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Some Geometric Properties of Polynomial Surfaces').

by ROBERT OSSERMAN

In a recent paper [5] H.HuBER proved that for every polynomial P (z, y),
the surface z = P(x,y) is conformally equivalent to the plane. His method
requires obtaining estimates on the length of the intersection of the surface
with a sphere of radius . We shall present an alternative proof in this paper
by showing that an elementary argument gives a bound for the positive and
negative parts of the curvatura integra of a polynomial surface. The result then
follows immediately from a criterion of BLANO and Fiara [1] for parabolic
surfaces.

As is clear from the method, the bound on total curvature extends to poly-
nomial hypersurfaces in any number of dimensions. The details of this, together
with other results related to the main theorem, are given in a series of remarks
and additional theorems. Theorem 3 and the corollary to Lemma 2 concern the
number of real finite intersections of real algebraic curves.

Theorem 1. Let P(x,y) be a polynomial of degree n. Let K be the GAUSS
curvature of the surface S defined by z = P(x,y), and let dA be the area

element of S. Then
JIs|K|dA <2m(n — 1)%. (1)

Proof. Let S* denote the part of S for which K £ 0. Then the Gauss
spherical map is a local homeomorphism at each point of §*, and the image of
S* is an unbranched covering of a part of the unit sphere. If the area of this
covering is I, we have I = [fsx |K|dA = [[s|K|dA. Since only points of
the upper hemisphere (or lower, depending on the choice of normal direction)
are covered, the theorem will be proved as soon as we show that no point is

covered more than (» — 1)? times. But that is equivalent to saying that there

oP opP

are at most (n — 1) points on S* satisfying 5 = @ = b, for any

given a and b. If we set %
T oz’ oy’
. . . o(u, v) .
then the condition K # 0 is equivalent to ) # 0 which means that
points on 8* correspond to isolated intersections of the curves —%—a;- —a=20
and % — b = 0. Since these are both algebraic curves of degree at most

1) This research was supported in part by the Office of Scientific Research, U.S. Air Force.
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n — 1, they can have at most (n — 1)? isolated intersections by BrzouT’s
Theorem, which is the required result.

Corollary. For every polynomial P(x,y), the surface z = P(x,y) s of
parabolic type.

Proof. Let K+ = max {K, 0} and K~ = max {— K, 0}. Then
[fs|K|dA = [fsK+dA + [[sK-dA,

and we have in particular
s K-d4 <2m(n — 1)2. (3)

But the theorem of Branc and F1ara [1] (see also A. HUBER [4] for a different
proof and generalizations) states that a complete simply-connected surface
with an analytic RIEMANNian metric satisfying (s K—dA (oo must always
be of parabolic type. Since a polynomial surface is clearly complete, simply
connected, and analytic, the result follows.

Remarks. 1. If P(z,, ..., =) is a polynomial of degree n in k variables we
may again consider the GAuUss curvature K of the hypersurface S: z,4 =
= P(x,, ..., x,), which is defined as the ratio of the volume elements under
the normal map of § into the unit sphere U: z?2 + ... 4+ z,4,2 = 1. Exactly
the same reasoning gives the result (s|K|dV < }c,(n — 1)*, where c, is the
volume of U.

2. If P(x,y) islinear, then obviously both sides of (1) are zero. If P(x, y)
is quadratic, then the gradient map (2) is a linear transformation which will
be singular if and only if K =0. Thus, for n = 2, the left-hand side of (1)
can be only 0 or 2. For n > 2, we shall show (in the corollary to Theorem 3)
that equality can never be attained in (1). However, the bound is still the
correct one, since for each # we can find polynomials of degree n for which the
left-hand side of (1) comes arbitrarily close to the right. For example, if
Q)= —-1)E—2)...( — n), then we may set

P(z,y) = M[Q(2) +Q®)].

The equations (2) take the form « = M @' (z), v = M Q' (y), and by choosing
M sufficiently large we may cover any prescribed compact part of the «, v-plane
(n — 1)? times.

3. Inequality (1) implies in particular the existence of the curvatura integra
JfsKdA. For a complete surface this quantity is bounded above by 27y,
where y is the EULER characteristic of § (CorN-VosseENn [2]. See also HUBER
[4].). For a simply-connected surface we have y = 1. Thus, for every poly-

nominal surface,
ffsKdA < 2. (4)
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Inequality (3) gives us also a lower bound, but it turns out that a much
stronger result is true (Theorem 2). In order to obtain it we shall have to study
polynomial mappings more closely, and we shall restrict ourselves to two
dimensions, making use of winding numbers.

We recall that if I'is a piecewise smooth closed curve in the «, v-plane, and if
(%, %) 18 any point not on I, then in a neighborhood of each point of I" the

function 6 = tan=1— is defined up to an additive constant, so that the

differential d0 is uniquely defined along I". We may define the winding number
of I'" about (u,, v,) by

1
n(F, Uy, ’Uo) = E;Ipda

The following lemma connecting winding numbers with the degree of a map-
ping is known under much more general conditions, but we include a simple
proof which covers the only case that we shall need.

