die Differenz &(t, x, s) — 0(t, x, s')

wie folgt :

0(t,x,s) ~0(t,x,sr)

denn die 3. Klammer in der vorletzten Zeile ist nicht negativ. Das 1. Intégral

in der letzten Zeile ist positiv, weil — > fur 0 < £ < s, das zweitexx1ebenfalls, denn —- > fiir 0 > £ > s'. Damit haben wir gezeigt,
h — g t — S

daB 0(t, x, s) > 0(t, x, sr) fiir aile s =fi sf, zumindest wenn s' < 0.
Fiir s' > 0 beweist man dièse Tatsache analog.

Satz 1. Ist die Funktion u(t, x) U(t, x, s+(t, x)) wobei U(t, x,s) durch
(15) definiert ist, im Punkte (t0, x0)

1. stetig, dann gibt es genau eine Charakteristik, das heifit eine Lôsung des

Systems (3), deren Projektion in die t — x-Ebene durch (t0, xQ) geht, und u(t,x)
ist in allen Punkten (t, x) im Innern von © mit t <tQ, x < x0 dieser
Charakteristik stetig,

2. unstetig, dann existieren mindestens zwei Charakteristiken, deren Projek-
tionen durch (tQ, x0) gehen und auf denen u(t, x) im Innern von © fur
t <tQ, x < x0 stetig ist.
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Beweis. Aus Lemma I folgt zunâchst, daB s_(t, x) und s+(t, x) an den-
selben Stellen stetig sind und daB dort s_ (t, x) s+ (t, x). An den Unstetigkeits-
stellen ist s_(t, x) ^ s+(t, x). U(t, x, s+(t, x)) ist also genau dort stetig, wo
s_(t, x) s+(t, x), und unstetig, wo s_(t, x) ^ s+(t, x). Ist ^(^, x) in (£1? ^)
stetig, dann ist, wegen Lemma III, Z7(£, x, s+(t, x)) làngs der Charakteristik
durch den Punkt (tlf xl, Ufa, xl9 s+(tli #x))) stetig fur aile Punkte mit
< <^, # < x1? ausgenommen vielleicht im Endpunkt s+(t1, xx) auf F. Ist
^(^, x) in (^, a^) unstetig, dann ist, gemàB Lemma III, s_(t, x) s+(t, x)
làngs beiden Charakteristiken durch (tx, xly U(tlf xt, ^?+(^, x^)) und
(^, a^, f7(^, a^, 5_(^, a^))) fiir aile Punkte mit t < tlf x < xli ausgenommen

vielleicht in den Endpunkten 5_(^, x±} und s+(£l5 x^).

Satz 2. /71 jedem Unstetigkeitsfunkt der Funktion u(t, x) gilt die Un-
gleichung

u(t, x - 0)>u(t, x + 0)

Beweis. Wegen s__(t, x) <s+(t, x) und s+(t, x — 0) s_(t, x) folgt die
Behauptung sofort aus der Définition der Funktion u(t, x).

Lemma IV. Die Funktion u(t,x) genûgt der Relation

$udx - F(u)dt 0, (18)

wo (£ dew Rand darstellt, der aus den beiden, im Beweis zu Satz 1 genannten,
durch einen Unstetigkeitspunkt gehenden Charakteristiken und dem Stilck, das
dièse aus F herausschneiden, besteht.

Beweis. Zuerst beweisen wir, daB

*!,*)= Sudx - F(u)dt + ÎPft, xt) (19)

fur jeden Punkt (tx, xx), wo das Intégral erstreckt wird iiber die Charakteristik,
die (^, xx) und s verbindet und das Stiick auf F zwischen 0 und s. W sei

eine Funktion nur von den Variablen ^ und xx. Auf F ist u durch die entspre-
chenden Anfangs- resp. Randwerte zu ersetzen. u(t, x) ist hier die Losung
von (3), die den Punkt (tly x±) mit s verbindet. Sei s etwa negativ, dann lautet
die Behauptung

