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Uber eine Kontinuitiitsgleichung

von Kurt Eaa, Ziirich

I. Einleitung

Wir stellen uns das Problem, Losungen «(t, ) der Kontinuitidtsgleichung
1. Ordnung 3 5
u
ot T Az T =0 (1)

bei vorgegebenen Anfangs- resp. Randwerten

w(0,#) = o(®) @z 0 .
u(t, 0) = o(?) t=0 (2)
und moglichst beliebigem F (u) zu suchen. (1) ist unter gewissen Voraussetzungen
dem System
dt dx , du
F 7 A AN P (8)

dquivalent. Die Losungen von (3) sind Geraden, parallel zur {—z-Ebene mit
der Steigung dx/dt = F’'(u). Ist nun F(u) nicht linear, so sieht man leicht,
dafl das System auch bei noch so glatten Anfangs- und Randwerten im allge-
meinen keine eindeutigen und stetigen Losungen besitzt. Man hat daher, unter
Verzicht auf die Stetigkeit, den Begriff der Losung von (1) zweckmiBig zu ver-
allgemeinern. Die Kontinuitatsgleichung (1) konnen wir auch als Integral-
gleichung schreiben

—gt—jzu(t, x)dr = F(u(t, 2,)) — F(u(t, z)) . (4)

Sind % und F stetig differenzierbar, so sind (1) und (4) dquivalent. (4) stellt
aber die natiirliche Verallgemeinerung von (1) dar. In dieser Form stellt sich
zum Beispiel das Problem, die Dichte «(¢, ) einer kompressiblen Fliissigkeit
zu bestimmen, die durch ein zylindrisches, mit porosem Material gefiilltes Rohr
gepref3t wird.

Definition. Eine Losung von (4) heillt eine verallgemeinerte oder schwache
Losung von (1).

Es gibt aber auch andere Moglichkeiten, verallgemeinerte Losungen von (1)
zu definieren; zum Beispiel nennt P.D.LaX in [1] eine integrierbare Funktion
u(t, ) eine schwache Losung der Gleichung (1) in ¢ = 0 mit den Anfangs-
werten % (0, ) = wu,(x), wenn diese die Relation
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§ fou+ fo Fu)dadt + [ £(0, @) u(2)da = 0 (5)

erfiillt, wobei u,(x) eine integrierbare, fiir alle — co < x <oco definierte
Funktion ist und f(¢, ) eine beliebige, stetig-differenzierbare Funktion, die
aullerhalb eines beliebig groBlen, abgeschlossenen Gebietes verschwindet. (4)
und (5) sind fiir stiickweise stetig-differenzierbare Funktionen w(f, x) #qui-
valente Definitionen, denn fiir beide gibt es eine gleichwertige Formulierung:

Eine, in einem abgeschlossenen Gebiet (2 der ¢—az-Ebene stiickweise
stetig-differenzierbare Losung (¢, ) von (1), deren Unstetigkeitsstellen nur
lings stiickweise glatten Kurvenstiicken x = £(f) auftreten, die sich hoch-
stens in ihren Endpunkten treffen konnen, ist in £ genau dann eine schwache
Losung, falls langs diesen Unstetigkeitslinien die Gleichung gilt

de  F(u) — F(u,)

at —  w_ — u,

(6)

wo u_=u(t, &£ —0), u, =u(t, £+ 0).
(6) ist eine Verallgemeinerung der Schock-Relation von RANKINE und
Hycoxntor fiir kompressible Fliissigkeiten und stellt eine Differenzialgleichung
fiir die Fortpflanzung der Unstetigkeitsstellen dar, s. [5]. O.A.OLEINIK gibt
in [2] eine 3. Definition einer schwachen Losung: In der ¢-z-Ebene betrachtet
man den Rand ¢, gebildet aus den Projektionen zweier Charakteristiken von
(3) durch den Punkt (f,, ,) und dem Stiick der Geraden ¢ = ¢, das jene
aus dieser herausschneiden, wobei 0 <t' < y,y > 0. Eine beschrankte, inte-
grierbare Funktion u(¢, ) heiflt jetzt eine schwache Losung von (1), wenn

&"udaz——th:O (7)

fiir jeden solchen Rand. Diese Definition ist etwas weniger allgemein als die
zuerst gegebenen.

Keine der drei Definitionen geniigt aber, um die Eindeutigkeit der Losungen,
bei gegebenen Anfangs- und Randwerten zu garantieren, wie schon ganz ein-
fache Beispiele zeigen.

Die Bedingungen fiir eine schwache Losung miissen also durch ein geeignetes
Prinzip erginzt werden, das gestattet, aus der Vielzahl der Losungen eine
bedeutende herauszulesen. Ein Kriterium dafiir, welche aus den moglichen
Loésungen man auswihlen soll, liefert sicher das tatsdchliche Verhalten einer
physikalischen Grofe, die den genannten Bedingungen gehorcht.

Hier eine kurze Ubersicht iiber die von verschiedenen Autoren benutzten
Eindeutigkeitskriterien:
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Die Tatsache, dafl die Losung des Problems (2), (4) nicht eindeutig bestimmt
ist, beruht darauf, daB ein reales Medium gar keine Unstetigkeiten in den
Zustandsgrofien u entwickelt. Man kann hochstens ein sehr starkes Anwachsen
von grad (u) feststellen. grad(«) kann allerdings so grofl werden, da3 « dort
geniigend gut durch eine unstetige Funktion approximiert werden kann. An
solchen Stellen, wo grad («) sehr grof ist, treten aber viskose Krifte auf, und
u geniigt dann nicht mehr der Gleichung (1), in der ja die Viskositidt vernach-
lassigt wurde. Diese sorgt dafiir, daf3 « keine Spriinge machen kann, sie glittet
die Unstetigkeiten in 4. Um die Viskositdt beriicksichtigen zu konnen, er-
ginzen wir (1) durch einen Term 2. Ordnung.

w heiBt der Viskositatskoeffizient. Gleichung (8) hat, bei beliebigen, integrier-
baren Anfangs- und Randwerten fiir alle = = 0,¢= 0 stetig-differenzierbare
Losungen. Koénnte man nun in der Losung von (8) u— 0 gehen lassen, so
erhielte man eine solche von (1). In der Tat hat O.A.LADYZENSKAYA in [3]
gezeigt, daB fiir das einfache Anfangswertproblem und fiir konvexe F dieser
Grenzwert existiert, und dafl die Grenzlosung eine schwache Losung im Sinne
von LaAx ist. Eine schwache Losung von (1) als Grenzlosung einer solchen
parabolischen Gleichung 2. Ordnung, wenn der Koeffizient der hochsten Ab-
leitung verschwindet, zu definieren, wire also eine Moglichkeit, um die Ein-
deutigkeit zu erzwingen. Eine explizite Losung wurde auf diesem Wege von
E.Hopr in [4] fir das einfache Anfangswertproblem und die Funktion F(u) =
= }u? gegeben. HoPF gelingt es durch eine einfache Transformation ¢ = ¢ (u)

die Gleichung
Uy + Uy = Uy,
auf die Form
HPre = Py

zu bringen. Das ist die gewthnliche Warmeleitungsgleichung, und fiir sie hat
man eine explizite Losung, und die Grenzfunktion fir u— 0 kann direkt
berechnet werden. HopF behauptet jedoch, es sei nicht moglich, fiir eine
andere Funktion F (u) auf diesem Wege eine explizite Losung zu finden.