Lemma 1. Let D denote the disk 2* + y> < R* and let C be its circum-
ference, where C 18 given the positive orientation with respect to D. Let

u(z,y), v(z,y)

o(u, v)
o(x,y)
be the image of the curve C. Assume that (u,, v,) 18 a point not on I', whose
tnverse image consists of a finite number of points at each of which J(x,y) # 0.
If J(xz,y)> 0 at p of these points and J(x,y)< O at r of them, then we have

be continuously differentiable functions in D, let J(x,y) = and let I'

p— 1 =mn(l";u,v) . (5)

Proof. Choose ¢ >0 so that the disk A4: (v — %) + (v — v,)? < & does
not intersect I', and such that the inverse image of A consists of r + p disjoint
neighborhoods N; in D, each of which is mapped one-to-one onto 4. Denote
by C, the boundaries of N, and by y the boundary of 4. Then the function
52 tan_l 'U(x, y) — Y

u(x> ?/) — U ~
of each point of D' =D — UN,. The differential d0 is therefore a locally
exact, hence closed differential in D', so that f,,.df = 0. Hence
ptr

2 (I'; g, vo) = frd0 = fedB = X [4,d0 = (p — 1) f,d0 = 2n(p — 1)

i1=1

is defined up to an additive constant in a neighborhood

since p of the curves C; map onto y with the positive orientation and » of them
map onto y with the negative orientation.

We wish next to apply this lemma to the case of polynomial mappings.
First we make the following general comments.
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o(u,v)
o(z,y)
A point (uy, v) is called a regular value if at each point of its inverse image
J(z,y) #0. If u(x,y) and v(x, y) are polynomials, then either J(z,y) =0
in which case the whole plane will map into a curve, or else the set J(z,y) = 0
is an algebraic curve ' whose image will lie on an algebraic curve I" in the
w, v-plane. Thus, given any neighborhood in the w, v-plane, all points of the
neighborhood not on I" will be regular. For a regular value it is perfectly clear
what is meant by the number of times it is covered under the mapping. Note
also that (u,, v,) is a regular value if and only if all intersections of u(x, y) =
= Uy, v(®,y) = v, are simple, and the number of these intersections is
precisely the number of times that the point (u,, v,) is covered.

Let u(x,y),v(z,y) be continuously differentiable and let J (x,y) =

Lemma 2. Let P(x,y),Q(x,y) be arbitrary polynomials. For any regular value
(ug, Vo) let the number of intersections of the curves P(x,y) = u,, Q(x,y) = v,
2(P, Q) (P, Q)

<0 be r. Then
a(z,y) 9(z,y)
|p — r| < min {deg P, deg @} . (6)

Proof. Set w = P(x,y), v=@Q(x,y). Let (u,, v,) be regular, so that all
intersections of P(x, y) = u,, @(x, y) = v, are simple. By BEzouT’s Theorem
there are only a finite number, and hence, for R sufficiently large they will all
be contained in a disk 2% 4 y? < R*. By Lemma 1 it is sufficient to show
that | n(I"; %y, v) | < min {deg P, deg @}, where ["is the image of a2 + 2 =
= K2%. Let us assume for definiteness that the degree of P(x, y) is less than
or equal to the degree of Q(z, y), and let the degree of P(x, y) be k. For all
sufficiently large R the curve P(z,y) = u, can intersect a? + y? = R? in
at most a finite number of points, and again by BezouTt’s Theorem the total
number of intersections is at most 2% . Hence if there are k, pointson 2% 4 32 =
= R? where % = u,,v>v, and k, points where u = u,, v <v,, we see
that min {k,, k,} < k. But the number of times that I" intersects each ray
U =1uy, V>0, and u = u,, v < v, must be at least |n(I"; u,y, v,)|. Hence
we have |n(I';uy,v,) | < min {k,, k,} <k = min {deg P, deg @}, which
proves (6).

where

> 0 be p, and the number where

Corollary. For any polynomials P(x,vy), @(z,y), f (P, 2)) >
5; ((i A 3)) <O everywhere, then for all (u,,v,) the number of szmple intersections of

P(x’ Y) = Uy, Q(xa Y) =7,
18 at most the minimum degree of P(x,y) and Q(x,y).

Proof. If P(z,y) = 4y, @(x,y) = v, have n simple intersections, then for
all points (u,, »;) in some neighborhood of (u,, v,) the curves



218 ROBERT OSSERMAN

P(x7 y) = Uy, Q(x’ y) =10

must have at least n intersections. In particular, if (%,, »,) is a regular point,
then since the Jacobian always has the same sign we find that
n < {the number of intersections of P = u,, @ = v} < min {deg P, deg @} .

Theorem 2. With the same notation as in Theorem 1, we have

| f[fsKdA | <2zm(n — 1). (7)
Equality is attained for all harmonic polynomials.
Proof. Applying Lemma 2 to the map w = %—% , V= —%—5— , we see that for

every regular value (u,,v,) we have |p —r| <n — 1. As in the proof of
Theorem 1, if we consider the normal map of § into the unit sphere U, and
if we denote by U* the part of U corresponding to regular points (u,, v,),
then denoting the area element of U by do we have

|§fs K dA| = | ffs K+dA — [fs+ K= dA| = | [fus(p — 1) do| < 2a(n — 1).