%,«)=- jVfe(0) dt - jV(u) dt + /« dx + W(h, xj
0

oder die Differenz

xlf s) — J udx — F(u) dt
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hàngt von s nicht ab. Aber

0(tt, xlf s) — J udx — F(u)dt

o -so \ \ h —

- YF (g( Xl \) dt + jV(«)(fc - fudx

Wir haben also nur zu zeigen, daB

wie beim Beweis der Eigenschaften von 0 gezeigt wurde. Fiir s > 0 verfâhrt
man genau gleich. Dabei ergibt sich auch, daB wir es in beiden Fâllen mit der-
selben Funktion W zu tun haben. Ist nun (t±, x-J ein Unstetigkeitspunkt von
u(t, x) U(t, x,s+(t, x)), dann ist

> x^ s+(ti, aï)) - S udx - F(u)dt
und G'

x, s_{t^ xx)) =$udx - F(u)dt

wo C, (£" die oben beschriebenen Rânder sind. Subtrahieren wir dièse beiden
Zeilen voneinander, so resultiert die Beziehung (18).

Satz 3. Die Unsletigkeitspunkte der Funktion u(t,x) liegen auf Linien, deren

x-Koordinaten eindeutige und stetige Funktionen von t sind. Die Zahl dieser

Linien, die sich hôchstens in ihren Endpunkten treffen kônnen, ist hôchstens

abzâhlbar.
Beweis. Ist (tt, xx) eine Unstetigkeitsstelle von u(t,x), dann geht durch

(^, XJ eine fiir aile t > tx eindeutig bestimmte Unstetigkeitslinie, die sich so

bestimmt: Auf der Geraden t1 konst. > tx existiert genau ein Punkt (tf, x')
so, daB das Intervall [s_(t1, x^), s+(tl7 xx)] ganz enthalten ist im Intervall
[s-(tf, xr)y s+(tf, x')]. Dieser Punkt ist die untere Grenze aller Punkte (tf, x),
fur die S-(t'r, x) > 5+(^, x±) und die obère Grenze aller Punkte (tf, x), fur die
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s+(tf, x) <$_(£!, xx). Dièse beiden Grenzen fallen nâmlich zusammen, denn
sonst wàre fur aile Punkte (tf, x) zwischen diesen Grenzen das Intervall
[#-(tr, x), s+(tf, x)] im Intervall [5_(^, xt), s+(t1, xx)] enthalten und die zu-
gehôrigen Charakteristikenpaare wiirden sich schneiden, was Satz 1 wider-
spricht. Es wàre aber noch die Moglichkeit, daB [s_(tf, x'), s+(tr, x')] rechts
oder links von [5_(^, xx)y 5+(^, a^)] liegen wurde. Der erste Fall ist wegen
der linksseitigen Stetigkeit von s_ in (tr, x1) und der 2. Fall wegen der rechts-
seitigen Stetigkeit von s+ in (tf, x') ausgeschlossen.

-^ t

Fig.l

Somit existiert auf jeder Geraden t' konst. fur aile t' >t1 genau ein solcher
Punkt. Die Stetigkeit dieser Linie, die dièse Punkte bilden, ist wegen Satz 1

klar. Da auf jeder Geraden t konst. hôchstens abzâhlbar viele Unstetig-
keitsstellen von s+(t, x) liegen, ist auch die letzte Behauptung von Satz 3

bewiesen. DaB sich dièse Unstetigkeitslinien nur in ihren Endpunkten trefifen
kônnen, folgt aus Satz 1.

Satz 4. Ist x x(t) die Gleichung einer Unstetigkeitslinie von u(t,x),
dann gilt in jedem Punkt (^, x (^)) die Beziehung

0)
dt

x(t2)~ x - 0)) - F(u(ty, x + 0))

h~ h tx, x - 0) 0)
(20)

Beweis. (^i,^) und (£2> #2) seien zwei Punkte in der t — #-Ebene mit
t2>t1. Dann gelten die Beziehungen
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Addieren wir dièse beiden Gleichheiten zu den Identitaten

0(t2, x29 s_(t1, xx)) - 0(t2, x29 s_(t1, Xj)) 0

0^, Xl9 S+(t2, X2)) - 0(tl7 Xli S+(t2, X2)) 0

so folgt

0 - [0(t2, X2, S+(t2, X2)) -
lf Xl9 *_(*!,

,xl9s+ (t2, a?