Wenn in der Umgebung von «Unstetigkeitsstellen» in der Zustandsgrofe
u eines Mediums viskose Krifte auftreten, hat das zur Folge, dal die Entropie
S des Mediums beim Durchgang durch eine Unstetigkeitsstelle zunimmt. Wird
8 als Funktion vom Druck p und dem spezifischen Volumen 7= dargestellt, so
ist, wie R.CoURANT und K.O.FRIEDRICHS in [5] zeigen, die Zunahme 48 der
Entropie von 3. Ordnung in 4p und Ar. Diesen Sachverhalt driickt die Ein-
deutigkeitsbedingung (9) von O.A.OLEJINIK aus. Sie beweist in [6] fiir konvexe
F, daB die Bedingungen (5) und
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w(t, 2) — w(t, 2,) < K(t) (2, — ,) (9)

fir zwei beliebige Punkte (¢, z,), (¢, ,), wo K (f) eine monoton fallende
Funktion ist, nur durch eine einzige Funktion w(¢, ) befriedigt werden
konnen. (9) wird die Entropiebedingung genannt. Man vermutet, siehe bei
A.Dovueus in [7], daBl (9) durch die viel allgemeinere Bedingung

u(t, x — 0) >u(t, z + 0)

ersetzt werden konne. Diese Vermutung wurde von B.L.ROSCHDESTVENSKY
in [10] fiir stiickweise glatte u bestétigt.

In [8] verwendet O.A.OLEJNIK eine dritte Art von Eindeutigkeitsforderung.
Sie zeigt dort, daB durch (7) eine schwache Losung eindeutig bestimmt ist,
wenn diese die Randbedingungen erfiillt und noch folgenden zwei Bedingungen
gentigt:

1. Ist % (¢, ) in einem Punkte (¢,, x,) stetig, so gibt es genau eine Charak-
teristik aus (3), die durch den Punkt (¢, z,, u (4, %)) geht und auf der
u(t, z) fir 0 <t <t stetig ist.

2. Ist wu(t,z) in (¢, 2,) unstetig, so gibt es mindestens zwei Charakte-
ristiken aus (3), deren Projektionen in die ¢—z-Ebene durch (¢,, x,) gehen und
auf denen u (¢, x) fir 0 <t <1{, stetig ist.

Nennen wir eine Unstetigkeitslinie « = &(f) einen Schock, und die Punkte
(¢, x < &(t)) dessen Riickseite und die Punkte (¢, x > &(¢)) dessen Vorder-
seite, so lassen sich die obigen zwei Bedingungen physikalisch so interpretieren :
Die Geschwindigkeit des Mediums unmittelbar hinter dem Schock ist grofer
und unmittelbar davor kleiner als die Schockgeschwindigkeit.

Diese Eindeutigkeitsforderung werden wir in unserm Falle des gemischten
Anfangs-Randwertproblems anwenden.

II. Existenz einer Losung

Wie schon erwihnt, gelang es E.Hopr in [4] eine verallgemeinerte Losung
der Aufgabe (1) mit F = «?/2 fiir das einfache Anfangswertproblem zu finden.
Seine Losung hat die Form
r — ?/* (t9 x)

t ’

w(t, ) =

wo y*(t, ) der grof3te Wert ist, wo

(x

o, z,y) =9 4 o nd
» @2 Y) =+ Ju(n)dn

als Funktion von y ihr Minimum annimmt. w%,(x) sind die Anfangswerte
u(0, ).
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Fir die Funktion F(u) = —log (a +be™®), a + b =1, lost P.D.LAX in
[1] die Gleichung durch Betrachtung der entsprechenden Differenzengleichung

ut+4,z2) —ult,z)= — Fui, z)) — F(ul,x— 4)).
Die Grenzlosung (4 — 0) lautet
b t
u(t, x) = log (;(—;:_—y; e 1)) s

wo y* der grofite Wert ist, wo

d - — t — b
0, 2,9) = funin —tflog 1 - Z7L) — 2oV 1og (L2228 2]

als Funktion von y ihr Maximum annimmt.

Im ersten Fall ist F eine konvexe, im zweiten Fall eine konkave Funktion
von %. Fiir solche Funktionen konnen wir, siche S.MANDELBROJT [9] eine
Konjugierte H definieren, fir konvexes ¥ durch

H(s) = Max {us — F(u)}

und “
H(s) = Min {us — F(u)}
fiir konkaves F'. v
Ist F differenzierbar, so ist

H(s) = G(s)-s — F(G(s)) , (10)

wo G(s) der Wert w ist, wo {us — F(u)} als Funktion von % ihr Max. resp.
ihr Min. annimmt. Offensichtlich ist

G(F'(s)) =s. (11)
Daraus folgt unmittelbar mit (10)
H'(s) = G(s). (12)

Eine einfache Rechnung zeigt aber, dal die beiden oben verwendeten Funk-
tionen @ vom Typ

o, 2,9) = funmdn + 112(E7Y)

sind, mit H als Konjugierter zur entsprechenden Funktion ¥. Ist 4, beschrankt,
so hat @ fiir jedes (¢, ) ein Extremum, weil H ebenfalls konvex resp. konkav
ist. Ist y* (¢, ) wieder der groBite Wert, wo dieses Extremum angenommen
wird, so haben die beiden oben angegebenen Losungen die Form

w(t, x) = G(—‘”—:t—?f—) (13)
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wie man leicht iiberlegt. Ist u, stetig, so folgt sofort durch Differenziation von
d(t, xz,y) nach y

—
0= wy?) - &£

und daraus wegen (11)
x — y*

r = F'(uy(y™)) -

Das verlangen aber gerade die Gleichungen (3), namlich % = konst. = u,(y*)

— gtk
lings den Geraden ad ty = konst. Die Losung (13) besteht also aus Cha-

rakteristiken, definiert durch (3). Die Vermutung, daB} es sich um eine verall-
gemeinerte Losung von (1) handelt, liegt somit auf der Hand.
Den hier skizzierten Weg, schwache Losungen der Gleichung (1) zu finden,
wollen wir auch im Falle des gemischten Anfangs-Randwertproblems begehen.
Uber die auftretenden Funktionen setzen wir folgendes voraus:

1. F(u) ist zweimal stetig differenzierbar (14.1)
2. F/(0)=0 und F">0. (14.2)
3. Die beiden Funktionen o(x) und p(t) in (2) sind positiv, (14.3)

beschrinkt und integrierbar.

Die Punkte auf I'= {(t >0, 0), (0, = > 0)} bezeichnen wir kurz mit s,
und zwar 8 = — ¢ auf £ =0 und s = 4 z auf ¢ = 0.
Wihlen wir nun einen beliebigen Punkt (¢, ) aus

6 = {(t,z), t >0, x >0}

und einen Punkt s auf I', dann hat das System (3) genau eine Losung U (¢, x, 8),
deren Projektion durch diese beiden Punkte geht:

G(z—‘g) §>0

t
U(t,x,S).—_: i . (15)
G( {1 s ) 8 <0
Dann betrachten wir die Funktion
fa) —UE, z, &dE §>0
¢(t’ x,s)-—: ?.; (16)
]
0

F(U(, x,8) — F(e(§)dé s<0
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@ ist in allen 3 Argumenten stetig, wie man sofort sieht. Aulerdem strebt @
gegen - oo, fiir s gegen -+ oo, und — ¢.
Die Richtigkeit der ersten dieser beiden Behauptungen ergibt sich aus

(D(t,x,s)-——(_fd(f)df‘i-tﬂ(xt—s)—tﬂ(%)

wegen (12). Da H konvex, geht die rechte Seite dieser Gleichung gegen - oo,
fiir s gegen + co. Um auch die zweite der obigen Behauptungen zu beweisen,
bemerken wir zuerst, dafl wegen (10)

-8 g) == o7 Tg) - e~ or (o 25))

ist, und daher

=”G'(tf5) T +F(G(tf )) ~(t~ 877 .G'<tf§) i

also
?F(G(tfs)) df:(t+a)H(t_‘]"_8)—tH<i§->
und somit
D, x,8) = (t—{—s)H(tis)— tH(—‘f—)— ;faF(e(f))dé-

Aber weil H konvex ist, geht H (u)/u gegen oo, fiir |u| gegen oo, also

(t“)H(tj-s)

gegen oo, fiir s gegen — ¢.