The second statement in the theorem follows immediately from the fact

that if P(z, y) is a harmonic polynomial of degree n, then gl; — 1 Ba;’ is an
analytic polynomial of degree n — 1, so that except for a finite number of
points (u,, v,), the equation ?35 — 1 ?;; = %, — 17, will have n» — 1 distinct

(complex) roots.

Theorem 3. Let P(x,y), @(x,y) be arbitrary polynomials of degree m,n
respectively. Then unless P(xz,y) and @Q(x,y) are both linear, there always
exists an open set in the u, v-plane such that for any point (uy, ve) in this set, the
number of (real, finite) intersections of P(x,y) = uy, Q(x,y) = v, 8 strictly
less than mmn.

(P, Q)
Proof. Let J(x,y) = —"—.
f @9 =%
Case 1. Suppose J(z,y) >0 or J(x,y) <0 everywhere. Then for all
regular values (u,, ¥), (and in particular for all points not lying on a certain

curve) we have by Lemma 2 that the number of intersections of

P(x; ?I) = Uy, Q(x’ y) =Y
is at most the minimum of m and »n. But for any positive integers m, n, we
always have min {m,n} <mn unless m =n = 1.

Case 2. Suppose the homogeneous polynomials of highest degree in P(x, y)
and Q(z,y) have a common factor. Then for all (%,, v,) the number mn of
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intersections of P(z,y) = u,, Q(z,y) = v, from Brzour’s Theorem will
include at least one intersection (real or complex) on the line at infinity, and
hence the number of finite intersections can be at most mn — 1.

Case 3. Suppose that J(x, y) takes on both positive and negative values,
and that P(z,y) and @(z, y) do not have a common factor in their highest
degree terms. In this case we shall show that for some point («,, v,) the equa-
tions P(x,y) = 4y, @(2,y) = v, will have a common (non-real) complex
solution. The same will then be true in a neighborhood of (u,, v,) and in fact
there must be a pair of complex solutions, so that the number of real inter-
sections can be at most mn — 2.

To prove this statement, we consider a branch C of the curve J(z,y) = 0
which separates a region where J(z,y)> 0 from one where J(z,y)<0.
If the image of C were a single point (u,, v,) it would mean that the curves
P(x,y) — uy=0, Q(x,y) — v, = 0 have more than a finite number of inter-
sections, and hence that the polynomials P(x,y) — %,, @(x,y) — v, have a
common factor. That would in turn imply that the terms of highest degree in
P(z,y) and Q(z, y) also have a common factor, which was our Case 2. Thus
the image of C must be a curve I'. The correspondence between C' and I is
locally one-to-one at every point where either grad w or grad v is not per-
pendicular to C, But there must always be a point on ' where one of these
is not perpendicular, since otherwise both 4 and v would be constant on C.
Let us assume for definiteness that grad « is not perpendicular to C' at some
point, and choose a regular point of C' for which this is true. By a rotation in
the z, y-plane we may assume that the tangent to C is horizontal at this
point and that w,> 0. The curves w = ¢ will fill out a neighborhood D,
and we may choose this neighborhood sufficiently small so that %, > 0 through-
out. Then each point of D lies above, below, or on C, along a unique arc of
a level curve 4 = ¢. Let us suppose that J(x, y) > 0 above C'and J(z, y) <0
below C. This means precisely that v must be decreasing as we approach C
along a level curve % = ¢, either moving down from above or up from below.
Thus the image of this whole neighborhood lies above or on an arc of I". If
we take a point (u,, v,) on this arc, then it will correspond to a unique point
(%o, Yo) of C lying in the neighborhood D, while no point (u,, v;) with » <,
will correspond to any point of D. However, if we allow the full complex
neighborhood N of (z,, %, then there must always be an intersection of
P(z,y) = u, @(x,y) = v, lying in N for (u,, v,) sufficiently near (u,, v,) by
the theorem on continuous dependence of roots of polynomials on the coeffi-
cients. Hence for those points lying below I" there will be at least one non-real
complex root of P(x,y) = u,, @(z,y) = v;. This completes the proof.
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Corollary. Inequality (1) is always strict if » > 2. This follows immediately
from the proof of Theorem 1, using Theorem 3.

Final remarks. It is quite likely that a stronger version of Theorem 3 is true,
in the sense that there may always exist an open set of points (%,, v,) such that
the number of intersections of P(z, y) = u,, ¢(x, y) = v, is much lower than
mn, conceivably even min {m, n} which would be the best possible result.

It would be interesting to obtain results in the opposite direction, stating
that under certain conditions every point is covered at least a certain number
of times. For example, it seems likely that if J(z, y) > 0 everywhere, then the
map is a one-to-one map of the whole z, y-plane onto the whole w, v-plane.
This is known to be true under the stronger assumption that J(x,y) =c # 0
[3]. The analogous result is still not known in higher dimensions.
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