255

y X1,S+(t2, X2))

Die letzten beiden Klammern sind aber nicht negativ, somit ist

(21)

Sind nun (£1? ^j) und (t2, x2) Punkte auf einer Unstetigkeitslinie, so ist das

Intervall [s_(t1, xx), 5+(^l5 x^] im Intervall [^_(^2j^2)j 5+(^5 #2)] enthalten.
Wir mussen den Punkt (^2> s2) genugend nahe bei (£1? xx) wahlen, damit die
Charakteristik durch (tl9 xx) und s_(t2, x2) positive Steigung besitzt, denn
sonst kann es vorkommen, da6 0(tl7 xt, s_(t2, x2)) beim Grenzubergang
t2-^ ^ nicht definiert ist. Unter Berucksichtigimg von (19) und (21) folgt dann

a
J Udx - F(U)dt <0, (22)

a

wobei G aus den Projektionen der Charakteristiken besteht, die die Punkte
($!,#!), (t2,x2) mit den Punkten s+(t2, x2) und s__{tx, xx) verbinden, und
U U(t, x, s) ist die Losung von (3) auf (£.

Fig.2

Nun verbinden wir (tx, xx) und (t2, x2) mit einer Geraden. i?x sei das Drei-
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eck {s_(t1,x1)i (^i,^), (t2,x2)}. U(t,x,s) stimmt mit u(t, x) auf der Ge-
raden durch s_(t1, x^ und (tly xx) uberein. ux{t, x) sei die Losung von (1) in
Ql9 bestehend aus den Charakteristiken, die durch den Punkt s_(t1, xx)

gehen. ut(t, x) ist in ganz Qx auBer in s_(t1, xx) stetig difïerenzierbar. Wir
kônnen somit Gleichung (1) in Qx integrieren und erhalten

J ux dx - F{ux)dt 0. (23)

Weil auf den beiden Seiten von Qx durch s__(t1, x^U mit %ax ubereinstimmt,
so ist

J Udx - F(U)dt J uxdx- Fjujdt. (24)
(t2,X2),8_(t1,X1),(h,Xl) («2,Z2),(*XS%)

Analog konstruiert man die Lôsung u2(t, x) von (1) im Gebiet

Q2 A {s+(t2, x2), (t2, x2), (tt, xj}
Fur u2 gilt dann

J Udx - F(U)dt S u2dx - F(u2)dt (25)

Addieren wir (24) und (25), so erhalten wir links den linken Teil von (22), und
daraus

f uYdx — F(ux)dt + f u2dx - F(u2)dt < 0

Mit Zl t (t2 — tx), A x (x2 — a^) folgt daraus

^2^la; - F{ul)At <ûxAx - ^(^i)/!^
wo

ût ut(S9r) xx < g < x2, t± < x < t2

<=Wt(f*,T*), Xt<^^X2, ^<T*<f2.
Beim Grenzubergang At gegen 0 gehn u2 und ul gegen J7(^, x1,s+(t1, x^),

Aber C/(^, ^, 5_(^1? ^)) =u(t1, x1-0)i U&, xx, S+&, xx)) ufa, xx + 0).
Also ist wegen ^(^, xx — 0) > u^, xx + 0)

lim ^ ^(^(^,^ + 0)) ~^(^fe;^-0))
t^H At u{t1,x1-\-0)-u{t1,x1-0) ' K }

t2 > h

Analog erhalt man die Ungleichung
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Um dièse abzuleiten, geht man aus von den Identitâten

0(t2, x2, s+(t2, x2)) - 0(t2, x2, s_(t2, x2)) 0

»!,«+(«!, Zj) 0

#2> M*l, ^l)) 0

l5 X±, S_(t2, X2)) 0.