@ hat also bei jedem festen (¢, z) auf dem Intervall — <8 <oo ein
wohlbestimmtes Minimum. s_ (¢, x) sei der gro3te, s_(¢, x) der kleinste Wert,
wo @ dieses Minimum erreicht. Dann gilt

Lemma I. Ist x < z,, dann ist fir jedes ¢ s (t, x) < s_(¢, 2,).
Bewers. Wir betrachten die Differenz

D, x,,8) — D(t, x,,8,(¢, x)
fir 0 <s<s,.(t, ).
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D(t,x,,8) —D(t,2,,8,(t, 7)) fo(&)——G(xlt_S)df —B+3‘t’x)a(§)—G<x1;§)d§=
0 0

[ o@—o(T e+ | o(27E)—e(BrE ).

84(t,x) 84(t,2)

Hier ist das 1. Integral nicht negativ, wegen der Definition von s_(¢, ),
und das 2. Integral ist positiv, weil @ monoton wachsend ist, und =z < z,,

also
o274 ) - o( 278 <o

Somit ist @(t, x,,8) — P(¢, ,,8,.(t,x)) >0 firale 0 <s<s, (¢, 7).
Wir haben aber zu zeigen, dafl diese Ungleichung richtig ist fiir alle
—t<8<8,(¢, ). Zunichst ist

@(t> xla S) - ¢(t’ x1:8+(t> x)) = [¢(ta xl’ 8) - @(t, .’17, 8)] +
+ (D@, 2,8, (t, @) — P, 2,5, (8, )] + [D(t, z, 8) — (L, 2,8, (¢, 2))].

Die letzte Klammer ist nicht negativ fir alle — ¢ <s <s_ (¢, ), die zweit-
letzte ist positiv, denn

B(t, 2,5, (t, 7)) — B, 7,8, (¢, 7)) .—=’+(gt’x)a(“l - 5) _ G( v 5)d§ >0,

weil x < z,;, und fiir die erste folgt

D, ,,8) — Bt , 8) =0}8F(G(t f§>) _ F(G(t z 5)) dt |

Wegen (14.2) und (11) ist ndmlich auch
G(0) =0, (17)

also ist G(u) >0 fir >0, und F(u) ist, auch wegen (14.2), monoton
wachsend fiir « > 0, und da z < z,, ist auch die erste Klammer positiv.
Damit ist gezeigt, daB fir s (¢, z) > 0

D, 2,,8) — DP(t, 2, 8,.(8,2)) >0
fir alle — ¢t <s<<s,(¢, ). Ist aber s (f, ) <0, dann ist

D, z,,8) — P(t, 2,8, (L, x) =
’jF(G(t L)) - Fleenas = (6 5 )) - Flewnas =

Lt ) -reea §r(e(2) - (o)
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Hier ist das 1. Integral nicht negativ fiir s <s_ (¢, ), und das 2. Integral ist
positiv, wegen x << x;. Somit gilt fiir einen beliebigen Punkt (¢, ) und alle

s<<s8, (t,x
+(t, 2) D, x,8) — D, 2,8, (t, x)) >0,

und daraus schliet man
s_(t, x) > s8,.(t, x).

Lemma II. Fiir jeden Punkt (t,, x,) in ® gelten die Relationen

hm 8—(ta x) == 8——(t0: xO)s 8—(t0> xO - O) = 8—(t0a xo)
(2, 2)—> (t0, %0)

lim s, (¢, ) = s, (), %) ; 84y, o + 0) = 8, (b, %),
(2, 2)—> (%0, o)

Beweis. Zuerst beweisen wir, dall s_(t,, ;) = s_({,, ¥, — 0). Aus Lemma I
folgt zunichst, daB s_(¢, x) <s_(t, x,) fir <, s_(¢f,x) ist also eine
monoton nicht abnehmende Funktion von z, bei festem ¢. Also ist nur zu
zeigen, daBl s_(¢,, ;) — s_(f, x) < €, sobald x, — x<<d,. Sei s_(t,, )
wieder zuerst positiv und 0 <s <s_(f,, x,) — &, fiir ein beliebiges &> 0,

dann ist
¢(tO: x, 8) - ¢(t0, Z, 8—(t0’ xo)) =

= o -2t ar T 0w - a2 e -

tO 0 tO

— f g(g)_G("’°_5)d5+ § G(”""_E)—G<”"S)d§.

8 (fo, o) t 8_(fo, o) b to

Hier ist das zweite Integral negativ. Der Integrand ist positiv, weil z, > x.
Er kann beliebig klein gemacht werden, wenn nur =z, — z geniigend klein,
so daB sich das Integral um beliebig wenig von Null unterscheidet. Das 1. Inte-
gral ist aber grofer als eine, von Null verschiedene, positive Zahl. Das ergibt

¢(t07 x, 8) - Q(t0> x, 8——(t0! xo)) > 0
fir 0 <s <s_(ty, ) — €.
Jetzt sei — 1t <s<0<s_(t, x,) — ¢, dann ist
Q(tm Z, 8) - ¢(t0’ x, 3—(t0’ xo)) =
= [D(ty, x, 8) — Py, %y, 8)] + [P (L, %y, 8) — D (b, Ty, 8_(ty, %)) ] +
+ [@(tm an 3—(t0’ xo)) - @(to’ Z, 8-—(t0: xo))] =

— 17 (6(25)) 7 (0(72)) & + 1000, 20,9 = 20,20, 0.0, 2D +

+s_(tjg,zo)G<x ;— §>_G(x0 — E)dé.
0

0 tO
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Die beiden Integrale hier sind negativ, konnen aber dem Betrag nach beliebig
klein gemacht werden, dadurch dal man x, — 2 geniigend klein macht. Die
Differenz in der zweiten Klammer ist natiirlich positiv, wegen der Definition
von 8_(ty, ;) und s < s_(t,, %) — &, und auch grofer als eine bestimmte,
positive, von ¢ abhéingige Zahl. Dadurch ist

¢(t0, Zz, 8) - ¢(t0> Zz, 8—-—(t0’ xo)) >0

fir —t<s <0 <8 (8, x,) — &.
Nun wollen wir aber noch zeigen, daf3 diese Ungleichung auch fiir s_(¢,, z,) <0
gilt. Sei wieder s < s_(¢,, ,) — ¢, dann ist

¢(th Zz, 8) - Q)(to, Z, 8-—-(t0’ xo)) =

- Lol reose T ) -l )

Hier schlieBt man wieder, gleich wie oben, daf}, falls nur =, — z < 4,

D(ty, x,8) — DP(ty, x, 8_(t, 29)) >0

fir alle — ¢t <8 <s_(t, z,) — ¢. Diese Ungleichung gilt also fiir alle (¢,, z,),
woraus folgt, dafl

8_(ty, ®) > 8_(ty, %) — &
oder

8_(ty, xy) — 8_(ty, ) < €,

sobald
x, —x <9, .