Aus diesen erhâlt man durch Addition

0 [0{t2, x2, «+(^, ^)) -- <£(£2, a^, s_{t2, x2)) -
2, X2, S+(t2, X2)) -

Aber die letzten beiden Klammern sind nicht positiv, also ist die erste
Klammer nicht negativ. Dies fiïhrt zu einer, zu (22) arjalogen Ungleichung

a
J Udx - F(U)dt >0

wo (£' aus den Geraden besteht, die (£1? xx), (t2, x2) mit s+(tly xt) und s_(^2, x2)

verbinden. Die restlichen Schliisse bis zur Ungleichung (27) sind analog wie
oben.

Aus (27) und (26) aber ergibt sich die Behauptung des Satzes. In der gleichen
Weise beweist man, daB (20) auch richtig ist fur dx{t~O)jdt, auBer in den

Punkten, wo zwei Unstetigkeits-Linien zusammenstoBen, denn dort konver-
gieren die Rânder, der im obigen Beweis benutzten Dreiecke nicht gegen die
Projektionen der Charakteristiken durch die Grenzpunkte.

Lemma V. Auf t 0 fur positive x resp. auf x 0 fur positive t ist
eine Folge von beschrànkten Funktionen an(x) resp. qn{t) definiert, so dafi auf
jedem endlichen Intervall [a, 6]

b b

lim §\<rn(x) - a(x)\ dx 0 resp. lim J \F(gn(t)) - F(ç(t)) \dt O.
n—>oo a n—x» a

0n sei die mit qn resp. an statt mit q resp. a konstruierte Funktion (16), s\ (t, x)
der grôfite, si (t, x) der kleinste Wert, wo &n das Minimum dis Funktion von s

annimmt. Ist un(t, x) U(t, x, s^(t, x)), X ein beliebiges Intervall auf einer
Geraden parallel zu t 0 oder x 0, dann konvergieren un(t, x + 0) und
un(t, x — 0) auf jedem solchen Intervall gleichmâfiig gegen u(t, x) in allen
Punkten, wo dièse stetig ist.

Beweis. Wir betrachten das Intervall % {(t, x'), tQ <t <tx}. Fur jeden
Punkt (t, xr) €% nehmen <Pn(t, xf, s) und 0(t, x', s) ihr Minimum beziiglich
s auf einem abgeschlossenen Intervall — t + ô <s < xr, ô> 0 an. Fur

17 CMH vol. 37
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s — t wird ja &(t,x',s) unendlich, also ist nur zu zeigen, da6 s+(t, x') <x'.
Dazu bilden wir

xf, x') - 0(t, x\ s) ja(S) -
- | a(()d£ + tH(0) - tH(X S\ < 0

fur aile s>x', und gleich Null fur s xf, weil £r'(O) G(O)^=O und cr>0.
Also ist s+(t, x') < x'. Wàhlen wir jetzt s im Intervall — t' + ô < s < xf,
dann ist fur den Punkt (tr9 x') e X und s < 0

0 0

sobald n> He, und wenn 5 > 0, so ist

10,^, »', s) - 0(t\ z',8) | < J | an(a?) - er(tf) | do: < £;
u

sobald n > Ne, ist. Ist e" max (ef, s) und iV^g» max (Ne,, Ne), dann
ist fur aile (t', x') eZ

\&n(t',xf,s)~&(t',x',s)\<e"
fur aile n > Ne,, und - t' + à' < s < x'.

Daher ist fur aile Stetigkeitspunkte von u(t, x) auf X, weil 0(t\ x',s)
das Minimum nur in einem Punkt, in s+(f, x') ^_(^, x1) annimmt,

\s+(t', x') - «*(*', a:;) | < «, und |«+(«', »') - «*(«', x')\ < ôe,

also wegen der Stetigkeit von U(t, x, s),

1 U(t\ x', si (tf, x1)) - U(tf, x', s+(tf, x')) | < ex

und
*', s', s» (*',*')) - U(t',x',s+(t',x'))\<e2

fur aile Stetigkeitspunkte (t',xr) auf X. Aber

', #', sn_(tr, x')) w*(^, ^; - 0)
und

ff(t', a;', sn+(t',x')) =«»(*', *'

Damit ist das Lemma bewiesen.
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Lemma VI. Das Intégral
J udx — F(u)dt

verschwindet auf jedem Rand (£, gebildet aus einem Stûck einer Parallelen zu
einer der Geraden x 0 oder t 0, den Charakteristiken durch dessen End-
punkte, welche Stetigkeitspunkte von u(t, x) sein sollen, und dem Teil, den dièse

aus dem Rand F herausschneiden.
Beweis. Wir wàhlen eine Folge von beschrânkten, stûckweise konstanten

Funktionen qn{t) resp. an(x), die nach unten durch q(î) resp. a(x) be-
schrânkt sind und in jedem endlichen Intervall fast uberall gegen dièse kon-
vergieren. Dann sind fur dièse sicher die Voraussetzungen zu Lemma V erfullt.
Wir konstruieren wieder wie dort die Funktion un(t, x) und behaupten: Ihre
Unstetigkeitslinien gehen nur von F aus. Sei (t0, x0) der Anfangspunkt einer
Unstetigkeitslinie, die im Innern von © beginne, (tf0, x'o) ein weiterer Punkt
auf ihr. Die Unstetigkeitslinien von un, die im Innern des Dreiecks

resp. des Vierecks {(tf0, xQ),sn+{t'Q, x'o), 0, sn_(trQ, xQ)}y oder auf dessen Seite

sn_,s\, resp. auf dessen Seiten sn_, 0 und sn__, 0 beginnen, mussen auf der
Unstetigkeits-Linie durch (t0, x0) enden, weil un stetig ist auf den Seiten durch
(tf0, Xq) Nun wâhlen wir (tf0, xf0) auf dieser Unstetigkeitslinie so, daB zwischen
(^0, xQ) und (tf0, xr0) keine weitern Unstetigkeitslinien enden. Das ist immer
moglich, sonst wâre (^0, x0) Endpunkt einer Unstetigkeitslinie. Zwischen

£+ (^0' xo) und s"! (t'o, ^o) h'egen somit nur solche Unstetigkeitspunkte von çn

resp. an, wo gn(t + 0) < qn{t — 0), resp. an(x — 0) < (^(x + 0). Das ist
aber unmoglich, weil

an(s+(tixf0))<an(s_(tix/0))i resp. ^(- s+(tf0, x'o)) < Qn(- s__(t'o,x'o))

Also ist gn resp. an auf dem Intervall s^_ (tf0, xf0) > s > s^ (tfOf xf0) konstant, aber
das ist ausgeschlossen.

Damit haben wir einen Widerspruch zur Annahme, daB eine Unstetigkeitslinie

im Innern von © beginne. Fur jedes n betrachten wir den Rand (£n, be-
stehend aus den Strecken, die die Punkte (1^, x0), (t2, xQ) untereinander und
(^l, x0) mit 5+(^, x0), (t2, x0) mit s+(t2, x0) verbhiden und dem Stûck von F,
das zwischen s+(^,^0) un(i sf+(h>xo) liegt.

Die Unstetigkeitslinien von un und die Charakteristiken, die durch die
Punkte (0, an(a + 0)), (0, (f{a - 0)) resp. {qn{a + 0), 0) (gn(a - 0), 0)

wenn an(a + 0) > o^(a — 0) resp. gn(a — 0) > gn(a + 0), gehen, lângs denen
die Ableitungen von un unstetig sind, teilen das Gebiet Q71, das der Rand (£n
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umschlieBt in endlich viele Teilgebiete Qt und un(t, x) hat stetige Ableitungen
in jedem Qt. Die Rander der Qt bestehen aus stuckweise glatten Bogen. Es ist
daher