Um auch die 1. Behauptung von Lemma II zu beweisen, iiberlegen wir so:

Aus
D, x,8) > D(t, x,s_(t, x))

folgt, wenn wir den Grenziibergang (¢, ) gegen (¢,, x,) ausfiihren,

D(ty, ,,8) = DP(ty, x,, lim s_(t, 2)),
(¢, 2)—>(to, Zo)

das heil3t aber
8_(ty, ) < lim s_(¢, x),

) t, ) > (to,
aber weil (& 2)=> (o, o)

8_(ty, Xy) = 8_(tyg, %o — 0) = lim s_(¢t, x) = 8_(4, %) ,
(t,2)—>(to, Zo)

folgt
Iim s_(¢, ) = 8_(t, =) -

( t) x)_>(t09 z0)

Die Behauptungen betreffend s, (%, %,) beweist man analog.
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Lemma III. Istim Punkte (t,, x,) @(t,, %, 8, (b, %) = P(t,, 2,,8'), dann
18t i jedem Punkt (t,x), t <t, x <z, der Charakteristik, welche (t,, x,)
mit dem Punkt s auf I' verbindet, s, (¢, x) = 8" = s_(t, z).

Beweis. Wir haben nur zu zeigen, daf}

D(t,x,8) > D, z, s,.(h, 7))

fiir alle s % s’ in den genannten Punkten (¢, ) dieser Charakteristik, denn
dann erreicht @ (¢, x,s) ihr Minimum in diesem Punkte nur in s = s’. Ist
0>s >8> —t, dann ist

Dt,x,8) — D, x,8) =
SR A R
x Ty e
—E > ey fir —s'<&<t.
Ist 0 >s>s', dann ist der 2. Integrand negativ, daher das Integral eben-
falls positiv.

Ist 8> 0>3s', dann erginzen wir die Differenz @ (¢, z,8) — D (¢, x, 8')
wie folgt:

Das 1. Integral ist positiv; das 2. ebenfalls, weil

D(t,z,8) — D(t,x,8) =
=[P(t,z,8)-D(ty, 2,,8)|+[P(ty, %, 8')-P(t, %,8) ] +[P(b, 2, 8)-DP(ty, 7y,8) | =
2ol ) el e fr(o(g2e) - (o Zg)) %o
denn die 3. Klammer in der vorletzten Zeile ist nicht negativ. Das 1. Integral
xltl— ¢ > xt—{-' fir 0 <& <s, das zweite
fir 0> & >s'. Damit haben wir gezeigt,

in der letzten Zeile ist positiv, weil

x x
ebenfalls, denn 1 _~
h—& t—§
dal @, z,8) > D(t, x,s') fiir alle s # s8', zumindest wenn ¢ < 0.

Fiir &' > 0 beweist man diese Tatsache analog.

Satz 1. Ist die Funktion u(t, x)=U(t, z, s, (t, x)), wobes U(t, x,s) durch
(15) definiert 1st, vm Punkte (t,, x,)

1. stetig, dann gibt es genawu eine Charakteristik, das heift eine Losung des
Systems (3), deren Projektion in die t —x-Ebene durch (t,, z,) geht, und w(t,x)
18t in allen Punkten (t, x) tm Innern von & mit t <t,, v < x, dieser Cha-
rakteristik stetig,

2. unstetig, damn existieren mindestens zwei Charakteristiken, deren Projek-
tionen durch (t,, x,) gehen und auf denen w(t,x) im Innern von ® fir
t<ty, <<z, stetig ist.
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Beweis. Aus Lemma I folgt zundchst, dal s_(¢, ) und s, (¢, ) an den-
selben Stellen stetig sind und daBl dort s_(¢, ) = s_ (¢, ). An den Unstetigkeits-
stellen ist s_(¢, x) # s, (t,z). U(t, x, s, (¢, x)) ist also genau dort stetig, wo
8_(t, x) = 8,.(¢, ), und unstetig, wo s_(¢, x) # s, (¢, ). Ist u (¢, x) in (¢, 2,)
stetig, dann ist, wegen Lemma III, U (¢, =, s, (¢, )) lings der Charakteristik
durch den Punkt (¢, z,, U(4, %, s, (¢, %,))) stetig fiir alle Punkte mit
t<t, x <z, ausgenommen vielleicht im Endpunkt s_(t,, x,) auf I'. Ist
w(t, ) in (4, x;) unstetig, dann ist, gemal Lemma III, s_(t, ) = s, (¢, x)
lings beiden Charakteristiken durch (¢, 2, U(¢, %, s,(4, %)) und
t, 2, U@y, 2, s_(4, x,))) fir alle Punkte mit ¢ <¢, z < z,, ausgenom-
men vielleicht in den Endpunkten s_(¢,, ;) und s_ (4, ;).

Satz 2. In jedem Unstetighkeitspunkt der Funktion u(t,x) gilt die Un-
gleichung
u(t,z — 0)>u(t,x+ 0).

Beweis. Wegen s_(¢, x) <s, (t,x) und s (¢, 2 — 0) =s_(f, x) folgt die
Behauptung sofort aus der Definition der Funktion (¢, x).

Lemma IV. Die Funktion w(t, x) geniigt der Relation
fude — F(u)dt =0, (18)
¢

wo & den Rand darstellt, der aus den beiden, im Beweis zu Satz 1 genannten,
durch ewnen Unstetigkeitspunkt gehenden Charakteristiken und dem Stick, das
diese aus I herausschneiden, besteht.

Beweis. Zuerst beweisen wir, daf3
Dy, 7y, 8) = fude — F(u)dt + ¥ (b, z) (19)

fiir jeden Punkt (¢,, ,), wo das Integral erstreckt wird iiber die Charakteristik,
die (¢, z;) und s verbindet und das Stiick auf I' zwischen 0 und s. ¥ sei
eine Funktion nur von den Variablen ¢, und z,. Auf I" ist 4 durch die entspre-
chenden Anfangs- resp. Randwerte zu ersetzen. « (¢, ) ist hier die Losung
von (3), die den Punkt (¢, ;) mit s verbindet. Sei s etwa negativ, dann lautet
die Behauptung

—8 2% zq
Dby, 4y,8) = — OI F(o(t)) di — § F (u)dt +gudw + ¥4, %),

oder die Differenz
Dy, x,,8) — fudx — F(u)dt
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hingt von s nicht ab. Aber
D(ty, x,,8) — fudx — F(u)dt =

=~ 7 (0(727)) - Fea - JFewa + Fud - [udz =
1 0 —8 0

— ;fF (G( ; =l t)) dt +_}:F(u)dt — Ofludx.