0 JJ {unt + F(un)x} dxdt= J un dx - F(un)dt (28)
Qt dQt

und nach Summation uber aile Q%

0 Z$$ {< + F(un)x}dxdt J undx - F(un)dt, (29)
l Q% (£»

denn langs den Randern, in denen die Qt aneinanderstoBen, vernichten sich
die Intégrale redits in (28), wegen (20), wie man sich sofort uberlegt. Auf der
Geraden zwischen fa, xQ) und (t2, x0) konvergiert un fast uberall gleich-
maBig gegen u, wie in Lemma V gezeigt wurde. Wegen der gemachten An-
nahmen uber an resp. qu konvergieren dièse ebenfalls fast uberall gleichmaBig
gegen a resp. g. Weil u stetig ist in den Punkten (£l5 x0) und (t2, x0), konvergieren

auch die Seiten von G71 durch dièse Punkte gleichmaBig gegen die ent-
sprechenden von G. Damit konnen wir in (29) zur Grenze, n->oo, ubergehen
und finden die Bestatigung des Lemmas. Fur einen Rand, der einen Teil einer
Geraden parallel zu t 0 enthalt, beweist man das Lemma analog.

Satz 5. Die Funktion u(t, x) U(t, x, s+(t, x)) genugt der Relation (4).
Beweis. Wir betrachten zwei Stetigkeitspunkte (^,^i), (#i,#2) von u- Auf

den Charakteristiken durch dièse wahlen wir zwei weitere Punkte (t[,x[),
(t[, x'2). Auf dem Rand des so entstehenden Vierecks ist wegen Lemma VI

x'i x2 x2
0 ludx — F(u)dt J u(t[, x)dx — J u(tx, x)dx + J u(t, x)dx +

xi *i xi
x h h

+ J u(t, x)dx - j F{u(t, x))dt + J F(u(t, x))dt
1 ^

x
(3°)

Fiu^ xx)) (^ - t[) - Fiu^, x2)) fa - t[) + Jlu(£, x)dx +
xi

— $ufa, x)dx + (x2 - x&ufa, x2) + (x[ - xjufa, xj,
xx

weil u{t[, x[) ufa, xt) und u(t[, x'2) ufa, x2). Differenzieren wir (30)
nach t'', so erhalten wir, wenn wir t t' setzen,

4r fuit, x)dx F(u(t, x[)) - F(u(t, xf2))
at xi
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/(tvx[)

Satz 6. Die Funktwn u(t, x) erfullt die Anfangsbedingungen, das heifit

ô-X)

fur behebige xx, x2, und die Bandbedmgungen, das heifit

fhm | fF(u(r, ô)) - F(Q(r))dr \ 0

(31)

(32)

fur behebige ^, 12

Der Beweis ergibt sich unmittelbar aus Lemma VI Damit haben wir eme
schwache Losung unserer Gleichung (1) gefunden und auch gezeigt, dafi sie
die Anfangs- resp Randbedmgungen erfullt Zum SchluB wollen wir nun noch
die Prage der Emdeutigkeit untersuchen

III. Eindeutigkeit

Lemma VII. Ist v(t, x) eme Losung von (4) und hat sie die Eigenschaften
der Funktwn u m Satz l, dann ist

Çvdx - F(v)dt 0 (33)

langs emes geschlossenen Weges (£, gebildet aus den beiden CharaktenstiJcen,
welche duroh emen Unstetigkeitspunkt gehen und den Stucken, die dièse aus zwei
zu den Geraden t 0 und x 0 parallelen Oeraden herausschneiden

Beweis Weil v(t, x) die Eigenschaften von u m Satz 1 hat, so folgt, daB die

Unstetigkeitspunkte von v auf stetigen Linien liegen Aus (4) folgt weiter, daB

dièse Linien die Differenzialgleiehung (6) erfullen Im Gebiet Q9 das (£ um-
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schlieBt, verlaufen hôchstens endlich viele Unstetigkeitslinien. Diejenigen, die
nicht auf (E beginnen, werden durch die Charakteristik durch ihre Anfangs-
punkte verlàngert bis zu deren Schnittpunkt mit G. Dièse Linien teilen D in
endlich viele Teilgebiete Q{, in denen v stetig dififerenzierbar ist, auBer viel-
leicht lângs gewissen Charakteristiken, denn Unstetigkeiten in den Ableitungen
von v kônnen nur làngs solchen auftreten. Dann ist, weil im Innern von £?t die
Gleichung (1) erfullt ist,