Wir haben also nur zu zeigen, da@3

B F(G<tﬁs)) B

i ——Oj'ludx]:
- r (ol ) e folets) ] -
ol ool

H( ais)“‘“): "F(G<t1ﬁis>)’

wie beim Beweis der Eigenschaften von @ gezeigt wurde. Fir s > 0 verfihrt
man genau gleich. Dabei ergibt sich auch, daf3 wir es in beiden Féllen mit der-
selben Funktion ¥ zu tun haben. Ist nun (¢, #;) ein Unstetigkeitspunkt von
u(t,x) = U(t, x,s,(¢, x)), dann ist

7’3“
2
ds
9
as
2
~ 35

Q(tl’ xl? 8+(t13 xl)) == fudx - F(u)dt + Y‘j(tla 33'1)
und 3
D(ty, xy, 8_(t, %) = [ udx — F(u)dt + P(t,, ),

(:II
wo @', €” die oben beschriebenen Réander sind. Subtrahieren wir diese beiden
Zeilen voneinander, so resultiert die Beziehung (18).

Satz 3. Die Unstetigkeitspunkte der Funktion w(t, x) liegen auf Linien, deren
x-Koordinaten eindeutige und stetige Funktionen von t sind. Die Zahl dieser
Linien, die sich hichstens in thren Endpunkten treffen konnen, ist hochstens
abzdhlbar.

Beweis. Ist (¢, z;) eine Unstetigkeitsstelle von u (¢, ), dann geht durch
(¢, x,) eine fir alle ¢ > ¢, eindeutig bestimmte Unstetigkeitslinie, die sich so
bestimmt: Auf der Geraden ¢’ = konst. > ¢, existiert genau ein Punkt (¢, z')
so, daB das Intervall [s_(¢, x,), 8,.(f,, %;)] ganz enthalten ist im Intervall
[s_(t', '), s.(t', «')]. Dieser Punkt ist die untere Grenze aller Punkte (¢', z),
fiir die s_(¢', ) > s, (4, ;) und die obere Grenze aller Punkte (¢, x), fiir die
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s, (t, x) <s_(t, ). Diese beiden Grenzen fallen nimlich zusammen, denn
sonst wire fiir alle Punkte (¢, ) zwischen diesen Grenzen das Intervall
[s_(t', x), s, (¢, )] im Intervall [s_(¢, x,), 8, (¢, 2,)] enthalten und die zu-
gehorigen Charakteristikenpaare wiirden sich schneiden, was Satz 1 wider-
spricht. Es wire aber noch die Moglichkeit, daB [s_(#', '), s, (¢, ')] rechts
oder links von [s8_(t;, @), 8,(t, %,)] liegen wiirde. Der erste Fall ist wegen
der linksseitigen Stetigkeit von s_ in (¢, #’) und der 2, Fall wegen der rechts-
seitigen Stetigkeit von s, in (¢, ') ausgeschlossen.

z

1

@, z')

8,’,(t', xl)

L

s-(t',z")
Fig.1

Somit existiert auf jeder Geraden ¢' = konst. fiir alle ¢’ > ¢, genau ein solcher
Punkt. Die Stetigkeit dieser Linie, die diese Punkte bilden, ist wegen Satz 1
klar. Da auf jeder Geraden ¢ = konst. héchstens abzihlbar viele Unstetig-
keitsstellen von s, (¢, x) liegen, ist auch die letzte Behauptung von Satz 3
bewiesen. Daf} sich diese Unstetigkeitslinien nur in ihren Endpunkten treffen
konnen, folgt aus Satz 1.

Satz 4. Ist x = z(t) die Gleichung einer Unstetigkeitslinie von wu(t, x),
dann gilt in jedem Punkt (3, x(t,)) die Beziehung

dz (¢, + 0) — lim z(t) — x(t) — F(u(ty, x—0)) — F(u(t, z+ 0)) . (20)

dt :2'-::1 ty — tl u(tl’ r — O) - 'u'(tb 2 == O)

Beweis. (t,,z,) und (i, z,) seien zwei Punkte in der ¢— z-Ebene mit
t, > t,. Dann gelten die Beziehungen

¢(t2’ Lo, 3+(t2, 332)) — D(ty, ,, 8_(tz, Ty

) =0
— D(ty, 2, 8. (8, %)) + DP(ty, 2, 8_(h, 7)) = 0.



Uber eine Kontinuit#tsgleichung 255

Addieren wir diese beiden Gleichheiten zu den Identitiaten

D(ty, T2, S_(4, 1)) — D(ty, %, S_(t;, 7,)
(p(tln xl, 8+(t2> xz)) - ¢(t17 xl: 8+(t25 x2)

I

so folgt

0 = [D(t;, %2, 8, (s, 7)) — Dy, Ty, $_(4, %)) — P(t, 24, 8, (ta, x5)) +
+ D(ty, 2y, 8_(t, 2,))] + [P(ts, 25, 5_(E, %1)) — DP(L2, X2, S_(ty, X5))] +
+ [q)(tp Xy, 8+(t2’ xz)) - ¢(t1’ Z,, 8+(tl’ xl))] *

Die letzten beiden Klammern sind aber nicht negativ, somit ist

D(ty, x,, 8, (2, %5)) — D(ty, 2, 8_(t, 21)) — DP(4, 2y, 8, (ta, 7,)) + (21)
+ @(tl, 215 8—(t19 (131)) S. 0 ’

Sind nun (¢, z;) und (¢,, ;) Punkte auf einer Unstetigkeitslinie, so ist das
Intervall [s_(t, x;), s, (¢, 2y)] im Intervall [s_(¢,, x,), s, (¢, ;)] enthalten.
Wir miissen den Punkt (¢,, 2,) geniigend nahe bei (¢, x;) wéhlen, damit die
Charakteristik durch (¢,, ;) und s_(f,, x,) positive Steigung besitzt, denn
sonst kann es vorkommen, dall @(t, z,, s_(f,, x,)) beim Grenziibergang
t, — t, nicht definiert ist. Unter Beriicksichtigung von (19) und (21) folgt dann

N
JUdz — F(U)dt <0, (22)

wobei € aus den Projektionen der Charakteristiken besteht, die die Punkte
(t,, %), (t5, ¥,) mit den Punkten s, (f,, x,) und s_(4, 2;) verbinden, und
U=U(t,x,s) ist die Losung von (3) auf €.

4

(te 79)
8.4 (82, ,)

< 7

S+ (tl’ xl) —

Y
o~

8- (1, 2) 8—(tay ,)
Fig. 2

Nun verbinden wir (¢, ;) und (f,, ;) mit einer Geraden. £, sei das Drei-
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eck {s_(t,,x), (4, 2,), (ta, %5)}. U(t, x,s) stimmt mit % (¢, ) auf der Ge-
raden durch s_(¢,, 2;) und (¢, z;) tberein. u, (¢, ) sei die Losung von (1) in
2,, bestehend aus den Charakteristiken, die durch den Punkt s_(¢, z,)
gehen. wu,(t, ) ist in ganz Q, auller in s_(¢, #,) stetig differenzierbar. Wir
konnen somit Gleichung (1) in £, integrieren und erhalten

| u,dx — F(u,)dt = 0. (23)

Weil auf den beiden Seiten von £, durch s_(¢, ,)U mit w, iibereinstimmt,
S0 ist

Udx — F(U)dt= | u,dx— F(u)dt. (24)

(t21z2)98-(t1:xl);(thxl) m

Analog konstruiert man die Losung u,(¢, ) von (1) im Gebiet

2y = A {s,.(ts, %), (ta, a), (b, %)} .
Fiir u, gilt dann

Ude — F(U)dt = |  u,dx — F(uy,)dt (25)

(t1,21), 8+ (L3, 22), (2, 22) TANITD)

Addieren wir (24) und (25), so erhalten wir links den linken Teil von (22), und
daraus
J  wde — Fu)dt+ |  udxr — F(u)dt <0

(s, o), (Ls, 21) (14, %), (L3, Z,)

Mit At = (t, — t,), dx = (xy — ;) folgt daraus

wy Az — F(uy) At < uy,Adx — F(uj)At,
WO
ai:ui(fat)> 901_<_5§x2, Lh<t<i
w; (E*,7%), 2 <& <y, 4, <tF<H,

I

*
U;

Beim Grenziibergang At gegen 0 gehn %, und u, gegen U(t, #,, s, (4, #y)),
u, und u; gegen U(ty, 2y, s_(4, 21)) .

Aber U (t;, 2y, s_(t, ) =u(ty, 2, —0), U(ty, 1, s, (4, #1)) =u(ty, 2,1+ 0).
Also ist wegen (¢, 2, — 0) > u(t;, ; + 0)

. Az F(u(l, % + 0) — F(u(t, 2, — 0) o6
R T R

Analog erhilt man die Ungleichung

Az _ Flult, 2+ 0) — Fult, 2, — 0))
telinh a4t = u(ty, ¢, + 0) — w(ty, z, — 0) ) (27)

ta >




Uber eine Kontinuitétsgleichung 257
Um diese abzuleiten, geht man aus von den Identitéiten

¢(t2s Ly, 8+(t 25 xZ)) - ¢(t2’ Ly, §_ (t2’ x2))
(p(tl’ Ly, 8 ( ’ xl)) - Q(tl Ly 8 1))
D (1, 75, 8 + (b, ) — D(L, =, 8+(t1, ;)
@(tl, Xy, 8 ( ) ))

l

|

0
0
0
0

tz, xz) —®(t1, xl, t2, xz

I

Aus diesen erhilt man durch Addition

0 = [D(ty, x, S.(t, ) — P(ty, 29, 8_(t;, 25)) — D(¢y, %y, 8, (4, 2y) +
+ ¢(t17 xl» 8—(tZa xz))] '+' [¢(t2, x23 8+(t2a xz)) - ¢(t23 xz’ S+(tls 271))] +
+ [¢(t1’ L1s 8-—(t13 xl)) - d)(tl’ Zy, 8—-(t2a *T2))] .

Aber die letzten beiden Klammern sind nicht positiv, also ist die erste
Klammer nicht negativ. Dies fiihrt zu einer, zu (22) analogen Ungleichung

? Udx — F(U)dt >0

¢
wo (' aus den Geraden besteht, die (¢, ,), (¢;, z,) mit s, (¢, z;) und s_(¢,, )
verbinden. Die restlichen Schliisse bis zur Ungleichung (27) sind analog wie
oben.

Aus (27) und (26) aber ergibt sich die Behauptung des Satzes. In der gleichen
Weise beweist man, dall (20) auch richtig ist fiir dx(t—0)/d¢t, auler in den
Punkten, wo zwei Unstetigkeits-Linien zusammenstoflen, denn dort konver-
gieren die Rénder, der im obigen Beweis benutzten Dreiecke nicht gegen die
Projektionen der Charakteristiken durch die Grenzpunkte.

Lemma V. Auf ¢ = 0 fir positive x resp. auf x = 0 fiir positive ¢ st
eine Folge von beschrinkten Funktionen o,(x) resp. o,(t) definiert, so daf3 auf
jedem endlichen Intervall [a, b]

b b
lim f|o,(x) — o(x)|dx = 0 resp. lim [ |[F(0,(t)) — F(e(@)|dt=0.
n—>0 a n—>mo a

D, set die mit g, resp. o, statt mit p resp. o konstruierte Funktion (16), s% (¢, x)
der grofte, s* (t, x) der kleinste Wert, wo @, das Minimum als Funktion von s
annimmt. Ist w*(t, x) = U(¢, x, 8% (t, x)), T ein beliebiges Intervall auf einer
Geraden parallel zu ¢ = 0 oder = = 0, dann konvergieren u™(¢, x 4+ 0) wund
ur(t, x — 0) auf jedem solchen Intervall gleichmdifig gegen wu(t, x) n allen
Punkten, wo diese stetig ist.

Beweis. Wir betrachten das Intervall T = {(¢, 2'), &, <t <t }. Fir jeden
Punkt (¢, ') ¢ X nehmen @, (¢, 2',s) und D (¢, 2', 8) ihr Minimum beziiglich
s auf einem abgeschlossenen Intervall — ¢4 6 <s < z', §>0 an. Fir

17 CMH vol. 37
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8= —1t wird ja @(t,x’,s) unendlich, also ist nur zu zeigen, dal s _(¢,2') <=z'.
Dazu bilden wir

B, o, 7)) — B, 2, 8) = | o(&) — G(x = 5>d§ _

— T o@)de + tH () — tH( d - S)< 0

fiir alle s> «', und gleich Null fiir s =2', weil H'(0)=G(0)=0 und ¢> 0.
Also ist s, (t, ') < «'. Wahlen wir jetzt s im Intervall — ¢ + 6 <s <2,
dann ist fiir den Punkt (¢, ') eT und s <0

B, 7', 8) — B, ', 8)] < | fF(eu» _ Flon(t)di] <

—8 +i
SOI | F(e®) — F(e.(2) | dt _<.0f | F(e(t)) — Fe.()|dt <e,

sobald » > H,, und wenn 8 > 0, so ist

z'

|D,(t,z',8) — D, z',8)| <[|o,(z) —o(x)]|dz <,
U

sobald n > N, ist. Ist & = max (¢/,¢) und N, = max (N,.,N,), dann
ist fiir alle (', 2') eI
|D, (', 2',8) — D, 2,s8)| <&

firalle n > N,, und —¢ + ¢ <s < 2'.
Daher ist fiir alle Stetigkeitspunkte von w(t, x) auf I, weil D(t, 2/, s)
das Minimum nur in einem Punkt, in s (¢, ') = s_(t', ') annimmt,

s, (¢, ') — s2(t', 2')| < d, und |[s (¢, x") — L (¢, )| < 9,,

also wegen der Stetigkeit von U (¢, z, ),

U@, 2, s, 2) — U, 2, s,.(t, 2') | < g
und

(U@, o, " (t, ") — U@, 2,8, (', 2))| <é&
fiir alle Stetigkeitspunkte (¢, ') auf IT. Aber

U, x,s"t,z') =u(t, 2’ —0)

und

U@, o, s (t, &) = ur(t', ' + 0).

Damit ist das Lemma bewiesen.



Uber eine Kontinuitatsgleichung 259

Lemma VI. Das Integral
Jude — F(u)dt
€

verschwindet auf jedem Rand €, gebildet aus einem Stiick einer Parallelen zu
einer der Geraden x = 0 oder t = 0, den Charakteristiken durch dessen End-
punkte, welche Stetigkeitspunkte von w(t, x) sein sollen, und dem Teil, den diese
aus dem Rand I' herausschneiden.