0 JJ [vt + F(v)x]dxdt J vdx - F(v)dt.

Addiert man nun hier die rechten Seiten ûber aile i, so fallen die Anteile der
Rânder im Innern von Q weg, da v die Bedingung (6) erfullt, und es bleibt das

Intégral (33).

Satz 7. (Eindeutigkeitssatz) Eine Funktion v(t,x), die der Integralgleichung
(4) genugt, die Eigenschaften der Funktion u in Satz 1 besitzt, die Anfangs-
bedingung (31) und die Randbedingung (32) erfullt, stimmt mit der Funktion
u(t, x), welche in Lemma IV definiert ist, in allen Punkten, wo dièse stetig ist,
ûberein.

Beweis. Zuerst fiihren wir in © neue Koordinaten ein:

tr t — oc, x1 x — oc, oc> 0

Auf F1 {(0, x'), x' > 0 ; (*', 0), t' > 0} fuhren wir einen Parameter s'

so ein, daB sf x! auf tT 0 und s' — t' auf x' 0. Ist nun v(t, x)
irgendeine Funktion v, die den oben genannten Bedingungen gehorcht, dann
definieren wir

i y ,/x _ j

wobei | ein Punkt auf F! ist. 0a(t!, x!, s') hat dieselben Eigenschaften wie

0(t,x,s). s°l(tr,xr) sei der grôBte, s°^_(t, xf) der kleinste Wert s', wo
0a(f, x1, s!) ihr Minimum annimmt, sr e [— tf,o6\. Dann ist die Funktion
Uat(t'9 x') U(tr, x',sa+{t!, x')), wo U durch (15) definiert ist, ofïensichtlich
eine Lôsung der Gleichung (4) mit den Anfangswerten ua(0, x') v{oc, x' -\- oc)

und den Randwerten ua(tl, 0) v (tf + oc, oc). Zuerst zeigen wir, daB ua
mit v in allen Punkten (t', x') mit t' > 0, x' > 0, wo entweder u oder v

stetig ist, ubereinstimmt. Nehmen wir das Gegenteil an, v sei in (tfQ, xQ)

stetig, und u sei dort stetig oder unstetig, aber verschieden von v. Dann gibt es

in einer Umgebung von (t'o, x'Q) eine nicht abzàhlbare Menge (£ von Stetigkeits-
punkten von ua, in denen ua ^ v, Aus der Menge © geniigt es, diejenigen
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Punkte zu betrachten, die auf t' — tr0 liegen. Aus der Eigenschaft 2. in Satz 1

folgt nâmlich, daB v(t, x) bei festem t hoehstens abzâhlbar viele Unstetig-
keitsstellen besitzt. 1' sei der groBte Wert tf, fur den die Charakteristik durch
(#o, %', ^a(^ x' ~ 0)) zu v gehort. Der Punkt (t'9 ~x') auf dieser Charakteristik
kann kein Unsteitgkeitspunkt von v sein, denn sonst gâbe es eine weitere
Charakteristik, deren Projektion durch (tf, ~x') ginge und die zu v gehôrte, und
v wâre stetig auf ihr bis zum Rand F. Wegen (33) wâre aber

$vdx - F(v)dt 0 (34)
a

auf dem Rand G, gebildet aus diesen beiden Charakteristiken und dem Stûck,
das sie aus F' herausschneiden. Nun gilt aber fiir 0a{t\ xf, s') eine analoge
Relation wie (19), nàmlich