Beweis. Wir wihlen eine Folge von beschriankten, stiickweise konstanten
Funktionen p"(t) resp. o®(z), die nach unten durch p(¢) resp. o(x) be-
schriankt sind und in jedem endlichen Intervall fast iiberall gegen diese kon-
vergieren. Dann sind fiir diese sicher die Voraussetzungen zu Lemma V erfiillt.
Wir konstruieren wieder wie dort die Funktion «”(¢, ) und behaupten: Ihre
Unstetigkeitslinien gehen nur von I" aus. Sei (¢,, ,) der Anfangspunkt einer
Unstetigkeitslinie, die im Innern von G beginne, (4, ;) ein weiterer Punkt
auf ihr. Die Unstetigkeitslinien von %", die im Innern des Dreiecks

{(to, %), 8" (fg, ), 8™ (tg, @)}

resp. des Vierecks {(ta, ;) st (ts, ), O, 8" (to x{,)}, oder auf dessen Seite

§® , 8%, resp.auf dessen Seiten s*,0 und s”,0 beginnen, miissen auf der
Unstetigkeits-Linie durch (¢,, z,) enden, weil 4" stetig ist auf den Seiten durch
(ty, z;). Nun wihlen wir (f), x;) auf dieser Unstetigkeitslinie so, da zwischen
(to, %) und (t), ;) keine weitern Unstetigkeitslinien enden. Das ist immer
moglich, sonst wire (f,, z,) Endpunkt einer Unstetigkeitslinie. Zwischen
sY (), ) und s (&, ;) liegen somit nur solche Unstetigkeitspunkte von g»
resp. o®, wo (¢t + 0) < g®(t — 0), resp. o"(x — 0) < o™(x + 0). Das ist
aber unmaoglich, weil

o™ (s, (tg, ) < a™(s_(ty, y)), Tesp. o"(— 8, (., o)) < o™(— s_(tg, 2y)) -

Also ist g" resp. o™ auf dem Intervall s (to, 25) = 8 > &" (ty, «;) konstant, aber
das ist ausgeschlossen.

Damit haben wir einen Widerspruch zur Annahme, dafl eine Unstetigkeits-
linie im Innern von ® beginne. Fiir jedes n betrachten wir den Rand ¢", be-
stehend aus den Strecken, die die Punkte (¢, ,), (%, #;) untereinander und
(¢, @) mit 8, (4, %), (&, %) mit s, (&, x,) verbinden und dem Stiick von I,
das zwischen s% (¢,, z,) und &% (¢, z,) liegt.

Die Unstetigkeitslinien von %" und die Charakteristiken, die durch die
Punkte (0, o®(a + 0)), (0,0%(a — 0)) resp. (¢"(a + 0),0), (¢*(a — 0),0),
wenn o"(a + 0) > o™(a — 0) resp. p"(a — 0) > o"(a + 0), gehen, lings denen
die Ableitungen von u" unstetig sind, teilen das Gebiet 2", das der Rand ¢~
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umschlieft in endlich viele Teilgebiete 2, und (¢, ) hat stetige Ableitungen
in jedem £,. Die Rénder der £, bestehen aus stiickweise glatten Bogen. Es ist
daher
0= (ff{u} +Fw"),}dxdt = | wrdx — F(u")dt (28)
24 902¢

und nach Summation iiber alle Q,

0=2{f{u} + F(u"),}dedt = [ urdx — F (u")dt, (29)
i Q4 cn

denn lings den Réndern, in denen die £, aneinanderstoflen, vernichten sich
die Integrale rechts in (28), wegen (20), wie man sich sofort iiberlegt. Auf der
Geraden zwischen (¢, x,) und (4, 2,) konvergiert w» fast iiberall gleich-
miBig gegen %, wie in Lemma V gezeigt wurde. Wegen der gemachten An-
nahmen iiber ¢ resp. p" konvergieren diese ebenfalls fast iiberall gleichmiBig
gegen o resp. o. Weil « stetig ist in den Punkten (¢, 2,) und (¢, x,), konver-
gieren auch die Seiten von " durch diese Punkte gleichmifBig gegen die ent-
sprechenden von €. Damit kénnen wir in (29) zur Grenze, n—oo, iibergehen
und finden die Bestétigung des Lemmas. Fiir einen Rand, der einen Teil einer
Geraden parallel zu ¢ = 0 enthilt, beweist man das Lemma analog.

Satz 5. Die Funktion u(t,x) = U(t, x, s.(t, x)) geniigt der Relation (4).

Bewers. Wir betrachten zwei Stetigkeitspunkte (¢,, ), (¢, ;) von w. Auf
den Charakteristiken durch diese wihlen wir zwei weitere Punkte (t], x]),
(t;, z;). Auf dem Rand des so entstehenden Vierecks ist wegen Lemma VI

’
x

0= fudr — F(u)dt = _fzu(t{, x)dx — j'zu(tl, z)dx + j'zu(t, x)dx +
T3 71 3

+ fu(t, x)de — jt'lF(u(t, x))dt + }IF(u(t, x))dt =
= ‘ t (30)

Tl 2)de + (2 — o) ulty, 2) + (@] — @) ult, 2,),

weil w(f], x;) = wu(t,, #;) und u(t], x;) = u(t, ;). Differenzieren wir (30)
nach ¢, so erhalten wir, wenn wir ¢ = ¢’ setzen,

’

T%— fzu(t, x)dx = F(u(t, 2))) — F(u(t, z)) .

zy
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(¢ %)

(¢ 1)

Fig.3
Satz 6. Die Funktion w(t, x) erfillt die Anfangsbedingungen, das heif3t
lim | fo(¢) —u(d, &)dE| =0 (31)

0—>0 =,

fur beliebige z,, x,, und die Randbedingungen, das heif3t
lim | | Flu(r, 9) — F(o@)dz| = 0 (32)

6—>0 2
fiir beliebige ¢, t,.
Der Beweis ergibt sich unmittelbar aus Lemma VI. Damit haben wir eine
schwache Losung unserer Gleichung (1) gefunden und auch gezeigt, daB sie
die Anfangs- resp. Randbedingungen erfiillt. Zum Schlu3 wollen wir nun noch

die Frage der Eindeutigkeit untersuchen.

III. Eindeutigkeit

Lemma VII. Ist v(t, ) eine Losung von (4) und hat sie die Higenschaften
der Funktion uw in Satz 1, dann ist
fvde — F(v)dt = 0 (33)
€
lings eines geschlossenen Weges €, gebildet aus den beiden Charakteristiken,
welche durch einen Unstetigkeitspunkt gehen und den Sticken, die diese aus zwes
zu den Geraden t = 0 und x = 0 parallelen Geraden herausschneiden.
Beweis. Weil v(t, ) die Eigenschaften von » in Satz 1 hat, so folgt, dag die
Unstetigkeitspunkte von v auf stetigen Linien liegen. Aus (4) folgt weiter, dafl
diese Linien die Differenzialgleichung (6) erfiillen. Im Gebiet 2, das € um-
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schlieBt, verlaufen hochstens endlich viele Unstetigkeitslinien. Diejenigen, die
nicht auf € beginnen, werden durch die Charakteristik durch ihre Anfangs-
punkte verldngert bis zu deren Schnittpunkt mit §. Diese Linien teilen Q in
endlich viele Teilgebiete £, in denen v stetig differenzierbar ist, auler viel-
leicht langs gewissen Charakteristiken, denn Unstetigkeiten in den Ableitungen
von v kénnen nur lings solchen auftreten. Dann ist, weil im Innern von 2, die
Gleichung (1) erfiillt ist,
0=ff[v,+ F(v),]dzedt = [ vdx — F (v)dt.
Qi

804
Addiert man nun hier die rechten Seiten iiber alle 7, so fallen die Anteile der
Rénder im Innern von 2 weg, da v die Bedingung (6) erfiillt, und es bleibt das
Integral (33).

Satz 7. (Eindeutigkeitssatz) Eine Funktion v(t, x), die der Integralgleichung
(4) geniigt, die Eigenschaften der Funktion w in Satz 1 besitzt, die Anfangs-
bedingung (31) und die Randbedingung (32) erfullt, stimmt mat der Funktion
u(t, ), welche tn Lemma IV definiert ist, in allen Punkten, wo diese stetiq ist,
iiberein.

Beweis. Zuerst fithren wir in ® neue Koordinaten ein:

=t —a, ' =2 —a, x>0.

Auf I'" = {(0,2'), ' >0; ({,0), ' >0} fithren wir einen Parameter s’

soein,daB s’ =2’ auf ' =0 und ¢ = — ¢ auf 2’ = 0. Ist nun v(¢, x)
irgendeine Funktion v, die den oben genannten Bedingungen gehorcht, dann
definieren wir 5 ¥ — &

gv(oc,zx + &) — G( . )d§ s >0

Dy (¢, ', 8') =1 _,. '

OJF(G(—t——jg)) _ P+, ) dE, 8 <0,
wobei & ein Punkt auf I'" ist. @, (¢, «’, s’) hat dieselben Eigenschaften wie
D, x,s). s5(t', «') sei der groBte, s* (t,x’) der kleinste Wert s, wo
&, (', x',s') ihr Minimum annimmt, 8 e[— #,00]. Dann ist die Funktion
u, (', &) =U@{, 2,85, x')), wo U durch (15) definiert ist, offensichtlich
eine Losung der Gleichung (4) mit den Anfangswerten u,(0, ') = v(x, 2’ + )
und den Randwerten wuy (¢, 0) = v (' + «, «). Zuerst zeigen wir, daBl u,
mit » in allen Punkten (¢, ') mit ¢’ > 0, ' > 0, wo entweder u oder v
stetig ist, iibereinstimmt. Nehmen wir das Gegenteil an, v sei in (f), z,)
stetig, und » sei dort stetig oder unstetig, aber verschieden von ». Dann gibt es
in einer Umgebung von (fy, #;) eine nicht abzihlbare Menge € von Stetigkeits-
punkten von %y, in denen %, % v. Aus der Menge € geniigt es, diejenigen
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Punkte zu betrachten, die auf #' = f; liegen. Aus der Eigenschaft 2. in Satz 1
folgt nédmlich, daBl w(f, ) bei festem ¢ hochstens abzihlbar viele Unstetig-
keitsstellen besitzt. ¢’ sei der grofite Wert ¢/, fiir den die Charakteristik durch
(to, ', uy(ty, ' — 0)) zu v gehort. Der Punkt (¢, z') auf dieser Charakteristik
kann kein Unsteitgkeitspunkt von v sein, denn sonst gibe es eine weitere
Charakteristik, deren Projektion durch (¢', z’) ginge und die zu v gehorte, und
v wire stetig auf ihr bis zum Rand I". Wegen (33) wiire aber
fvdx — F(v)dt =0 (34)
¢
auf dem Rand €, gebildet aus diesen beiden Charakteristiken und dem Stiick,
das sie aus I’ herausschneiden. Nun gilt aber fir @, (', 2’, s’) eine analoge
Relation wie (19), ndamlich

@, (', 2, 8")= [wda — Fu)dt' + ¥, '), (35)

wo das Integral erstreckt wird iiber I’ von O bis s’ und das Stiick der Charak-
teristik, deren Projektion durch s’ und (¢',z’) geht, ¥ (¢, ') eine Funktion
ist, die nur von ¢’ und 2z’ abhingt, und %' = «'(t, 2’) ist die Losung von (4),
deren Projektion durch s’ und (¢, ') geht. Ist 8’ der Punkt, wo die Projektion
der 2. Charakteristik von v durch (¢', 2’) den Rand I'’ schneidet, dann ist
wegen (34) und (35), weil v mit der Funktion «’ in (35) auf € iibereinstimmt
und weil s (2, ') = &% (ty, 2')

®a(z,> 5,7 8(:— (t(;’ xl)) = (Da (Zla EI, 5,) ’

das heiBt, @, (t', z’, s') nimmt ihr Minimum nicht nur in st (tg, x') an, sondern
noch in einem weitern Punkt. Das ist aber nicht moglich wegen Lemma III.
Also liegt (¢, ') auf I'’, oder er ist der Anfangspunkt einer Unstetigkeitslinie
' = x*(t') von v. Diese bestimmt sich so: x* ist bei festem ¢ = i* die
obere Grenze der Werte x” so, dal v stetig ist und daB3 die Projektion der
Charakteristik von v durch (¢*, 2”) I'' links von s% (ty, ') schneidet und die
untere Grenze der Werte 2", so dall v stetig ist und daB3 die Projektion der
Charakteristik von » durch (t*, ") I'" rechts von s% (ts, ') schneidet, wo
(ty, ') e €. Der Punkt (¢*, 2*) kann kein Stetigkeitspunkt von v sein, denn
sonst wire v in allen Punkten der Charakteristik, deren Projektion durch
(¢*, *) und s (ts, ') geht, stetig, also auch in 8% (t, «'). Dann ist aber dort
u, = v, also auch auf der ganzen Geraden bis (t*, 2*), was der Definition
von &' widerspricht. Somit ist jeder Punkt (¢, ') Anfangspunkt einer Un-
stetigkeitslinie von ». Die Menge € ist aber nicht abzéhlbar, somit haben wir
einen Widerspruch, denn v hat, auf jeder Geraden ¢ = konst. hochstens ab-
zihlbar viele Unstetigkeitspunkte. Damit ist gezeigt, dall %, = v in allen
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Punkten (&, 2’), wo die letztere stetig ist. DaB die beiden Funktionen auch
in allen Punkten (¢', ') iibereinstimmen, wo u, stetig ist, beweist man genau
gleich.

Nun zeigen wir, dal @, (¢, 2',s’) gegen PD(¢, x,s) konvergiert, wenn o
gegen Null geht, und dal « = v ist, in allen Punkten (¢, ) e &, wo u stetig
ist. Ist etwa 8 << 0, dann ist, wenn @ (', z’',s') =D, (¢, z,$) und D(¢,z,s)
die durch (16) definierte Funktion ist,

D, (t,x,8) — D(t,x,8) =
—T7(¢(5=5) -7 (e(25)) 2 + [ Pe@) — Foe.ana +

+ f roEa - F(e(5=F)) @,

und somit
it I e Tl
+;r'lF(e<s))—F(v(s,oc»ldH I | F(v(& ( ( ?))ldf-

Der 1. Integrand hier ist beschriankt, das 1. Integral also bei geniigend
kleinem « beliebig klein. Weil F(G(x/t — &)) stetig ist fiir alle

0<éE< -8t —96,0>0,

kann bei festem s auch der 3. Integrand gleichmiflig beschrinkt werden bei
geniigend kleinem «, und das 2. Integral verschwindet wegen (32), wenn «
gegen 0 geht. Mithin kann die Differenz links in (36) beliebig klein gemacht
werden, wenn nur « geniigend klein ist. Fiir s > 0 beweist man diese Tatsache
analog. @, (¢, z,s) konvergiert also gegen D (¢, xz,s) gleichmiBig fiir alle s
in [z, — t + 6]. Daher konvergiert auch wu,(t, ) = u,(t —x, * — &) gegen
w(t,x). Aber u,(t, x) = v(t, z). Damit ist der Satz bewiesen.
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