0a(t', x', s') J u'dx' - F{u')dt' + VJf, xf) (35)

wo das Intégral erstreckt wird iiber F' von 0 bis s1 und das Stiiek der Charakteristik,

deren Projektion durch s' und (tr, x!) geht, Wa{t'', x1) eine Funktion
ist, die nur von t1 und x! abhângt, und u' uf(t', xr) ist die Losung von (4),
deren Projektion durch s! und (tr, x') geht. Ist s' der Punkt, wo die Projektion
der 2. Charakteristik von v durch (tr, Hc') den Rand F' schneidet, dann ist
wegen (34) und (35), weil v mit der Funktion u' in (35) auf (£ ùbereinstimmt
und weil s\ (V, xr) s*+ (4 x')

0OÙ(t',x',sl(t'o,xr)) =0a(t',x',ï'),
das heiBt, @a(tf, ~x',sr) nimmt ihr Minimum nicht nur in s\ (t'Q, x') an, sondern
noch in einem weitern Punkt. Das ist aber nicht moglich wegen Lemma III.
Also liegt (ir, x') auf F', oder er ist der Anfangspunkt einer Unstetigkeitslinie
x! x*(tf) von v. Dièse bestimmt sich so: x* ist bei festem tr t* die
obère Grenze der Werte x" so, daB v stetig ist und daB die Projektion der
Charakteristik von v durch (£*, x") F' links von s" (tr0, x') schneidet und die
untere Grenze der Werte x", so daB v stetig ist und daB die Projektion der
Charakteristik von v durch (£*, x") Fr rechts von s°[(tf0,x') schneidet, wo
($oj x') €®« £*er P^nkt (^*, x*) kann kein Stetigkeitspunkt von v sein, denn
sonst wâre v in allen Punkten der Charakteristik, deren Projektion durch
(£*, #*) und s+ (t'o, xf) geht, stetig, also auch in s*+ (tf0, x'). Dann ist aber dort
ua v, also auch auf der ganzen Geraden bis (t*, x*), was der Définition
von V widerspricht. Somit ist jeder Punkt (tr, xf) Anfangspunkt einer

Unstetigkeitslinie von v. Die Menge (£ ist aber nicht abzâhlbar, somit haben wir
einen Widerspruch, denn v hat, auf jeder Geraden tf konst. hoehstens
abzâhlbar viele Unstetigkeitspunkte. Damit ist gezeigt, daB ua v in allen
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Punkten (tf, x!), wo die letztere stetig ist. DaB die beiden Funktionen auch
in allen Punkten (tr, x') ubereinstimmen, wo ua stetig ist, beweist man genau
gleieh.

Nun zeigen wir, daB 0^', x',s') gegen 0(t,x,s) konvergiert, wenn oc

gegen Null geht, und daB u v ist, in allen Punkten (t, x) e ©, wo u stetig
ist. Ist etwa s<0, dann ist, wenn 0a(tf,xf,sf) 0ûc(t,x,s) und &(t,x,s)
die durch (16) definierte Funktion ist,

0a(t,x,s) - 0(t,x,8)

fF (G(l^rf ~ F

und somit

f
^ï)M°»«+ (36)

Der 1. Integrand hier ist beschrànkt, das 1. Intégral also bei genûgend
kleinem oc beliebig klein. Weil F(G(x/t — stetig ist fur aile

0 <| < - s <t - ô,ô>0,
kann bei festem s auch der 3. Integrand gleichmàBig beschrànkt werden bei
genûgend kleinem oc, und das 2. Intégral verschwindet wegen (32), wenn oc

gegen 0 geht. Mithin kann die Differenz links in (36) beliebig klein gemacht
werden, wenn nur oc genûgend klein ist. Fur s' > 0 beweist man dièse Tatsache

analog. ^(t, x, s) konvergiert also gegen 0(t, x,s) gleichmàBig fur aile s

in [x, — t + ô]. Daher konvergiert auch ua(t, x) =uOL(t —oc, x — oc) gegen
u(t,x). Aber ua(t, x) v(t, x). Damit ist der Satz bewiesen.
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